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Abstract.

The quantification of emissions of greenhouse gases and air pollutants through the inversion of plumes in satellite images

remains a complex problem that current methods can only assess with significant uncertainties. The anticipated launch of the

CO2M (Copernicus Anthropogenic Carbon Dioxide Monitoring) satellite constellation in 2026 is expected to provide high-

resolution images of CO2 (carbon dioxide) column-averaged mole fractions (XCO2), opening up new possibilities. However,5

the inversion of future CO2 plumes from CO2M will encounter various obstacles. A challenge is the CO2 plume low signal-to-

noise ratio, due to the variability of the background and instrumental errors in satellite measurements. Moreover, uncertainties

in the transport and dispersion processes further complicate the inversion task.

To address these challenges, deep learning techniques, such as neural networks, offer promising solutions for retrieving

emissions from plumes in XCO2 images. Deep learning models can be trained to identify emissions from plume dynamics10

simulated using a transport model. It then becomes possible to extract relevant information from new plumes and predict their

emissions.

In this paper, we employ
::::::
develop

::
a

:::::::
strategy

:::::::::
employing

:
convolutional neural networks (CNN) to estimate the emission

fluxes from a plume in a pseudo XCO2 image. Our dataset used to train and test such methods includes pseudo images based

on simulations of hourly XCO2, NO2 and wind fields near various power plants in Eastern Germany, tracing plumes from15

anthropogenic and biogenic sources. CNN models are trained to predict emissions from three power plants that exhibit diverse

characteristics. The power plants used to assess the deep learning model’s performance are not used to train the model. We find

that the CNN model outperforms state of the art plume inversion approaches, achieving highly accurate results with an absolute

error about half of that of the cross-sectional flux method and a absolute relative error of∼ 20% when only the XCO2 and wind

fields are used as inputs. Furthermore, we show that our estimations are only slightly affected by the absence of NO2 (nitrogen20

dioxide) fields or a detection mechanism as additional information. Finally, interpretability techniques applied to our models

confirm that the CNN automatically learns to identify the XCO2 plume and to assess emissions from the plume concentrations.

These promising results suggest a high potential of CNNs in estimating local CO2 emissions from satellite images.
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1 Introduction

The burning of fossil fuels, such as coal and oil, in power plants (PP), is a primary source of anthropogenic CO2 emissions.25

Approximately 50% of worldwide fossil fuel CO2 emissions originate from large facilities, which encompass PPs (IEA, 2019;

Nassar et al., 2022). As a result, maintaining regular monitoring of these emissions and possessing the capacity to control their

reporting is crucial.

Observations from satellites like OCO-2 provide valuable data that can be utilised to estimate CO2 emissions (Nassar et al.,

2017; Reuter et al., 2019; Chevallier et al., 2019; Wu et al., 2020; Zheng et al., 2020; Nassar et al., 2022; Chevallier et al., 2022).30

Specifically,
:::::::
satellite observations of CO2 plumes, such as the plume transects obtained from OCO2-2 and OCO-3 satellites,

offer a direct means of quantifying their source
:::
and

:::::::::::
complement

:::::
other

:::::::::
estimations

::::::::::::::::::::
(Cusworth et al., 2021). The upcoming

launch of the CO2M satellites in 2026 is anticipated to capture high-resolution images of CO2 column-averaged mole fractions

(XCO2), aiming to have a much larger swath and more accurate CO2 estimations, further advancing our capabilities in this

area. Leveraging these images, however, will present significant challenges (Wang et al., 2020).35

CO2 plumes are notoriously difficult to invert due to various factors, including 1) image integrity issues caused by cloud

cover or satellite overpasses, which result in missing data in the images used for analysis. Additionally, the estimation of the

emissions associated with a plume is further complicated by 2) the measurements low signal-to-noise (SNR) ratio. The noise

component encompasses variations in the background as well as errors in the satellite measurements. The SNR problem stands

as the main hurdle in the detection of the plume, a crucial step for inversion. Recent research conducted by Dumont Le Brazidec40

et al. (2022) has illustrated the remarkable ability of Convolutional Neural Networks (CNNs) to effectively overcome this

obstacle. Lastly, another challenge stems from 3) the uncertainties in the transport and dispersion processes, specifically, when

it comes to estimating the effective wind driving the plume and determining its shape (Kuhlmann et al., 2019).

This paper addresses the second and third problems (except for the errors in the satellite measurements) by employing deep

learning techniques to perform inverse modelling of CO2 plumes. In particular, we focus on developing techniques for inverting45

CO2 plumes from PPs of different emission levels.

To assert the effectiveness of the method, the predictions of the deep learning model are compared against state-of-the-

art techniques. Plume inversion methods include approaches that use an atmospheric transport model to simulate the plume

and compare it to observation (e.g., Pillai et al. (2016); Broquet et al. (2018)). They also include techniques that quantify

emissions from a hotspot based on plume detection in satellite observations (Koene et al., 2021). These methods can be50

based on time-averaged plumes, such as the divergence method (Beirle et al., 2019; Hakkarainen et al., 2022), or on in-

stantaneous images. Varon et al. (2018) compared several of these approaches, namely the Gaussian plume inversion, the

integrated mass enhancement and the cross-sectional flux method. In the CoCO2 project, several of these methods were com-

pared using synthetic CO2M CO2 and NO2 observations (Hakkarainen et al., 2023). Here, we use the cross-sectional flux

(CSF) method for comparison, which showed similar accuracy as other well performing methods such as Gaussian plume55

inversion and the light cross-sectional flux (LCSF) method. It
::::::
Finally,

::
it
:
should be noted that the CoCO2 project identified
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several potential improvements of the methods that may yield superior performance in the future (Hakkarainen et al., 2023)

::::::::::::::::::::::::::::::::::::::
(Hakkarainen et al., 2023; Santaren et al., 2024).

In this paper, the proposed plume inversion approach is based on convolutional neural networks. This research builds on ear-

lier work in the field of remote sensing image analysis leveraging machine learning techniques (Lary et al., 2016; Finch et al., 2021; Jongaramrungruang et al., 2021; Joyce et al., 2023)60

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lary et al., 2016; Finch et al., 2021; Jongaramrungruang et al., 2021; Joyce et al., 2023; Kumar et al., 2023). Here, plume in-

version involves the analysis of an image to extract scalar or vector emissions data at different time steps. Therefore, this

task can be framed as an image regression problem, where relying on CNNs can offer significant advantages (Chollet, 2017).

CNNs, a type of supervised learning method, can be trained on a comprehensive dataset, where all input variables (images) and

associated output variables (like emissions) are known. Once trained, these CNNs can effectively process and draw conclu-65

sions from unseen observational imagery. CNNs employ convolutional layers to extract essential features from images. Each

filter is automatically trained to detect specific patterns, such as edges, corners, or other shapes within the image. By stack-

ing multiple convolutional layers, CNNs become capable of learning intricate patterns, enabling them to capture increasingly

complex features. The ability of CNNs to capture and learn spatial features in images makes them a popular choice for vari-

ous image-related tasks, including image recognition, classification, and regression. Given the nature of our plume inversion70

task, they are particularly well-suited due to their ability to identify spatial features in images, such as plume shapes or inten-

sity, that correspond to specific emissions. This feature extraction approach effectively harnesses the knowledge embedded in

transport models, enabling this automatic capture of plumes dynamics. This ability to capture such features has already been

demonstrated by Finch et al. (2021), or Dumont Le Brazidec et al. (2022) which study the segmentation of plumes in CO2

images.75

To train and test the CNN models, this paper relies on a synthetic dataset as CO2M data will not be available until 2026.

This dataset has been designed to possess similar key features as the forthcoming CO2M satellite, such as resolution and the

availability of NO2 data. However, the influence of clouds or systematic error patterns is not considered in the analysis.

Before introducing the inversion methodology and results, we briefly describe the physical fields used to train and evaluate

the CNNs. This includes the presentation of the simulated satellite fields in section 2 and of the model used to produce80

segmentation masks of the plumes used as inputs of the inversion model in section 3. The inversion methodology using CNN is

described in section 4, specifying the problem statement, the model, the training process, and the alternative method employed

for comparison. The subsequent section 5 delves into the application of the model to three specific PPs. In particular, subsection

5.3 places special emphasis on the interpretability of the trained CNNs. Discussions on the limitations and future directions of

this study can be found in section 6, while the conclusions are outlined in section 7.85

2 Dataset of XCO2, winds and NO2 images

XCO2 and NO2 images are taken from the concentration fields simulated for the SMARTCARB project (Brunner et al.,

2019). Using the COSMO-GHG model, the SMARTCARB simulations were performed in a region centred around Berlin and

covering several nearby coal-fired PPs. These simulations were used to produce synthetic observations of CO2M and to evaluate
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Figure 1. Examples of inputs used by the CNN model. The first, second, third and fourth columns represent the XCO2 images, NO2 images,

vertically averaged u and v winds, respectively.

various plume detection and inversion approaches (Kuhlmann et al., 2019, 2020, 2021; Hakkarainen et al., 2021, 2023). The90

data are hourly and cover an entire year. Their spatial resolution is 0.01◦ and sixty vertical layers ranging spanning from an

altitude of 0 to 24km are used. More information can be found in Dumont Le Brazidec et al. (2022), which presented more

extensively a dataset very similar to the one used in this study.

Images used to train and evaluate the CNN inversion models consist of 64× 64 pixels, with each pixel covering an area of

2×2km2. Each image is extracted from the SMARTCARB COSMO-GHG simulated fields so that one hotspot is located in the95

centre. In addition, the selected size guarantees the inclusion of the majority of the central hotspot plume within the image. The

mapping from the original SMARTCARB fields resolution to the 2km resolution is performed by cubic spline interpolation

(Virtanen et al., 2020). The 2km resolution was chosen to be consistent with the resolution expected for CO2M observations.

It is necessary to take into account the expected noise associated with the satellite instruments. For this, a Gaussian random

noise of standard deviation 0.7ppm, characteristic of the CO2M (Meijer, 2020), is added to the XCO2 images.100

In addition to XCO2, ancillary data can be used to assist in the inversion of XCO2 plumes. Considering that CO2M will

provide measurements of NO2 and the observed strong correlation between NO2 and CO2 plumes, noisy NO2 fields are used

in this study. The noise associated with a NO2 field is implemented as the standard normal distribution multiplied by the NO2

field values. The median standard value for NO2 fields surpasses 1e15molec.cm−2, leading to an average noise level in the

NO2 field that exceeds the CO2M NO2 requirement (less than 1e15molec.cm−2). Furthermore, ERA5 winds are used: the105

original resolution of 28km is mapped to 2km to be consistent with the CO2 and NO2 images. To overcome the circular data

limitation of statistical methods, the u and v wind fields are used instead of the direction and magnitude components. This

limitation corresponds to the statistical model’s inability to correctly interpret wind directions where the value of 360 degrees

is equivalent to 0 degrees. More precisely, we use 2D u and v wind fields which are calculated as the average of the zonal and

meridional wind fields over the 37 lower ERA5 vertical levels, respectively, which corresponds roughly to the lowest 4000 km110

of the atmosphere. Figure 1 presents a series of potential inputs to the CNN.
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Hotspot min max mean std

Berlin 4.8 34.7 16.8 7.2

Jänschwalde 16.4 52.7 33.3 7.7

Boxberg 9.4 30.1 19.0 4.4

Lippendorf 7.5 24.1 15.2 3.5

Turow 4.3 13.8 8.7 2.0

Schwarze Pumpe 4.0 13.0 8.2 1.9

Dolna Odra 3.7 12.5 7.9 1.9

Opole 3.5 11.8 7.5 1.8

Patnow 2.9 9.2 5.8 1.3

Table 1. Emission statistics for the considered PPs and the city of Berlin. Fluxes are in Mt CO2 /yr.

This paper only addresses the retrieval of PP emissions, although the training dataset includes the city of Berlin. More

precisely, depending on the PP evaluated, the training dataset might be composed of any hotspot in {Berlin, Jänschwalde,

Schwarze Pumpe, Boxberg, Turow, Patnow, Lippendorf, Opole, Dolna Odra}. The primary rationale behind prioritising the

training of the model on PPs is the scarcity of cities in the dataset, which poses a challenge for the model to effectively learn115

and generalise for cities. However, Berlin is included in the training dataset as supplementary data to aid the model in its

learning process. In the SMARTCARB dataset, the modelling of anthropogenic emissions, incorporating fixed diurnal, weekly,

and seasonal cycles, was performed using the TNO-MACC III inventory (Kuenen et al., 2014). The emissions range, mean,

and standard deviation of each hotspot are given in Table 1 and locations of considered PPs and Berlin are described in 2.

Moreover, data augmentation techniques are employed to expand the database, as detailed in section 4.2.1.120

3 Application of the segmentation model

Utilising a segmentation algorithm to incorporate plume contours as additional prior information in plume inversion may yield

significant benefits. In this section, we provide a brief description and application of the CNN-based method developed in

Dumont Le Brazidec et al. (2022) that predicts plume contours in XCO2 images. The methodology of Dumont Le Brazidec

et al. (2022) involves employing an image-to-image U-net model, which generates images that are subsequently used as inputs125

for the CNN inversion model, as outlined in section 4.

Apart from a few specific points, the training and model choices are similar to those of Dumont Le Brazidec et al. (2022).

A simpler encoder, with fewer neurons, is chosen since the NO2 fields are used as inputs to the CNN. This simplification of

the problem reduces the need for a complex encoder. In addition to NO2 and XCO2 fields, winds are also used to assist in
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Figure 2. XCO2 concentration map with the locations of Berlin and each considered PP within the complete SMARTCARB domain. The

map consists only of the concentrations stemming from the major anthropogenic sources. Furthermore, to enhance plume visibility, as fluxes

of power plants such as Jänschwalde are vastly superior to other fluxes, concentrations exceeding 2 ppmv have been capped at 2 ppmv.

the XCO2 plume contour prediction, although experiments show that the addition of this data has very little influence on the130

predictions. Finally, the U-net models were designed to make predictions beyond the geographical region of their training data.

Specifically, the model that learns to predict the mask of the Boxberg PP plume from an image centred at Boxberg PP is trained

on a dataset excluding the images centred at Boxberg.

In Fig. 3, we show the application of a model trained to predict the positions of Turow plumes. It was trained on pairs of

fields in the regions of {Boxberg, Berlin, Lippendorf, Patnow, Jänschwalde, Dolna Odra, Schwarze Pumpe, Opole}. The first135

and second columns of the figure show the XCO2 and NO2 fields, inputs to the CNN. The third column shows the target plume

as a reference point, while the fourth column shows the output of the CNN.

4 Deep learning method for the inversion of XCO2

4.1 Inversion based on supervised learning

The inverse problem addressed here is the estimation of the CO2 emissions accountable for the target
::::::
central

::::::
hotspot

:
plume140

observed in a given XCO2 field image. To do so, a CNN is used, processing as input a given XCO2 field and other additional

fields and resulting in a scalar output representing the emission rate of CO2 in MtCO2.yr
−1 at the hour corresponding to the

image. This flux unique scalar representation choice was made for the sake of simplification, as the quality of the results is
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Figure 3. Examples of the U-net CNN model application on images
::::
from

::
the

:::
test

::::::
dataset centred at Turow. The first, second, third and fourth

columns represent the XCO2 images, NO2 images, weighted Boolean plumes and U-net predictions as probability maps, respectively. All

times are in UTC.

minimally impacted by the choice between targeting average, instantaneous fluxes, or a vector of instantaneous fluxes over the

last N hours. This is due to the relatively slow hourly variation in the CO2 emission rate of the PP. All future flux quantities145

are expressed in Mt.yr−1. The image-to-scalar, or image regression, problem is depicted in Fig. 4. The CNN is trained using

XCO2 fields, ancillary data fields (winds, segmentation results and NO2) and associated emission fluxes ranging from 3 to

53Mt.yr−1 across various times and targets.

4.2 CNN model and training parametrisation

In this section, we present and discuss the architecture of the model, the hyperparameters, and the learning methodology for150

the inversion task. In particular, the model is built from preprocessing layers and a core model. The preprocessing layers are

used to augment/transform, construct, add noise, and normalise the input data before feeding it into the core model. The core

model is designed to extract features from these transformed input data.
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Emission flux in Mt/yr  

Image-to-scalar CNN
model

Figure 4. Various fields: XCO2, winds, segmentation results and NO2, and the emissions are used by a CNN that learns to estimate the

emissions associated to the central plume concealed under the background. Note that the combination of NO2 and segmentation results as

inputs is never assessed in this manuscript.

4.2.1 Description of the preprocessing layers

The preprocessing layers consist of a six steps sequence, as presented in Fig. 5. The purpose of steps 1-2-3 is to extend the155

initial database, thereby enhancing the model’s ability to generalise to unseen data. A pair of input/output data for training is

constituted in this way:

1. a target CO2 plume corresponding to a PP at a time t is chosen randomly. A background must be constructed to form

the XCO2 image with this plume. This background is chosen randomly and therefore does not necessarily correspond

(geographically and temporally) to the chosen target plume. It may correspond to another PP as well as to another time.160

Furthermore, in SMARTCARB, the background is partitioned into multiple segments. In our case, the background is

constructed from two randomly and independently drawn fields: a field containing the major part of the fluxes including

the biogenic fluxes and a field containing a part of the anthropogenic fluxes of the SMARTCARB domain. Finally,

potential additional fields (wind, NO2, segmentations) corresponding geographically and temporally to the chosen CO2

plume are selected;165

2. then,

– the target XCO2 plume is multiplied by a random uniform scaling factor p∼ U(0.25,2). The corresponding true

emissions are also multiplied: yscaled plume
truth = p× yplume

truth ;
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– a random number b∼ U(−3.5,3.5) (in ppmv) is added uniformly to the main background. Extrema of this uniform

distribution are chosen as approximately the standard deviation of an average XCO2 background;170

– a random uniform scaling factor a∼ U(0.33,3) is applied to multiply the field containing a part of the alternate

anthropogenic fluxes.

Anthropogenic fluxes scaling factors p and a are chosen so that the resultant emissions still correspond to reasonable

anthropogenic fluxes;

3. the XCO2 field is built as the sum of the target plume, background, and alternate anthropogenic fluxes field components;175

4. a Gaussian noise matrix of shape 64× 64 (equal to the image shape) GNx×Ny ∼N(0,0.7) (in ppmv) is added to the

XCO2 field to simulate the satellite observational noise;

5. the noisy XCO2 field is concatenated with the additional fields. If added, the NO2 field is noised beforehand;

6. standardisation (i.e., Z-score normalisation) is performed independently on each channel (each physical field) of the

concatenated input data.180

These steps are carried out exclusively during the model training phase. The different operations in this process are performed

to create a more robust and diverse training dataset. To ensure an accurate assessment of the performance of the trained model,

the test dataset used for the evaluation consists only of pre-constructed, physically consistent simulated data. Specifically, no

scaling factors are applied and the XCO2 fields used for testing are always constructed from geographically and temporally

consistent plume and background components.185

4.2.2 Description of the core model

The chosen core CNN model, described in Fig. 6 is designed for image regression. It was chosen by comparing its performance

with state-of-the-art models such as EfficientNet or Squeezenet (Tan and Le, 2020). These two models are deep neural networks

designed primarily for image classification tasks. They incorporate modified versions of CNN, including features such as

residual connections and depth-separable convolutions, in order to improve efficiency, speed and ease of implementation. As190

their initial implementation tended to overfit, we considered a smaller version with a reduced number of neurons in each layer.

But even after tuning, the simpler model depicted below outperformed these more advanced models.

The chosen model takes 3 to 4 images of 64×64 pixels as input (which correspond to the XCO2 field and ancillary data such

as the winds). It is constructed as a succession of convolutional, max pooling, batch normalisation, and dropout layers where:

– convolutional layers aim to identify and extract relevant features by applying a set of learnable filters to the previous195

feature map. The 2D convolutional operations are applied with a filter size of 32 and a kernel size of 3×3;

– max pooling layers play a key role in reducing the resolution of feature maps while retaining the essential information.

This reduces the computational complexity of the network and leads to the extraction of more complex features;

9



Winds and additional
fields corresponding to

chosen plume

+

XCO2 field

Core CNN model
processing

Backpropagation

Loss = 

Normalisation

Concatenation

Figure 5. Description of the preprocessing layers as a sequence of six steps: 1) random choice of the XCO2 field components, 2) scaling

transformation of the components, 3) sum of the components, 4) satellite noise simulation, 5) concatenation with the additional data, and 6)

normalisation.

10



64 x 64 x 5

3 x 3 x 64

convolutional + leaky ReLU

max pooling

flatten+dense

dropout

~64 x 64 x 32

 ~26 x 26 x 64
~9 x 9 x 64

batch normalisation

1 x 1 x 576

Emissions

Figure 6. Description of the core CNN model, designed to extract features from the input data. The resolution given for each sequence of

layers is approximate, as convolutional layers also slightly reduce the resolution.

– batch normalisation layers are used to improve the stability of the network and speed up its learning process;

– dropout layers randomly exclude a certain percentage of the neurons in the previous layer at each iteration to reduce200

overfitting. They are only activated during the training phase.

The output of the core model is flattened and fed into a fully connected final dense layer with a single output unit, which is

activated by a leaking rectified linear unit (ReLU). In total, the CNN has approximately ∼ 186,000 parameters.

4.2.3 Training parametrisation

The training hyperparameters, such as the optimiser, learning rate and batch size, have been determined through a combination205

of experimental investigation and adherence to standard practice. In accordance with customary practices, Adam’s optimiser

was employed with a fixed learning rate of 10−3 and a dropout rate of 0.2 was applied. The batch size, or number of samples

before the model updates its weights, was set to 32. After analysis, to ensure model convergence, the epoch count was set to 500,

which yields a total training time of approximately four hours using an Nvidia Quadro RTX 5000 16GB GPU. Furthermore,

the default choice of loss function employed is the Mean Absolute Percentage Error (MAPE), which emphasises proportionate210

deviations between emissions predictions and ground truth. This loss function is equivalent to a absolute relative error between

the truth and the predictions. It should be noted that the Mean Absolute Error (MAE) metric was used to train roughly half

of the ensemble models (detailed in the subsequent section 4.2.4) in the Lippendorf case (5.1.1). MAE and MAPE metrics

generally yielded similar performances.
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4.2.4 Model ensembling215

In many cases, deep learning models suffer from high levels of volatility due to their reliance on random initialisations of

parameters and hyperparameter optimisation algorithms. To overcome these limitations and increase the stability of our pre-

dictions, we employed the technique of model ensembling. Specifically, for each considered configuration, we trained multiple

instances of the same model architecture and parameters. This approach enabled us to produce a range of predictions that were

subsequently averaged into a single estimate. To ensure sufficient convergence of these estimates, a minimum of five individual220

models were used for each considered configuration. Through these steps, we significantly reduced the variability observed

across multiple models runs, thereby improving the accuracy and confidence in our system.

4.3 Geographical separation between the training and test datasets

We consider a strict geographical separation between the PPs of the training/validation and those of the test dataset. For

example, to train a model to predict emissions from Boxberg plumes, we consider a training dataset consisting of images225

centred at all other available PPs except Boxberg. In this way, the model predicting Boxberg emissions never had access to the

Boxberg emissions inventory.

During the training phase, to avoid overfitting or underfitting, a separate validation dataset is used to follow the model’s

performance on new data. In our case, the validation dataset is chosen as unseen data from the same geographical area as the

training dataset.230

Three distinct models are created and trained to predict emissions from three specific PPs. The target PPs are Lippendorf,

Boxberg and Turow and are selected:

– to obtain a diverse range of emission rates: between 7 and 24Mt.yr−1, with a mean of 15Mt.yr−1 and a std of 3Mt.yr−1

for Lippendorf, between 4 and 13Mt.yr−1, with a mean of 9Mt.yr−1 and a std of 2Mt.yr−1 for Turow, and between 9

to 30Mt.yr−1 with a mean of 19Mt.yr−1 and a std of 4.Mt.yr−1 for Boxberg;235

– to account for the potential presence of multiple plumes in the same image: the images centred at Boxberg also include

plumes from Jänschwalde, Schwarze Pumpe, and Turow which sometimes overlap;

– because their emission rates are neither at the highest nor the lowest extremes (Boxberg was selected over Jänschwalde

because Jänschwalde has the highest emission levels in our dataset, potentially placing it outside the training distribu-

tion);240

– due to their positioning away from the boundaries of the SMARTCARB domain. These PPs are less affected by border

conditions. As shown in Fig. 1, Patnow or Opole are close to the borders and are influenced by border conditions.

Although these models differ in terms of the training datasets used, they all share the same architectural framework, including

hyperparameters, CNN structure, and preprocessing layers. The objective behind creating these models is to demonstrate the

effectiveness of the architectural framework, laying the groundwork for a universal model based on this architecture and capable245
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of generalising across future PPs.
:
It
::
is
:::::::::
important

::
to

:::
note

::::
that

:::::
while

:::
the

:::
test

::::::
dataset

:::::
from

:::
one

:::::::::
experiment

:::::::
appears

::
in

:::
the

:::::::
training

::::::
dataset

::
of

:::::::
another,

::::
each

:::::::::
experiment

::::
was

::::::::
conducted

::::::::::::
independently.

::::
The

:::::
model

::::::
tuning

::::
was

:::
not

::::::::
influenced

:::
by

:::
the

:::::
results

::::::::
obtained

::::
with

:::
the

:::
test

:::::::
datasets.

::
In
:::::::::

particular,
:::
the

::::::::
selection

::
of

:::
the

::::::::::::::
hyperparameters

::::
such

::
as

:::
the

:::::::
learning

::::
rate

::::
was

:::::
made

:::::
before

:::
the

::::::
model

:::::::
training.

4.4 Alternative method for comparison250

The accuracy of our inversion method is compared to the cross-sectional flux (CSF) method implemented in the Python library

for data-driven emission quantification (ddeq1). The CSF method was recently compared with other state-of-the-art methods

and shows similar accuracy than other well performing methods (Hakkarainen et al., 2023). This method consists in

– detecting the plume and extracting it from the background. NO2 fields are used to help in the detection;

– dividing the plume into a series of horizontal slices of known areas and heights;255

– estimating the line densities of CO2 by fitting Gaussian curves to the CO2 and NO2 concentrations within each slice;

– inferring the CO2 fluxes as the product of the line densities and the wind speed at the sources;

– deriving the total emission rate by multiplying the flux estimation and the area of each slice, and then averaging all

downstream fluxes.

The CSF method is limited by the need for accurate estimation of the effective wind (Kuhlmann et al., 2020). Two separate260

wind estimates have been considered: the first derived from an average of the 37 lower levels of ERA 5 data, and the second

corresponding to the wind at 100 meters. The first estimate was chosen because of its superior performance.

5 Application: inversion of three power plants and model interpretation

In this section, we study the performance of a trained CNN under the conditions exposed in section 4:

– firstly, various ensembles of models with different sets of inputs are evaluated on the Lippendorf PP in section 5.1.1, the265

Turow PP in section 5.1.2 and the Boxberg PP in section 5.1.3. In each configuration, the training, validation, and test

datasets involve 25152, 4608, and 6289 images, respectively;

– secondly, we investigate how the assimilation of segmentation fields or NO2 affects the CNNs. Afterwards, since over-

fitting arises in certain configurations, discussions and partial solutions to this issue are proposed;

– thirdly, we propose to interpret the CNNs using a gradient-based technique and by permuting the input features.270
1https://gitlab.com/empa503/remote-sensing/ddeq
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5.1 Inversion of plumes performance

We study the performance of various CNN model ensembles in predicting the emissions of the Lippendorf, Turow, or Boxberg

PPs. More precisely:

– three model ensembles are trained on {Berlin, Jänschwalde, Schwarze Pumpe, Boxberg, Turow, Patnow, Opole, Dolna

Odra} and tested on Lippendorf;275

– three model ensembles are trained on {Berlin, Jänschwalde, Schwarze Pumpe, Boxberg, Lippendorf, Patnow, Opole,

Dolna Odra} and tested on Turow;

– three model ensembles are trained on {Berlin, Jänschwalde, Schwarze Pumpe, Turow, Lippendorf, Patnow, Opole, Dolna

Odra} and tested on Boxberg.

Lippendorf typical emissions fall between those of low-emission PPs (such as Dolna Odra or Turow) and those of high-280

emission (Boxberg, Jänschwalde). Turow emissions range between 4 and 14Mt.yr−1, similar to PPs like Opole. This implies

that most Turow CO2 plumes are hidden under the background. The last studied PP is Boxberg which is characterised by high

emissions and the presence of other PPs in the vicinity, which entails the presence of other high SNR plumes.

For each of the three target PPs, three model ensembles are trained. The input data for the first model ensemble are the XCO2

field and the wind fields u and v. The second and third model ensembles use the same three base fields and the output of the285

segmentation model, or the NO2 field, respectively, as fourth input. In the following, for simplicity, these ensembles of CNN

models will be referred to simply as "models".

Kernel Density Estimation (KDE) plots over the 6289 images of the test dataset are drawn in Fig. 7 comparing with relative

and absolute metrics the true emission rates and the predictions of the four models for each PP. While Fig. 7 employs signed

relative error to assess prediction bias in the CNNs, Table 2 and the majority of the analysis rely on absolute relative error.290

KDE is a non-parametric statistical technique that estimates the probability density function of a continuous random variable

by smoothing its observed data points using a kernel function. The three first ensembles of predictions consist of those of the

trained CNNs, and the fourth corresponds to the CSF method application. The main statistics corresponding to these KDE plots

are summarised in Table 2.

5.1.1 Lippendorf plumes inversion295

As reported in Table 2, the utilisation of the CNN approach yields remarkably accurate predictions of Lippendorf emissions

compared to the CSF method. The performance of all three CNN models shows a median absolute relative error of approx-

imately 20% and a median absolute error of around 3Mt.yr−1 (the average emissions for Lippendorf are 15.2Mt.yr−1). In

comparison, the CSF method exhibits a higher median absolute relative error performance of around 40%, and the absolute er-

ror performance is approximately double, at 6Mt.yr−1. The CNN results are reliable, as the majority of errors are concentrated300

below 10Mt.yr−1 or 50%, with very few exceeding 100%. This indicates that the models provide trustworthy estimates, with

a relatively small margin of error.
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Figure 7. Density plots of the signed relative and absolute error between the predicted and the true Lippendorf emissions. Four sets of

predictions are considered, corresponding to the three CNN models with three different sets of inputs and the CSF method. Each CNN model

is trained with the XCO2 field and the winds as inputs. Two of the models additionally assimilate the NO2 field or the predictions of the

segmentation model. Predictions with relative errors greater (in absolute) than 150% or absolute errors greater than 30Mt.yr−1 were set

to ±150 or 30 to increase visibility. 3% of the CSF method predictions are missing. Those predictions correspond to Lippendorf plumes

superimposed on other plumes, where the CSF method can not be applied.
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Absolute relative error [%] Absolute error [Mt.yr−1]

25% Median 75% 25% Median 75%

Lippendorf

CNN with no additional input 9.8 21.3 35.6 1.4 3.1 5.2

CNN with segmentation 11.4 23.3 36.5 1.6 3.4 5.6

CNN with NO2 8.6 18.1 30.3 1.3 2.7 4.5

CSF 21.0 42.8 70.1 3.1 6.3 10.5

Turow

CNN with no additional input 12.3 25.9 43.2 1.0 2.2 3.8

CNN with segmentation 11.0 23.7 41.3 0.9 2.0 3.5

CNN with NO2 10.9 22.9 38.0 0.9 1.9 3.2

CSF 26.3 52.1 92.0 2.2 4.5 8.1

Boxberg

CNN with no additional input 11.7 23.5 37.2 2.1 4.4 7.1

CNN with segmentation 24.2 36.9 48.2 4.2 6.8 9.4

CNN with NO2 26.4 36.9 45.4 4.5 6.8 9.3

CSF 21.7 41.5 63.5 3.9 7.7 12.3

Table 2. Absolute relative and absolute error statistics between predicted and true emissions for CNN models with various inputs and applied

to various target PPs and the CSF method.
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5.1.2 Turow plumes inversion

The CNN approach produces highly accurate predictions for the low SNR Turow plumes, exhibiting similar performance to the

results obtained in the Lippendorf case. The three models yield a median absolute relative error performance of approximately305

25% and a median absolute error performance of around 2Mt.yr−1. The results can be considered reliable: 75% of the results

fall below a threshold of 4Mt.yr−1. By contrast, the CSF method exhibits a median absolute relative error performance of

approximately 50− 55% and an absolute error more than two times larger. The inclusion of segmentation or NO2 fields has

a noticeable, albeit not significant, impact on the model’s performance, resulting in an improvement on the order of a tenth

of a Mt.yr−1. Notably, the addition of the NO2 field appears to have a slightly greater impact compared to the inclusion of310

segmentation fields. This implies that when applying the model that assimilates the segmented XCO2 fields (with the assistance

of the NO2 fields), there is a potential loss of information on the NO2 fields compared to using the model directly assimilating

the NO2 fields. The observed phenomenon could be a result of potential overfitting when employing the segmentation model,

as it is trained on the same dataset as the inversion model. Consequently, the segmentation predictions on the training dataset

are typically superior to those on the test dataset. This discrepancy can lead to an over-reliance on the segmentation fields,315

subsequently causing overfitting.

5.1.3 Boxberg plumes inversion

In contrast to the inversion results obtained for Lippendorf and Turow PPs, there is a significant variation in Boxberg plume

inversions performance. A CNN only trained with XCO2, u and v winds demonstrates strong performance, comparable to those

of the models estimating Lippendorf and Turow emissions. The median absolute relative error performance is approximately320

20−25%, and the median absolute error performance is around 4Mt.yr−1. The CSF method exhibits a median absolute relative

error performance of around 40% and an absolute error performance close to 8Mt.yr−1. But both models with segmentation or

NO2 fields show a significant decline in performance, which contradicts our expectations. This phenomenon can be attributed

to overfitting and is examined in detail in the section 5.2.2.

5.1.4 Cross-sectional fluxes method results325

The CSF results align with the findings reported in (Kuhlmann et al., 2021) and (Hakkarainen et al., 2023). Other methods,

such as the light cross sectional fluxes technique, might yield predictions with absolute relative errors reduced by 5 to 10%

(Hakkarainen et al., 2023). A notable constraint of the CSF method is that it hinges on the estimation of the effective wind speed

inside the plume. Under ideal circumstances, the effective wind speed should be estimated using the wind profile, weighted by

the CO2 concentration profile, but in practical applications, estimating this profile presents a substantial challenge. In a separate330

experiment, the CSF method was utilised on a reduced dataset (compared with that used to study the CNN results). Among

other changes, this dataset considers only the CO2M overpass, or excludes the plume overlaps processed by the CNN. In this

experiment, the exact emission profile used to simulate the COSMO-GHG fields of SMARTCARB was used to compute the
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effective wind. This methodology resulted in a median absolute error around 4Mt.yr−1, thereby indicating that the effective

wind estimation significantly contributes to the errors associated with the CSF method.335

5.2 Results analysis

This section presents an analysis of the results from the preceding section 5.1. It involves examining the trained models, or

new models trained under the same configuration, across various datasets, including the test dataset. It is important to note

that these analyses were conducted after obtaining the previous section’s results and thus did not influence, e.g., the choice of

model architecture or hyperparameters.340

5.2.1 Study of the addition of the segmentation and NO2 fields

Interestingly, the model designed to invert the Lippendorf plumes does not yield more accurate emission estimates when using

segmentations as inputs, compared to the model without segmentations. One possible reason for this lack of improvement is that

the Lippendorf segmentation fields are inadequate. The segmentation model assimilates NO2 fields to segment the CO2 fields

and the presence of multiple alternative NO2 plumes in the NO2 fields hinders the segmentation model’s ability to accurately345

delineate the contour of the Lippendorf CO2 plume. However, the incorporation of NO2 field as inputs slightly increase the

quality of the predictions made by the new CNN model. One hypothesis to explain the error discrepancy between the model

utilising NO2 and the one using segmentation fields is due to the segmentation model not capturing NO2 or CO2 plume

amplitude variations. Precisely, the segmentation model does not discriminate between plume pixels with high amplitude and

those with low amplitude. Consequently, if the NO2 images are of poor quality due to the presence of numerous alternative NO2350

plumes, the segmentation model will struggle to distinguish the main plume accurately. Taking into account these segmentation

fields, which do not distinguish the background plumes in the test dataset, results in a degradation of the predictions.

Regarding the benefits brought by the integration of NO2 fields, their essential contribution is their facilitation of the plume

segmentation, rather than a direct enablement of inversion based on the NO2 levels alone. Indeed, as stated in section 4.2.1, the

NO2 plumes are not scaled like CO2 plumes. To further investigate this, it is possible to verify this hypothesis by modifying the355

scaling of the plume in the NO2 fields. In Fig. 8 we draw the relative absolute error of the model at testing stage when taking

as inputs scaled NO2 fields by a constant factor in [0,3]. The CNN model exhibits its highest performance within the scaling

range of 1.0 to 1.3. As expected, performances gradually decrease for scaling below 1 and above 1.3. However, intriguingly,

the model still achieves remarkably satisfactory scores for scalings ranging from 0.5 to 1.75. Notably, these scores outperform

those of the CNN models without NO2 field as input. If the model were utilising the amplitude of the NO2 field as a predictor,360

deeply inaccurate results could be expected for scalings of 0.5 or 1.5. However, the graph contradicts this assumption, strongly

suggesting that the amplitude of the NO2 field is not employed as a predictor by the model. Instead, it is likely that only the

contour of the NO2 plume and the ratios between different parts of the plume serve as predictors. In essence, the model’s

reliance on the NO2 field for predictions appears to be based on the contour of the plume and the relative proportions of its

various components, rather than on the absolute amplitude of the NO2 field values. Finally, the model’s inability to accurately365
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Figure 8. Effect of scaling the NO2 plume of Lippendorf inputs on the performance of the CNN model. The x-axis corresponds to the scaling

of the NO2 plume: 1 corresponds to the original plume, 0 to no plume. The y-axis corresponds to the median absolute relative error of the

CNN model evaluated for the given scaling of the NO2 plumes. The CNN model is the same for each scaling (each dot of the x-axis) and

corresponds to the CNN model having obtained the best absolute relative error score. The red dotted line approximately corresponds to the

median absolute relative error of a model not learning with NO2 fields.

estimate emissions for scaling factors exceeding 2 can be attributed to the unprecedented and extreme values that NO2 plumes

can reach, which lie beyond the range of what the model has been trained on.

5.2.2 Overfitting investigation

To understand the reasons behind the deviations between predictions and actual values, we conducted an analysis of the resid-

uals in Fig. 9. This examination, which focuses on the disparities between predicted and true emissions, reveals a substantial370

underestimation of the actual Boxberg emissions by the model incorporating NO2 or segmentation fields.

This observation suggests an overfitting issue (Zhang et al., 2022), since the majority of PPs used to train the model exhibit

lower emission rates compared to Boxberg (6 out of 7: Schwarze Pumpe, Lippendorf, Turow, Patnow, Opole, and Dolna Odra).

The low absolute relative error observed on the training dataset of the models with NO2 or segmentation fields, as depicted in

Fig. 10, further substantiates concerns regarding overfitting. An overfitted model tends to learn features that are overly tailored375

to the specifics of the training dataset. Consequently, when presented with images from the test dataset with slightly different

features, the model struggles to generate accurate predictions.

Our hypothesis is that the model specifically overfits the low emissions PPs, which can be attributed to the information

gained through the use of NO2 or segmentation fields. When provided with new images, the model fails to recognise the new
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Figure 9. Residuals density between the true emissions of Boxberg PP and the predictions of the CNNs.
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Figure 10. Evolution during training of the validation and test relative errors between the true emissions of Boxberg and the predictions of

the CNNs. Specifically, for the need of this experiment, new models are trained and employed to predict the emissions corresponding to the

validation and test fields at each epoch. Three models are considered: each is trained with the XCO2 field and the winds as inputs. Two of

the models additionally assimilate the NO2 field or the predictions of the segmentation model. The validation error decreases monotonically

with the number of epochs, while the test error does not, which suggests overfitting of the model.
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Figure 11. Density plots of the relative and absolute error between the predicted and the true emissions. Four sets of predictions are consid-

ered, corresponding to the three CNN models with three different sets of inputs and the CSF method. Each CNN model is trained with the

XCO2 field and the winds as inputs on a dataset composed of {Berlin, Jänschwalde, Lippendorf, Turow, Opole}. Two of the models addi-

tionally assimilate the NO2 field or the predictions of the segmentation model. Predictions with absolute relative errors greater than 150% or

absolute errors greater than 30Mt.yr−1 were set to 150 or 30 to increase visibility. 15% of the CSF method predictions are missing. Those

predictions correspond to Boxberg plumes superimposed on other plumes, where the CSF method cannot be applied. A modified dataset is

used to avoid overfitting.

features and consequently yields predictions that align more closely with the training dataset, which predominantly consists of380

emissions from the low emissions PPs. The failure to recognise new features is due to the incorporation of NO2 field as inputs.

The model’s ability to learn highly specific features is limited when no additional input is provided. Conversely, when the

model incorporates the NO2 field, it gains access to more information and can acquire more intricate features. Consequently,

the model’s capacity to generalise worsens in the latter case.

Next, we examine the performance of a new ensemble of models trained on a more balanced dataset, achieved by removing385

three out of the five low-emissions PP from the original dataset. The new dataset is composed of {Berlin, Jänschwalde, Lip-

pendorf, Turow, Opole}, i.e. of two medium or high emissions PPs, two low emissions PPs and Berlin. Furthermore, the choice

of the factor scaling the plumes during training (see section 4.2.1) varies depending on the ensemble member considered (see

section 4.2.4). Specifically, the uniform distribution is defined with a minimum scaling factor of 0.25 or 0.5 and a maximum

scaling factor of 2 or 3. Once more, we examine the outcomes for three models obtained from ensembling, as depicted in Fig.390

11, and summarised in Table 3.
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Absolute relative error [%] Absolute error [Mt.yr−1]

25% Median 75% 25% Median 75%

CNN with no additional input 9.5 20.4 33.8 1.8 3.7 6.3

CNN with segmentation 14.1 26.6 40.6 2.5 4.8 7.6

CNN with NO2 13.2 23.8 34.2 2.3 4.4 6.6

CSF 21.7 41.5 63.5 3.9 7.7 12.3

Table 3. Relative and absolute error statistics between predicted and true Boxberg emissions for three CNN models (assimilating three

different sets of inputs) and the CSF method. A modified dataset is used to avoid overfitting.

The three CNN models demonstrate very good performance, although the inclusion of NO2 or segmentation fields still leads

to a degradation in results, albeit to a lesser extent than in section 5.1.3. For example, the median absolute relative error for

the CNN with NO2 as additional input is 23.8%, comparing to 36.9% in section 5.1.3. On the one hand, the median absolute

relative error of the CNN model trained on NO2 and wind fields stands at approximately 20%, while the median absolute error395

remains below 4Mt.yr−1. On the other hand, the degradation of the results when adding the NO2 or segmentation fields still

can be regarded as overfitting. The model learns features from NO2 or segmentation fields that are not general enough to cover

the case of Boxberg. Furthermore, it fails to acquire compensatory generalisable features such as in the case of Turow, where

the model probably gains information about the plume contour from the NO2 field, which is not straightforwardly apparent in

the Turow XCO2 field.400

5.3 Interpretation of the CNN inversion models

In the two following sections, we introduce and apply two methods to gain a deeper understanding of the behaviour and

decision-making processes of the CNNs discussed in this paper. These methods offer valuable insights into the significance of

input features in the predictions made by the CNNs:

– the integrated-gradient method allows us to examine the importance of individual pixels across channels;405

– the feature permutation method enables us to assess the importance of the channels, i.e. the fields used as inputs.

5.3.1 Gradient-based study of the pixels

Integrated Gradients is a gradient-based method for the interpretability of neural networks that enables the assessment of pixel

importance in CNN prediction. It calculates the sensitivity of a model’s predictions to input features (here pixels), assigning

relevance scores to them. By analysing how changes in the input pixels affect the model’s output, the method provides insights410

into the importance of each pixel in the decision-making process.
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One unique aspect of this gradient-based method is that the scores it assigns are relative to a baseline. More precisely, these

scores are computed as integrated gradients along a linear interpolation from a blank image to the input.

In Fig. 12, we apply the Integrated Gradient approach to study four different models specific to various sources. The first and

second models are built to invert the emissions from Lippendorf (see section 5.1.1) and Boxberg plumes (see section 5.1.3),415

respectively, whereas the two last models target Turow plumes (see section 5.1.2). The first three models only use the XCO2

field and the winds as inputs, whereas the fourth model considers an additional input, the NO2 field. To apply the Integrated

Gradient method, a random plume from the target PP is selected for each model. Columns of Fig. 12 represent the XCO2 field,

the corresponding XCO2 plume and the Integrated Gradient between the model predictions and the inputs.

In order to simplify the analysis, we choose the model that exhibits the best performance on the test dataset, rather than using420

the ensemble of models. It is worth noting that such a model yields similar performances to the ensemble of models.

The Integrated Gradient technique reveals that the CNN model learns to estimate the emissions of a source based on the

pixels of the plume from this source. In the first row, we examine a plume from Lippendorf PP. The Integrated Gradient

technique identifies the most important pixels, which correspond to the plume pixels. This indicates that if the pixels associated

with the plume were to deviate, the estimated flux rate would be significantly affected. This demonstrates that the CNN model425

effectively makes inference from the crucial parts of the image. In the second row, we focus on an image centred on Boxberg.

The gradients reveal that the model concentrates exclusively on the Boxberg plume in the centre, disregarding the other plumes

when inferring the emissions of Boxberg PP. In the third row of the figure, we examine a plume from Turow PP. Although the

precision is lower compared to the Lippendorf or Boxberg cases, the pixels in the general direction of the Turow plume are the

main ones used to estimate the emissions. In the fourth row, we display the gradients associated with the same Turow image but430

for a model trained with NO2 fields as additional inputs. In this case, the model clearly identifies the pixels corresponding to the

plume as critical, as indicated by the amplitude and contour of the gradients. This reinforces the hypothesis that the improved

estimation of Turow emissions when the model is trained with NO2 fields, can be attributed to the enhanced assessment of the

plumes.

::
In

::::::::::
conclusion,

:::
the

::::::
model

::::::::::
consistently

::::::::
identifies

::::
the

:::::
target

::::::::
emission

::::::
plume

:::::::
situated

::
at
::::

the
:::::::
image’s

::::::
centre,

:::::::::
indicating

::
it435

::::::::
implicitly

::::::::::
understands

:::
the

::::::::::
relationship

:::::::
between

:::
the

:::::
plume

::::
and

:::::::
targeted

:::::::::
emissions.

5.3.2 Feature permutation analysis

Feature permutation is a technique used to determine the importance of input channels used in a model (Molnar, 2022). As

input variables used here are not independent, the interpretation of the following permutation analysis should be taken with

caution. The principle is to i) permute the values of a feature (e.g. exchange the u wind field corresponding to an XCO2 image440

with another random u wind field), and ii) use the model to predict emissions for the given input, which includes the XCO2

field, other associated inputs and the random u wind field. By comparing the performance of the model on the original dataset

with the performance on the permuted dataset, we can measure the impact of each feature on the performance of the model.

The more the permutation of a feature affects the performance of the model, the more important that feature is. In Table 4, we

present the outcomes of the permutation of the features for nine ensembles of models (for each PP and each ensemble of inputs445
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Figure 12. Evaluation of four CNN models using the Integrated Gradients method on four input sets. Columns 1, 2, and 3 represent the

XCO2 field, the corresponding XCO2 plume and the Integrated Gradient between the model predictions and the inputs, in that order. The

rows represent the four models and corresponding test fields. 24



PP Lippendorf Boxberg Turow

Feature None Seg. NO2 None Seg. NO2 None Seg. NO2

XCO2 18.3 27.6 32.7 19.6 29.5 34.5 12.6 9.8 22.7

u-wind 11.6 10.4 3.3 12.4 9.7 4.2 6.6 5.4 0.9

v-wind 4.9 3.7 1.8 5.3 4.9 3.0 3.6 1.7 0.6

Add. input n/a 22.7 30.3 n/a 28.9 34.6 n/a 6.9 21.0

Table 4. Evaluation of the degradation in the average absolute relative error of the model when the corresponding feature is permuted. Each

column corresponds to a model, and each row corresponds to a permuted feature. For example, we estimate the emissions corresponding to

Boxberg plumes with the CNN model trained with the XCO2 field, the winds and no additional input. We then estimate the degradation of

the predictions of this model on the test dataset with the u-wind fields permuted: the degradation in absolute relative error is 12.4%. Seg. is

for Segmentation. Add. input corresponds to either None, NO2, or Segmentation fields depending on the considered column.

considered). Each entry in the table represents the degradation in the average absolute relative error of the model (associated

with a specific column) when the corresponding feature is permuted (related to the respective row).

We can formulate hypotheses on several groups of cells in Table 4:

– comparison of the first row with the others shows that the XCO2 feature consistently holds (or shares) the highest

importance among other features;450

– examining the second and third rows reveals a pattern where the u-wind seems to have a more significant influence on

the inversion process compared to the v-wind. It might be due to the bigger variance of u (∼ 51m2.s−2) comparing to v

(∼ 19m2.s−2): u is the dominant wind in this situation;

– the XCO2 field input permutation seems to have a lesser impact for the CNN targetting Turow (12.6% in absolute relative

error degradation comparing to 18.3 and 19.6% for Lippendorf and Boxberg);455

– the importance of the XCO2 feature differs for models with different inputs: specifically, the XCO2 feature importance

increases when additional data are used. For example, the XCO2 feature permutation degrades the performance of the

model by 32.7% when NO2 is used, and by 18.3% when no additional input is used. This observation is consistent

with the overfitting tendency of the CNN models when trained with NO2 fields. When confronted with inconsistent

data (non-corresponding XCO2 and NO2 fields), the acquired complex features of the model exhibit a total absence of460

correspondence with these inputs. As a consequence, the model predicts nonsensical emissions;

– the wind inputs systematically hold greater importance in the model without additional input, followed by a relatively di-

minished importance in the model with segmentation fields, and finally, it exhibits the least significance in the model with
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NO2 fields. This suggests that the inclusion of NO2 fields is more advantageous for inversion compared to segmentation

fields. Furthermore, it indicates that the winds compensate the absence of additional data.465

6 Discussions and limitations

The approach developed in this paper carries certain limitations: firstly, it focuses exclusively on European PPs, which questions

its generalisability to PPs in other regions with different climatic conditions. Secondly, the study emphasises the importance of a

balanced dataset, as highlighted by the section 5.2.2, and the need to be able to identify and address potential overfitting issues.

It should also be noted that the study did not specifically investigate outliers such as PPs with exceptionally high emission470

rates. Despite incorporating plume scaling strategies, the model may struggle to generalise to such outliers.
:
A
::::
last

::::::::
limitation

::
is

::
the

:::::::
absence

:::
of

:::::::::::
zero-emission

::::::
source

::
in

:::
the

:::::::
dataset.

::::::::
However,

:::
the

::::::::
inclusion

::
in

:::
the

:::::::
training

::::::
dataset

::
of

::::
very

::::
low

:::::::
emission

::::::
power

:::::
plants

:::
and

::
of

::
a
:::::
plume

::::::
scaling

::::::::
approach

:::::::::
generating

::::::::
near-zero

::::::::
emission

::::::
plumes

::::::::
indicates

:::
that

:::::::::::
incorporating

::::
zero

::::::::
emission

:::::
cases

:::::
would

:::::
likely

:::
not

::::::::
markedly

::::::
change

:::
the

:::::::::
outcomes.

In terms of future research, several areas should be explored such as the challenge posed by clouds. In this respect, CNNs475

can be trained to ignore missing data caused by cloud cover and to make effective use of the available data. Another aspect

to consider is the presence of noise in CO2M data. While Gaussian noise may not pose significant issues, if the satellite

noise exhibits structured patterns, it would becomes crucial to develop robust noise modelling techniques to enable CNNs

to accurately distinguish and remove such noise. Finally
::::::::::
Furthermore, in real-world applications, models trained on synthetic

datasets may face challenges when applied to real datasets due to differences in data distribution. Strategies such as importance480

weighting, specific data augmentation techniques, transfer learning, or active learning methods may be necessary to account

for these differences and ensure reliable performance
:
.
::::::
Finally,

:::
the

:::::::
method

:::::
could

::
be

::::::::
modified

::
to

::::::
extract

:::::
CO2

::::::::
emissions

:::::
from

:::::
plume

::::::::
imagery

::
at

:::::
more

::::::
detailed

::::::
scales,

:::::::::::
necessitating

:::
the

:::
use

::
of

:::::::::::::::
resource-intensive

::::::::::
Large-Eddy

::::::::::
Simulation

:::::
(LES)

::::::
models.

7 Conclusions and perspectives

The future availability of CO2 satellite imagery, through missions such as the Copernicus CO2 Monitoring (CO2M) mission,485

heralds new opportunities and challenges for the evaluation of local CO2 emissions. Emissions can certainly be retrieved from

CO2 plumes of hotspots in the satellite images. But the emission estimation is hindered by two primary obstacles: low signal-

to-noise ratio plumes which cannot be extracted straightforwardly from the background, and uncertainties in the transport or

dispersion processes which hampers the assessment of the emissions from the plumes.

In this work, we assess the ability of Convolutional Neural Networks (CNNs) to invert a plume from satellite imagery using490

simulated XCO2, NO2, and wind fields with similar characteristics to the future CO2M images. The fields used to train and

evaluate the CNNs are based on the SMARTCARB dataset and possess the same resolution, satellite noise level and ancillary

data availability to the future CO2M images. Each synthetic XCO2 image encompasses the anthropogenic plume from at least

one power plant, a background arising from other biogenic and anthropogenic fluxes, and a random Gaussian noise intended
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to simulate the errors inherent in satellite instruments. But the model evaluation was conducted using simulated data. This495

approach does not account for all the challenges that real satellite images present, specifically issues related to cloud cover and

systematic error patterns due to surface reflectance and the aerosol dependency of retrievals.

Our source emission estimation model is an image-to-scalar CNN model, which infers from the full XCO2 field a flux rate,

estimation of the anthropogenic emission corresponding to the plume. The first layers of the model consist of preprocessing

steps which transform the input data at training time, in particular by adding noise and by scaling the plume and emission rate.500

The core model is a CNN composed of approximately 200,000 neurons divided into convolutional, max pooling, dropout and

batch normalisation layers.

We highly suggest that the design of a "universal" CNN, trained on a small power plant subset and highly accurate on all of

them, is possible. To do so, we evaluate the model’s ability to generalise to unobserved images from another region. Explicitly,

three CNN models trained on different datasets but sharing the exact same structure (hyperparametrisation, architecture, ...)505

are tested on plumes from three sources: Boxberg, Lippendorf and Turow. The training/validation dataset for each CNN is

restricted to a dataset consisting of all other power plants except their target. The CNNs are highly accurate in each case and

the addition of NO2 fields often improves the results slightly. Precisely, the median absolute relative errors for the CNN models

are on average close to 20–25%. Moreover, the median absolute error is generally half that obtained with the CSF method: an

alternative and state of the art inversion approach. This highly suggests that it is possible to build a universal neural network510

(which can generalise to all targets) using this methodology.

By using interpretability tools, we demonstrate that the predictions made by the CNNs are grounded in the physically

meaningful components of the features. The Integrated Gradient method shows that the CNNs learn to predict the emissions

corresponding to a plume from the pixels making up the plume. The feature permutation technique highlighted several aspects

of the models, such as the expected high importance of the XCO2 fields compared to the used ancillary data.515

Future prospects of the CNN plume inversion method from satellite images encompass the challenges of clouds, cities and

real satellite images. Concretely, the method should be able to handle missing data caused by clouds. Additionally, the CNN

approach should incorporate the second important category of hotspots: cities. Finally, the method should be tested on real

satellite data once it becomes available.
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