
Reply to reviewer 2: 
In this manuscript, an alternative a priori flux constraint is presented in the context of a global CO2 flux 
inversion performed using an ensemble Kalman filter (EnKF) with a short assimilation window. 
Observing system simulation studies (OSSEs) are preformed to give an idea of how this alternative 
constraint might function when used with real data in a real inversion. The flavor of EnKF used is the 
local ensemble transform Kalman filter (LETKF), as implemented in the Carbon in Ocean‒Land‒
Atmosphere (COLA) data assimilation system, a global CO2 flux inversion based on the GEOS-Chem 
transport model. 
The alternative flux constraint is formulated in terms of the spatial gradient of the fluxes: finite 
differences of flux using adjacent grid boxes in the model. These spatial gradients are then added as new 
measurements in the measurement vector, as opposed to additional constraints in the traditional a priori 
state vector. Gradients used in this manner could capture the bulk of the flux constraint (its spatial and 
temporal patterns), while at the same time cutting the tie to the absolute value of the flux -- i.e. its overall 
constant offset or long-term mean. This in turn could be useful when using priors for which the variability 
is more robust than the long-term mean -- for example, the terrestrial biosphere models used as priors for 
CO2 fluxes over land in global flux inversions, which do a good job getting the seasonality of the fluxes 
right (e.g., using satellite measurements vegetation greenness, plus assumptions on the timing of 
respiration) but a less-good job of estimating the integrated flux across a full year. By getting rid of the 
constraint to the long-term mean of the prior, the flux estimate might be freer to move to the long-term 
mean given by the data and not suffer from being biased in the direction of the incorrect or inaccurate 
prior. This of course would be at the cost of losing any benefit that that long-term prior mean might 
provide. In general, a flux constraint of this nature should be able to be implemented as a measurement 
in the measurement vector, as is done here, assuming that the measurement uncertainty used gives the 
constraint the same weight as it would have had if it had been implemented more traditionally in the a 
priori state vector. One would have to avoid double counting by not also having the traditional flux prior 
in force at the same time.  
In their OSSE experiments, the authors compare the effectiveness of this flux spatial gradient constraint 
against the usual prior flux constraint (i.e. in terms of the actual flux value itself, not the spatial gradient) 
implemented either in the measurement vector or, more traditionally, as part of the a priori state vector; 
in the latter case, a couple different forms for the first guess of the flux at the new measurement time are 
used: either 1) a combination of the prior flux at the given time plus the flux estimate from the EnKF at 
the two immediately-earlier times, or 2) just the prior flux at the new time. This is done using one land 
biospheric model (VEGAS) to generate the 'true' measurements, and a second model (CASA) to be used 
as the prior flux. The authors find that, in general, when the flux gradient prior is used, the EnKF does a 
better job estimating the true fluxes than when three other approaches based on the absolute fluxes 
themselves (i.e., not gradients) are used.  
While these results look promising, there are some inconsistencies in the results that I would like 
explained. Also, I suggest modified OSSEs in which the ocean fluxes are allowed to be corrected along 
with the land fluxes, in order to give a more realistic test of the new constraint. Finally, there is a lack of 
detail in the description of the methods used that makes it difficult for me as a reviewer to assess the full 
meaning of the results. I suspect that the general reader will have similar questions. I suggest that the 
authors add these needed details to the manuscript, address the points that I raise below, and resubmit, at 
which point I will re-review it and decide on final publication.  



Reply: Many thanks for your constructive comments/suggestions and recognizing the AAPO method. 
We acknowledge that we have missed some important information and the experiments are not optimal. 
We are sorry for the inconvenience. We have reworked the manuscript in terms of method, experiment 
setup, and results. And the manuscript was also polished by AJE. The main changes are as follows: 

1. Information: Adding more details about the short assimilation window and long observation 
window / experiment setup of initial condition, ensemble size etc. / observation localization / 
additive inflation / generation of pseudo observation. 

2. Clearer method description: a) Assimilating CO2 observation before assimilating a priori (Fig. 
1). b) Using ∇𝐟 to represent the spatial gradient. 

3. New experiment setup: a) OCO2+insitu vs insitu only. b) Making sure the weight of a priori 
is identical in different experiments. c) Changing CASA to SiB4 as the a priori. 

4. Clearer message from the OSSE results: Better hemispheric flux estimates using ∇𝐟 in both 
experiments of assimilate OCO2+insitu or insitu only. 

We hope that your major concerns are clarified and addressed. Note that we have made large revision 
on this manuscript that some parts of this paper are deleted or replaced (e.g., results section). Some 
sentences you commented on may be deleted. We are sorry about that, but these modifications are 
mainly based on your major concerns. 
 
Comments:  
First, the authors should describe in detail [with equations] the meaning of the terms 'assimilation 
window' and observation window', since how these terms are used in the context of the LETKF is not 
generally known. The reader should not have to go back to the previous LETKF papers to find this. Does 
the 1-day assimilation window mean that the filter is stepped forward in time a day at a time, each day 
allowing the new measurements to update the fluxes across the 7-day measurement window (i.e. the 
current day plus six previous days)? If so, the weight given to the flux constraint (or flux prior constraint) 
for each of those 7 days ought to be reduced, so that the integrated effect of the seven days of 
measurement updates affecting the fluxes on a given day is equivalent to the weight given to a single 
days' flux prior in some other estimation method (e.g. a variational method or a matrix-inversion-based 
Bayesian synthesis method).  
Reply: Many thanks for your suggestions. We have added descriptions on the assimilation/observation 
window setup (Line 89) and guide the readers to refer Liu et al. (2019) for more details.  
In this window steup, the persistent flux parameter and dynamic CO2 state are updated on a daily basis 
using observations within the long observation window (7 days). To achieve that, for each analysis cycle, 
GEOS-Chem forecasts for 7 days to generate forecast observations, which are then assimilated with the 
corresponding observations using LETKF. This optimization process updates the model state (CO2) and 
parameters (SCFs) at the end of the assimilation window, serving as the forecast initial conditions and 
timing for the subsequent analysis cycle. A comprehensive description of this unique LETKF feature can 
be found in the work of (Liu et al., 2019). 
We intend to add an equation to illustrate it, but we find it may add more questions to the readers. The 
LETKF analysis equation is, 
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where the flux parameter 𝐟 is augmented to the CO2 state 𝐜 that 𝐱 = [𝐜, 𝐟]𝐓; the superscripts a and b 
denote the analysis and background (first guess), respectively; 𝐱" and 𝐗 are the ensemble mean and 
ensemble perturbation, respectively; the subscript t( indicate the end of assimilation window of 1 day; 
𝐲!"→!#
)  is the CO2 observations within the observation window of 7 days; 𝐲!"→!#

#  is the forecasted 
observations corresponding to each observations; 𝐘	# is the ensemble perturbation in the observation 
space; 𝐑 is the observation error matrix; 𝐏'	" is the analysis error covariance; K is the ensemble size 
which is set to 20; and 𝐈 is the identical matrix. 
In the LETKF analysis equation, the windows are expressed by the subscripts, readers may 
misunderstand that there are only 7 timesteps of observations. We have discussed for several time and 
decide not putting it in the manuscript but describing it directly. 
Second, the weights given to the spatial gradient constraint in the inversion relative to the straight flux 
constraint cases ought to be given. Perhaps the spatial gradient case does a better job because it has a 
looser (or tighter) weighting than the other cases. A tighter flux prior usually results in a worse fit to the 
measurement data; or, vice versa, the inversion can over-fit the measurement data at the cost of too great 
a change from the flux prior. Knowing the weights assumed in the inversion for the gradient case vis a 
vis the straight flux case could help assess this. Similarly, some information on how good the fit to the 
measurement data is for the four cases could help. 
Reply: Thanks for the comments. We fully agree with the reviewer that the weight of a priori in different 
experiments should be identical. Since we assume that the uncertainty of the two a priori (flux and its 
spatial gradient) is 5 time larger than than the analysis uncertainty (Text A1, Line 308). To further 
illustrate the weight of the a priori, figure R1 shows the uncertainty reduced by the CO2 observation and 
the a priori in different experiments, which varified that the weight of the two a priori are identical in 
EXP-GOI (spatial gradient) and EXP-FOI (flux). The ensemble uncertainty reduciton (EUR) is defined 
as, 

𝐄𝐔𝐑!,# =
𝛔$,&
' %𝛔$,&

(

𝛔$,&
' ,                 

where 𝛔!,#&  and 𝛔!,#'  is the first guess and final analysis ensemble uncertainty, respectively, at a 
given grid point i and a given time t. Since there are two types of observation, the EUR can be 
separated to two parts of EURCO2 and EURAp as, 
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where the superscript a ∗ denote the analysis after assimilating CO2 observation; the superscript 
Ap denotes the a priori.  
As show in Figure R1, for EXP-GOI, the EURCO2 in the northern middle and high latitudes of North 
America and Europe, where the CO2 observation network is dense, can exceed 30%. Generally, the 
EURCO2 decreases from north to south. In South America and Africa, the EURCO2 is around 10%. Since 
the uncertainty of a priori is set to be proportional to the ensemble uncertainty, EURAp is approximately 
5% and almost identical at different grids. For EXP-FOI, the EURAp is configured to be identical to 
EXP-GOI; thus, the weights of a priori in EXP-GOI and EXP-FOI are expected to be identical. 
However, in EXP-GOI, the EURAp in the Qinghai-Tibet Plateau, Andes, Sahel, and Arabian Plateau is 
relatively larger than in the other areas, suggesting that, even though the error of the gradient at different 
grid points is identical, the EURAp is also affected by the geography. In EXP-GI, which assimilated only 



the in-situ data, the EURCO2 is approximately half that in EXP-GOI, resulting in similar EURCO2 and 
EURAp in South America and Africa. 

 

Figure R1: a-c) The ensemble uncertainty reduction in EXP-GOI from the satellite and in-situ 
CO2 observations, the a priori of the gradient, and the sum of the former two. d-f) The 

ensemble uncertainty reduction in EXP-FOI from the satellite and in-situ CO2 observations, 
the a priori of the original flux, and the sum of the former two. g-i) The ensemble uncertainty 
reduction in EXP-GOI from the in-situ CO2 observations, the a priori of the gradient, and the 

sum of the former two. 
Third, if the flux constraint can be implemented equally as well in the measurement vector as in the a 
priori state vector, then the two cases in which the straight flux prior are implemented these two ways 
should give the same flux results. That is, the EXP-NP case, in which the flux prior is applied normally, 
as the a priori constraint on the fluxes in the state vector, and the EXP-AP case, in which the flux prior 
is assimilated as a measurement in the measurement vector, should give the same flux estimates. But 
they don't -- they give quite different answers, as seen by the turquois and orange lines in Figures 3 
through 5. What is it about the different implementation of the prior that causes these differences? 
Different weights used in each case? A different number of times that the constraint is applied (if fluxes 
at multiple times are updated by measurements at a single time)? Similarly in Figures 6 and 7, the EXP-
NP case gives much worse RMSEs for flux and flux spatial gradient than does EXP-AP. Why is this, if 
the two ways of implementing the prior are equivalent? I can understand why, with a short-window 
inversion, the EXP-NP case might have higher values for these metrics (i.e. a flux error frozen in at a 
given assimilation step would need to be corrected by a balancing error at the next step of opposite sign, 
resulting in a lot of noise in time), but what is it about the EXP-AP implementation that prevents this?  
Reply: Thanks for the comments. The reviewer may misunderstand the experiment name. The EXP-NP 
(now EXP-OI) is the experiment that does not use a priori. The much worse RMSEs in EXP-NP is 
because of lacking regularization. The cases that using the a priori flux in the measurement vector is 
EXP-P. And comparing between EXP-AP and EXP-P, there differences are small. 
The case using the a priori flux in the measurement vector has several differences as compared to the 



case using the a priori flux in the a priori vector. Since the AAPO method treat the a priori as a special 
observation, the a priori can reduce the ensemble uncertainty as show in Figure R1, thus will change the 
values of each ensemble member. However, when placed in the a priori vector, only the ensemble mean 
is changed, and the ensemble uncertainty are not reduced. 
Furthermore, the two cases are not comparable in terms of weight. The measurement vector case applied 
observation localization with a small radiu, thus the surrounding a priori information will also influence 
the local flux estimates. Thus, it is hard for us to make the two cases identical in terms of weight. 
Considering this point, we decide to delete the case that using the a priori flux in the measurement vector. 
Fourth, because the OSSE experiments use the same ocean fluxes in the truth and assimilation runs, there 
is effectively no error coming from the oceans and no need to allocate any flux corrections there in the 
inversions. This is effectively the same thing as holding the oceans fixed and only allowing flux changes 
over the land areas. This significantly simplifies the inversion and gives an overlyoptimistic view of how 
well the inversions can retrieve the land fluxes. However, even worse, it may favor the spatial gradient 
prior constraint more than the straight flux prior constraint, since, with the ocean corrections fixed to 
zero, the fluxes bordering the oceans are then strongly constrained by the spatial gradient constraint, and 
the fluxes in the interior similarly prevented from moving as much as they otherwise would. With the 
straight flux constraint, however, the fluxes are still allowed to trade off corrections between continents. 
It would be interesting to see whether these same favorable results with the EXP-ASG case are achieved 
if more realistic errors are allowed over the oceans (i.e., if separate ocean flux models were used in 
generating the truth and prior, as has been done with the land biospheric fluxes here). 
Reply: Thanks for the comments and suggestions. We agree with the reviewer that the ocean flux plays 
an important role in regulating the global carbon cycle, and considering the errors from the ocean will 
make the OSSEs more realistic. But for an OSSE that designed for validating the AAPO method, the 
main conclusion that the spatial gradient is better than the flux itself holds when focusing on the land. 
And some previous OSSE studies do not consider the error from the ocean (e.g., Liu et al., 2014). 
Moreover, we did not consider the error from ocean because of the short window feature of COLA. 
Current bottom-up ocean carbon flux estimates usually report only monthly mean value which does not 
fit well with the additive inflation step in COLA. The additive inflation requires daily bottom-up 
estimates. And in real data assimilation experiments, COLA uses a daily ocean carbon flux estimates 
from Jena Carboscope (Rödenbeck et al., 2014) as the a priori ocean flux. And, to our best knowledge, 
we do not know other public-available daily ocean flux product (except the CMIP output), which is not 
practical for us to use another independent daily ocean flux product as the a priori. 
As the reviewer point out that the ocean flux may favor the spatial gradient of flux. We are investigating 
it in the real data assimilation experiments that using the Jena Carboscope estimates as the a priori ocean 
flux. 
Reference:  
Rödenbeck, Christian, et al. "Interannual sea–air CO2 flux variability from an observation-driven ocean 
mixed-layer scheme." Biogeosciences 11.17 (2014): 4599-4613. 
Liu, Junjie, et al. "Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT 
XCO2 sampling on the inference of terrestrial biospheric sources and sinks." Tellus B: Chemical and 
Physical Meteorology 66.1 (2014): 22486. 
Fifth, it would be useful for the authors to discuss how specific their results are to the flux inversion 
method they use (a short-window EnKF). Would they anticipate that the alternative flux spatial gradient 
constraint would give similar improvements in methods that allow the transport model to link 



measurements and flux corrections across a longer span? Similarly, since this reliance on the transport 
model is less important when there is more data coverage, would the results obtained here still hold were 
a less-dense observing network (the in situ CO2 network instead of a CO2-measuring satellite, say) to 
be used?  
Reply: Thanks for the suggestions. To answer this question, we conducted extra two experiments (EXP-
GI and EXP-FI) that assimilates only the insitu observations. 
First, we acknowledge that the short-window based COLA system may not be better than long window-
based systems while assimilate only the insitu observations (Line 247): Since the observation window in 
COLA is relatively shorter than some traditional systems (e.g., CarbonTracker, UoE, and CAMS), we 
speculate that long window-based systems should be more suitable for inversions using only surface CO2 
observations and constrained by the a priori FTA. 
However, comparing EXP-GI and EXP-FI, the main conclusions still hold. The hemispheric partitioning 
estimates in EXP-GI is less biased even only constrained by the insitu observations. And the seasonal 
RMSEs in EXP-GI are also smaller. 
 
More-detailed comments:  
14: “dynamic constraints” I do not believe that the reason the inversion problem is ill-posed is because 
of the lack of explicit dynamical constraints in the setup. Really it is due to the sparse data.  
Reply: Thanks for the comments. We have deleted the "dynamic constraints" in the abstract. 
16-17: "Ensemble Kalman filter-based inversion algorithms usually weigh a priori flux to the background 
or directly replace the background with the a priori flux." It is not very clear what this means. Please 
reword. What do you mean by ‘background’? 
Reply: Thanks for the comments. The ‘background’ corresponds to the first guess. In this context maybe 
misleading and reader may refer to the ‘background’ CO2 concentration. Thus, we replace the 
‘background’ to ‘first guess’. 
21: spell out "AAPO"? It is not clear why you use this combination of letters for what you are describing.  
Reply: Thanks for the comment. We have spell out “AAPO” in the abstract in Line 24, “Assimilates A 
Priori information as a special Observation (AAPO)”. 
38: I wouldn't say the problem is ‘ill-posed’ because of transport errors or retrieval biases -- those just 
bias the result. Ill-posedness is more due to lack of a sufficient data constraint, for example, trying to 
solve for more unknowns than can be constrained by a given number of data points. 
Reply: Thanks for the comment. We agree that the systematic errors are not the reason of being “ill-
posed” but other influence factors. The sentences are revised to be clearer in Line 42, “However, the top-
down estimation could be ill-posed because of the sparseness feature of atmospheric CO2 observations. 
And systematic errors in the transport model and satellite retrieval can contaminate the illustration of 
inferred SCFs (Basu et al., 2018; O'Dell et al., 2018; Yu et al., 2018; Schuh et al., 2019)”. 
49: "the LETKF with a short assimilation window and long observation window setting" I do not see this 
described later in the text. Please describe what these ‘window’ terms refer to, for example in terms of 
the filter time stepping, what span of data is assimilated at each time step, and what span of fluxes is 
allowed to change per time step; preferably with equations.  
Reply: Thanks for the comment on the windows. We have added more details on describing the windows 
from Line 88 to Line 95. The end of assimilation window means when update the state and parameter. 
Within the observation window, the model will forecast the modeled observations in order to match with 
the 7 days of observations. 



54-56: "On the other hand, even though a priori information includes biases, it could be used to further 
improve the SCF estimation in COLA because it includes important dynamic information generated by 
terrestrial models, which is missing in the top-down inversion system." It is not clear why you think that 
dynamic information generated by the terrestrial models is not represented in the top-down inversion 
systems. Insofar as it is used to generate the a priori SCFs, it is in there. Do you mean to say that the 
dynamical constraint of the a priori fluxes is not represented explicitly as a dynamic model in the Kalman 
filter, i.e. as a formal constraint? 
Reply: Thanks for the comment and pointing out the mistake. Yes, we intend to say that the ensemble-
based COLA system does not hold a dynamic model and a priori can partly compensate the dynamic 
information. 
We revised this sentence to be more accurate in Line 60, " On the other hand, since the ensemble-based 
COLA system does not hold a dynamic flux model, a priori fluxes generated by terrestrial models has the 
potential to further enhance the SCFs estimation in the COLA system". 
75: add "at" after "including"  
Reply: Thanks for pointing out the mistake. To make this sentence clearer, we have revised this sentence, 
“LETKF is a deterministic variation of EnKF and is known for its efficiency in DA.”. 
77-81” Similar to the other EnKF, the LETKF prefers a short assimilation window to produce accurate 
model state analysis, which reduces noise within the background for parameter estimation. On the other 
hand, parameter estimation requires a long training period to enhance the model response to the estimated 
parameter (the signal). Therefore, COLA implements a new version of LETKF with a unique feature of 
a short assimilation window (1 day) and a long observation window (7 days) to enhance the SCF 
estimation (Liu et al., 2019).” It is not clear how these various ‘windows’ relate to the fluxes being solved 
for. You should write out with equations what is being solved for, how the time stepping is done, what 
observations are assimilated in which time step with which weights, etc. And point out which spans are 
the ‘observation window’ versus the ‘assimilation window’. This may be detailed in previous LETKF 
papers, but the reader shouldn’t have to go back to them to understand what is being used here. 
Reply: Thanks for the comment on the windows. We have added more details on describing the windows 
from Line 88 to Line 95. The end of assimilation window means when update the state and parameter. 
Within the observation window, the model will forecast the modeled observations in order to match with 
the 7 days of observations. We intend to add an equation to illustrate it, but we find it may add more 
questions to the readers. The LETKF analysis equation is, 

𝐱"!!
" = 𝐱"!!

# + 𝐗!!
# 𝐏'	"(𝐘!"→!#

# *&𝐑!"→!#
'( (𝐲!"→!#

) − 𝐲"!"→!#
# *

	
          

𝐏'	𝐚 = [(𝐘!"→!#
# *&𝐑!"→!#

'( (𝐘!"→!#
# *+(K − 1)𝐈]'(            

where the flux parameter 𝐟 is augmented to the CO2 state 𝐜 that 𝐱 = [𝐜, 𝐟]𝐓; the superscripts a and b 
denote the analysis and background (first guess), respectively; 𝐱" and 𝐗 are the ensemble mean and 
ensemble perturbation, respectively; the subscript t( indicate the end of assimilation window of 1 day; 
𝐲!"→!#
)  is the CO2 observations within the observation window of 7 days; 𝐲!"→!#

#  is the forecasted 
observations corresponding to each observations; 𝐘	# is the ensemble perturbation in the observation 
space; 𝐑 is the observation error matrix; 𝐏'	" is the analysis error covariance; K is the ensemble size 
which is set to 20; and 𝐈 is the identical matrix. 
In the LETKF analysis equation, the windows are expressed by the subscripts, readers may 
misunderstand that there are only 7 timesteps of observations. We have discussed for several time and 



decide not put it in the manuscript but describing it directly. The descriptions in Line 88 are, "In this 
approach, the persistent flux parameter and dynamic CO2 state are updated on a daily basis using 
observations within the long observation window (7 days). To achieve that, for each analysis cycle, 
GEOS-Chem forecasts for 7 days to generate forecast observations, which are then assimilated with the 
corresponding observations using LETKF. This optimization process updates the model state (CO2) and 
parameters (SCFs) at the end of the assimilation window, serving as the forecast initial conditions and 
timing for the subsequent analysis cycle". 
119: “In COLA, the main purpose of applying a priori regularization is to introduce the dynamic 
constraint for SCF estimation.” It is not at all clear that you have now introduced a better dynamic 
constraint by changing from using the prior flux value to using spatial gradients instead. Nothing 
involving dynamics has been changed by this. All you have succeeded in doing is removing the link to 
the overall absolute value of the prior flux (the long-term mean). That may indeed have value, but don’t 
confuse it with dynamics. Any dynamics that were or were not in the original flux prior are still there 
with this new constraint. Please reword to reflect this, here and elsewhere in the document where 
‘dynamics’ are discussed.  
Reply: Thanks for the comment. In the last version, we intended to use ‘dynamic/dynamically’ to describe 
that the added a priori information may partly compensate the loss of a priori fluxes in COLA. The a 
priori fluxes are generated using dynamic vegetation model, thus the a priori fluxes themselves contains 
dynamic information. In this context, we acknowledge that the description is very misleading. We have 
deleted the dynamic/dynamically in some places (e.g., the Title) and rewrite some sentences. For example, 
in Line 137, “Within COLA, rather than using the SCFs estimation itself as the a priori information, we 
propose the utilization of the spatial gradient of a bottom-up estimation of SCFs (𝛻𝒇) as a more suitable 
alternative”. 
138-147: You are free to add dynamical noise to your propagation of information forward in time in your 
model. You should discuss why you choose not to add dynamical noise that reflects errors in your 
transport model and/or variability in the land fluxes not captured by a forward propagation based on 
persistence. Why do you instead add an inflation term that is based more on the technical needs of your 
EnKF rather than a physically-based dynamical error?  
Reply: Thanks for the comment. First, in the perfect model OSSEs, we did not consider the transport 
model error. We acknowlege that there is transport model error while conducting real data assimilation. 
If you want to consider or reduce the transport error, the error should be related to the transport model 
by perturbing the meteorology fields instead of the adding noises to the flux ensembles. The transport 
model error is always a tough question for CO2 inversion. Several recent studies have discussed the 
impact of transport model error/differences on modeling the CO2 concentration (Schuh et al., 2019, 2023). 
But those studies are performed in forward simulation and considering/reducing transport error in 
inversions needs to couple with an online general circulation model instead of an offline transport model 
(Kang et al., 2012). 
Second, as the reviewer pointed out, the forward propagation based on the persistence can not capture 
the noise/uncertainty in the land fluxes. The additive inflation method is designed to add the uncertainty 
related to the land fluxes physically. We have added the details of the inflation method to the appendix 
section (Text A1). Based on the inflation method, the noises/variance are added based on the temporal 
changes of the a priori fluxes. 
Reference: 
Kang, Ji‐Sun, et al. "Estimation of surface carbon fluxes with an advanced data assimilation 



methodology." Journal of Geophysical Research: Atmospheres 117.D24 (2012). 
149-150: “COLA assimilates the a priori SCF spatial gradients into the system, which needs to define 
the a priori uncertainty. In this study, we simply set the a priori uncertainty proportional to the uncertainty 
of the analysis ensemble uncertainty.” Please describe what this analysis ensemble uncertainty looks like. 
Does it differentiate between forested areas that are likely to have larger fluxes and flux uncertainty and 
desert areas that are likely to have smaller ones? (Or similarly for flux gradients?) A sensitivity study 
done using uncertainties proportional to the magnitude of the fluxes in either the VEGAS or CASA 
models, or based on the difference between VEGAS and CASA (and preferably other models), would be 
welcome to test the dependence of your results on this assumption.  
Reply: Thanks for the comment. Yes, the analysis uncertainty of flux or its spatial gradient is large in the 
northern forest areas and small in the desert. The magnitude of the analysis uncertainty is mainly 
dependent on the spatial coverage of CO2 observation (Fig. R1) and the additive inflation method 
described in the appendix (Text A1). In area with more CO2 observations and smaller monthly variation 
of fluxes, the analysis uncertainty would be smaller. With the details on the additive inflation method, 
we hope that your questions on the analysis ensemble uncertainty are addressed. 
The sensitivity test suggested by the reviewer is interesting. We plan to test these configurations in the 
future. We discussed the choose of a priori uncertainty in Text A1 (Line 350), "In reality, a bottom-up 
SCFs estimation product may come with its uncertainty estimation. We may derive the uncertainty of the 
SCFs spatial gradient from it. The importance and impact of those uncertainties and whether their 
accuracies are good enough for DA application remain to be further explored in the future". 
165-166: “We set the CO2 observation localization radius to 4000 kilometers.” Since the general reader 
probably will not understand what this means, please say what this means, practically, in your inversion 
setup. Does it mean literally that each observation has zero impact on any flux farther away than 4000 
kilometers at a given time? What about at previous times?  
Reply: Thanks for the suggestion. Miyoshi et al. (2007) described the localization weight w(r) in 
LETKF as, 
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where dh and dv denote the horizontal and vertical localization radius; and rh and rv is the distance between 

an observation and a model grid horizontally and vertically. If the distance exceeds 2?(/
0
d , the 

observation will be discarded. And we did not apply temporal localization. 
We discussed and decided to put the details to the manuscript and explicit guiding reader to infer Miyoshi 
et al. (2007) for the information of localization scheme in Line 163. 
168-174: By using the same fossil fuel, ocean, and wildfire fluxes in both the truth and prior, the 
simulation is artificially rosy: terrestrial fluxes are solved for using only differences there by permitting 
flux corrections only over the land and not over the ocean. By not considering the impact of ocean flux 
errors, this will give you lower error estimates for the land fluxes than you'd get otherwise. It would be 
a useful sensitivity study to look at the impact of considering ocean flux errors, as well. Figures 6 & 7: 
The difference between the EXP-NP and EXP-AP cases still needs to be explained. Yes, the short window 
of the COLA setup results in over-fitting of the data and noisy fluxes (and spatial gradients) in the EXP-
NP case. But how does applying the prior flux constraint via the measurement vector prevent this?  
Reply: Thanks for the comments. We agree with the reviewer that the ocean flux plays an important role 
in regulating the global carbon cycle and considering the errors from the ocean will make the OSSEs 



more realistic. But for an OSSE that designed for validating the AAPO method, the main conclusion that 
the spatial gradient is better than the flux itself holds when focusing on the land. And some previous 
OSSE studies do not consider the error from the ocean (e.g., Liu et al., 2014). Moreover, we did not 
consider the error from ocean because of the short window feature of COLA. Current bottom-up ocean 
carbon flux estimates usually report only monthly mean value which does not fit well with the additive 
inflation step in COLA. The additive inflation requires daily bottom-up estimates. And in real data 
assimilation experiments, COLA uses a daily ocean carbon flux estimates from Jena Carboscope 
(Rödenbeck et al., 2014) as the a priori ocean flux. And, to our best knowledge, we do not know other 
public-available daily ocean flux product (except the CMIP output), which is not practical for us to use 
another independent daily ocean flux product as the a priori. As the reviewer point out that the ocean flux 
may favor the spatial gradient of flux. We are investigating it in the real data assimilation experiments 
that using the Jena Carboscope estimates as the a priori ocean flux. 
The reviewer may misunderstand the experiment name. The EXP-NP (now EXP-OI) is the experiment 
that does not use a priori. The much worse RMSEs in EXP-NP is because of lacking regularization. The 
cases that using the a priori flux in the measurement vector is EXP-P. And comparing between EXP-AP 
and EXP-P, there differences are small. The case using the a priori flux in the measurement vector has 
several differences as compared to the case using the a priori flux in the a priori vector. Since the AAPO 
method treat the a priori as a special observation, the a priori can reduce the ensemble uncertainty as 
show in Figure R1, thus will change the values of each ensemble member. However, when placed in the 
a priori vector, only the ensemble mean is changed, and the ensemble uncertainty are not reduced. 
Furthermore, the two cases are not comparable in terms of weight. The measurement vector case applied 
observation localization with a small radiu, thus the surrounding a priori information will also influence 
the local flux estimates. Thus, it is hard for us to make the two cases identical in terms of weight. 
Considering this point, we decide to delete the case that using the a priori flux in the measurement vector. 
Reference:  
Rödenbeck, Christian, et al. "Interannual sea–air CO2 flux variability from an observation-driven ocean 
mixed-layer scheme." Biogeosciences 11.17 (2014): 4599-4613. 
Liu, Junjie, et al. "Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT 
XCO2 sampling on the inference of terrestrial biospheric sources and sinks." Tellus B: Chemical and 
Physical Meteorology 66.1 (2014): 22486. 
290: What does 'dynamically' in 'dynamically assimilated' indicate? Is this some special sort of 
assimilation method? Also, define what the acronym 'AAPO' refers to.  
Reply: Thanks for the comment and pointing out the mistake. As the reviewer mentioned in the previous 
comments, the 'dynamically' may mislead readers. And we deleted it in Line 290. And 'AAPO' is defined 
in the method section. And we revised the sentense in Line 290, "In this study, we developed a novel 
algorithm for the ensemble-based COLA CO2 inversion system, in which the spatial gradient of a bottom-
up model estimation is assimilated as a special observation". 
297-304: "However, the advantage of error transport is partly sacrificed or abandoned by introducing the 
a priori flux information to the background in most of the EnKF-based CO2 inversion methods (Peters 
et al., 2007; Feng et al., 2009). This is because of the loss of a dynamic model to provide the background 
and the background covariance estimations. Different from most EnKF-based systems, COLA maintains 
the mean and error transport advantages of the EnKF by including the dynamic information constraints 
of the a priori flux spatial gradient and using an additive covariance inflation method (Liu et al., 2022)." 
I agree that the loss of the dynamical model for the fluxes in most of our flux inversion methodologies 



is unfortunate. I do not believe, however, that you are remedying that with your spatial gradient constraint 
here. Nothing has changed regarding the dynamics in using this constraint. Your only change is to cut 
the tie to the long-term mean, allowing your estimate to be shifted up or down as a whole more easily.  
Reply: Thanks for the comments. We acknowledge that this description is exaggerated. We deleted this 
paragraph to avoid misunderstanding. 
310: 'unique strategy'? Maybe referring to it as a 'new strategy' would be better. 
Reply: Thanks for the comments. We have revised to "novel strategy". 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lists of new figures and table: 
Table 1: Assimilation experiments setup. 

Experiment EXP-GOI EXP-FOI EXP-OI EXP-GI EXP-FI 

A 

priori 
∇𝐟 𝐟  ∇𝐟 𝐟 

Observation OCO-2+In-situ OCO-2+In-situ OCO-2+In-situ In-situ In-situ 

 

 
Figure 1: The assimilation cycle of the COLA system, illustrating how and where the a priori 

is assimilated. 

 

Figure 2: a) The annual mean signal-to-noise ratio pattern of the a priori FTA spatial gradient. b) 
The same as a) but for the a priori FTA. c) Annual mean signal-to-noise ratio of the spatial 

gradient divided by the signal-to-noise ratio of the FTA. 
 



 
Figure 3: The annual mean FTA in 2015 of a) the truth, b) the a priori, c) EXP-GOI, d) EXP-FOI, 
e) EXP-GI, and f) EXP-FI. g) Comparison of the annual total FTA in the northern extratropical 
area and the tropical and southern extratropical areas. Different scatters denote the truth, the a 
priori, and the different experiments. The dashed black line denotes the global carbon budget. 

 
Figure 4: The top figures in each subplot are the a) global, b) northern extratropical, and c) 

tropical and southern extratropical seasonal cycles of FTA in the truth (black), the a priori (gray), 
EXP-GOI (red), EXP-FOI (orange), and EXP-OI (sky blue). The bottom figures in each subplot 
are the global total difference of the a priori and the three assimilation experiments compared to 
the truth. The annual mean RMSEs of the a priori FTA and the three experiments are denoted at 

the upper right corner of the bottom figures. 



  

Figure 5: The regional RMSE of the a priori and the five assimilation experiments compared to 
the truth. The regions are defined by the OCO2MIP. 

 
 
 


