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Abstract. The Climate-responsive Land Allocation model with carbon Storage and Harvests (CLASH) is a global, biophysical 

land-use model that can be embedded into integrated assessment models (IAMs). CLASH represents vegetation growth, 

terrestrial carbon stocks, and production from agriculture and forestry for different land-uses in a changing climate. Connecting 

CLASH to an IAM would allow the consideration of terrestrial carbon stocks, agriculture and forestry in global climate policy 

analyses. All terrestrial ecosystems and their carbon dynamics are comprehensively described at a coarse resolution. Special 10 

emphasis is placed on representing the world’s forests. Vegetation growth, soil carbon stocks, agricultural yields and natural 

disturbance frequencies react to changing climatic conditions, emulating the dynamic global vegetation model LPJ-GUESS. 

Land is divided into ten biomes with six land-use classes (including forests and agricultural classes). Secondary forests are age 

structured. The timing of forest harvests affects forest carbon stocks; and hence, carbon storage per forest area can be increased 

through forest management. In addition to secondary forests, CLASH also includes primary ecosystems, cropland, and 15 

pastures. The comprehensive inclusion of all land-use classes and their main functions allows representing the global land-use 

competition. In this article, we present, calibrate, and validate the model, demonstrate its use, and discuss how it can be 

integrated into IAMs. 

1 Introduction 

CLASH (Climate-responsive Land Allocation model with carbon Storage and Harvests)1 is a biophysical land-use model that 20 

describes the allocation of land to different uses, forest growth, terrestrial carbon stocks, and the production of agricultural and 

forestry goods globally. Global land area is divided into 10 biomes, and each biome’s area can be allocated to different uses, 

including agriculture, forestry, and primary ecosystems. The biophysical properties of land and vegetation are biome-specific 

and respond to climate change. The model has been parametrized to emulate the dynamic global vegetation model Lund-

Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Lindeskog et al., 2021; Smith et al., 2001, 2014) in varied and 25 

changing climatic conditions. In this article, we describe, calibrate, and validate the model and demonstrate its use. 

 
1 Model version used in this manuscript: 2024-01-22 
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CLASH can be embedded in economic optimization models, integrated assessment models (IAMs) in particular; or used 

independently to simulate the climatic impacts of land use in long-term scenarios. However, CLASH has been specifically 

developed for the former purpose. In this role, CLASH represents the biophysical aspects of land-use, while the IAM needs to 

provide the rationale for why land is used and managed in a specific way, including economic, policy and other societal factors; 30 

and also how the climate changes over time. These factors are relevant for realistic modeling of land-use, but are outside the 

scope of CLASH. 

Three features make CLASH especially suitable for incorporation into IAMs: (1) its technical design and low computational 

burden, (2) global geographical coverage, and (3) comprehensive representation of land-use and carbon stocks. CLASH is 

computationally lightweight, linear, and has an adjustable timestep. Many IAMs are written as intertemporal optimization 35 

problems (Keppo et al., 2021), i.e., the whole modelling time horizon is considered and solved for optimum within a single 

optimization problem. Such models can be computationally challenging to solve, especially if the model is nonlinear. 

CLASH’s low computational expense facilitates its incorporation into such IAMs; and given its linear mathematical 

formulation, it can be incorporated also into IAMs defined as linear programming problems. However, the formulation of the 

optimization problem is not inherently a part of CLASH, but needs to be provided by the IAM. The underlying temporal 40 

resolution is annual, which can be flexibly adjusted to match any longer timestep, such as 5 or 10 years commonly used in 

IAMs.  

Geographically, CLASH covers all global land area and depicts the global production of goods in agriculture and forestry. The 

model covers the carbon stocks of vegetation, litter and soil, and describes how they are affected by land-use and climate 

change. The effect of climate change on vegetation growth and soil carbon dynamics are modelled as a function of global mean 45 

temperature change and atmospheric CO2 concentration, as these two variables are standard outputs of many IAMs. Together, 

the global coverage, representation of main terrestrial carbon stocks and the inclusion of climate change effects on terrestrial 

ecosystems make CLASH suited for examining land-based climate change mitigation and adaptation measures at the global 

scale and over long time-horizons. 

Embedding CLASH in an IAM enables the optimization of land-use and forest management over a multi-decadal timeframe 50 

in a changing climate; and portraying the optimal contribution of the land-use sector towards the global climate change 

mitigation effort. This capability fills a critical, vacant niche in the model ecosystem. Towards this role, CLASH combines 

some features from three model types:  

(1) Dynamic Global Vegetation Models (DGVMs), such as LPJ-GUESS (Lindeskog et al., 2021; Smith et al., 2001, 
2014), can be used to depict how vegetation responds to changing climatic conditions. DGVMs are notably more 55 
detailed than CLASH. In DGVMs, however, land-use can only be depicted by exogenous scenarios. It cannot be 
optimized. Due to their high level of detail and heavy computational burden, DGVMs cannot be embedded in IAMs 
in the way that CLASH can. 

(2) Economic partial equilibrium models of the land-use sector, such as MAgPIE (Dietrich et al., 2019) and GLOBIOM 
(Havlík et al., 2018), enable the optimization of land-use within a timestep, while recursive dynamic rules portray the 60 
evolution over years. Such models represent land-use comprehensively and can be linked to IAMs (Fricko et al., 
2017). However, as they stem from an agricultural economic modelling tradition, the models do not necessarily 
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represent comprehensively the dynamic changes in the age structure of forests (GLOBIOM); or allow for 
intertemporal optimization (MAgPIE and GLOBIOM). Both features are needed to enable the full dynamic 
optimization of forest structure and management over long time horizons, e.g. when aiming for long-term climatic 65 
targets.2  

(3) Forest sector models, such as the GTM (Sohngen et al., 1999), include forest age structure and rely on intertemporal 
optimization as the solution concept. Although forest sector models have been linked to IAMs (Favero & Mendelsohn, 
2014; Sohngen & Mendelsohn, 2003; Tavoni et al., 2007) and explicit, age-structured representations of forests have 
been built into IAMs (Siljander & Ekholm, 2018); they do not depict land-use comprehensively as they (by definition) 70 
focus on the forest sector. 

In particular, CLASH covers the climate-responsive vegetation growth and portrayal of vegetation and soil carbon stocks from 

DGVMs, crop and livestock production from land-use models, age-structured forests and harvesting of wood from forest 

sectors models, and the possibility for optimizing land-use from both types of partial equilibrium models. What is left out is 

the product demand, markets and policies that drive land-use decisions in partial equilibrium models, and the detailed 75 

biophysical modeling of ecosystems in DGVMs. Also, agriculture and forest management are described in less detail and 

without detailed management options as in models focusing on each aspect individually. 

This paper provides a ‘proof of concept’ description for the model and how it could be utilized. The current parametrizations 

of CLASH are based on non-bias-corrected climate data, however, which can lead to some deviation from reality regarding 

vegetation characteristics. New parametrizations based on bias-corrected data will be provided with subsequent model 80 

versions, and should be used for analyses. 

The rest of the article is organized as follows. In section 2, we describe the structure of the model and the modelling of 

vegetation, soils, and crop and timber yields. In section 3, we present the calibration of the model and in section 4, the validation 

of this calibration against the global terrestrial carbon stocks projected by LPJ-GUESS. As a demonstration of the model, we 

analyze in section 5 how different demand scenarios for agricultural and forestry products affect the possibilities for enhancing 85 

terrestrial carbon stocks. Last, in section 6, we further discuss the integration of CLASH with IAMs and the possible uses the 

model might have. 

 
2 Intertemporal optimization and recursive-dynamic optimization are two main ways of modelling optimal actions over long 
time horizons. The main distinction is that an intertemporal problem finds optimal actions for the whole timeframe at once, 
whereas recursive-dynamics optimizes each timestep chronologically. The two approaches can provide complementary 
insights. Whereas intertemporal optimization can be seen as too ‘idealized’ as it assumes perfect foresight over the whole time 
horizon, recursive-dynamic can be seen as too myopic towards long-term developments. However, both approaches can 
simulate each other’s behaviour: intertemporal optimization through a myopic formulation, and recursive-dynamics through 
iterative procedures. 
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2 Model structure 

2.1 Dimensions and variables 

The basic dimensions of CLASH are biomes 𝑏 ∈ 𝐵 into which global land area is divided, land-use categories 𝑢 ∈ 𝑈, and 90 

timesteps 𝑡 ∈ 𝑇. The basic timestep resolution is annual, but most use cases – especially when combined with an IAM – require 

using a multi-year timestep, such as 10 years. The age structure of secondary forests is modelled though age classes 𝑎 ∈ 𝐴. 

The variables describe: 

 land area (by biome, land-use type and timestep) 
 carbon stocks in vegetation, (by biome, land-use type and timestep) 95 
 carbon stocks in woody and herbaceous litter and soil (by biome and timestep) 
 areas of forest clearing (by biome, age-class and timestep) 
 harvested crops and wood (by biome and timestep) 
 headcount and product yield of agricultural animals (by timestep) 
 CH4 and N2O emissions from agriculture (by biome and timestep) 100 

2.2 Ecological and land-use modules 

CLASH consists of a land-use module and an ecological module. The land-use module contains the variables and equations 

for land allocation, terrestrial carbon stocks and harvesting; and is the part that can be integrated into an IAM. The ecological 

module is used to calibrate the land-use module’s parameters based on the trajectories of climate change. The ecological 

module is not designed to be integrated into the IAM, as it would violate the linear formulation required by many IAMs. 105 

Climate change affects vegetation growth through changes in local factors, such as temperature and precipitation. In CLASH, 

vegetation growth and other ecological processes emulate results from LPJ-GUESS, which is run on a spatial grid in different 

climate scenarios and thus accounts for the regional differences in growing conditions in current and future climates. The 

biomes in CLASH are large and cover somewhat heterogeneous conditions and responses to climate change (e.g., some parts 

of a tropical biome may become drier, while others get wetter). The CLASH parametrizations thus depict the average 110 

conditions within each biome. To account for climate change, the parametrizations are done as a function of global mean 

temperature and carbon dioxide concentration, standard outputs of many IAMs. These serve as proxies for the changes on local 

climatic factors, which are nevertheless modelled explicitly in LPJ-GUESS. 

The division into two separate modules was done to satisfy two conflicting model design requirements: (1) the land-use module 

must be linear and computationally lightweight, and (2) ecological conditions must respond to climate change. Some ecological 115 

parameters depend nonlinearly on climatic conditions, but including this climate-dependence in the land-use module would 

make the model nonlinear and involve more complex calculations. Instead, linearity is maintained in the land use module 

through fixed, time-varying parameter values to depict vegetation growth, disturbances, yields and carbon dynamics, which 

change over time according to a predetermined climate change scenario. When CLASH is integrated into and IAM, one can 

iteratively run the IAM and then re-calibrate the parameters with the ecological module, using the climate trajectory in the 120 
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IAM’s solution. The procedure is repeated until consecutive solutions converge, and the ecological parameter values align 

with the climate trajectory. Whether the iterative procedure is necessary depends on the IAM and scenario design. 

2.3 Land-area allocation 

Global land area is divided into 10 biomes based on the USDA Major Biomes classification (Reich & Eswaran, 2020). Biomes 

of marginal importance to agriculture, forestry and carbon stocks – such as ‘ice’ and ‘permafrost’ – are aggregated into a single 125 

‘unproductive’ class. We keep the geographical boundaries of biomes constant over time, even as the climate changes. Instead, 

the ecological parameters depicting vegetation growth, disturbances, agricultural yields and carbon dynamics respond to 

climate change. A map of the applied biome classification is presented in Figure 1. 

Two requirements guided the choice of classification: conciseness (i.e., having only a relatively small number of biomes) and 

relative homogeneity (i.e., keeping the variation in growth and carbon dynamics within each biome small). These are 130 

conflicting requirements, as greater conciseness leads to less homogenous biomes. The USDA major biomes classification was 

chosen as the basis for the biomes in CLASH, as it divides the world to relatively few biomes, but which were more 

homogenous than with alternative classifications, such as the Köppen-Geiger climate classification or Holdridge life-zones. 

The land-use classes in CLASH are based on the Land-use Harmonization dataset (LUH2) (Hurtt et al., 2020). The classes are 

cropland, pasture (including rangeland), primary ecosystems (including primary forest and primary non-forest), secondary 135 

forest, secondary non-forest and urban land. Primary ecosystems are ecosystems that have not been notably altered by direct 

human disturbance. Secondary forests have been logged at least once or have been established on previously unforested land. 

Secondary non-forest is land that is not actively used but has been subject to human land-use. Land cannot be converted back 

into primary ecosystems. Hence, once cleared, primary ecosystems cannot be regained. 

 140 

Figure 1. Biome classification used in the CLASH model. 
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The land-use module allocates land area to different uses, which affects the production quantities of goods (food and feed 

crops, wood, etc.) and carbon storage in vegetation and soil. Land-use in each biome, 𝑏, is constrained by the biome’s total 

land area 𝐴  (million km2). This area is distributed between land-uses, 𝑢, and the area of land-use 𝑢 in period 𝑡 is 𝐴 , , . Hence, 145 

for all biomes 𝑏 and timesteps 𝑡, 

 𝐴 , , = 𝐴 .  

 

    (1) 

Secondary forests (𝑢 = 𝑠𝑒𝑐𝑑𝑓) are further divided into age-classes. The width of each age-class is the same as the model time 

step (e.g. 10 years). All secondary forest area, 𝐴 , , , must belong to one age-class, 𝐴 , , , . Hence, 

 𝐴 , , , = 𝐴 , , . 

 

    (2) 

Between time periods, secondary forest can age, be harvested, or get destroyed by disturbance events like forest fires. Aging 

forest land area will shift to the next age-class in the following time period. Area cleared by harvests or destroyed by forest 150 

disturbances is allocated to the youngest age-class in the next period if replanted, or converted into other land-use and thereby 

subtracted from the secondary forest area. Other land converted to secondary forest is added to the youngest age-class.  

2.4 Vegetation carbon stocks 

Vegetation carbon stocks (GtC) are calculated by multiplying land area 𝐴 , ,  (million km2) by vegetation carbon density 𝑑 , ,  

(kgC m-2). Vegetation carbon densities for all land-uses across biomes are projected by the ecological module based on global 155 

mean temperature and atmospheric CO2 concentration scenarios provided to the module. 

Vegetation on cropland and pastures is short-lived compared to the model time step, and hence assumed to regenerate within 

each model period. Cropland vegetation is represented by an aggregate crop that reflects the weighted-average properties of 

all crops cultivated in the biome. Likewise, pasture vegetation is depicted by representative grasses. As the vegetation 

regenerates frequently, the amount of vegetation and its carbon density in period 𝑡 is solely determined by current growth 160 

conditions (i.e., not on pre-existing vegetation stock or past growth conditions). The growth conditions in biome 𝑏 depend on 

the global mean temperature, 𝑇 , and the atmospheric CO2 concentration, 𝐶 .3 The dependence is characterized by the function: 

 𝑑 , , = 𝛼 , + 𝛽 ,  𝑇 + 𝛾 ,  𝐶 , 

 

    (3) 

 
3 The effect of global warming on average temperature and precipitation is not uniform across biomes. However, changes in 
local conditions are driven by the increase in the global temperature anomaly. The increasing atmospheric CO2 may enhance 
growth through CO2 fertilization. 
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where 𝛼 , , 𝛽 , , and 𝛾 ,  are parameters estimated by fitting the function to data from LPJ-GUESS simulations. 

Similarily, the growth of secondary forests reflects the average properties of forests in each biome. Unlike vegetation on 

cropland and pasture, trees are long-lived and the carbon density depends on the stand age and the climatic conditions the trees 165 

have grown in. Relatedly, forest growth depends on the growth conditions characterized by the current climate and the stand’s 

current state (characterized by the growth history and thus the past climate).  

For a stand currently in age-class 𝑎, the next-period carbon density 𝑑 , , ,  depends on its current density 𝑑 , , ,  

and the relative growth rate, 𝑔 , , , : 

𝑑 , , , = 𝑑 , , , (1 + 𝑔 , , , ) 

 

     (4) 

where 170 

𝑔 , , , =  𝑑 , , ,
, , ,  (𝜂 + 𝜃  𝑇 + 𝜅  𝐶 + (𝜆 + 𝜇  𝐶 )𝑇 ). 

 

 

     (5) 

Parameters 𝛿 , 𝜀 , 𝜂 , 𝜃 , 𝜅 , 𝜆 , and 𝜇  are estimated from LPJ-GUESS simulations of forest growth in various scenarios of 

changing climate (see Section 3). 

Primary ecosystems encompass primary forest and primary non-forest. Their vegetation is long-lived. However, unlike in the 

case of secondary forests, the age structure (and, hence, the growth and disturbance dynamics) of primary ecosystems need 

not be modelled explicitly.4 The carbon density of primary ecosystems, 𝑑 , , , is a landscape-level average that accounts 175 

implicitly for the age structure and the growth conditions of primary ecosystems. Its dependence on climatic conditions is 

characterized by the function of the same form as in equation (3).5 

Secondary non-forest is a small but diverse category of land. It contains areas that are recovering from human influence 

including, for example, deforested land that is not claimed for another use and abandoned croplands and pastures. Hence, the 

carbon density of secondary non-forest varies notably depending on local climatic conditions, earlier land-use, and the degree 180 

and time since the human influence on them. These factors make the modeling of the associated vegetation and carbon stock 

very difficult. As the composition of vegetation on secondary non-forest land is not specified in the LUH2 dataset, we assume 

 
4 The age structure of secondary forests is determined by harvesting patterns (which depend on human behavior and may 
therefore differ between model runs) and natural disturbances (which occur at exogenously given rates). Enabling the 
optimization of harvests requires explicitly modelling age structure. The age-structure of primary ecosystems, on the contrary, 
is not affected by harvests. If the land is cleared by humans, the ecosystem is no longer considered primary. Hence, the age 
structure of primary ecosystems solely by disturbances and natural mortality. 
5 This formulation does not (fully accurately) account for the growth and disturbance history of primary ecosystems (which is 
linked to the historical development of the climate). However, as growth conditions and disturbance regimes change fairly 
gradually, the error caused by adopting this (notably simpler) formulation for primary ecosystems (than secondary forests) is 
small. 
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due to lack-of-data that vegetation is growing naturally in these areas. This possibly overestimates the amount of biomass and 

stored carbon to some degree. 

Urban areas cover currently only 0.4% of global land area (Hurtt et al., 2020). As vegetation carbon stocks in urban areas are 185 

insignificant compared to the global total, they are omitted from CLASH. As urban areas do not contribute to carbon storage 

or producing agricultural and forestry products in CLASH, the urban area needs to be fixed to an exogenous scenario in a 

typical use-case of the model. 

2.5 Litter and soil carbon stocks 

Litter and soil carbon stocks (measured in GtC) are modelled through dynamic stock equations that account for their 190 

accumulation, decay into atmosphere, and transfer of carbon from the litter to the soil stock. Each biome 𝑏 has separate litter 

and soil carbon stocks for woody and herbaceous matter, 𝐿 , ,  and 𝑆 , , , distinguished by the subindex 𝑘 ∈ {𝑤𝑜𝑜𝑑𝑦, ℎ𝑒𝑟𝑏}. 

This distinction allows accounting for differences in their decay. The woody matter accumulates from primary ecosystems, 

secondary forests and secondary non-forests; and herbaceous matter from croplands and pastures. As these stocks are not 

directly linked to the land area under each land-use category, land-use change does not affect existing stocks, but only the 195 

accumulation of carbon.6 

Vegetation generates litter. Its amount is defined as the difference between the annual net primary production (NPP) and the 

annual change in the vegetation carbon density. Additionally, in forests, harvests produce logging residues that increase the 

influx of woody litter; and on cropland, harvests remove a part of the carbon fixed by NPP, reducing the litter carbon influx. 

The total annual litter carbon influx is denoted by 𝐼 .  200 

The fraction 𝜈 , + 𝜉 ,  𝑇  of the litter stock decays into the atmosphere annually. Here, 𝜈 ,  is the base decay rate for biome 

𝑏 and 𝜉 ,  𝑇  represents the effect of climate change on the litter decay. A fraction 𝜌 ,  of litter carbon is transferred to the soil 

carbon stock. Carbon that is not released into the atmosphere or transferred into soil remains in litter. Analogously, the fraction 

𝜎 , + 𝜏 ,  𝑇  of soil carbon decays annually to the atmosphere. This leads to the dynamic equations for litter and soil carbon 

stocks:  205 

𝐿 , , = 𝐿 , , 1 − 𝜈 , − 𝜉 ,  𝑇 − 𝜌 , + 𝐼 , , ,      (6) 

 
6 Should the litter and soil carbon stocks explicitly represent the stocks in each land-use class 𝑢, any change in the area of a 

land-use class should be also reflected in these stocks. Then, a change from forest to pasture, for example, would require 

transferring litter carbon from forests to pastures, but this would affect the decay of this stock, (see e.g. Rautiainen et al., 2017). 

Alternatively, one could account for the land-use change history, but this would complicate the model. Due to these 

considerations, the litter and soil carbon stocks were chosen to not to explicitly represent the carbon stored in each land-use 

class. After choosing this relative independence from the land-use classes, two stock types (woody and herbaceous) already 

provided sufficient accuracy for this model’s scope. 
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𝑆 , , = 𝑆 , , 1 − 𝜎 , − 𝜏 ,  𝑇 + 𝜌 ,  𝐿 , , . 

2.6 Forest disturbances 

Forest fires are the only natural disturbance in CLASH at the moment. Fires are modelled as stand-replacing disturbances. A 

certain share of secondary forest area in each age class burns every year, and this average fire probability changes over time 

with the climate. Fires also affect primary ecosystems, but the effect is not explicitly modelled: the disturbance regime and 

climate-induced changes are implicitly accounted for in the carbon density of primary ecosystems. 210 

The fire probability was modelled to depend on the global mean temperature (which drives changes in local temperature and 

precipitation) and the CO2 concentration (CO2 fertilization affects forest growth, which affects fire probability through fuel 

load). The linear relationship between fire probability and the climate variables is equivalent to equation (3), and the parameters 

of this equation were estimated from LPJ-GUESS simulations for natural forests. 

2.7 Crop and wood harvests 215 

Food, feed and energy crops are harvested from cropland. Each biome’s average crop yield 𝑦 ,  (kgDM m-2 year-1) is a 

weighted average of the yields of the five plant functional types (PFTs) grown on cropland (C3 annuals, C4 annuals, C3 

perennials, C4 perennials, and C3 nitrogen fixing plants), and accounting for the share of irrigated and rainfed crops at each 

location. We used LPJ-GUESS defaults for irrigation, fertilization and other cropland management options (Lindeskog et al., 

2013; Olin et al., 2015). We assumed externally an average 80% cropping intensity (Siebert et al., 2010), as our LPJ-GUESS 220 

simulation protocol did not account for this. The average crop yield is represented by the same functional form as was used 

with vegetation carbon density, in equation (3). Total crop harvest in each biome is the product of average crop yield and 

cropland area. 

Wood is harvested from secondary forests and cleared primary ecosystems by clear-cutting. Wood harvests depend on 

harvested area and the stocking density (i.e. stem volume) 𝑣 , , ,  (m3 ha-1) of the harvested forests; which varies across biomes, 225 

and also across age classes for secondary forest. The stem volume is calculated by multiplying the carbon density, 𝑑 , , ,  (kgC 

m-2) with the conversion factor, 𝛾  ((m3 ha-1)/(kgC m-2)), which accounts for the conversion from carbon mass to dry biomass, 

and from dry biomass to stem volume. Hence, 

𝑣 , , , = 𝛾 𝑑 , , , . 

 

     (7) 
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The conversion factors applied in CLASH are based on data from FAO’s Global Forest Resources Assessment 2020 country 

reports (FAO, 2023). Their values are displayed in Table 1.7  230 

Wood harvesting generates three timber grades: logs, pulpwood and energy wood (m3 year-1) and forest residues (kgDM 

year-1), which includes all biomass not covered by the aforementioned categories. The largest parts of large stems qualify as 

logs and may be used for timber. Pulpwood includes small stems, thin parts of large stems, and large branches. Energy wood 

are treetops, very small stems and small branches. Residues may be harvested or left on site, in which case the carbon in them 

enters the woody litter carbon pool. 235 

 
Table 1. Conversion factors for translating vegetation carbon density (kg/m2) into stem volume (m3/ha) 

biome conversion factor 

(m3 ha-1)/(kgC m-2) 

assumptions wood carbon 

content 

(tC m-3) 

approximate 

residue fraction  

(unitless)  

Boreal 28.4 value from Finland (2020) 0.190 0.46 

Tundra 28.4 adopted from boreal biome 0.190 0.46 

Desert Cold 27.0 value for Mongolia (2020) 0.190 0.49 

Temperate Dry 21.4 value for Greece 0.215 0.54 

Temperate Humid 29.5 value from Japan (2017) 0.215 0.36 

Desert 5.6 value from Namibia (2020) 0.215 0.88 

Tropical Dry 21.1 value from Tanzania (2020) 0.240 0.49 

Tropical Humid 22.8 value from Brazil (2020) 0.240 0.45 

Semiarid 17.0 value from Kenya (2020) 0.215 0.63 

Unproductive 28.4 adopted from boreal biome 0.190 0.46 

 

 
7 The conversion factor for each biome is based on data from a representative country that is predominantly located within on 

biome. The geometry of trees within these countries is assumed to roughly represent geometry of trees within the biome. (Data 

for other countries was checked to verify the correct magnitude of the conversion factors). The conversion factors are based 

on estimates of average growing stock (m3 ha-1 over bark, reported in Section 2A of each report) and forest biomass (t ha-1, 

reported in Section c of each report). The conversion factors also incorporate a unit conversion from kg m-2 of biomass to m3 

ha-1 of stem volume. 
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The division of stem volume into timber grades depends on the stem volume 𝑣 . Stands with very small trees and low 

stocking density provide only energy wood; stands with large trees and high stocking density provide mostly logs and some 240 

pulpwood.8 Let 𝜎 (𝑣 ), where 𝑖 ∈ {𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑢𝑙𝑝, 𝑙𝑜𝑔𝑠}, denote the share of each timber grade as a function of stocking 

density. We assume the following breakdown: 

𝜎 =

1                                                𝑤ℎ𝑒𝑛 𝑣 , , , < 20,             

1 − 0.0085 𝑣 , , , − 20    𝑤ℎ𝑒𝑛 20 ≤ 𝑣 , , , ≤ 120,

0.15,                                         𝑤ℎ𝑒𝑛 120 < 𝑣 , , , ,           

 

 

     (8) 

and 

𝜎 =

0                                                      𝑤ℎ𝑒𝑛 𝑣 , , , < 80,            

1 − 𝜎 0.00425 𝑣 , , ,     𝑤ℎ𝑒𝑛 80 ≤ 𝑣 , , , ≤ 280,

1 − 𝜎 0.85,                      𝑤ℎ𝑒𝑛 280 < 𝑣 , , , ,           

 

 

     (9) 

and 

𝜎 = 1 − 𝜎 − 𝜎 . 

 

    (10) 

Let 𝜗  and 𝜌  denote respectively the carbon density of wood in biome 𝑏 (Table 1)9 and the fraction of total biomass carbon 245 

contained in residues. As residues contain all carbon not contained in the stems, we define  

𝜌 : =
𝑑 , , , − 10 𝜗 𝑣 , , ,

𝑑 , , ,
= 1 −

𝜗 𝛾

10
. 

 

     (11) 

 
8 The functions described here are based on expert judgment and roughly characterize the development of the assortment shares 

in boreal forests. We assume that the connection between stocking density and assortment shares is roughly similar across 

biomes. Hence – lacking biome-specific data for the calibration – we apply the same functions to all biomes. The accuracy of 

future model versions maybe improved by developing biome-specific functions. 

9 The carbon density of a cubic meter of wood is the product of (1) its mass, and (2) the carbon content of wood. Different 

wood species have a different dry weight. Hence, the average dry mass of a cubic meter of wood varies between biomes, 

depending on species composition. Biome-specific values of average wood mass are not readily available. Hence, we use 

estimates from Rautiainen (unpublished) for boreal, temperate and tropical and apply the most appropriate estimate to each 

biome. The carbon content of wood is approximately 0.5 tC/tDM.  
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2.8 Livestock 

CLASH includes a representation of livestock to account for the land area needed for cattle grazing and cultivating livestock 

feed crops, and also for the CH4 and N2O emissions from livestock management. We consider four kinds of livestock, that 

only produce meat: beef cattle, pigs, broiler chicken and “shoats” (aggregated sheep and goats); as well as dairy cattle that 250 

produces milk and beef, and laying hens that produce eggs. The livestock variables covered in the model are headcount per 

animal type (millions), production of each animal product (Mt year-1), and CH4 and N2O emissions from enteric fermentation 

and manure management (Mt year-1). 

Table 2 displays the animal products’ modelling assumptions for global current herd size and per-head pasture and feed 

requirements (for modelling the land use for animal husbandry), product yields (for modelling the supply of animal products), 255 

GHG emissions factors (for modelling the animals’ climatic impacts) and average-animal characteristics (provided for 

reference). 

 

Table 2. Data and Assumptions used in the livestock module. 

 Herd size 

in 2020 

Animal 

weight a 

Pasture 

use b 

Yearly 

feed use 

GHG emission 

factors d 

Life-

time 

Product 

yield 

Producti

on  

 million 

heads kg 

m2 per 

head 

kg DM per 

head 

kg CH4  

per head 

kg N2O  

per head years 

kg per head 

per year 

Mt per 

year 

Beef 953 435 15982 124.2 58.9 0.943 2.8 56.4 53.8 

Beef (dairy cows)c 573 435 605.6 137.3 96.2 1.100 6.0 26.4 15.1 

Shoat 2390 37.3 3833 1.3 7.12 0.251 1.4 10.9 26.1 

Pork 953 155 10.6 309.7 2.86 0.283 0.5 140.0 133.4 

Chicken 33100 3.0 0.6 14.6 0.009 0.009 0.5 3.7 123.1 

Whole Milke 573 444 10861 137.3 96.2 1.100 6.0 1548 886.9 

Eggse 7900 3.0 2.8 13.9 0.135 0.009 2.0 11.2 88.6 

a Liveweight 260 
b Total global in-use pasture area assumed to be 2.1 billion hectares (Mottet et al., 2017; Poore & Nemecek, 2018).  
c Beef from culled dairy cows, shared values across the two sub-systems are repeated and printed in italic 
d Emissions from manure management and, for ruminants, enteric fermentation 
e Demand and product yield refer to the product (milk or eggs) and the rest to the product delivering animal (dairy cow or laying hen) 
 265 

The annual product yields of cow milk and chicken eggs per head (i.e., per producing animal) were obtained from (FAO, 

2023). Similar (albeit theoretical), annual product yields of meat per head were calculated for meat producing animals as 

follows. First, the boneless meat yield per animal was estimated by multiplying its average liveweight (cattle: Dong et al., 

2006; others: Gavrilova et al., 2019) by the share of boneless meat of the animal’s mass (Knight & Rentfrow, 2020; Wilfong 

& O’Quinn, 2018). Second, the average slaughter age was approximated based on the size of the global herd and the number 270 
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of animals slaughtered annually (FAO, 2023). Finally, the annual product yield of meat per head was calculated by dividing 

the boneless meat yield by the average slaughter age. 

The livestock carbon stock is insignificant, around 0.1 Gt C (Bar-On et al., 2018), and is therefore omitted from the model. 

The emission factors for methane and nitrous oxide were obtained respectively from (Gavrilova et al., 2019) and (Jun et al., 

2000). Pasture use was obtained from (Mottet et al., 2017; Poore & Nemecek, 2018). A biome-specific pasture use per animal 275 

was calculated from this global average by using the NPP of pastures in each biome, so that the biome-specific pasture use 

weighted with the pasture area in year 2020 matches the global average pasture use per animal, as presented in Table 2. Yearly 

feed use per head was obtained from (Mottet et al., 2017).10 The crops consumed as animal feed are produced on cropland, 

which implies that livestock also requires cropland to produce the necessary feed. 

3 Data and model fitting 280 

3.1 LPJ-GUESS 

To estimate the parameters of CLASH that define growth, disturbances, yields and carbon dynamics in each biome, we used 

data generated by the LPJ-GUESS model (Smith et al. 2001, 2014; Lindeskog et al. 2021) run globally with a 2°×2° grid in 

different climatic scenarios. LPJ-GUESS is a second-generation dynamic global vegetation model (DGVM) which has been 

optimised for regional to global applications. It includes a detailed representation of forest ecosystem composition and stand 285 

dynamics. It can simulate, for example, vegetation growth and succession (Smith et al., 2014) and vegetation shifts under 

future climate scenarios (Hickler et al., 2012). A detailed description of LPJ-GUESS is available in Smith et al. (2001). We 

used LPJ-GUESS version 4.0 with global PFT’s. 

The model simulates potential vegetation as a mixture of 19 PFTs which compete with each other for light, space and soil 

resources in each simulated grid cell. Each PFT is characterized by growth form, phenology, photosynthetic pathway (C3 or 290 

C4), bioclimatic limits for establishment and survival. Additionally, woody PFTs are characterized by allometry. In “cohort 

mode”, all individuals of a given age cohort are assumed identical (Knorr et al., 2016). The ecosystem processes are updated 

daily but carbon allocation is only updated annually. Crop sowing and harvesting dates are determined dynamically based on 

local climatology (Lindeskog et al., 2013). 

Biomass-destroying disturbances are turned off, but wildfire probability is modelled prognostically based on weather, fuel 295 

continuity (litter), and human population density using SIMFIRE-BLAZE model where SIMple fire model (SIMFIRE) 

calculates total burned area (Knorr et al., 2014) with total fire carbon-flux calculated from BLAZE (BLAZe-induced land-

biosphere-atmosphere flux Estimator) (Rabin et al., 2017). 

 
10 Supplementary material, Table SI 2 in Mottet et al. (2017). 
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3.2 Case setup: runs and climate scenarios 

We ran 48 global simulations with LPJ-GUESS, varying CO2 concentration and climate scenarios from different climate 300 

models. The variations are presented in Table 3. The purpose of running different climate and CO2 scenarios independently of 

each other was to distinguish between the effects climate change and CO2 fertilization. Climate scenarios from three climate 

models were used to assess the results’ sensitivity to model choice. LPJ-GUESS simulations began with a 500-year spin-up, 

and after that, the actual simulations were run from 1900 to 2100. Model defaults for irrigation, fertilization and other cropland 

management options are used (Lindeskog et al., 2013; Olin et al., 2015).  305 

The climatological data driving LPJ-GUESS is from the Coupled Model Intercomparison Project sixth phase (CMIP6) 

simulations (Eyring et al., 2016) in the Earth System Grid Federation database. We used temperature, precipitation and solar 

radiation from three Earth System Models (ESMs): EC-Earth3, CanESM and MPI-ESM. Citations of specific model variants 

and datasets are provided in Table A1 in the Appendix. These three model variants were chosen, as they give rather different 

results in terms of global mean temperature and precipitation: CanESM produces higher temperature and precipitation, MPI 310 

lower temperature and precipitation, and EC-Earth is between these. The datasets have been interpolated to 2°×2° grid by 

Climate Data Operators (CDO) using bilinear interpolation. Climate datasets used with LPJ-GUESS to parameterize the current 

version of CLASH were not bias-corrected. Biases in ESM results can have a large influence on ecosystem and carbon cycle 

modelling (Ahlström et al., 2017), but correcting for them can also introduce new uncertainties to scenarios of future climate 

(Maraun et al., 2017). Although averaging over large geographical areas is likely to reduce the biases’ effect on CLASH 315 

parametrization, potential model users are advised to use parametrizations based on bias-corrected data, which we provide 

with subsequent model versions. 

Each LPJ-GUESS simulation was based on one of two alternative climates: a warmer future climate (scenario SSP2-4.5) or 

colder historical climate (climate from years 1901-1930, randomly sampled). Likewise, two CO2 concentration pathways were 

used: the SSP2-4.5 scenario or a constant concentration of 310 ppm. These four variations enable separating the effects of 320 

climate change and CO2 fertilization when parametrizing the ecological module in CLASH. The three ESMs, on the other 

hand, provide three distinct parametrizations for CLASH, as averaging results from disparate models did not seem meaningful. 

In the following, we focus on the EC-Earth parametrization for brevity. The main climate variables of temperature and 

precipitation in each biome are presented in Appendix A. 

Forests, crops and pastures were simulated separately at a global grid resolution of 2°×2°. That is, in forest simulations, only 325 

forest was grown at all the grid points. In crop simulations different crop types, and in pasture simulations only grass was 

grown. To parametrize forest growth as a function of stand age, the forest simulations included forest stands planted in 20-

year intervals from 1900 to 2000. In addition, one set of simulations with LUH2 land-use (Hurtt et al., 2020) was run for 

primary ecosystem parametrization and model validation purposes. 

 330 
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Table 3. Scenario specifications for the LPJ-GUESS simulations. 

 Variations 

Earth System Model EC-Earth3, CanESM, MPI 

Climate scenario SSP2-4.5, Historical 1901-1930 

CO2 scenario SSP2-4.5, Constant 310 ppm 

Modelled land-use Forest, Crops, Pasture, LUH2 

3.3 Parameter fitting procedure 

To parametrize the functions presented in section 2, we used LPJ-GUESS output variables (such as vegetation carbon densities, 

litter and soil carbon stocks, NPP, crop yields, and annual forest fire probabilities) as dependent variables and climatological 335 

drivers (global mean temperature and CO2 concentration) from the related climate scenarios as independent variables. All data 

were on an annual level. Three separate CLASH parameterizations were made, corresponding to the LPJ-GUESS runs driven 

with the EC-Earth3, CanESM and MPI climate scenarios. The separate CLASH parametrizations can be used to represent 

some of the variation that exists between ESMs regarding future climate change, and how these variations affect vegetation 

growth and terrestrial carbon stocks. 340 

For static, linear equations (e.g. equation (3)), ordinary least-squares fitting was used. For dynamic equations (equations (4) 

and (6)), the parameters were fitted by minimizing sum of the squared errors between the LPJ-GUESS result and values 

simulated using the fit over the whole timeframe (1900-2100). As this minimization problem is possibly non-convex, the 

parameter fitting was done in two steps: first using a global optimization algorithm to find a relatively good parametrization, 

then using this as a starting point for a local optimization algorithm to find the exact optimum. 345 

To find a suitable form for each function, we started with simple (e.g., linear) representation. If this was not sufficient to 

replicate the LPJ-GUESS results with sufficient accuracy, additional terms were added to the function. In the case of more 

complex formulae, particularly the relative forest growth of equation (5), a number of functional forms were tested in each 

case to ensure a suitable fit. The variations included e.g. polynomial, exponential and power representation for the temperature 

effect; or the inclusion or exclusion of interaction-effects between the temperature and CO2 concentration. The objective of 350 

the fitting procedure was to find functions that roughly emulate LPJ-GUESS. The final formulations are what was presented 

in section 2. 

3.4 Fits of forest growth and fires 

The development of forest carbon density with stand age in a changing climate is shown in Figure 2. The carbon density 

modelled with LPJ-GUESS is compared to the carbon density simulated using equation (4) with the fitted parameter values. 355 

The parametrization emulates the original LPJ-GUESS results well in all biomes and climate scenarios.  
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Figure 2. Forest stand carbon density in the four simulated climate scenarios with a stand planted in 2000. Solid lines indicate LPJ-
GUESS simulations and dashed lines indicate functions fitted to the results. The proximity of solid and dashed lines of the same 
color indicates the goodness of fit. If the lines are close, CLASH emulates LPJ-GUESS well.  360 

 

Forest growth, and how climate change affects it, varies across biomes. In colder biomes of Tundra and Boreal a warming 

climate increases forests growth considerably; whereas the opposite is true, although to a lesser degree, for the warmer biomes, 

particularly for Temperate Humid, Tropical Dry, and Tropical Humid. Higher atmospheric CO2 concentrations improve growth 

considerably in all biomes due to the CO2 fertilization effect (Walker et al., 2021). This effect is relatively stronger, in the 365 

warmer biomes than in the colder ones; which conforms with earlier analyses with LPJ-GUESS (Hickler et al., 2008). 

Annual probabilities of forest fire from LPJ-GUESS and the fitted parametrization for an equation of the form (3) are displayed 

in Figure 3. The fitted functions capture the overall level and in most cases the trend in the incidence of forest fires. Fire 

probabilities depend strongly on the biomes’ climate. Generally, dry and warm biomes have more recurring fires than cold and 

wet ones. Tundra experiences a major increase in fire probability due to a warming climate. However, in some biomes, climate 370 
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change doesn’t affect fire prevalence strongly, and the changes are more driven by land-use change (Knorr et al., 2016). This 

effect is not captured by the explanatory variables of equation (3). 

 

Figure 3. Average forest fire return times in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 
lines indicate functions fitted to the results. 375 

3.5 Fits of vegetation carbon stocks 

The carbon densities of natural vegetation, cropland and pastures are presented respectively in Figure 4, Figure 5 and Figure 

6. The linear model of equation (3), with temperature and CO2 concentration as the explanatory factors, performs well in 

depicting the overall trends of the three vegetation types across scenarios and biomes. Cropland and pasture vegetation exhibit 

notable variation between consecutive years, which is not captured well by the statistical fit. However, as CLASH is primarily 380 

intended to be used at a 5 or 10-year timestep, the inability to model annual fluctuations is not a major concern. 
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Figure 4. Carbon density in natural vegetation in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and 
dashed lines indicate functions fitted to the results. 

 385 

The vegetation carbon stocks react strongly to climate change, and the magnitude of the effect depends on the biome. With a 

constant climate and CO2 concentration the densities remain relatively constant, as can be expected. An elevated CO2 

concentration increases the vegetation carbon density through the CO2 fertilization effect. A warming climate increases carbon 

density in the cold biomes; but has negligible, or in some cases a small decreasing effect, on the other biomes. These effects 

are generally well in line with previous observations and model experiments regarding the global greening (Piao et al., 2020). 390 
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Figure 5. Carbon density in cropland vegetation in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and 
dashed lines indicate functions fitted to the results. 
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Figure 6. Carbon density in pasture vegetation in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and 
dashed lines indicate functions fitted to the results. 

3.6 Fits of litter and soil carbon stocks 

The litter and soil carbon stocks of forests, croplands and pastures are presented in Appendix A. The fitted functions mostly 400 

compare well against the LPJ-GUESS simulations in the four climate scenarios described in Table 3. Relative differences 

between the fitted functions and the original LPJ-GUESS simulations are the largest for cropland carbon stocks. This is because 

the functions for cropland and pasture share the same parametrization, as they both contribute to the herbaceous litter and soil 

stocks in CLASH. Pastures contain more carbon than croplands and, therefore, have more weight when the litter and soil 

carbon dynamics functions are parametrized by minimizing the squared error between the LPJ-GUESS result and the fit. 405 

Hence, the fit is better for pastures than croplands. For the same reason, however, inaccuracy in depicting cropland litter and 

soils does not notably affect the overall accuracy of CLASH in emulating LPJ-GUESS simulations. That is, as cropland litter 
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and soil contain only a small part of the total carbon, inaccuracy in depicting these stocks does not notably affect the overall 

accuracy of representing the total carbon stocks. 

3.7 Fits of crop yield 410 

The yield of the average crop is presented in Figure 7. As earlier, the colder biomes experience a notable increase in yields in 

a warming climate. Also, CO2 fertilization improves yields notably. The statistical fits capture these changes well. The desert 

biome contains a discontinuity in the LUH2 cropland areas between the historical period and scenario after 2015, which is not 

captured by the fit. 

  415 

Figure 7. Crop yields in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed lines indicate functions 
fitted to the results. 
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The CO2 fertilization effect is notably strong on crop yields. In the temperate and tropical biomes, which comprise 

approximately 75% of cropland area in 2020, the average crop yields increase respectively by 38% and 57% between 2000 420 

and 2100 due to the CO2 from the RCP4.5 concentration pathway. This is higher than the approximately 15% to 30% increase 

in a multi-model mean for four staple crops for the same concentration difference reported in (Franke et al., 2020). However, 

in that study LPJ-GUESS produced the highest response to elevated CO2 among the compared models, and our results are in 

line with these earlier LPJ-GUESS results. The model, along with LPJmL, has also earlier been observed to produce stronger 

CO2 fertilization effect than other DGVMs (Müller et al., 2015). Hence, a high response to changes in the atmospheric CO2 425 

concentration is a property of LPJ-GUESS, which CLASH correctly replicates. 

4 Validation 

We validated CLASH by comparing its results to those from LPJ-GUESS in the SSP2-4.5 scenario. Both models used the 

LUH2 land-use patterns (Hurtt et al., 2020). CLASH parametrization based on EC-Earth3 was compared to LPJ-GUESS driven 

with the EC-Earth3 SSP2-4.5 scenario; and similar comparisons were done using MPI and CanESM climate scenarios. While 430 

the LUH scenario determines land area allocation between different uses, it does not specify how secondary forests are 

managed. Hence, to allow comparisons between the models, we applied forest management assumptions that lead to similar 

management. In the LPJ-GUESS LUH scenario, all forests were modelled without harvests. This behavior was emulated in 

CLASH with an exogenous objective to maximize terrestrial carbon stocks in 2100, which effectively minimizes harvests. 

The results of the validation experiment are portrayed in Figure 8 with the EC-Earth3 climate scenarios. The models’ results 435 

mostly align well with each other. The relative difference in the total terrestrial biosphere carbon stock ranges from 0.7% to 

3% over the modelled examined timeframe. The differences are larger for specific carbon stocks in certain biomes, such as 

vegetation in the tropical biomes.  

Three main reasons can potentially explain differences in results between the two models. (1) The resolution of the aggregate 

biome-level representation in CLASH is coarser than compared to the 2°×2° grid applied in LPJ-GUESS. (2) Inaccuracies in 440 

the fitted functions describing the processes in CLASH could cause the results to differ. (3) The areas of different land uses in 

the LUH2 dataset are interpreted slightly differently in the two models, which also affect carbon stocks.  

The main differences observed in Figure 8 can be attributed to differences in resolution (1) and differences in the interpretation 

of LUH2 data (3). The first of these inevitable, as CLASH describes the average growth, yield and carbon stocks over much 

larger areas than LPJ-GUESS. This was identified as the primary reason for the difference in vegetation carbon stock in the 445 

two tropical biomes. The problem could be remedied by applying a lower level of aggregation for the biomes, but this would 

increase the computational weight of the model.  
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Figure 8. Validation of CLASH carbon stocks against LPJ-GUESS in the SSP2-4.5. scenario, separately for vegetation, litter and 450 
soil carbon in each biome. Solid lines indicate LPJ-GUESS results, dashes CLASH results. 

 

Inaccuracies in the fitted functions (2) as a source of error could be reduced by trying to find functional forms that better 

emulate the LPJ-GUESS results. In general, however, the chosen functions and estimated parameters seem to replicate the 

LPJ-GUESS results relatively well. Cropland litter and soil carbon dynamics are an exception, but as these carbon stocks are 455 

minor compared to those of other land-uses, their effect is small in the big picture.  

Differences in the interpretation of the LUH2 dataset (3) imply that land allocation within the biomes differs slightly between 

the models. The original LUH2 data is at 0.33°×0.33° resolution. The area of land allocated to each use in each biome in 

CLASH is calculated directly from this data. However, for LPJ-GUESS, the data is re-gridded, and a 2°×2° grid is applied in 

the LPJ-GUESS simulations. Different gridding leads to differences in biomes' land-use allocations between the models. This 460 

difference particularly explains the differences in soil carbon stocks in the Temperate Dry and Semiarid biomes, which have 

roughly 20% more pasture area in CLASH. 
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Validation of CLASH fitted to the climate scenarios from CanESM and MPI models are presented in Appendix A (Figure A9 

and Figure A10). These figures are qualitatively very similar to Figure 8, which indicates that the different parametrizations 

of CLASH can emulate well the LPJ-GUESS results driven by climate scenarios from different ESMs. However, it is worth 465 

noting that the choice of climate model choice notably affects the level of certain carbon stocks in the LPJ-GUESS results. 

This is illustrated in Figure 9 with the three alternative parametrizations of CLASH. Whereas, across parametrizations, the 

carbon stocks are similar for most biomes, there is particularly notable difference in the Tundra biome, where the use of the 

CanESM climate scenario produces significantly larger carbon stocks for all three carbon pools. This can be explained by the 

higher temperature in the CanESM scenario compared to the other two climate scenarios. The higher temperature means greater 470 

vegetation growth, more litter input and hence, larger soil carbon stocks. 

 

 

Figure 9. Vegetation, litter and soil carbon stocks in a SSP2-4.5. scenario, modelled by CLASH parametrized against LPJ-GUESS 
results driven climate scenarios from EC-Earth (solid lines), CanESM (dashed lines) and MPI (dotted lines) models. 475 
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Comparing CLASH to future scenarios from other models is not as straightforward, as each model study has its own modelling 

mechanisms and set of assumptions that might be difficult to replicate in CLASH. Particularly, given that CLASH is a 

biophysical model, it doesn’t portray the markets and policies that drive the production of land-use products. Nevertheless, we 

make a simple comparison by fixing the land-use areas of CLASH to the LUH2 SSP2-4.5 scenario and compare the crop and 

wood production to FAO statistics, IAM scenarios and forest sector models. This comparison is presented in Figure 10.  480 

Crop production provides a straightforward comparison, as cropland area determines crop production directly in CLASH. We 

compare CLASH results to FAO statistics, FAO’s Future of Food and Agriculture scenarios (FAO, 2018) and SSP2-4.5 

scenarios from five different IAMs (Riahi et al., 2017). CLASH crop production is very close to the FAO statistics and at the 

upper end of the scenarios around 2020. Crop production grows slightly slower than in the FAO scenarios and notably slower 

than in the SSP scenarios, however. The reason for this divergence is strongly increasing energy crop production in the IAM 485 

scenarios. Energy crops have potentially higher yields than food crops, which leads to larger production with the same cropland 

area. However, food crop production in most of the IAM scenarios remained slightly below the CLASH crop production.   

Comparing wood harvests is not as straightforward, as managed forest area can yield very different wood harvests, depending 

on harvesting intensity. Therefore, for this comparison, we additionally required CLASH to produce the same amount of 

industrial roundwood (logs and pulpwood) than in the demonstration case of section 5. This demand scenario was then 490 

compared to FAO statistics (also including the category ‘Other industrial roundwood’) and a recent comparison of forest-

sector model (FSM) scenarios by Daigneault et al. (2022). The CLASH demand scenario matches the FAO statistics well and 

is for the most part slightly higher than the harvests in the FSMs. Further comparisons are difficult due to seemingly different 

definitions of forest land, with FSMs being based on FAO statistics and CLASH on LUH2. This results in differences of forest 

land area and thereby also forest carbon stocks. Yet, as a separate comparison, the forest carbon stocks in CLASH fall in the 495 

range reported in a recent review of terrestrial biosphere models (Seiler et al., 2022), based also on the LUH2 land-use 

categorization.  
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Figure 10. Comparisons of crop production (a) and roundwood harvests (b) between CLASH, FAO and SSP2-4.5 scenarios from 
either IAMs for crop production or forest sector models (FSMs) for wood harvests. 500 

5 Analysing trade-offs between carbon storage and production 

To demonstrate the behaviour and possible use cases of CLASH, we explored how varying the future demand for different 

land-use products affects the global terrestrial carbon sink during the 21st century. In the example, CLASH is run subject to an 

exogenously given objective: maximize the terrestrial carbon stock in 2100 by allocating managed lands between the biomes, 

while satisfying an exogenously given demand scenario for agriculture and forestry products. As this problem setting does not 505 

portray the drivers determining real-world land-use decisions, the analysis should be seen as a simple demonstration of the 

model through scenarios that would still be physically possible. 

There is a trade-off between storing carbon in the biosphere and producing land-intensive products: more production usually 

implies less storage (Erb et al., 2018). Examining this trade-off can help understand the physical limitations of the land-use 

sector’s contribution towards mitigating climate change; e.g. to reach the Paris Agreement’s 1.5°C target (Roe et al., 2019). 510 

Given these physical limitations in land-use, this trade-off can be seen as a production possibility frontier between carbon 

storage and the supply of land-use products (Pingoud et al., 2018). Here, we use CLASH to analyse this problem as an example 

of how the model can be utilized in practice. 

In this demonstration, CLASH is allowed to freely allocate land between cropland, pastures, and secondary forest across all 

biomes. The areas of other land-uses develop according to the SSP2-4.5 LUH scenario (Hurtt et al., 2020). We vary the future 515 

demand of four product categories: crops (for direct human consumption), animal products (meat, milk, and eggs), wood 

products (timber and pulp wood), and bioenergy (energy crops and energy wood). 
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The model is first solved in a baseline scenario, in which the demand for each product category follows the SSP2-4.5 scenario 

from 2020 to 2100 (Riahi et al., 2017), denoted as 𝐷 (𝑡). Then, we vary the demanded quantity of each product category at 

a time from the baseline, so that the demand 𝐷(𝑡) deviates gradually from the baseline until a variation 𝑚 of ±10% or ±50% 520 

is reached by 2100:  

 
𝐷(𝑡) = 𝐷 (𝑡) ⋅ 1 + 𝑚 ⋅

𝑡 − 2020

2100 − 2020
.  

 

    (12) 

Hereafter, the demand scenarios are referred to as very low (-50%), low (-10%), high (+10%) and very high (+50%) demand.  

Figure 11 shows how changes in the demand for each product category affect the global carbon stock and net CO2 uptake of 

terrestrial ecosystems in 2100. The stocks respond almost linearly to changes in the demanded quantities. Altogether, the 

change in global carbon stocks between 2020 and 2100 ranges from –90 to +310 GtC across the demand scenarios, or -156% 525 

to +94% relative to the baseline increase of +160 GtC. Variation in animal product demand is responsible for the extremes of 

the range; and when measured per tonne of product, affects the average CO2 uptake 7–8 times as strongly as variation in the 

crop or bioenergy demand, and 15 times as strongly as variation in wood demand. The very high animal product demand 

scenario is the only scenario where terrestrial ecosystems are a net emitter instead of a net sink. 

 530 

Figure 11. The production-possibility frontier between carbon storage (left y-axis), terrestrial CO2 uptake (right y-axis), and the 
production of different land use products (x-axis) for food crops, animal products (meat, milk, and eggs), wood products (logs and 
pulp wood) and bioenergy (crops and logging waste). The carbon storage in the baseline demand scenario is indicated with a 
horizontal grey line. The demand variations are represented with point size and colour: different product categories are indicated 
by colour, and the point size indicates the relative deviation in 2100 from the baseline demand (the bigger the point size, the bigger 535 
the demand). The slope of the line connecting the points indicates the sensitivity of global carbon stock to a change in demand per 
tonne of product. 

Demand variations cause land use conversions between cropland, pastures, and secondary forests (Figure 12a). High demands 

for crops, animal products, or bioenergy are satisfied by converting additional secondary forest to agricultural land; while in 
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the low demand scenarios, unused agricultural land can be converted to secondary forests to increase the global carbon stock. 540 

Croplands and pastures are mostly allocated to tropical and boreal biomes (Figure 12b). Cropland and pastures together make 

up 47–49% of total land area in 2050 and 36–68% in 2100. The loss of primary ecosystems from 2020 to 2100 amounts to 15 

– 24%. The sensitivity of the loss of primary ecosystems for animal product demand is 10 times stronger than that of wood 

demand, 33 times stronger than that of bioenergy demand, and 129 times stronger than that of food crop demand. 

In our illustrative case, the production of crops is mostly allocated to the tropical dry, boreal and temperate humid biomes. 545 

Pastures are mostly allocated to tropical biomes, with boreal land areas serving as fall-back for very high animal product 

demand. Wood demand is satisfied on one hand by large-scale forestry in boreal forests, with moderate forestation during the 

first and intensive harvest during the second half of the century. On the other hand, wood is delivered by constant intensive 

harvest of the temperate humid zones, while cut-down forest is not reforested, but converted into cropland.  Hence, temperate 

biomes’ carbon stocks decrease the most during the century (Figure 12b).  550 

The results suggest that – when assessed purely in terms of biophysical properties – the tropical and tundra biomes have a 

relative advantage in storing carbon over producing crops and timber, but are heavily affected by high animal product demands 

(Figure 12b and Figure 12c). 

Due to land-use change and intensive wood harvests, the temperate humid secondary forests’ area-weighted mean forest age 

drops from 84 years (2020) to below 10 years in 2100. The boreal’s forest age decreases from 101 years in 2020 to 65 years 555 

in 2100. Meanwhile, the tropical humid biome’s mean age of secondary forests increases from 36 years in 2020 to 109 years 

in 2100, and the Tundra’s from 80 years (2020) to 147 years in 2100 (Figure 12c). 

Notably, the maximization of global carbon storage subject to the global demand constraints leads to a strongly polarized land 

allocation between the biomes. Economic factors (such as production costs, trade policies, security of supply concerns, and 

the value of ecosystem services) are not considered in this optimization problem. Doing so would alter regional relative 560 

advantages between carbon storage and production, and lead to a different global land allocation. 

The CH4 and N2O emissions from agricultural activities reach 14–33 Gt CO2-eq per year between 2090 and 2100 (Figure 12d), 

of which 63–73% are from animal husbandry. In most scenarios, the terrestrial carbon sink in 2100 (-20 – +6 GtCO2-eq year-1) 

is not large enough to compensate fully for the agricultural non-CO2 emissions and, therefore, land-use is a net source of GHG 

emissions in 2100. In the very high animal product demand scenario, terrestrial ecosystems already become a net emission 565 

source by 2050.  
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Figure 12. a) Share of total land area in 2100 (%tot.) and relative change since 2020 (%rel.) per land use type in all scenarios.  b) Total 570 
carbon stock in 2100 (GtC) and relative change (%rel.) per biome in all scenarios.  c) Total harvested biomass (Gt) and net carbon 
stock growth (GtC) for period 2020-2100, and area-weighted average tree age in 2100 (years), per biome averaged over the scenarios 
(error bars).  d) Evolution of agricultural CH4 and N2O emissions from crop cultivation, enteric fermentation, and manure 
management (Gt CO2-eq year-1) for baseline and extreme demand scenarios. In panels a) and b), the point size indicates the relative 
deviation in 2100 from the baseline demand for the product category indicated with the colour. In panel d), the line type represents 575 
the relative variation in demand for the product category indicated with the colour. 

Altogether, the large effect of animal products on climate, land-area, and ecosystems supports the view that reducing their 

consumption could be an effective means to mitigate climate change (Hayek et al., 2021; Jarmul et al., 2020). Earlier research 

has also suggested that the relocation of croplands (Beyer et al., 2022) and increasing carbon storage in forests (Sohngen & 

Mendelsohn, 2003) are effective ways to mitigate climate change. All these effects can be identified in our illustrative analysis 580 

conducted using CLASH. 

6 Conclusions 

CLASH is a lightweight biophysical model that represents land use at an aggregate level of ten biomes, each divided into six 

land use classes. Vegetation growth and ecosystem carbon dynamics respond to climate change in CLASH; and the model 

keeps track of terrestrial carbon stocks and, thereby, also of terrestrial CO2 emissions and sinks. CLASH has been specifically 585 

designed to be hard-linked with IAMs. It can be incorporated into models formulated as linear or nonlinear programming 
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problems, and run under intertemporal optimization. In this role, CLASH can be used to optimize global agriculture and 

forestry and their climatic impacts over a multi-decadal timescale. Hence, it can help in evaluating the possible role that land-

use might have in mitigating climate change.  

When integrated with an IAM, CLASH provides the annual production of land-use commodities (food and other biomass for 590 

energy and materials), the change in terrestrial CO2 stocks and GHG emissions from agriculture. The IAM should provide the 

demand for these products, and any costs, policies and other societal constraints that affect land-use. As such, CLASH would 

depict land-use from a biophysical perspective, whereas the IAM provides the motivation for how the land should be used and 

managed.  

If the IAM has a built-in climate module, it can provide the future CO2 concentration and temperature change for the CLASH 595 

ecological module. However, in such setup, the climate module should not consider the carbon exchange between atmosphere 

and terrestrial ecosystems, as CLASH accounts for their carbon stocks and the fertilization effect from elevated CO2 

concentrations. The change in carbon stocks can then be used to calculate the net exchange of CO2 with the atmosphere, from 

both managed and primary terrestrial ecosystems. 

CLASH could be easily re-parametrized to alternative geographic resolutions and timesteps to achieve compatibility with a 600 

specific IAM; or to represent political borders, which would be necessary for including agricultural, climate, ecosystem 

protection and other policies relevant for land-use. It would also be possible to use CLASH as a pure simulation model, that 

is, without any optimization problem. However, this might be impractical due to the number of free variables and the equation 

structure of the model. For this reason, we specified an external optimization problem of carbon stock maximization in section 

5. 605 

The role of land use in climate change mitigation has been extensively analysed from various perspectives (e.g. Harper et al., 

2018; Roe et al., 2019; Daioglou et al., 2019; Daigneault et al., 2022; Roebroek et al., 2023) and the topic’s policy-relevance 

has recently increased due to the grown interest in maintaining and enhancing land-based carbon sinks (Griscom et al., 2017; 

Rockström et al., 2021). Our demonstration of CLASH in section 5 highlights the model’s capacity to depict several well-

known mechanisms through which land-use can contribute to climate change mitigation, including reducing the consumption 610 

of animal products (Hayek et al., 2021; Jarmul et al., 2020), relocating croplands (Beyer et al., 2022) and increasing carbon 

storage in forests (Sohngen & Mendelsohn, 2003). 

Due to its simplicity, CLASH cannot match the accuracy or detail of sectoral models, which have been soft-linked with IAMs 

(e.g. Fricko et al., 2017; Favero and Mendelsohn, 2014). CLASH’s relative advantages are its light computational burden and 

broad scope. It can be hard-linked to IAMs and run under intertemporal optimization to provide a comprehensive depiction of 615 

global land-use, terrestrial carbon stocks, and their bi-directional interaction with the climate. We believe such hard-linking of 

CLASH and an IAM would be helpful in examining the optimal role of land-use in mitigating climate change, providing food 

and biogenic raw-materials for the economy, and in conserving primary ecosystems. 
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Appendix A 

This appendix provides technical information on the model and additional figures to support the main text. The figures portray 620 

annual mean temperature and precipitation for each biome in the EC-Earth3 scenarios, the fits for litter and soil carbon in 

forests, pastures and croplands, and validations using the parametrizations of CLASHS based on CanESM and MPI models. 

Model structure and use 

CLASH is written in GAMS. The land-use module files are located in the main directory and the ecological module in its own 

subdirectory, which further contains separate subdirectories for the three parametrizations of CLASH based on the different 625 

ESMs’ climate scenarios. 

The ecological module produces GDX files that contain the parameterization of the land-use module. The input parameters 

are read from text files produced by the calibration scripts written in R. These text files are provided as a part of CLASH, and 

running the R scripts would be necessary only if the CLASH would be recalibrated for new ESM scenarios, regional 

definitions, or functional forms. The ecological module also reads a scenario for temperature change and atmospheric CO2 630 

concentration. This file can be provided externally, based on the ESM scenarios, or it can be produced by the IAM to which 

CLASH is embedded. 

For using the model within an IAM, the CLASH_Core.gms file needs to be included in the IAM source code. The IAM needs 

to provide the set time (alias t), subsets tfirst and tlast, the objective function and the model and solve statements. To run 

CLASH as a stand-alone model, as was done in this manuscript, a main file needs to provide these sets, the objective function 635 

and the MODEL and SOLVE statements. The CLASH code repository contains CLASH_Wrapper.gms file, which can be used 

for this purpose as the main file. 

Specifications of climate the scenario experiments used in LPJ-GUESS 

Table A1. Climate scenario experiments used in LPJ-GUESS. 

Model Experiments Variant Original 
resolution 
(gridpoints) 

DOI Citation 

EC-Earth Historical, 
ssp245 

r1i1p1f1 512 x 256 

longitude/latitude 

https://doi.org/10.22033/ESGF/CMIP6.4700, 

https://doi.org/10.22033/ESGF/CMIP6.4880  

EC-Earth 

Consortium, 

2019a,b  

CanESM5 Historical, 
ssp245 

r10i1p1f1 128 x 64 

longitude/latitude 

https://doi.org/10.22033/ESGF/CMIP6.3610, 

https://doi.org/10.22033/ESGF/CMIP6.3685  

Swart et al, 

2019a,b 
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MPI-ESM Historical, 
ssp245 

r1i1p1f1 192 x 96 

longitude/latitude 

https://doi.org/10.22033/ESGF/CMIP6.6595, 

https://doi.org/10.22033/ESGF/CMIP6.6693  

Wieners et 

al, 2019a,b 

 640 

EC-Earth: historical r1i1p1f1  

EC-Earth Consortium (EC-Earth) (2019). EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP 

historical. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4700 

 

EC-Earth ssp245 r1i1p1f1f r1i1p1f1 645 

EC-Earth Consortium (EC-Earth) (2019). EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP 

ssp245. Version 20200310. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4880 

Original grid TL255, linearly reduced Gaussian grid equivalent to 512 x 256 longitude/latitude 

 

CanESM5 historical r10i1p1f1 650 

Swart, N.C., Cole, J.N.S., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P., Anstey, J., Arora, V., Christian, J.R., Jiao, 

Y., Lee, W.G., Majaess, F., Saenko, O.A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., 

Sigmond, M. (2019). CCCma CanESM5 model output prepared for CMIP6 CMIP historical. Version 20190429. Earth System 

Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3610 

 655 

CanESM5 ssp245 r10i1p1f1 

Swart, N.C., Cole, J.N.S., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P., Anstey, J., Arora, V., Christian, J.R., Jiao, 

Y., Lee, W.G., Majaess, F., Saenko, O.A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., 

Sigmond, M.  (2019). CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP ssp245. Version 20190429. Earth 

System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.3685 660 

Original grid: T63 Linear Gaussian Grid; 128 x 64 longitude/latitude 

 

MPI-ESM historical r1i1p1f1 

Wieners, Karl-Hermann; Giorgetta, Marco; Jungclaus, Johann; Reick, Christian; Esch, Monika; Bittner, Matthias; Legutke, 

Stephanie; Schupfner, Martin; Wachsmann, Fabian; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; 665 

Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; 

Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; 

Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, 
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Global mean temperature and precipitation 685 

 

Figure A1. Mean temperature in the nine main biomes with historical climate and EC-Earth SSP2-4.5 scenario. 
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Figure A2. Annual precipitation in the nine main biomes with historical climate and EC-Earth SSP2-4.5 scenario. 
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Fits of litter and soil carbon stocks 

The following figures portray the litter and soil carbon stocks simulated with LPJ-Guess, and the simulations with fitted 

functions to the results. These results are discussed in section 3.6. 

 

Figure A3 Carbon density in forest soil in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 695 
lines indicate functions fitted to the results. 
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Figure A4 Carbon density in forest litter in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 
lines indicate functions fitted to the results. 700 
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Figure A5 Carbon density in cropland soil in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 
lines indicate functions fitted to the results. 
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Figure A6 Carbon density in cropland litter in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 
lines indicate functions fitted to the results. 
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 710 

Figure A7 Carbon density in pasture soil in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 
lines indicate functions fitted to the results. 
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Figure A8 Carbon density in pasture litter in the four simulated scenarios. Solid lines indicate LPJ-GUESS simulations and dashed 715 
lines indicate functions fitted to the results. 
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Validation of CanESM and MPI parametrizations 

 720 

Figure A9 Validation of CLASH carbon stocks against LPJ-GUESS in the SSP2-4.5 scenario calculated with the CanESM model; 
separately for vegetation, litter and soil carbon in each biome. Solid lines indicate LPJ-GUESS results, dashes CLASH results. 
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Figure A10 Validation of CLASH carbon stocks against LPJ-GUESS in the SSP2-4.5 scenario calculated with the MPI ESM model; 725 
separately for vegetation, litter and soil carbon in each biome. Solid lines indicate LPJ-GUESS results, dashes CLASH results. 
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