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➔Corrected as suggested.  

 

25. Line 734: Change “Meanwhile, iMAPLE model” to “Meanwhile, the iMAPLE 

model” 
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➔Corrected as suggested.  
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conditions.” 

➔Corrected as suggested.  

 

28. Line 327/328: Change “the feedbacks of fire activities on terrestrial ecosystems” to 



“the feedbacks from fire activities onto the terrestrial ecosystem” 

➔Corrected as suggested.  

 

29. Line 328: When referring to iMAPLE, may I please ask that you use “the iMAPLE 

model” or just “iMAPLE” and not “iMAPLE model” as used here? May I also please 

ask that make this change consistently throughout the manuscript? 

➔ We checked throughout the whole manuscript and made the suggested corrections. 

 

30. My understanding from your response to the reviewer’s comment about the 

complexity of original equation 20 (now equation 25) was that you were going to 

include a new figure. But Figure R1 seems to be missing! 

➔We have put Figure R1 into SI as Figure S1. In the main text, we also added the 

following statement to refer to Figure S1: “The dependence of BAsingle on U and RH 

is shown in Figure S1.” 

 

31. Line 313: Remove the term “factor” 

➔Corrected as suggested.  

 

32. Line 460: Change “driven with cycled forcing at the year 1980” to “driven with 

perpetual forcing for the year 1980” 

➔Corrected as suggested.  

 

33. Line 477: Change “with the random forest model” to “with a random forest model” 

➔Corrected as suggested.  
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Abstract 27 

Land ecosystems are important sources and sinks of atmospheric components. In turn, 28 

air pollutants affect the exchange rates of carbon and water fluxes between 29 

ecosystems and atmosphere. However, these biogeochemical processes are usually not 30 

well presented in the Earth system models, limiting the explorations of interactions 31 

between land ecosystems and air pollutants from the regional to global scales. Here, 32 

we develop and validate the interactive Model for Air Pollution and Land Ecosystems 33 

(iMAPLE) by upgrading the Yale Interactive terrestrial Biosphere model with 34 

process-based water cycles, fire emissions, wetland methane (CH4) emissions, and the 35 

trait-based ozone (O3) damages. Within the iMAPLE, soil moisture and temperature 36 

are dynamically calculated based on the water and energy balance in soil layers. Fire 37 

emissions are dependent on dryness, lightning, population, and fuel load. Wetland 38 

CH4 is produced but consumed through oxidation, ebullition, diffusion, and plant-39 

mediated transport. The trait-based scheme unifies O3 sensitivity of different plant 40 

functional types (PFTs) with the leaf mass per area. Validations show correlation 41 

coefficients (R) of 0.59-0.86 for gross primary productivity (GPP) and 0.57-0.84 for 42 

evapotranspiration (ET) across the six PFTs at 201 flux tower sites, and yield an 43 

average R of 0.68 for CH4 emissions at 44 sites. Simulated soil moisture and 44 

temperature match reanalysis data with the high R above 0.86 and low normalized 45 

mean biases (NMB) within 7%, leading to reasonable simulations of global GPP 46 

(R=0.92, NMB=1.3%) and ET (R=0.93, NMB=-10.4%) against satellite-based 47 

observations for 2001-2013. The model predicts an annual global area burned of 48 

507.1 Mha, close to the observations of 475.4 Mha with a spatial R of 0.66 for 1997-49 

2016. The wetland CH4 emissions are estimated to be 153.45 Tg [CH4] yr-1 during 50 

2000-2014, close to the multi-model mean of 148 Tg [CH4] yr-1. The model also 51 

shows reasonable responses of GPP and ET to the changes in diffuse radiation, and 52 

yields a mean O3 damage of 2.9% to global GPP. The iMAPLE model provides an 53 

advanced tool for studying the interactions between land ecosystem and air pollutants.  54 

 55 

Keywords: carbon fluxes, water cycle, fire emissions, methane emissions, ozone 56 
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damage, diffuse radiation.   57 
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1. Introduction 58 

As an important component on the Earth, land ecosystems regulate global carbon and 59 

water cycles. Every year, the terrestrial ecosystem assimilates ~120 Pg (1 Pg = 1015 g) 60 

carbon from atmosphere through vegetation photosynthesis (Beer et al., 2010). 61 

However, most of this carbon uptake returns to atmosphere due to plant and soil 62 

respiration (Sitch et al., 2015), as well as other perturbations such as biomass burning 63 

and biogenic emissions (van der Werf et al., 2010;Carslaw et al., 2010), leading to a 64 

net carbon sink of only ~2 Pg C yr-1 during 1960-2021 (Friedlingstein et al., 2022). 65 

Meanwhile, land ecosystems affect atmospheric moisture and soil wetness through 66 

both physical (e.g., evaporation and runoff) and physiological (e.g., leaf transpiration 67 

and root hydrological uptake) processes. Observations show that transpiration 68 

accounts for 80%-90% of the terrestrial evapotranspiration (ET) (Jasechko et al., 2013) 69 

and makes significant contributions to land precipitation especially over the tropical 70 

forests (Spracklen et al., 2012).  71 

 72 

Different approaches have been applied to depict the spatiotemporal variations of 73 

ecosystem processes. The eddy covariance technique provides direct measurements of 74 

land carbon and water fluxes (Jung et al., 2011). However, the limited number and 75 

uneven distribution of ground sites results in large uncertainties in the upscaling of 76 

site-level fluxes to the global scale (Jung et al., 2020b). Satellite retrieval provides a 77 

unique tool for the continuous representations of land fluxes in both space and time 78 

(Worden et al., 2021). However, most of the ecosystem variables (e.g., gross primary 79 

productivity, GPP) can only be derived using available signals from remote sensing 80 

through empirical relationships (Madani et al., 2017). As a comparison, process-based 81 

models build physical parameterizations based on field and/or laboratory experiments 82 

and validate against the available in situ and satellite-based observations (Niu et al., 83 

2011;Castillo et al., 2012). These models can be further applied at different spatial 84 

(from site to global) and temporal (from days to centuries) scales to identify the main 85 

drivers of the changes in carbon and water fluxes (Sitch et al., 2015). For example, a 86 
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total of 17 vegetation models were validated and combined to predict the land carbon 87 

fluxes in the past century (Friedlingstein et al., 2022); the ensemble mean of these 88 

models revealed a steadily increasing land carbon sink from 1960 with the dominant 89 

contribution by CO2 fertilization. 90 

 91 

While many studies quantified the ecosystem responses to the effects of CO2, climate, 92 

and human activities (Piao et al., 2009;Sitch et al., 2015), few have explored the 93 

interactions between air pollution and land ecosystems. Such biogeochemical 94 

processes become increasingly important in the Anthropocene period with significant 95 

changes in atmospheric compositions. For example, observations found that nitrogen 96 

and phosphorus constrain the CO2 fertilization efficiency of global vegetation (Terrer 97 

et al., 2019), but such limiting effect is ignored or underestimated in most of the 98 

current models (Wang et al., 2020). Tropospheric ozone (O3) damages plant 99 

photosynthesis and stomatal conductance, inhibiting carbon assimilation and the ET 100 

from the land surface (Sitch et al., 2007;Lombardozzi et al., 2015). Atmospheric 101 

aerosols can enhance photosynthesis through diffuse fertilization effects (Mercado et 102 

al., 2009) but meanwhile decrease photosynthesis by reducing precipitation (Yue et al., 103 

2017). In turn, ecosystems act as both the sources and sinks of atmospheric 104 

components. Biomass burning emits a large amount of carbon dioxide, trace gases, 105 

and particulate matter, further influencing air quality (Chen et al., 2021), ecosystem 106 

functions (Yue and Unger, 2018), and global climate (Tian et al., 2022). Biogenic 107 

volatile organic compounds (BVOCs) are important precursors for both surface O3 108 

and secondary organic aerosols (Wu et al., 2020), which can feed back to affect 109 

biogenic emissions (Yuan et al., 2016) and carbon assimilation (Rap et al., 2018). 110 

Wetland methane (CH4) emissions account for the dominant fraction of natural 111 

sources of CH4, and are projected to increase under the global warming scenarios 112 

(Rosentreter et al., 2021;Zhang et al., 2017). On the other hand, stomatal uptake 113 

dominates the dry deposition of air pollutants over the vegetated land (Lin et al., 114 

2020). Meanwhile, ET from forest results in the increase of water vapor in 115 
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atmosphere (Spracklen et al., 2012), affecting the consequent rainfall and wet 116 

deposition of particles.  117 

 118 

Currently, numerical models are in general developed separately for atmospheric 119 

chemistry and ecosystem processes. The chemical transport models are usually driven 120 

with prescribed emissions of biomass burning (Warneke et al., 2023) and wetland 121 

methane (Heimann et al., 2020), while the ecosystem models often ignore the 122 

biogeochemical impacts of O3 and aerosols (Friedlingstein et al., 2022). In an earlier 123 

study, we developed and validated the Yale Interactive terrestrial Biosphere (YIBs) 124 

model version 1.0 with the special focus on the interactions between atmospheric 125 

chemistry and land ecosystems (Yue and Unger, 2015). Thereafter, the YIBs model 126 

has been used offline to assess the O3 vegetation damage (Yue et al., 2016), aerosol 127 

diffuse fertilization (Yue and Unger, 2017), BVOC emissions (Cao et al., 2021a), as 128 

well as coupled to other models to investigate the carbon-chemistry-climate 129 

interactions (Lei et al., 2020;Gong et al., 2021). The YIBs model has joined the multi-130 

model intercomparison project of TRENDY since the year 2020 and showed 131 

reasonable performance in the simulation of carbon fluxes (Friedlingstein et al., 2020). 132 

However, the YIBs model failed to predict the typical hydrological variables such as 133 

ET and runoff due to the missing of carbon-water coupling modules. Furthermore, the 134 

model did not consider the nutrient limitation on plant photosynthesis and ignored 135 

some key exchange fluxes between land and atmosphere.  136 

 137 

In this study, we develop the interactive Model for Air Pollution and Land Ecosystems 138 

(iMAPLE) by coupling the process-based water cycle module from Noah-MP (Niu et 139 

al., 2011) to the carbon cycle in the YIBs (Figure 1). In addition, we update the 140 

original YIBs model with some major advances in the biogeochemical processes 141 

including dynamic fire emissions, wetland CH4 emissions, nutrient limitations on 142 

photosynthesis, and the trait-based O3 vegetation damage. The detailed descriptions of 143 

these updates are presented in the next section. The iMAPLE model is fully validated 144 
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against available measurements in Section 3. The last section will summarize the 145 

model performance and rethink the prospective directions for future development.  146 

 147 

2. Models and data 148 

2.1 Main features of YIBs model 149 

The YIBs model is a process-based vegetation model predicting land carbon fluxes 150 

with dynamic changes in tree height, leaf area index, and carbon pools (Yue and 151 

Unger, 2015, thereafter YU2015). A total of nine plant functional types (PFTs) are 152 

considered including evergreen broadleaf forest (EBF), evergreen needleleaf forest 153 

(ENF), deciduous broadleaf forest (DBF), tundra, shrubland, C3/C4 grassland, and 154 

C3/C4 cropland. At each gridbox, a mixture of PFTs with each PFT fraction is used as 155 

model input, sharing the temperature or moisture information from the same soil 156 

column. Leaf photosynthesis is calculated using the well-established Michaelis-157 

Menten enzyme-kinetics scheme (Farquhar et al., 1980) and is coupled to stomatal 158 

conductance with the modulations of air humidity and CO2 concentrations (Ball et al., 159 

1987). The model applies a two-leaf approach to distinguish the irradiating states for 160 

sunlit and shading leaves and adopts an adaptive stratification for the radiative 161 

transfer processes within canopy layers (Spitters, 1986). The gross carbon 162 

assimilation is further regulated by the optimized plant phenology, which is mainly 163 

dependent on temperature and light for deciduous trees (Yue et al., 2015) but 164 

temperature and/or moisture for shrubland and grassland (YU2015). The assimilated 165 

carbon is allocated among leaf, stem, and root to support autotrophic respiration and 166 

development, the latter of which is used to update plant height and leaf area (Cox, 167 

2001). The input of litterfall triggers the carbon transition among 12 soil carbon pools 168 

and determines the magnitude of heterotrophic respiration with the joint effects of soil 169 

temperature, moisture, and texture (Schaefer et al., 2008). The net carbon uptake is 170 

then calculated by subtracting ecosystem respiration (plant and soil) and 171 

environmental perturbations (reforestation or deforestation) from the gross carbon 172 

assimilation (Yue et al., 2021). The YIBs model reasonably reproduces the observed 173 
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spatiotemporal patterns of global carbon fluxes and makes contributions to the Global 174 

Carbon Project with the long-term simulations of land carbon sink in the past century 175 

(Friedlingstein et al., 2020). The model specifically considers air pollution impacts on 176 

land ecosystems (Figure 1), such as the ozone vegetation damage (Yue and Unger, 177 

2014) and aerosol diffuse fertilization effect (Yue and Unger, 2017). The YIBs 178 

implements two different schemes for BVOCs emissions (Figure 1), including the 179 

Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 180 

2012) and the photosynthesis-dependent (PS_BVOC) scheme (Unger et al., 2013).  181 

 182 

2.2 New processes in the iMAPLE model 183 

2.2.1 Process-based water cycles 184 

The descriptions and units of all parameters used in this study are shown in Table S1. 185 

We implement the hydrological module from Noah-MP into the iMAPLE model (Niu 186 

et al., 2011). The water budget closure is achieved by constructing water-balance 187 

equations among precipitation (𝑃, Kg m-2 s-1), evapotranspiration (𝐸𝑇, Kg m-2 s-1), 188 

runoff, and terrestrial water storage change (∆𝑇𝑊𝑆) on each grid cell as follows: 189 

𝑃 = 𝐸𝑇 + 𝑟𝑢𝑛𝑜𝑓𝑓 + ∆𝑇𝑊𝑆                                                                (1) 190 

Here, hourly P from MERRA-2 reanalyses is used as the input. 191 

 192 

We then divide ET into three portions including plant transpiration (𝑇𝑅𝐴), canopy 193 

evaporation (𝐸𝐶𝐴𝑁) and ground evaporation (𝐸𝐺𝑅𝑂):  194 

𝐸𝑇 = 𝑇𝑅𝐴 + 𝐸𝐶𝐴𝑁 + 𝐸𝐺𝑅𝑂                                                           (2) 195 

For vegetated grids, TRA is calculated as follows: 196 

𝑇𝑅𝐴 =
𝜌𝑎𝑖𝑟 ∙ 𝐶𝑃𝑎𝑖𝑟 ∙ 𝐶𝑡𝑟𝑎 ∙ (𝑒𝑠𝑎𝑡 − 𝑒𝑐𝑎)

𝑃𝐶
                                              (3) 197 

where 𝜌𝑎𝑖𝑟  is air density, 𝐶𝑃𝑎𝑖𝑟 is heat capacity of dry air, and 𝑃𝐶 is the psychrometric 198 

constant. 𝑒𝑠𝑎𝑡 is the saturated vapor pressure at the leaf temperature, 𝑒𝑐𝑎 is the vapor 199 

pressure of the canopy air and 𝐶𝑡𝑟𝑎  is leaf transpiration conductance, which is 200 

calculated based on the Ball-Berry scheme of stomatal resistance (Yue and Unger, 201 

2015). Meanwhile, 𝐸𝐶𝐴𝑁 is calculated as follows: 202 
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𝐸𝐶𝐴𝑁 =
𝜌𝑎𝑖𝑟 ∙ 𝐶𝑃𝑎𝑖𝑟 ∙ 𝐶𝑐𝑎𝑛𝑜𝑝𝑦,𝑒𝑣𝑎𝑝 ∙ (𝑒𝑠𝑎𝑡 − 𝑒𝑐𝑎)

𝑃𝐶
                                  (4) 203 

𝐶𝑐𝑎𝑛𝑜𝑝𝑦,𝑒𝑣𝑎𝑝 =
𝑓𝑤𝑒𝑡∙𝐸𝑉𝐴𝐼

𝑅𝑙𝑒𝑎𝑓,𝑏𝑑𝑦
                                        (5) 204 

Here, 𝐶𝑐𝑎𝑛𝑜𝑝𝑦,𝑒𝑣𝑎𝑝 is the latent heat conductance from the wet leaf surface to canopy 205 

air. 𝑓𝑤𝑒𝑡 is the wetted fraction of canopy, which is a fraction of the maximum canopy 206 

precipitation interception capacity. 𝐸𝑉𝐴𝐼  is the effective vegetation area index and 207 

𝑅𝑙𝑒𝑎𝑓,𝑏𝑑𝑦 is the bulk leaf boundary resistance. 𝐸𝐺𝑅𝑂 is calculated as follows: 208 

𝐸𝐺𝑅𝑂 = 𝐶𝑔𝑟𝑜𝑢𝑛𝑑,𝑒𝑣𝑎𝑝(𝑒𝑠𝑎𝑡,𝑔𝑟𝑜𝑢𝑛𝑑𝑅𝐻 − 𝑒𝑐𝑎)                                  (6) 209 

Here, 𝐶𝑔𝑟𝑜𝑢𝑛𝑑,𝑒𝑣𝑎𝑝 is the coefficient for latent heat at the ground, 𝑒𝑠𝑎𝑡,𝑔𝑟𝑜𝑢𝑛𝑑 is the 210 

saturated vapor pressure at the ground and RH is the surface relative humidity.  211 

 212 

Runoff includes surface (𝑅𝑠𝑟𝑓) and subsurface (𝑅𝑠𝑢𝑏) components: 213 

𝑟𝑢𝑛𝑜𝑓𝑓 = 𝑅𝑠𝑟𝑓 + 𝑅𝑠𝑢𝑏                                                                (7) 214 

The surface runoff is calculated as follows: 215 

𝑅𝑠𝑟𝑓 = 𝑄𝑠𝑜𝑖𝑙,𝑠𝑟𝑓 − 𝑄𝑠𝑜𝑖𝑙,𝑖𝑛                                                             (8) 216 

where 𝑄𝑠𝑜𝑖𝑙,𝑠𝑟𝑓  is the incident water in the soil surface and is the sum of the 217 

precipitation, snowmelt and dewfall. 𝑄𝑠𝑜𝑖𝑙,𝑖𝑛 is the infiltration into the soil, which is 218 

derived from approximate solutions of Richards equations with considerations of the 219 

spatial variations in precipitation and infiltration capacity. Here, we assume 220 

exponential distributions of infiltration capacity in each grid cell following the 221 

approach by Schaake et al. (1996): 222 

𝑄𝑠𝑜𝑖𝑙,𝑖𝑛 = 𝑄𝑠𝑜𝑖𝑙,𝑠𝑟𝑓
𝐼𝑐

𝑄𝑠𝑜𝑖𝑙,𝑠𝑟𝑓∆𝑡+𝐼𝑐
                                          (9) 223 

𝐼𝑐 = 𝑊𝑑[1 − exp(−𝐾∆𝑡∆𝑡)]                                              (10) 224 

Here, 𝐼𝑐 and 𝑊𝑑 are the soil infiltration capacity of the model grid cell and the water 225 

deficit of the soil column, respectively. 𝐾∆𝑡 and ∆𝑡 are the calibratable parameters and 226 

model time step. We assume free drainage processes in the soil column bottom, thus 227 

the 𝑅𝑠𝑢𝑏 is calculated as follows: 228 

𝑅𝑠𝑢𝑏 = 𝛼𝑠𝑙𝑜𝑝𝑒 ∙ 𝐾4                                                               (11) 229 

where 𝛼𝑠𝑙𝑜𝑝𝑒 = 0.1 is the terrain slope index. 𝐾4 is the hydraulic conductivity in the 230 
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bottom soil layer parameterized following the scheme in Clapp and Hornberger (1978) 231 

and is calculated using spatial soil profiles from Hengl et al. (2017).  232 

 233 

Terrestrial water storage (TWS) is the sum of groundwater storage (𝑊𝑔𝑤), soil water 234 

content (𝑊𝑠𝑜𝑖𝑙) and snow water equivalent (𝑊𝑠𝑛𝑜𝑤): 235 

𝑇𝑊𝑆 = 𝑊𝑔𝑤 + 𝑊𝑠𝑛𝑜𝑤 + ∑ 𝑊𝑠𝑜𝑖𝑙

𝑁𝑠𝑜𝑖𝑙

𝑖=1

                                             (12) 236 

Here, the soil module includes four layers (𝑁𝑠𝑜𝑖𝑙= 4) and 𝑊𝑠𝑜𝑖𝑙 is calculated by the 237 

volumetric water content (𝑊𝑖) as follows:  238 

𝑊𝑠𝑜𝑖𝑙 = 𝜌𝑤𝑎𝑡 ∙ 𝑊𝑖 ∙ ∆𝑍𝑖      𝑓𝑜𝑟  𝑖 = 1, 2, 3, 4                                   (13) 239 

where water density ( 𝜌𝑤𝑎𝑡 ) = 1000 kg m-3, and ∆𝑍𝑖  = 0.1, 0.3, 0.6 and 1m, 240 

respectively. Hourly 𝑊𝑖  depends on variations of soil water diffusion ( 𝐷 ) and 241 

hydraulic conductivity (𝐾) as follows:  242 

𝜕𝑊

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐷

𝜕𝑊

𝜕𝑧
) +

𝜕𝐾

𝜕𝑧
                                                  (14) 243 

Here, 𝐾  and 𝐷  are calculated following the parameterizations of Clapp-Hornberger 244 

curves (Clapp and Hornberger, 1978):  245 

𝐾

𝐾𝑠𝑎𝑡
= (

𝑊

𝑊𝑠𝑎𝑡
)2𝑏+3                                                    (15) 246 

𝐷 = 𝐾 ∙
𝜕𝜑

𝜕𝑊
                                                         (16) 247 

𝜑

𝜑𝑠𝑎𝑡
= (

𝑊

𝑊𝑠𝑎𝑡
)−𝑏                                                      (17) 248 

where 𝜑𝑠𝑎𝑡, 𝑊𝑠𝑎𝑡 and 𝐾𝑠𝑎𝑡 are saturated soil capillary potential, volumetric water 249 

content and hydraulic conductivity. Exponent 𝑏  is an empirical constant 250 

depending on soil types. Soil moisture is calculated as the ratio of 𝑊𝑠 to 𝑊𝑠𝑎𝑡. 251 

 252 

Soil temperature (𝑇𝑠) is calculated through physical processes as follows: 253 

𝜕𝑇𝑠

𝜕𝑡
=

1

𝐶

𝜕

𝜕𝑧
(𝐾𝑇

𝜕𝑇𝑠

𝜕𝑧
)                                                 (18) 254 

Here 𝐾𝑇 is soil specific heat capacity: 255 

𝐾𝑇 = 𝐾𝑒 ∙ (𝐾𝑠 − 𝐾𝑑𝑟𝑦) + 𝐾𝑑𝑟𝑦                                   (19) 256 
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where 𝐾𝑒, 𝐾𝑠 and 𝐾𝑑𝑟𝑦 are Kersten values as a function of soil wetness, saturated soil 257 

heat conductivity and that under dry air conditions (Niu et al., 2011). C in Equation 258 

(13) is the specific heat 259 

      𝐶 = 𝑊𝑙𝑖𝑝 ∙ 𝐶𝑙𝑖𝑝 + 𝑊𝑖𝑐𝑒 ∙ 𝐶𝑖𝑐𝑒 + (1 − 𝑊𝑠𝑎𝑡) ∙ 𝐶𝑠𝑎𝑡 + (𝑊𝑠𝑎𝑡 − 𝑊) ∙ 𝐶𝑎𝑖𝑟     (20) 260 

Here, 𝑊𝑙𝑖𝑝, 𝐶𝑙𝑖𝑝 and 𝑊𝑖𝑐𝑒, 𝐶𝑖𝑐𝑒 indicate water content and heat capacity on soil water 261 

and ice. 𝐶𝑠𝑎𝑡  and 𝐶𝑎𝑖𝑟  are saturated and air heat capacity, which are empirical 262 

constants (Niu et al., 2011). 263 

 264 

2.2.2 Dynamic fire emissions 265 

We implement the active global fire parameterizations from Pechony and Shindell 266 

(2009) and Li et al. (2012) to the iMAPLE model. The fire emissions are determined 267 

by several key factors such as fuel flammability, natural ignitions, human activities, 268 

and fire spread. The fire count Nfire depends on flammability (Flam), fire ignition 269 

(including both natural ignition rate IN and anthropogenic ignition rate IA and 270 

anthropogenic suppression (FNS): 271 

                      𝑁𝑓𝑖𝑟𝑒 = 𝐹𝑙𝑎𝑚 × (𝐼𝑁 + 𝐼𝐴) × 𝐹𝑁𝑆                                      (21) 272 

Flam is a unitless metric representing conditions conducive to fire occurrence. It is 273 

parameterized as a function of vapor pressure deficit (VPD), precipitation (Prec), and 274 

leaf area index (LAI):  275 

                     𝐹𝑙𝑎𝑚 = 𝑉𝑃𝐷 × 𝑒−2×𝑃𝑟𝑒𝑐 × 𝐿𝐴𝐼                                    (22) 276 

IN depends on the cloud-to-ground lightning and IA can be expressed as: 277 

                       𝐼𝐴 = 0.03 × 𝑃𝐷 × 𝑘(𝑃𝐷)                                         (23) 278 

where PD is population density. The empirical function of k(PD) = 6.8 × PD−0.6 279 

stands for ignition potentials by human activity. The fraction of non-suppressed fires 280 

FNS is derived as: 281 

                      𝐹𝑁𝑆 = 0.05 + 0.95 × 𝑒−0.05×𝑃𝐷                                   (24) 282 

 283 

The burned area of a single fire (BAsingle) is typically taken to be elliptical in shape 284 

associated with length-to-breadth ratio (LB), head-to-back ratio (HB) and rate of fire 285 
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spread (UP) as follows: 286 

                        𝐵𝐴𝑠𝑖𝑛𝑔𝑙𝑒 =
𝜋×𝑈𝑃2

4×𝐿𝐵
× (1 +

1

𝐻𝐵
)2                                              (25) 287 

Then, LB and HB are related to changes of near-surface wind speed (U) as follows:  288 

                        𝐿𝐵 = 1 + 10 × (1 − 𝑒−0.06×𝑈)                                            (26) 289 

                        𝐻𝐵 =
𝐿𝐵+(𝐿𝐵2−1)0.5

𝐿𝐵−(𝐿𝐵2−1)0.5
                                                      (27) 290 

Meanwhile, UP is computed as the function of relative humidity (RH): 291 

                     𝑈𝑃 = 𝑈𝑃𝑚𝑎𝑥  ×  𝑓𝑅𝐻 × 𝑓𝜃  ×  𝐺(𝑊)                                  (28) 292 

Here, UPmax is the maximum fire spread rate depending on PFTs, fRH and 𝑓θ represent 293 

the dependence of fire spread on RH and on root-zone soil moisture, respectively. 𝑓θ 294 

is simply set to 0.5 and fRH is calculated as: 295 

               𝑓𝑅𝐻 = {

          1,                                   𝑅𝐻 ≤ 𝑅𝐻𝑙𝑜𝑤

 
𝑅𝐻−𝑅𝐻𝑙𝑜𝑤

𝑅𝐻𝑢𝑝−𝑅𝐻𝑙𝑜𝑤
,   𝑅𝐻𝑙𝑜𝑤 < 𝑅𝐻 < 𝑅𝐻𝑢𝑝  

         0,                                   𝑅𝐻 ≥ 𝑅𝐻𝑢𝑝

                                (29) 296 

In this study, we set RHlow =30 % and RHup =70 % as the lower and upper thresholds 297 

of RH following the methods used in Li et al. (2012). If RH is higher than 70%, 298 

natural fires will not occur or spread, and RH will no longer be a constraint factor for 299 

fire occurrence and spread if RH ≤ 30%. G(W) is the limit of the fire spread: 300 

                         𝐺(𝑊) =
𝐿𝐵

1+
1

𝐻𝐵

                                                      (30) 301 

In general, the eccentricity of burned area is primarily influenced by near-surface 302 

wind speed, while the rate of fire spread is jointly regulated by near-surface wind 303 

speed and relative humidity. The shape of the fire is converted to a circular form when 304 

the near-surface wind speed reaches zero, and burning ceases to propagate once the 305 

relative humidity is above a specific threshold. The dependence of BAsingle on U and 306 

RH is shown in Figure S1. 307 

 308 

Finally, the burned aera (BA) is represented as: 309 

                         𝐵𝐴 =  𝐵𝐴𝑠𝑖𝑛𝑔𝑙𝑒 × 𝑁𝑓𝑖𝑟𝑒                                           (31) 310 

The fire-emitted trace gases and aerosols (Emis) are calculated as:     311 

 𝐸𝑚𝑖𝑠 = 𝐵𝐴 × 𝐸𝐹                                                 (32) 312 
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where EF is the emission factors for different species (such as black carbon and 313 

organic carbon aerosols). It is important to note that the feedbacks of from fire 314 

activities onto the terrestrial ecosystems have not been considered in the current 315 

version of the iMAPLE model due to the high complexity. 316 

 317 

2.2.3 Wetland methane emissions 318 

We implement the process-based wetland CH4 emissions into the iMAPLE model. 319 

The anthropogenic sources of CH4 from Phase 6 of the Coupled Model 320 

Intercomparison Project phase 6 (CMIP6, https://esgf-321 

node.llnl.gov/projects/input4mips/) are also used as input for iMAPLE. For each soil 322 

layer, the flux of CH4 (𝐹𝐶𝐻4
) is calculated as the difference between production (𝑃𝐶𝐻4

) 323 

and consumptions, which include oxidation (𝑂𝐶𝐻4
), ebullition (𝐸𝐶𝐻4

), diffusion (𝐷𝐶𝐻4
), 324 

and plant-mediated transport through aerenchyma (𝐴𝐶𝐻4
) as follows: 325 

                𝐹𝐶𝐻4
= 𝑃𝐶𝐻4

− 𝑂𝐶𝐻4
− 𝐸𝐶𝐻4

− 𝐷𝐶𝐻4
− 𝐴𝐶𝐻4

                              (33) 326 

The net methane emission to the atmosphere is the sum of ebullition, diffusion and 327 

aerenchyma transport from the top soil layer. 328 

 329 

The production of CH4 in soil depends on the quantity of carbon substrate and 330 

environmental conditions including soil temperature Ts, pH, and wetland inundation 331 

fraction fwetland as follows: 332 

                     𝑃𝐶𝐻4
= 𝑅ℎ𝑟𝑓𝑇𝑠𝑓𝑝𝐻𝑓𝑤𝑒𝑡𝑙𝑎𝑛𝑑                                          (34) 333 

where 𝑅ℎ is the heterotrophic respiration estimated at the grid cell (𝑚𝑜𝑙 𝐶 𝑚−2 𝑠−1). 334 

𝑟 represents the release ratio of methane and carbon dioxide (Wania et al., 2010). We 335 

determine the dependence on Ts and soil pH in iMAPLE based on the 336 

parameterizations from the TRIPLEX-GHG model (Zhu et al., 2014). The impact 337 

factor of soil temperature 𝑓𝑆𝑇 can be calculated as follows (Zhang et al., 2002; Zhu et 338 

al., 2014): 339 

𝑓𝑆𝑇 = {

0,                          𝑇𝑠 < 𝑇𝑚𝑖𝑛

 𝑣𝑡𝑥𝑡 exp(𝑥𝑡(1 − 𝑣𝑡)) , 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑠 ≤ 𝑇𝑚𝑎𝑥

0,                                  𝑇𝑠 > 𝑇𝑚𝑎𝑥

                     (35) 340 
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𝑣𝑡 = (𝑇𝑚𝑎𝑥 − 𝑇𝑠)/(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡)                                   (36) 341 

𝑥𝑡 = [log(𝑄10) (𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡)]
2

(1.0 + 𝑎𝑡0.5)2/400.0                   (37) 342 

𝑎𝑡 = 1.0 + 40.0/[log (𝑄10)(𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡)]                           (38) 343 

𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, and 𝑇𝑜𝑝𝑡 represents the lowest, highest and optimum temperature for the 344 

process of methane production and oxidation, respectively. In this study, the 𝑇𝑚𝑖𝑛 =345 

0℃,  𝑇𝑚𝑎𝑥 = 45℃ and 𝑇𝑜𝑝𝑡 = 25℃ (Zhu et al., 2014). 346 

 347 

For the temperature-dependence, the 𝑄10 relationships are applied as follows: 348 

                       𝑄10 = 𝑟𝑏𝑄𝑏

𝑇𝑠−𝑇𝑏𝑎𝑠𝑒
10                                               (39) 349 

Here rb is set to 3.0 and Qb is 1.33 with a base temperature (Tbase) of 25ºC (Zhu et al., 350 

2014;Paudel et al., 2016). The inundation fraction of wetland at each cell describes 351 

the proportion of anaerobic conditions (Zhang et al., 2021). We ignore the impact of 352 

redox potential (Eh) because global observations are not available and the Eh-related 353 

processes are poorly characterized in current models (Wania et al., 2010).  354 

 355 

The oxidation of CH4 is a series of aerobic activities related to temperature and CH4 356 

concentrations: 357 

                        𝑂𝐶𝐻4
= [𝐶𝐻4]𝑓𝑇𝑠𝑓𝐶𝐻4

                                               (40) 358 

where [𝐶𝐻4] is the methane amount in each soil layer (𝑔𝐶𝑚−2𝑙𝑎𝑦𝑒𝑟−1). fCH4 is the  359 

CH4 concentration factor representing a Michaelis-Menten kinetic relationship: 360 

                         𝑓𝐶𝐻4 =
[𝐶𝐻4]

[𝐶𝐻4]+𝐾𝐶𝐻4
                                                 (41) 361 

where KCH4 = 5 𝜇𝑚𝑜𝑙 𝐿−1  is the half-saturation coefficient with respect to CH4 362 

(Walter and Heimann, 2000). For temperature-dependence of oxidation, the Q10 363 

relationship with rb = 2.0, Qb =1.9, and Tbase= 12ºC is adopted (Zhu et al., 364 

2014;Paudel et al., 2016). 365 

 366 

The diffusion of CH4 follows the Fick’s law with dependence on CH4 concentrations 367 

and the molecular diffusion coefficients of CH4 in the air (𝐷𝑎= 0.2 𝑐𝑚2𝑠−1) and water 368 
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(𝐷𝑤 = 0.00002 𝑐𝑚2𝑠−1 ) respectively (Walter and Heimann, 2000). For each soil 369 

layer i, the diffusion coefficient Di can be calculated as follows : 370 

𝐷𝑖 = 𝐷𝑎 × (𝑅𝑠𝑎𝑛𝑑 × 0.45 + 𝑅𝑠𝑖𝑙𝑡 × 0.2 + 𝑅𝑐𝑙𝑎𝑦 × 0.14) × 𝑓𝑡𝑜𝑟𝑡 × 𝑆𝑝𝑜𝑟𝑜 × (1 −371 

𝑊𝐹𝑃𝑆𝑖) + 𝐷𝑤 × 𝑊𝐹𝑃𝑆𝑖                                              (42) 372 

where 𝑅𝑠𝑎𝑛𝑑 , 𝑅𝑠𝑖𝑙𝑡 , 𝑅𝑐𝑙𝑎𝑦  is the relative content of sand, silt, and clay in the soil, 373 

𝑓𝑡𝑜𝑟𝑡 = 0.66 is tortuosity coefficient, Sporo is soil porosity, and 𝑊𝐹𝑃𝑆 represents the 374 

pore space full of water (Zhuang et al., 2004).  375 

 376 

The ebullition of CH4 occurs when CH4 concentration is above the threshold of 0.5 377 

𝑚𝑜𝑙 𝐶𝐻4𝑚−3 (Walter et al., 2001). Since the process of ebullition occurs in a very 378 

short time, the bubbles will generate at once and all the flux will be released to 379 

atmosphere if the concentration reaches the threshold. The plant-mediated transport of 380 

CH4 through aerenchyma is dependent on the concentration gradient of CH4 and the 381 

plant-related factors (Zhu et al., 2014). The 𝐴𝐶𝐻4
 is determined by the oxidation factor 382 

of for roots and the aerenchyma factor of for plants. The baseline value of the 383 

oxidation factor in roots is 0.5, with a regulatory range from 0.2 to 1.0 determined by 384 

the wetland types of plant in wetlandtypes. The plant aerenchyma factor is calculated 385 

by the ratio of the plant root length density (typical value: 2.1 cm mg-1) and the root 386 

cross-sectional area (typical value: 0.0013 cm2), along with the a plant root to 387 

atmosphere diffusion factor of methane from plant root to atmospherefor methane 388 

which is modulated by plant species type within a range of 0 to 1 (Zhang et al., 2002). 389 

 390 

2.2.4 The down regulation on photosynthesis 391 

We implement the down regulation parameterization from Arora et al. (2009) to 392 

indicate the nutrient limitations on leaf photosynthesis. A down-regulating factor ε is 393 

calculated as a function of CO2 concentrations (C) as follows: 394 

                    𝜀(𝐶) =
1+𝛾𝑔𝑑ln (𝐶/𝐶0)

1+𝛾𝑔ln (𝐶/𝐶0)
                                                      (43) 395 

where C0 is a reference CO2 concentration set to 288 ppm. The values of γgd = 0.42 396 

and γg=0.90 are derived from multiple measurements to constrain the CO2 fertilization. 397 



16 

 

Then the down-regulated photosynthesis is calculated by scaling the original value 398 

with the factor of ε.  399 

 400 

2.2.5 Trait-based O3 vegetation damaging scheme 401 

The YIBs model considers O3 vegetation damage using the flux-based scheme 402 

proposed by Sitch et al. (2007) (thereafter S2007), which determines the damaging 403 

ratio F of plant photosynthesis as follows: 404 

                    𝐹 = 𝑎𝑃𝐹𝑇 × 𝑚𝑎𝑥{𝑓𝑂3 − 𝑡𝑃𝐹𝑇 , 0}                                        (44) 405 

Here, the 𝑓𝑂3 denotes O3 stomatal flux (nmol m-2 s-1) defined as: 406 

                    𝑓𝑂3 =
[𝑂3]

𝑟+[
𝑘𝑂3

𝑔𝑝×(1−𝐹)
]
                                                     (45) 407 

where [𝑂3] represents the O3 concentrations at the reference level (nmol m-3). r is the 408 

sum of boundary and aerodynamic resistance between leaf surface and reference level 409 

(s m-1). 𝑔𝑝  is the potential stomatal conductance for H2O (m s-1). 𝑘𝑂3 = 1.67 is a 410 

conversion factor of leaf resistance for O3 to that for water vapor. The level of O3 411 

damage is then determined by the PFT-specific sensitivity aPFT and threshold tPFT, 412 

which are different among PFTs.  413 

 414 

In iMAPLE, we implement the trait-based O3 vegetation damaging scheme to unify 415 

the inter-PFT sensitivities (Ma et al., 2023):  416 

                         𝑎𝑃𝐹𝑇 =  
𝑎

𝐿𝑀𝐴
                                                      (46) 417 

Here, a unified plant sensitivity a (nmol-1 g s) is scaled by leaf mass per area (LMA, g 418 

m-2) to derive the sensitivity of a specific PFT (aPFT). Accordingly, the damaging 419 

fraction F is modified as follows: 420 

                    𝐹 = 𝑎 × 𝑚𝑎𝑥 {
𝑓𝑂3

𝐿𝑀𝐴
− 𝑡, 0}                                           (47) 421 

Here t (nmol g⁻¹ s⁻¹) is a unified flux threshold for O3 vegetation damage. The 𝑓𝑂3 in 422 

Equation (45) is fed into Equation (47) so as to build a quadratic equation for F. We 423 

solve the quadratic equation and select the F value within the range of [0, 1]. The 424 

updated scheme considers the dilution effects of O3 dose through leaf cross-section by 425 
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incorporating LMA. Plants with high LMA (e.g., ENF and EBF) usually have low 426 

sensitivities, and those with low LMA (e.g., DBF and crops) are more sensitive to O3 427 

damages. The unified sensitivity a is set to 3.5 nmol-1 g s and threshold t is set to 428 

0.019 nmol g⁻¹ s⁻¹ by calibrating simulated F values with literature-based 429 

measurements (Ma et al., 2023). 430 

 431 

2.3 Design of simulations 432 

We perform four sensitivity experiments with the iMAPLE model. The baseline 433 

(BASE) simulation considers the two-way coupling between carbon and water cycles, 434 

so that the prognostic soil meteorology drives canopy photosynthesis and 435 

evapotranspiration. A sensitivity run named BASE_NW is set up by turning off the 436 

water cycle in the iMAPLE model. In this simulation, the soil moisture and soil 437 

temperature are adopted from the Modern-Era Retrospective Analysis for Research 438 

and Applications, Version 2 (MERRA-2) reanalyses (Gelaro et al., 2017). The third 439 

and fourth runs turn on the O3 vegetation damage effect using either the LMA-based 440 

scheme (O3LMA) or the S2007 scheme (O3S2007). Surface hourly O3 concentrations 441 

are adopted from the simulations with a chemical transport model simulations used in 442 

our previous study (Yue and Unger, 2018). For all simulations, the iMAPLE model is 443 

driven with the hourly surface meteorology at a spatial resolution of 1º×1º from the 444 

MERRA-2 reanalyses, including surface air temperature, air pressure, specific 445 

humidity, wind speed, precipitation, snowfall, shortwave and longwave radiation. We 446 

run the model for the period of 1980-2021 using the initial conditions of the 447 

equilibrium soil carbon pool, tree height, and water fluxes from a spin-up run of 200 448 

years driven with cycled perpetual forcing at for the year 1980.  449 

 450 

The iMAPLE model is driven with observed CO2 concentrations from Mauna Loa 451 

(Keeling et al., 1976) and the land cover fraction of nine PFTs derived by combining 452 

satellite retrievals from both Moderate Resolution Imaging Spectroradiometer 453 

(MODIS) (Hansen et al., 2003) and Advanced Very High Resolution Radiometer 454 
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(AVHRR) (Defries et al., 2000). For fire emissions, we use Gridded Population of the 455 

World version 4 (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) to 456 

calculate human ignition and suppression. The lightning ignition is calculated using 457 

the flash rate from Very High Resolution Gridded Lightning Climatology Data 458 

CollectionVersion1(https://ghrc.nsstc.nasa.gov/uso/ds_details/collections/lisvhrcC.ht459 

ml). For wetland CH4 emissions, we use the 2000-2020 global dataset of Wetland 460 

Area and Dynamics for Methane Modeling (WAD2M) derived from static datasets 461 

and remote sensing (Zhang et al., 2021), global soil pH from Hengl et al. (2017), and 462 

gridded soil texture from Scholes et al. (2011). For the LMA-based O3 damage 463 

scheme, we use gridded LMA from the trait-level dataset of TRY (Kattge et al., 2011) 464 

developed by extending field measurements with the a random forest model (Moreno-465 

Martínez et al., 2018).  466 

 467 

2.4 Data for validations 468 

We use observational datasets to validate the biogeochemical processes and related 469 

variables simulated by the iMAPLE model. For simulated carbon and water fluxes, 470 

site-level observations are collected from 201 sites at from the FLUXNET network 471 

(Table S2 and Figure 2). Among these sites, 95 are have the ENF tree species with as 472 

the major PFT of ENF and 106 are dominated by non-tree species with the maximum 473 

number fornon-tree species especially shrubland. Most (71%) of the sites are located 474 

at the middle latitudes (30º-60ºN) of the Northern Hemisphere (NH), especially in the 475 

U.S. and Europe. Compared to the earlier previous evaluations in YU2015, we have 476 

many more sites in the tropics (22 in this study vs. 5 in YU2015), Asia (20 in this 477 

study vs. 1 in YU2015), and in the Southern Hemisphere (28 in this study vs. 7 in 478 

YU2015) in this study. We also use the global gridded observations of GPP from the 479 

satellite retrievals including the solar-induced chlorophyll fluorescence (SIF) product 480 

GOSIF (Li and Xiao, 2019) and the Global land surface satellite (GLASS) product 481 

(Yuan et al., 2010). The global observations of ET are adopted from the benchmark 482 

product of FLUXCOM (Jung et al., 2020a) and the satellite-based GLASS product. 483 
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For the dynamic fire module, we use monthly observed area burned from the Global 484 

Fire Emission Database version 4.1 with small fires (GFED4.1s) during 1997-2016 485 

(van der Werf et al., 2010;Randerson et al., 2012). For methane emissions, we use 486 

site-level measurements of CH4 fluxes from the FLUXNET-CH4 network (Delwiche 487 

et al., 2021). We exclude the monthly records with missing data at more than half of 488 

the days and calculate the long-term mean fluxes for the seasonal cycle. In total, we 489 

select 44 sites with at least six months of data available for the validations (Table S3).  490 

 491 

3. Model evaluations 492 

3.1 Site-level evaluations 493 

Simulated GPP shows correlation coefficients (R) of 0.59-0.86 for the six main PFTs 494 

with varied sample numbers (Figure 3). The highest R is achieved for ENF, though 495 

the model underestimates the mean GPP magnitude by 20.62% for this species. On 496 

average, simulated GPP is lower than observations for most PFTs. Compared to 497 

previous evaluation ofs from the YIBs model (YU2015), iMAPLE with coupled water 498 

cycle improves the R of GPP simulations for ENF (from 0.65 to 0.86) and grassland 499 

(from 0.7 to 0.8) but worsens the predictions for other species such as EBF (from 0.65 500 

to 0.59). The main cause of such this degradationdeficit is the application of MERRA-501 

2 reanalyses in the iMAPLE simulations instead of the site-level meteorology used in 502 

the YU2015. The biases in the meteorological input may cause uncertainties in the 503 

simulation of GPP fluxes (Ma et al., 2021). In addition, the mismatch of vegetation 504 

cover and soil properties between the site location and the 1º×1º grid in the simulation 505 

may further contribute to the modeling biases.  506 

 507 

Simulated ET matches observations with correlation coefficients of 0.57-0.84 at the 508 

FLUXNET sites (Figure 4). Relatively better performance is achieved for ENF 509 

(R=0.83) and grassland (R=0.84), for which the model yields good predictions of GPP 510 

as well. In contrast, low correlations and high biases are predicted for shrubland and 511 

cropland. For the shrubland sites, different land types (e.g., closed shrublands, 512 
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permanent wetlands, and woody savannas) share the same parameters in the iMAPLE 513 

model, resulting in the biases in depicting the site-specific carbon and water fluxes. 514 

For cropland, the prognostic phenology of grass species is applied in the model due to 515 

the missing of plantation information for individual sites. Even with these deficits, the 516 

iMAPLE model in general captures the spatiotemporal variations of GPP and ET at 517 

most sites. 518 

 519 

We further compare the simulated wetland CH4 fluxes from the BASE experiment 520 

with observations at the FLUXNET-CH4 sites. Similar to the carbon flux sites, most 521 

of these CH4 flux sites are located in the NH (Figure 5a). However, different from the 522 

carbon fluxes which usually range from 0 to 15 g C m-2 day-1, the CH4 fluxes show a 523 

wide range across several orders of magnitude from 10-2 to 103 g [CH4] m-2 yr-1 524 

(Figure 5b). Such a large contrast requires a more realistic configuration of model 525 

parameters to distinguish the large gradient among sites. For example, US-Tw1 and 526 

US-Tw4 are two nearby sites within a distance of 1 km, where our simulations present 527 

give a CH4 flux of 14.35 g[CH4] m
-2 yr-1 during 2011-2017. However, average CH4 528 

flux shows a difference of 3.7 times with 66.31 g[CH4] m
-2 yr-1 in US-Tw1 and 18.16 529 

g[CH4] m
-2 yr-1 in US-Tw4 during 2011-2017. In the model, these two sites share the 530 

same land surface properties because they are located on the same grid. On average, 531 

simulated CH4 fluxes are correlated with observations at a moderate R of 0.68 and a 532 

normalized mean bias (NMB) of -28%.  533 

 534 

3.2 Grid-level evaluations 535 

The coupling of Noah-MP module enables the dynamic prediction of soil parameters 536 

by the iMAPLE model. We compare the simulated soil moisture and soil temperature 537 

from the BASE experiment with MERRA-2 reanalyses (Figure 6). Both simulations 538 

(Figure 6a) and observations (Figure 6b) show low soil moisture over arid and semi-539 

arid regions with the minimum in North Africa. The model also captures the high soil 540 

moisture in tropical rainforest. However, the prediction underestimates soil moisture 541 



21 

 

in boreal regions in NH (Figure 6c). On the global scale, simulated soil moisture 542 

matches observations with a high R of 0.86 and a low NMB of -6.9%. These 543 

statistical metrics are further improved for the simulated soil temperature with the R 544 

of 0.99 and NMB of 0.5% against observations (Figure 6f). The simulation 545 

reproduces the observed spatial pattern with a uniform warming bias.  546 

 547 

Driven with the prognostic soil moisture and temperature, the iMAPLE model 548 

predicts reasonable land carbon and water fluxes (Figure 7). Simulated GPP (Figure 549 

7a) reproduces observed patterns (Figure 7b) with high values in the tropical 550 

rainforest, moderate values in the boreal forests, and low values in the arid regions. 551 

On the global scale, our simulations yield a total GPP of 129.8 Pg C yr-1, similar to 552 

the observed amount of 125.4 Pg C yr-1. The predicted GPP is higher than 553 

observations over the tropical rainforest (Figure 7c). However, such overestimation 554 

may instead be an indicator of biases in the ensemble observations, which are derived 555 

from the empirical models instead of direct measurements (Yuan et al., 2010;Running 556 

et al., 2004). Our site-level evaluations show that iMAPLE predicts reasonable GPP 557 

values at the EBF sites (Figure 3). Despite this inconsistency, the model yields a high 558 

R of 0.92 and a small NMB of 1.3% for GPP against observations on the global scale 559 

(Figure 7c). Simulated ET (Figure 7d) matches the observations (Figure 7e) with high 560 

values in the tropical rainforest and secondary high values in the boreal forest. In 561 

general, the prediction is lower than observations except for the eastern U.S. and 562 

eastern China (Figure 7f). On average, the iMAPLE model shows the R of 0.93 and 563 

NMB of -10.4% in the simulation of ET compared to the ensemble of observations.  564 

 565 

We further compare the simulated GPP with (BASE) or without (BASE_NW) 566 

dynamic water cycle (Figure 8). Relative to the simulations driven with MERRA-2 567 

soil moisture and temperature, the iMAPLE model coupled with Noah-MP water 568 

module predicts very similar GPP over the hotspot regions such as tropical rainforest 569 

and boreal forest (Figure 8a). However, the coupled model predicts lower GPP for 570 
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grassland in the tropics (e.g., South America and central Africa) but higher GPP in 571 

arid regions (e.g., South Africa and Australia). Since the baseline GPP is very low in 572 

arid regions, the relative changes are even larger than 100% over those areas. These 573 

GPP differences are mainly driven by the changes in soil moisture, which increases 574 

over the arid regions with the dynamic water cycle (Figure 6c). The reduction of soil 575 

moisture in the high latitudes of NH shows limited impacts on the predicted GPP, 576 

likely because the boreal ecosystem is more dependent on temperature than moisture 577 

(Beer et al., 2010).   578 

 579 

3.3 Ecosystem perturbations to air pollution 580 

Within the iMAPLE framework, the land ecosystem perturbs atmospheric 581 

components through the emissions from biomass burning, wetland CH4, and BVOCs. 582 

We compare the simulated burned fraction and fire-emitted organic carbon (OC) 583 

emissions with observations from GFED4.1s (Figure 9). The largest burned fraction is 584 

predicted over the Sahel region and countries of Angola and Zambia, surrounding the 585 

low center of Congo rainforest. Moderate burnings could be found in northern 586 

Australia and eastern South America. Most of these hotspots are located on the 587 

grassland and shrubland in the tropics, where the high temperature and limited rainfall 588 

promotes regional fire activities. The model reasonably captures the observed fire 589 

pattern with a spatial correlation of 0.66 and NMB of 6.05% (Figure 9c), though the 590 

model overestimates the area burned in South Africa. The predicted fire area is used to 591 

derive biomass burning emissions of air pollutants (e.g., carbon monoxide, nitrogen 592 

oxides, black carbon, organic carbon, sulfur dioxide) with the specific emission 593 

factors (Tian et al., 2023). Furthermore, we compare fire-emitted OC from the model 594 

with GFED4.1s. The spatial pattern of OC emissions is similar to that of burned area. 595 

The simulations yield a total of 16.8 Tg yr-1 for the global fire-emitted OC, slightly 596 

higher than the amount of 16.4 Tg yr-1 from GFED4.1s with some overestimations in 597 

tropical Africa (Figure 9f).  598 

 599 
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The wetland emissions of CH4 show hotspots over tropical rainforests (Figure 10a), 600 

where the dense soil carbon provides abundant substrates for emissions and the warm 601 

climate promotes the emission rates. The secondary hotspots are located at the boreal 602 

regions in the NH. This spatial pattern is very similar to the map of wetland CH4 603 

emissions predicted by an ensemble of 13 biogeochemical models (Saunois et al., 604 

2020). On the global scale, the total wetland emission is 153.45 Tg [CH4] yr-1 during 605 

2000-2014, close to the average of 148±25 Tg [CH4] yr-1 for 2000-2017 estimated by 606 

the multiple models. As a comparison, anthropogenic source of CH4 show the high 607 

amount in China and India due to the large emissions from fossil fuels and agriculture 608 

(Figure 10b). On the global scale, the wetland emissions are equivalent to 45.3% of 609 

the total anthropogenic emissions. As important factors driving CH4 emissions, 610 

heterotrophic respiration shows higher values over tropical regions and eastern China 611 

with a total amount of 73.2 Pg C yr-1 (Figure 10c), and relative high wetland 612 

coverages are found in boreal Asia and Amazon (Figure 10d).  613 

 614 

Isoprene emissions from the two schemes in the iMAPLE model show similar spatial 615 

distributions with the hotspots over tropical rainforest (Figure 11), where the warm 616 

climate and abundant light are favorable for the biogenic emissions. Compared to the 617 

MEGAN scheme, the PS_BVOC scheme yields higher emissions in the tropical 618 

rainforest and boreal forest, but lower emissions for the shrubland and grassland in 619 

semiarid regions (Figure 11c). Such differences are attributed to the varied processes 620 

as well as the emission factors. Our earlier study showed that PS_BVOC scheme 621 

predicts stronger trends in isoprene emissions than MEGAN (Cao et al., 2021a), 622 

because the former considers both CO2 fertilization and inhibition effects while the 623 

latter considers only the inhibition effects. On the global scale, isoprene emissions are 624 

550 Tg yr-1 with PS_BVOC (Figure 11a) and 611 Tg yr-1 with MEGAN (Figure 11b). 625 

These amounts are higher than the ensemble mean of 448 Tg yr-1 from the CMIP6 626 

models (Cao et al., 2021b), but in general within the range of 412-601 Tg yr-1 as 627 

summarized by Carslaw et al. (2010).  628 
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 629 

3.4. Air pollution impacts on ecosystem fluxes 630 

We assess the damaging effects of surface O3 to GPP with two schemes (O3LMA – 631 

BASE and O3S2007 - BASE) (Figure 12). Simulated GPP losses show similar 632 

patterns with high damages in eastern U.S., western Europe, and eastern China, where 633 

surface O3 level is high due to the anthropogenic emissions. Limited GPP damages 634 

are predicted in the tropics though with abundant forest coverage due to the low level 635 

of O3 pollution. Compared to the S2007 scheme, predicted GPP loss is further 636 

alleviated in tropical rainforest with the LMA-based scheme, because the latter 637 

scheme determines lower O3 sensitivity for evergreen trees due to their higher content 638 

of chemical resistance with the larger LMA value (Ma et al., 2023). On the global 639 

scale, the average GPP loss is -2.9% with the LMA scheme and -3.2% with the S2007 640 

scheme. Such damage to GPP is weaker than the estimate of -4.8% in Ma et al. (2023) 641 

because of the differences in O3 concentrations, vegetation types, and photosynthetic 642 

parameters.  643 

 644 

Atmospheric aerosols cause perturbations to both direct and diffuse radiation, which 645 

have different efficiencies in enhancing plant photosynthesis. Here, we separate the 646 

diffuse (diffuse fraction > 0.75) and direct (diffuse fraction < 0.25) components using 647 

observed diffuse fraction and solar radiation at six FLUXNET sites, and aggregate the 648 

GPP and ET fluxes for different radiation periods at certain intervals (Figure 13). At 649 

the six selected sites, observed GPP is higher and grows faster with more diffusive 650 

light than that under the direct light conditions (Figure 13a-13f). Simulations in 651 

general reproduce such feature with the comparable variability. In the earlier study, 652 

simulated diffuse fertilization efficiency for GPP (changes of GPP per unit diffuse 653 

radiation) was well validated against observations at more than 20 sites (Yue and 654 

Unger, 2018). Such amelioration of GPP suggests that moderate aerosol loading is 655 

beneficial for ecosystem carbon uptake (Yue and Unger, 2017). However, the dense 656 

aerosol loading may instead weaken plant photosynthesis due to the large reduction in 657 
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direct radiation.  658 

 659 

We further evaluate the ET responses to diffuse and direct radiation from the iMAPLE 660 

model (Figure 13g-13l). Although ET is slightly higher at the diffusive condition, the 661 

growth rates are weaker than that of GPP. The main cause of such difference is related 662 

to the varied light dependence of ET components, which consist of canopy 663 

evaporation and transpiration. Transpiration is tightly coupled with photosynthesis 664 

and will increase by diffuse radiation at a similar rate. However, evaporation is more 665 

dependent on light quantity which will decrease with the extinction of aerosols. As a 666 

result, the weakened evaporation in part offsets the increased transpiration, leading to 667 

the smaller growth rate of ET than the responses of photosynthesis and the consequent 668 

enhancement in water use efficiency (Wang et al., 2023). The iMAPLE model 669 

reasonably captures the lower growth rates of ET than GPP in response to diffuse 670 

radiation at the selected sites.  671 

 672 

4. Conclusions and discussion 673 

We develop the iMAPLE model by coupling Noah-MP water module with YIBs 674 

vegetation model. Validations show that iMAPLE predicts reasonable distribution of 675 

soil moisture and soil temperature. Driven with these prognostic soil conditions and 676 

meteorology from reanalyses, the model reasonably reproduces the observed 677 

spatiotemporal variations of both GPP and ET fluxes at 201 sites and on the global 678 

scale. We further update the biogeochemical processes in iMAPLE to extend the 679 

model’s capability in quantifying interactions between air pollution and land 680 

ecosystems. The model reasonably predicts wetland CH4 emissions at 44 sites and 681 

yields the similar global map of CH4 emissions compared to an ensemble of 13 682 

biogeochemical models. In addition, predicted biomass burning and biogenic 683 

emissions are consistent with either satellite retrievals or results from other models. 684 

We assess the impacts of surface O3 and aerosols on ecosystem fluxes. The LMA-685 

based scheme links the O3 sensitivity with vegetation LMA and predicts a global map 686 
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of GPP loss that is consistent with the traditional scheme using the PFT-specific 687 

sensitivity. The updated scheme effectively reduces modeling uncertainties by 688 

decreasing the number of parameters for O3 sensitivity and provides an option to 689 

apply the advanced LMA map from remote sensing. The model also reproduces the 690 

observed responses of GPP and ET to diffuse radiation with a lower growth rate for 691 

ET than GPP.  692 

 693 

There are several limitations in the current version of iMAPLE model. First, it does 694 

not include the dynamic nutrient cycle. Although we implement the down regulation 695 

from Arora et al. (2009) to constrain CO2 fertilization, this limitation is dependent 696 

only on the ambient CO2 concentrations and could not represent the heterogeneous 697 

distribution of nutrients. As a result, the model could not reveal the biogeochemical 698 

effects of nitrogen and phosphorus deposition on land ecosystems. Second, the 699 

feedback of fire activities to ecosystems is ignored. The iMAPLE model considers the 700 

impacts of fuel load on area burned at each modeling time step. However, these fire 701 

perturbations do not in turn change the vegetation distribution and composition. The 702 

vegetation model does not consider the competition among PFTs, so that fire 703 

perturbations are not allowed to change vegetation coverage. As a result, the 704 

interactions between fire and ecosystems are underestimated in the current model 705 

framework, potentially leading to overestimations of wildfire activity due to 706 

remaining fuel loads.” Third, iMAPLE does not consider the dynamic changes in 707 

wetland area for CH4 emissions. Although the Noah-MP module predicts runoff and 708 

underground water, the changes of hydrological cycles are not connected with wetland 709 

aera in the model. Instead, a prescribed wetland dataset is applied to reduce the 710 

possible uncertainties but meanwhile limits the explorations of CH4 changes in the 711 

historical and future periods. Meanwhile, the iMAPLE model considers only dynamic 712 

soil water and temperature at down to the 2-m level, which may influence affect the 713 

deeper soil interactions between climate and the land terrestrial ecosystem especially 714 

for duringthe drier conditions. These limitations will be the focuses of model 715 
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development in the next step.  716 

 717 

The iMAPLE model inherits the good capability of the original YIBs model in the 718 

simulations of carbon cycle. Furthermore, the iMAPLE upgrades the YIBs model with 719 

carbon-water coupling and more biogeochemical processes. With the iMAPLE model, 720 

we could assess the changes of carbon and water fluxes, as well as their coupling, in 721 

response to environmental perturbations (e.g., climate change, air pollution, land 722 

cover change). Meanwhile, by coupling the iMAPLE with climate and/or chemical 723 

models, we could further quantify the changes of meteorology and atmospheric 724 

components in response to the biogeochemical and biogeophysical processes. For 725 

example, Lei et al. (2022) revealed the strong vegetation feedback to global surface 726 

O3 during the drought periods using the YIBs model coupled to a chemical transport 727 

model. Xie et al. (2019) found a significant increase in atmospheric CO2 728 

concentrations due to O3-induced vegetation damage using the YIBs model coupled 729 

with a regional climate-chemistry model. Gong et al. (2021) estimated a surface 730 

warming in polluted regions due to the ozone-vegetation feedback using the YIBs 731 

model coupled with a global climate-chemistry model. These studies indicate that the 732 

iMAPLE model could be used either offline or online with other models to explore 733 

the interactions among climate, chemistry, and ecosystems.  734 
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 1202 

 1203 

Figure 1 The illustration of biogeochemical processes in the iMAPLE version 1.0 1204 

model. The carbon cycle is connected with water cycle, wildfire emissions, biogenic 1205 

volatile organic compounds (BVOCs) emissions, wetland methane emissions, and is 1206 

affected by air pollutants including aerosols and ozone. The bold arrows indicate the 1207 

directions of fluxes and air pollutants. The thin arrows indicate the influential 1208 

pathways among different components. The dependences on key parameters are 1209 

shown for some processes. Red fonts indicate new or updated processes in iMAPLE 1210 

relative to the YIBs model. For detailed parameterizations please refer to section 2.2.  1211 
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 1215 
Figure 2 Spatial distributions of 201 sites from global FLUXNET network. The colors indicate 1216 

various plant functional types (PFTs) including evergreen broadleaf forest (EBF, 13 sites), 1217 

evergreen needleleaf forest (ENF, 57 sites), deciduous broadleaf forest (DBF, 25 sites), Shrub (52 1218 

sites), Grass (37 sites), and Crop (17 sites). The black triangles indicate sites with at least one-year 1219 

observations of diffuse radiation.  1220 
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 1223 

Figure 3 Comparisons between observed and simulated monthly GPP from 201 FLUXNET sites. 1224 

Each point indicates the average value of one month at a site. The red line represents linear 1225 

regression between observations and simulations from the BASE experiment. The correlation 1226 

coefficient (R), normalized mean bias and numbers of points/months (N) are shown on each panel. 1227 

The comparisons are grouped into six PFTs including EBF, ENF, DBF, Shrub, Grass, and Crop. 1228 

The unit is g C m-2 day-1. 1229 
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 1231 

Figure 4 The same as Figure 3 but for ET. The unit is mm month-1. 1232 
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 1235 

Figure 5 (a) Spatial distribution of global FLUXNET-CH4 sites and (b) comparisons between 1236 

observed and simulated monthly methane flux from the BASE experiment. Filled triangles 1237 

indicate sites with at least six months observations of wetland CH4 fluxes. Each point represents 1238 

average value of monthly methane emission at one site. The correlation coefficient (R), 1239 

normalized mean bias and numbers of points/months (N) are shown on the right panel. The unit is 1240 

g [CH4] m-2 yr-1.  1241 
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 1243 

Figure 6 Comparisons of simulated (a) soil moisture (m3 m-3) and (d) soil temperature (K) from 1244 

the iMAPLE model with (b, e) the MERRA-2 reanalyses. Both simulations from the BASE 1245 

experiment and observations from MERRA-2 reanalyses are averaged for the period of 1980-2020. 1246 

The spatial difference, correlation coefficient (R), normalized mean bias (NMB) between 1247 

simulations and observations and numbers of points (N) are shown on (c) and (f), respectively.  1248 
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 1252 

Figure 7 Comparisons of simulated (a) gross primary productivity (GPP, g C m-2 day-1) and (d) 1253 

evapotranspiration (ET, mm month-1) with ensemble products from (b, e) observations. Simulated 1254 

GPP and ET are performed by iMAPLE driven with meteorology from MERRA-2 reanalysis 1255 

(BASE) during 2001-2013. Ensemble GPP products are from the average values of SIF-based 1256 

GOSIF and satellite-based GLASS GPP products. Ensemble ET products include FLUXCOM and 1257 

GLASS products during 2001-2013. The spatial difference, correlation coefficient (R), normalized 1258 

mean bias (NMB) between simulations and observations and numbers of points (N) are shown on 1259 

(c) and (f). Only land grids with vegetation are shown on each panel, and their area-weighed 1260 

values are shown in titles.  1261 
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 1263 

Figure 8 Absolute (g C m-2 day-1) and relative (%) differences of global GPP between simulations 1264 

with (BASE) and without (BASE_NW) two-way carbon-water coupling processes. Simulation 1265 

results are averaged for the period of 1980-2020. 1266 
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 1268 

Figure 9 Comparisons of global burned fraction (%) and fire-emitted OC emissions (10-3 kg km-1 1269 

yr-1) between (a, d) simulations and (b, e) observations. Simulations are performed using iMAPLE 1270 

and observations are from GFED V4.1 fire emissions products. Both simulations from the BASE 1271 

experiment and observations are averaged for the 1997-2016 period. The global total area burned 1272 

are shown on (a) and (b), and total OC emissions are shown on (d) and (e). The spatial difference, 1273 

correlation coefficient (R), and normalized mean biases between simulations and observations are 1274 

shown on (c) and (f).  1275 
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 1277 

Figure 10 Global simulated CH4 emissions (g [CH4] m-2 yr-1) from (a) wetland and (b) 1278 

anthropogenic sources, (c) heterotrophic respiration (gC m-2 day-1) and (d) fraction of wetland area. 1279 

The simulations are from the BASE experiment. Anthropogenic sources are adopted from CMIP6 1280 

including the sectors of energy, agriculture, industrial, residential, shipping, solvent and 1281 

transportation. The global total emissions and heterotrophic respirations are shown on each panel. 1282 

All variables are averaged for 2000-2014. 1283 
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 1285 
Figure 11 Global isoprene emissions (mg C m-2 day-1) from (a) MEGAN, (b) PS_BVOC schemes 1286 

and (c) their differences during 1980-2020. The simulations are from the BASE experiment. The 1287 

global total emissions are shown on each panel.  1288 
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 1290 

Figure 12 Percentage changes of global GPP caused by ozone damage effects based on (a) LMA 1291 

(O3LMA – BASE) and (b) S2007 (O3S2007 – BASE) schemes. The ozone damage schemes 1292 

include (a) trait leaf mass per area (LMA)-based from the O3LMA experiment, (b) S2007 plant 1293 

ozone sensitivity from the O3S2007 experiment and (c) their differences.  1294 
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 1298 

Figure 13 Observed and simulated responses of site-level (a-f) GPP and (g-l) ET to diffuse and 1299 

direct radiation at the FLUXNET sites. Photosynthetically active radiation (PAR) reaching the 1300 

surface are divided into diffuse (diffuse fraction > 0.75) and direct (diffuse fraction < 0.25) 1301 

radiation at six FLUXNET sites with more than 10 years of observations. Observations 1302 

(simulations) are grouped over PAR bins of 40 W m-2 with errorbars (shadings) indicating 1303 

standard deviations of GPP and ET for each bin. The red (blue) and magenta (green) represent 1304 

observed and simulated responses of GPP and ET to diffuse (direct) radiation. Units of GPP and 1305 

ET are g C m-2 day-1 and mm hr-1, respectively.  1306 
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