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Abstract. Atmospheric inversion of high spatiotemporal surface CO2 flux without dynamic constraints and sufficient 

observations is an ill-posed problem, and a priori flux from a "bottom-up" estimation is commonly used in "top-down" 15 

inversion systems for regularization purposes. Ensemble Kalman filter-based inversion algorithms usually weigh a priori flux 

to the background or directly replace the background with the a priori flux. However, the "bottom-up" flux estimations, 

especially the simulated terrestrial-atmosphere CO2 exchange, are usually systematically biased at different spatiotemporal 

scales because of the deficiencies in understanding of some underlying processes. Here, we introduced a novel regularization 

algorithm into the Carbon in Ocean‒Land‒Atmosphere (COLA) data assimilation system, which assimilates a priori 20 

information as a unique observation (AAPO). The a priori information is not limited to "bottom-up" flux estimation. With the 

comprehensive assimilation regularization approach, COLA can apply the spatial gradient of the "bottom-up" flux estimation 

as a priori information to reduce the bias impact and enhance the dynamic information concerning the a priori "bottom-up" 

flux estimation. Benefiting from the enhanced signal-to-noise ratio in the spatial gradient, the global, regional, and grided flux 

estimations using the AAPO algorithm are significantly better than those obtained by the traditional regularization approach, 25 

especially over highly uncertain tropical regions in the context of observing simulation system experiments (OSSEs). We 

suggest that the AAPO algorithm can be applied to other greenhouse gas (e.g., CH4, NO2) and pollutant data assimilation 

studies. 

1 Introduction 

Climate change forced by the increasing atmospheric carbon dioxide (CO2) concentrations threatens the health of the 30 

environment, living systems, and the economy. Therefore, it is essential to accurately estimate earth surface carbon fluxes 

(SCFs) and their variations for both scientific purposes and policy-making, including supporting the Paris Agreement (Byrne 

et al., 2022; Chevallier, 2021; Friedlingstein et al., 2022; Jiang et al., 2022; Weir et al., 2022; Deng et al., 2022). The SCFs 
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can be inferred from atmospheric CO2 measurements using "top-down" (hereafter quotation marks will be omitted) techniques 

of the Bayesian synthesis (e.g., Rodenbeck et al., 2003; Zammit-Mangion et al., 2022; Cho et al., 2022) and data assimilation 35 

(DA) techniques (e.g., Peters et al., 2007; Feng et al., 2009; Chevallier et al., 2010; J. Liu et al., 2014; Z. Liu et al., 2022). 

However, the top-down estimation could be ill-posed because of the sparseness feature of atmospheric CO2 observations and 

systematic errors of the transport model and satellite retrieval (Basu et al., 2018; O'Dell et al., 2018; Yu et al., 2018; Schuh et 

al., 2019). To regularize the ill-posed problem, a priori SCFs precalculated from "bottom-up" (hereafter quotation marks will 

be omitted) terrestrial models and ocean biogeochemical models are commonly applied (Baker et al., 2006; Peters et al., 2007). 40 

However, there are significant differences and biases among bottom-up SCFs due to the systematic deficiencies in current 

bottom-up models, which could contaminate the top-down SCF estimation (Philip et al., 2019; Fu et al., 2021). 

 

Kang et al. (2011, 2012) developed a carbon data assimilation system by coupling an atmospheric general circulation model 

with a local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). This system accurately estimated SCF at model 45 

grid resolution for the first time without directly applying a priori information by assimilating meteorology observations and 

CO2 concentration observations simultaneously with a short assimilation window in observing system simulation experiments 

(OSSEs). Following this track, we developed the Carbon in Ocean‒Land‒Atmosphere (COLA) system (Liu et al., 2019; Liu 

et al., 2022), which maintains the LETKF with a short assimilation window and long observation window setting but replaces 

the general circulation model with an atmospheric transport model, GEOS-Chem (Nassar et al., 2013). The COLA system also 50 

applies a constrained ensemble Kalman filter (CEnKF) technique to retain global mass conservation (Liu et al., 2022). As a 

result, COLA can provide good estimates of SCFs at model grid resolution along with atmospheric CO2 concentration analyses. 

 

On the other hand, even though a priori information includes biases, it could be used to further improve the SCF estimation in 

COLA because it includes important dynamic information generated by terrestrial models, which is missing in the top-down 55 

inversion system. Therefore, it is worth exploring an appropriate a priori regularization method. The purpose of this paper is 

to introduce the development of the COLA (v2.0) system with a novel a priori regularization for SCF estimation, where a priori 

information is treated as a unique observation to be assimilated. This new approach is inspired by the CEnKF applied in COLA 

(Liu et al., 2022). With the comprehensive assimilation regularization, we are able to apply the spatial gradient of bottom-up 

SCF estimations as a priori information to improve SCF estimation. The paper is organized as follows: section 2 introduces 60 

the COLA system and presents the new approach of a priori regularization for SCF estimation; section 3 compares a priori 

flux and its spatial gradient in the context of the signal/noise ratio and demonstrates and validates the new approach in the 

context of OSSEs; and section 4 provides the conclusion and discussion. 

2 Data and Methods 

2.1 Carbon in Ocean‒Land‒Atmosphere (COLA) DA system 65 
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The COLA DA system consists of an atmosphere transport model of GEOS-Chem, a local ensemble transform Kalman filter 

(LETKF) algorithm, a constrained EnKF, and the assimilated observations. Currently, we are using GEOS-Chem of version 

13.0.2 driven by the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) meteorology 

reanalysis (Gelaro et al., 2017; The International GEOS-Chem User Community, 2021). GEOS-Chem requires the SCFs as 

boundary forcings to simulate the atmospheric CO2 concentration. The SCFs are usually generated from bottom-up SCF 70 

estimations, including terrestrial carbon fluxes (FTA), terrestrial fire fluxes (FIR), air-sea carbon fluxes (FOA), and anthropogenic 

fossil fuel emissions (FFE). 

 

The DA algorithm used in the COLA system is LETKF, which was created by Hunt et al. (2007). LETKF is a powerful, 

efficient deterministic EnKF variation. It is widely used for DA, including several operational centers, and was first used for 75 

carbon data assimilations by (Kang et al., 2011, 2012). LETKF estimates SCF as evolving parameters by augmenting it with 

the state vector CO2. Similar to the other EnKF, the LETKF prefers a short assimilation window to produce accurate model 

state analysis, which reduces noise within the background for parameter estimation. On the other hand, parameter estimation 

requires a long training period to enhance the model response to the estimated parameter (the signal). Therefore, COLA 

implements a new version of LETKF with a unique feature of a short assimilation window (1 day) and a long observation 80 

window (7 days) to enhance the SCF estimation (Liu et al., 2019). 

 

Another unique feature of COLA is that it applies a constrained ensemble Kalman filter (CEnKF) to retain the global mass 

conservation of the system (Liu et al., 2022). The standard LETKF step updates the model state based on statistical information, 

which could lead to model dynamic imbalance and loss of mass (Pan and Wood, 2006; Zeng et al., 2017; Janjić and Zeng, 85 

2021). With CEnKF, an additional assimilation step is applied to the first guess of the global CO2 mass as the observation with 

zero uncertainty to adjust CO2 at each model grid point, ensuring the consistency between the analysis and the first guess after 

the standard LETKF procedure. 

2.2 Assimilating a priori information as unique observations (AAPO) 

Conceptually, COLA can further improve the SCF estimation with a priori regularization using the a priori generated from an 90 

independent bottom-up estimation. COLA treats SCFs as stationary parameters, where the SCFs are only updated by the 

LETKF statistically. There is no dynamic constraint for SCF estimation, and any gap in data could be filled with a priori 

information from a bottom-up estimation that includes the important dynamic information about the parameter of interest. 

There are two widely used a priori regularization approaches for EnKF-based carbon inversion systems. Feng et al. (2009) 

treated the a priori information as a background for EnKF calculation, 95 

𝒇"𝐭𝐛 =	𝒇𝐭
𝐩,                      (1) 
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where 𝒇 is the SCF; the bar denotes the ensemble mean; and the subscripts b, p, and t represent the background, a priori 

information of bottom-up estimation, and time, respectively. This approach omits useful information on the temporal 

dependency of SCFs, which is very important for resolving the subseasonal variation in SCFs, for example, in the COLA 

system with a short assimilation window of 1 day. Peters et al. (2007) treated the a priori information as anchoring values and 100 

averaged it with SCF analysis as, 

𝒇"𝐭𝐛 = 	𝛂 ∙ 𝒇"𝐭$𝟐𝐚 + 𝛂 ∙ 𝒇"𝐭$𝟏𝐚 + (𝟏 − 𝟐𝛂) ∙ 𝒇𝐭
𝐩,               (2) 

where 𝛂 denotes the average weight of the analysis ranging from 0 to 1, and the subscript a represents the analysis. The 

averaging coefficient of	𝛂	is ad hoc because it lacks a statistical foundation. 

 105 

Here, we propose a new a priori regularization method to better follow the DA principle. The new approach treats the a priori 

information as unique observations to be assimilated into the COLA system in the LETKF analysis step (Fig. 1). Thus, the 

data include the atmospheric CO2 observation and the a priori information, 

𝒚( = [𝒚)(, 	𝒚*+( ],                    (3) 

where 𝒚( is the observation; the subscripts c and ap denote the CO2 observation and the a priori information, respectively. 110 

The new regularization algorithm follows a similar perspective as Peters et al. (2007) but with a comprehensive EnKF approach. 

The a priori information used for regularization is not limited to SCF estimations. EnKF updates the parameter using the 

covariance between the parameter and observation variables. Therefore, a priori information can be any estimation related to 

bottom-up SCFs. As discussed before, a bottom-up estimation of SCFs includes important dynamic information as well as 

significant biases. It will induce signal as well as noise when assimilated into the system. The impact of the signal must be 115 

larger than the impact of noise to obtain improved SCF estimation. Therefore, the estimation will benefit from the enhancement 

of the signal/noise ratio within the a priori information. 

 

In COLA, the main purpose of applying a priori regularization is to introduce the dynamic constraint for SCF estimation. The 

spatial gradient of a bottom-up estimation of SCF could be a better choice than the SCF estimation itself as the a priori 120 

information. We also speculate that the signal-to-noise ratio within the spatial gradient is larger than the SCF estimation itself. 

For example, the SCFs in a terrestrial model can systematically drift in a regionally spatially coherent manner because they 

are affected by the same model dynamic/physiological deficiency with a similar terrestrial eco-environment. The spatial 

gradient calculation can reduce the systematic drift. On the other hand, the SCF spatial gradient reflects the dynamic response 

of the terrestrial and oceanic systems to large-scale climate forcing, which is the information we seek. The signal-to-noise ratio 125 

of SCF compared to its spatial gradient will be discussed in section 3.2. 

 

Numerically, we define the SCF spatial gradient at a given grid as the SCF difference with its surrounding grids divided by the 

distance between them. Fig. 1 illustrates the assimilation steps of the COLA system. The atmospheric CO2 observations and 
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the a priori SCF spatial gradient are assimilated at different LETKF steps to separate their impact, although both are treated as 130 

observations. In addition to the large-scale weather/climate forcing, the spatial gradient of the bottom-up SCF is also dependent 

on the local terrain, vegetation type, population, and urbanization. Therefore, the localization radius for the a priori SCF spatial 

gradient is set to a small value, and the SCF spatial gradient only constrains the local SCF. 

 

 135 
Figure 1: The assimilation cycle of the COLA system, illustrating how and where the a priori is assimilated. 

2.3 SCF ensemble spread versus a priori uncertainty 

COLA is a flow-dependent ensemble-based DA using the ensemble spread to represent the forecast and analysis uncertainties. 

The SCFs are temporally varying parameters to be estimated by the COLA. With a default setting, an estimated parameter is 

set as stationary during model integration (forecast step) and only updated by the DA algorithm in the analysis steps. As a 140 

result, the parameter ensemble spread remains unchanged during the forecast step and is reduced in the analysis step. This 

reduction leads to a progressively decreasing parameter ensemble spread, which eventually could result in a too-small 

parameter ensemble spread and filter divergence for parameter estimation. Furthermore, this parameter estimation procedure 

totally ignores the uncertainties related to the temporal variations in SCFs, thus further deteriorating the negative ensemble 

spread issue. Following Kang et al. (2012), we apply an additive inflation method to the SCFs to overcome this problem. This 145 

inflation method adds to each ensemble member with an anomalous SCF field chosen randomly from the bottom-up estimation 

of CASA within 30 days centered at the analysis time (Kang et al., 2012; Liu et al., 2019, 2022). 

 

COLA assimilates the a priori SCF spatial gradients into the system, which needs to define the a priori uncertainty. In this 

study, we simply set the a priori uncertainty proportional to the uncertainty of the analysis ensemble uncertainty, 150 
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𝝈,,.
/+ = α ∙ 𝝈,,./ ,                     (4) 

where 𝝈,,.
/+ is the a priori uncertainty of the bottom-up estimation or the spatial gradient of the bottom-up estimation, and α 

is the scaling factor. This approach is a simple adjustment for the a priori uncertainty. We find an optimal scaling factor of 5 

based on several tests. In reality, a bottom-up SCF estimation product may come with its uncertainty estimation. We may derive 

the uncertainty of the SCF spatial gradient from it. The importance and impact of those uncertainties and whether their 155 

accuracies are good enough for DA application remain to be further explored in the future. 

3 Observing system simulation experiments (OSSEs) 

3.1 Experimental setup 

In this section, we evaluated the new algorithm in the context of OSSEs. The experimental period spans from 1 September 

2014 to the end of 2015, with a spin-up period in 2014. GEOS-Chem is running with a horizontal resolution of 4°×5° and 47 160 

hybrid pressure-sigma vertical levels for CO2 simulation. We assimilate both the surface and satellite data as described in Liu 

et al. (2022). The surface data are obtained from the CO2 GLOBALVIEWplus v8.0 ObsPack. For satellite data, we used a 10-

second averaged ACOS v10 level two retrieval of land-nadir and land-glint from the Orbiting Carbon Observatory-2 (OCO-2) 

(Crisp et al., 2017; O'Dell et al., 2018; Baker et al., 2021; Cox et al., 2022). Following Liu et al. (2022), the observation 

networks and their error scales are used to create the pseudo observations in the OSSEs. We set the CO2 observation 165 

localization radius to 4000 kilometers. 

 

A nature run is driven by the FOA from Rödenbeck et al. (2014), FFE from the Open-source Data Inventory of Anthropogenic 

CO2 emissions (ODIAC) (Oda et al., 2018), and the FIR and FTA generated from the terrestrial model of the VEgetation Global 

Atmosphere Soils (VEGAS) model (Zeng et al., 2005), which serves as the "truth" for the OSSE. The FTA is chosen as the flux 170 

to be estimated. The other fluxes of FIR, FFE, and FOA are set to be identical in the nature run. Another terrestrial model of 

CASA (Potter & Klooster, 1997) is used to provide an independent bottom-up FTA estimation for the a priori regularization in 

our experiments. The difference between the FTA from VEGAS and CASA represents the bias among bottom-up estimations 

related to terrestrial model deficiencies. 

3.2 Signal-to-noise ratio (SNR) analysis 175 

In this section, we mimic the typical bias of a priori information and derive its signal-to-noise ratio (SNR) based on two 

different terrestrial model estimations of the VEGAS and CASA. The estimations of VEGAS and CASA are treated as the 

truth and the a priori information, respectively. The variations in the truth are regarded as the signal. The differences between 

the "truth" and the a priori information are regarded as the noise. We define the SNR of the spatial gradient and the FTA as, 
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𝐒𝐍𝐑01(x, t) = |𝐟!"#(5,.)77777777777777777777⃗ $𝐟!"#(5,.$9)777777777777777777777777777⃗ |

|𝐟$"#(5,.)77777777777777777777⃗ $𝐟!"#(5,.)77777777777777777777⃗ |
,                 (5) 180 

𝐒𝐍𝐑0(x, t) = |𝐟!(5,.)$𝐟!(5,.$9)|
|𝐟$(5,.)$𝐟!(5,.)|

,                  (6) 

where the superscripts PSG and P denote the a priori of SCF spatial gradient and SCF, respectively; the superscripts TSG and 

T denote the truth of SCF spatial gradient and FTA, respectively; and x denotes the grid point location at time t. 

 

Both 𝐒𝐍𝐑01 and 𝐒𝐍𝐑0 over the Northern Hemisphere are larger than those over the tropics and Southern Hemisphere (Fig. 185 

2a, b), which is consistent with the larger FTA seasonal cycle over the Northern Hemisphere than over the tropics and Southern 

Hemisphere. The 𝐒𝐍𝐑01 is significantly greater than 𝐒𝐍𝐑0 nearly everywhere (Fig. 2c), indicating that the spatial gradient 

is better than SCF itself in terms of SNR. The 𝐒𝐍𝐑01 is almost double the corresponding 𝐒𝐍𝐑0 in the Sahel, southern Africa, 

tropical South America, and eastern Siberia, where the noise of the a priori FTA is significantly larger than that in the other 

areas (Fig. 4a). 190 

 

Here, we use VEGAS and CASA estimations as examples to reveal that the spatial gradient has a larger SNR than the FTA 

itself. The same comparison can be made based on other terrestrial model estimations. Conceptually, DA induces both signal 

and noise into a system by assimilating observations with errors. A DA application expects the impact of the signal to dominate 

and offset the impact of noise. Therefore, it tends to achieve better analysis by increasing the SNR of assimilated observations. 195 

Thus, we speculate that the spatial gradients are better than the flux itself as a priori information. Since the current 

understanding of the carbon cycle processes is highly uncertain in the tropics and Eurasia (O'Sullivan et al., 2022), the two 

models we chose differ significantly in these areas, which is a good proxy for the real-world scenario. 

 

 200 
Figure 2: a) The annual mean signal-to-noise ratio pattern of the a priori FTA spatial gradient. b) The same as a) but 
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for the a priori FTA. c) Annual mean signal-to-noise ratio of the spatial gradient divided by the signal-to-noise ratio of 
the FTA. 

3.3 OSSE results 

Four experiments are performed with COLA in the context of OSSE to evaluate the proposed a priori regularization approach. 205 

The first experiment estimates the FTA by only assimilating the synthetic observations of the atmospheric CO2 concentration 

(EXP-NP). Based on the first experiment, experiment two (EXP-P) uses the approach described in Eq. (2) with a priori FTA 

from CASA and 𝛂 of 0.2; experiment three (EXP-ASG) applies the proposed assimilation approach with a priori FTA spatial 

gradient in the CASA estimation; experiment four (EXP-AP) assimilates the a priori FTA of the CASA estimation. We compare 

EXP-ASG with the other three experiments to illustrate the improvement of SCF estimation. The evaluation metrics of root-210 

mean-square error (RMSE) and mean bias are defined as, 

𝐑𝐌𝐒𝐄:(x) = ?∑ (𝐟%(5,.)$𝐟!(5,.))&'&
'(')

.<$.9
,                 (7) 

𝐑𝐌𝐒𝐄:01(x) = ?∑ (|𝐟%"#(5,.)77777777777777777777⃗ $𝐟!"#(5,.$9)777777777777777777777777777⃗ |)&'&
'(')

.<$.9
,               (8) 

𝐌𝐁:(i) = ∑ (𝐟%(,,.)$𝐟!(,,.))'&
'(')

.<$.9
,                  (9) 

where x denotes a grid point; the superscripts A and T denote the analysis of FTA and truth, respectively; ASG denotes the 215 

analysis of the spatial gradient of FTA; all are calculated for the time from t1 and t2. 

 

 
Figure 3: The top figure is the global total seasonal cycle of the truth (black), the a priori FTA (gray), and the four 

assimilation experiments. The bottom figure is the global total difference of the four assimilation experiments 220 
compared to the truth. The annual mean RMSE and mean biases of the a priori FTA and the four experiments are 

denoted at the upper right corner of the bottom figure. 
 
First, we focus on the global total FTA (Fig. 3). The estimated errors are shown in annual mean flux biases and the RMSE of 

the seasonal cycle. The flux biases of EXP-P and EXP-AP are -0.60 GtC yr-1 and 0.03 GtC yr-1, respectively, which are 225 
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significantly smaller than those of EXP-NP (1.36 GtC yr-1). The improvement is mainly due to the negative bias of FTA from 

CASA compromising the positive bias of the estimates in EXP-NP without a priori regularization. The EXP-ASG removes 

most of this bias with only 0.08 GtC yr-1 remaining. 

 

The RMSE of FTA in EXP-ASG is significantly smaller than those with other experiments. Instead of improving the estimation, 230 

the a priori regularization with the FTA from CASA degrades the seasonal cycle estimation of the global FTA. Both EXP-P and 

EXP-AP show an increase in RMSE of FTA concerning EXP-NP because of the very large seasonal cycle errors within the a 

priori FTA used for regularization (Fig. 3). The new AAPO regularization is clearly better than the traditional method even with 

the same biases for the a priori FTA from CASA. The bias and RMSE for EXP-AP are reduced by 66% and 24% compared to 

EXP-P, respectively. The AAPO regularization with an improved a priori FTA spatial gradient further improved the estimation. 235 

The bias and RMSE for EXP-ASG are reduced by 87% and 81% compared to EXP-P, respectively. 

 

 
Figure 4: The seasonal cycles of the regional FTA for truth (black), a priori (gray), EXP-ASG (red), EXP-AP (orange), 

https://doi.org/10.5194/gmd-2023-15
Preprint. Discussion started: 21 February 2023
c© Author(s) 2023. CC BY 4.0 License.



 

 10 

EXP-P (blue), and EXP-NP (green) in the tropics and Australia. The values in the bottom-left corner of all figures are 240 
the RMSE, the mean bias of the four experiments, and the a priori FTA compared to the truth FTA. The regions are 

defined based on the OCO2MIP mask (Crowell et al., 2019). 
 

 
Figure 5: Same as in Fig. 4, but for the Northern Hemisphere regions. 245 

 
At the regional scale, defined based on the OCO2MIP mask (Crowell et al., 2019), all four experiments reproduce the Northern 

Hemisphere seasonal cycle accurately, which is mainly because of the better observation coverage and less biased a priori FTA 

as compared to the Southern Hemisphere regions (Fig. 5). In the Southern Hemisphere, significant differences exist between 

the "truth" FTA and the a priori FTA from CASA. The differences are larger than the RMSE of the estimated FTA of EXP-NP for 250 

most regions, especially South America Temperate, Tropic South America, Northern Africa, and Southern Africa, where a 

priori FTA degrades the FTA estimation with the RMSEs increasing for EXP-P and EXP-AP compared to EXP-NP. The seasonal 

estimation of EXP-ASG is significantly better than the other experiments in terms of RMSE (Fig. 4). The regional seasonal 

estimation of EXP-AP is better than that of EXP-P, which indicates that the AAPO regularization is better than the traditional 
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method, and this is consistent with the global seasonal results presented earlier. In tropical South America, the seasonal 255 

amplitude of the a priori FTA is significantly larger than the truth of FTA, which greatly contaminates the estimation in EXP-

AP and EXP-P. A similar phenomenon also appears in some other regions (e.g., northern and southern Africa) where the a 

priori and the truth of FTA show a large discrepancy. However, the a priori FTA spatial gradient can help separate the biased 

information of the FTA and significantly improve the seasonal estimation in regions where the a priori FTA is not good and 

observations are rare. 260 

 

 
Figure 6: The RMSE of the FTA in (a) the a priori, (b) EXP-ASG, (c) EXP-AP, (d) EXP-P, and (e) EXP-NP calculated 

based on Equation 7 from January to December 2015. 
 265 
At the grid-point scale, EXP-NP produces a very noisy FTA with abnormally large RMSEs of the estimated FTA because LETKF 

overfits the gridded FTA with limited observations (Fig. 6e). Therefore, a priori regularization is expected to enhance the results 

for COLA. The RMSEs in EXP-P, EXP-AP, and EXP-ASG are significantly reduced compared to EXP-NP. Large errors exist 

in the a priori FTA over the South American, African, and Indian regions (Fig. 6a). When the a priori FTA is used for 

regularization, those errors are also introduced into the system resulting in the final FTA estimation with a large RMSE shown 270 

in the same locations, especially for EXP-P (Fig. 6b, c). Those errors are less severe within EXP-AP with the AAPO 

regularization applied concerning EXP-P. The use of AAPO with an improved a priori FTA spatial gradient avoids those large 

errors within the a priori FTA and produces much better estimation in EXP-ASG. At the model grid scale, EXP-ASG 

significantly outperformed EXP-AP and EXP-P for most grid points. 

 275 
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In addition to the RMSE of FTA, we also analyzed the RMSE of the FTA spatial gradient. For EXP-AP and EXP-P, which 

assimilate or add the a priori FTA, the spatial gradient information is digested simultaneously within the original FTA. Similar 

to the RMSE of FTA, EXP-NP also produced very noisy spatial gradient estimation (Fig. 7e). With the help of the two types of 

a priori information, the other three experiments significantly reduced the RMSE concerning EXP-NP (Fig. 7b-d). However, 

for EXP-ASG, which directly assimilates the spatial gradient information, its RMSE is smaller than that of EXP-AP and EXP-280 

P. Moreover, the RMSEs of EXP-AP and EXP-P are almost identical to the RMSE of the a priori FTA spatial gradient at most 

grid points, indicating that the second-order spatial gradient information is not effectively digested in the two experiments and 

that the first-order biases in the original a priori FTA dominate the resulting information. 

 

 285 
Figure 7: The RMSE of the spatial gradient of FTA in (a) the a priori, (b) EXP-ASG, (c) EXP-AP, (d) EXP-P, and (e) 

EXP-NP calculated based on Equation 8 from January to December 2015. 

4 Summary and Discussion 

In this study, we developed a novel algorithm for the ensemble-based CO2 inversion system, in which the spatial gradient of a 

bottom-up model estimation is dynamically assimilated as a unique observation (AAPO). The AAPO algorithm that uses the 290 

spatial gradient of a bottom-up model estimation as the a priori information aims at separating the first-order systematic biases 

in the bottom-up model estimations out of the inversion framework from a comprehensive DA perspective. In the context of 

OSSEs that assimilate in-situ and OCO-2 land-nadir and land-glint observations, it significantly overperformed the traditional 
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scheme that directly adds the a priori flux to the first guess. As a result, the spatial gradient consideration helps improve the 

accuracy of regional flux estimation, especially over the highly uncertain tropics. 295 

 

EnKF is widely used in state data assimilation studies, such as weather forecasting, for its flexibility, efficiency, and error 

transport feature. However, the advantage of error transport is partly sacrificed or abandoned by introducing the a priori flux 

information to the background in most of the EnKF-based CO2 inversion methods (Peters et al., 2007; Feng et al., 2009). This 

is because of the loss of a dynamic model to provide the background and the background covariance estimations. Different 300 

from most EnKF-based systems, COLA maintains the mean and error transport advantages of the EnKF by including the 

dynamic information constraints of the a priori flux spatial gradient and using an additive covariance inflation method (Liu et 

al., 2022).  

 

In addition to the CO2 inversion problem investigated in this study, the proposed new assimilation algorithm can also be applied 305 

to ensemble-based source/sink inversion studies of methane, nitrogen dioxide, and other chemical species. Based on the 

concept of applying constraints as unique observations, the spatial gradient constraint can be introduced to variational methods. 

With the increasing number and spatial coverage of CO2 observations and the improving accuracy of atmospheric transport 

and satellite retrieval algorithms, the dependency on the a priori estimation is expected to be further reduced. The proposed 

new approach in this study offers a unique strategy and a new approach for improving the estimation of geophysical parameters 310 

and greenhouse gas fluxes, especially for observation- and understanding-limited regions of the world. 

Code and data availability. The code for the new AAPO regularization scheme can be accessed at 

https://doi.org/10.5281/zenodo.7592827. 
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