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In the following, the referees comments are in italics and in blue.

Report 1
We would like to thank Evan D. Sherwin for the constructive comments and suggestions, which allowed us to clarify several

points in the manuscript.

This paper uses simulated power plant emissions data, generated via the COSMO-GHG model as part of the SMARTCARB

project, to simulate carbon dioxide and nitrogen dioxide retrieval via the Copernicus CO2 Monitoring (CO2M) satellite.

Developing algorithms for the CO2M satellite is valuable, as the satellite itself will not launch until 2026, limiting possibilities

for algorithm development using non-simulated data. The authors focus on the task of quantification, rather than detection,

of CO2 emissions from power plants with a known location. The type of power plant is not specified, but presumably they use

coal or natural gas.

We have added "coal-fired" adjective in the dataset presentation section.

The authors use simulated data from eight power plants, as well as the city of Berlin as the basis for their CO2 quantification

efforts, based primarily on a convolutional neural network (CNN) machine learning approach. For each of three selected power

plants (Lippendorf, Turow, and Boxberg), the authors train and validate a bespoke version of their CNN model on all power

plants but the selected one, which is used as a test dataset. The authors compare quantification error metrics for the baseline

CNN with two alternate CNN specifications including the NO2 field and a segmentation map, respectively, as well as with what

the authors claim is a standard application of a cross-sectional flux method. The authors apply two interpretability analyses

based on analysis of pixel gradients and feature permutation. The results suggest that the CNN is indeed primarily focusing on

CO2 emissions from the desired power plant. While acknowledging some of the limitations associated with this simulated data

approach, the authors conclude that a CNN-based approach is promising for CO2 quantification with the CO2M satellite once
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it launches. This paper is a valuable exercise and indeed provides suggestive evidence that a computer vision-based approach

such as a CNN can be valuable in CO2 quantification with satellites such as CO2M. However, the approach employed in this

paper has several limitations that should be more clearly addressed before it is published.

Thank you for this accurate summary.

Detailed comments:

– 1. The train/validation/test approach taken by the authors does not include a true test set. In standard machine learning,

a model is trained and all aspects (including network architecture and hyperparameters) are validated and finalized

before any version of the model sees the test set. In the approach employed by the authors, a version of the model is

trained and validated on all but the selected power plant, and is then tested on that power plant. However, the fact that

this process is repeated at least three times means that any hyperparameter tuning that takes place for the model for the

first power plant will translate over to all subsequent models. The authors should clearly acknowledge this limitation

and clarify that future work with truly held-out test sets is needed to validate the true performance of such models.

The experiments are independent: no initial experiment on a power plant provided implicit information for subsequent

hyperparameter tuning (like learning rate adjustments) or neural network parameter configurations in other experiments.

Furthermore, note that our strategy has involved little to no hyperparameter tuning or validation selection (as we use

a rather simple CNN, and ensembling was used instead of a selection between several trained models based on the

validation dataset).

– 1. On a related note, it would be valuable to more clearly situate this work in the computer vision remote sensing

literature. This is a huge field, one of the most active at the intersection of climate change and AI. How has this work

learned from the prior body of accumulated knowledge in this field? What is new in this particular paper? Are there

methodological innovations, or does the novelty come solely from the application to CO2M-like data?

We have added citations to two earlier works including the ones of (Lary et al., 2016; Finch et al., 2021; Jongaramrun-

gruang et al., 2021; Joyce et al., 2023) which are particularly relevant. About the novelty of our work in regard to the

existing literature, the reviewer commented that computer vision in remote sensing is an incredibly active field, with an

abundance of research making it difficult to be fully aware of all existing works. To our knowledge, a critical method-

ological innovation of this paper was the choice of the preprocessing layers. The application on CO2M-like data also

introduces a number of novel aspects. CO2 data is inherently challenging due to its high noise levels and highly vari-

able plume shapes. Additionally, the incorporation of NO2 data, which is not fully correlated with CO2, and the use of

poorly-resolved wind data, add new dimensions to the study.

– 2. The authors train a new, bespoke model for each of the three power plants they focus on in this study. In some cases,

they even alter the training dataset to only include other power plants that have emissions similar in magnitude to what

they know emissions from the test power plant are. Furthermore, it appears that the test power plant is always in the

centre of the scene. Are the authors proposing that a new CNN be trained for every potential CO2 source targeted by
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CO2M? This seems very inefficient and prone to overfitting. It should be possible to train a generalizable model that

both detects and quantifies CO2 emissions at a wide variety of sites. If the authors think this is not the case, they should

state this very clearly and explain the rationale for source-specific models, including how they plan to get true emission

rate values for all sources for which they plan to train a model.

As indicated in the paper (and now reiterated as this is a key point), we do not propose to train a new CNN for every

potential CO2 source. The proposition of this paper is to train a single CNN model that would be capable of handling

all future power plants. This is a methodological paper and what we propose is an "architectural framework" (method +

architecture) rather than a ready-to-be-used model. Specifically, our results indicate that the architectural framework is

sound. For any given target power plant, we can train a model using the remaining power plants and obtain approximately

a ∼ 20% relative error on the target, validating the efficacy of our approach. This serves as strong evidence supporting

the architectural framework: if a model trained on 7 power plants can yield accurate results for the eighth (which is

unseen), it is highly probable that this model or a model trained on all 8 power plants would likely be accurate for new,

unseen power plants.

Our approach is reminiscent of cross-validation techniques. We employ the same methodology, which includes the same

CNN model with identical preprocessing layers and hyperparameters, across 9 different scenarios (3 target power plants

multiplied by 3 different sets of inputs). In 7 out of these 9 cases, the methodology delivers excellent results without the

need for additional tuning. However, in 2 out of the 9 scenarios—specifically when using NO2 or segmentation fields

combined with Boxberg—the results were less accurate (but still good and comparable to those of the CSF technique).

We traced this to an issue with dataset balance. By removing certain power plants from the training set to achieve better

balance in terms of emissions, we were able to improve the performance, thereby indicating that overfitting was the

culprit.

Given the importance of this issue, we have expanded the discussion about it in the "Geographical Separation..." section

as well as in the conclusion.

– 2. Many power plants in the United States and I think across Europe have continuous emissions monitoring systems that

provide ground-truth data. See Cusworth et al. 2021 for more detail. The main value provided by CO2 remote sensing is

for CO2 sources that do not have this sort of ground truth.

We think our paper is consistent with the Copernicus’s proposed service to "offer observation-based information to make

the assessments more comprehensive and consistent worldwide."

https://climate.copernicus.eu/european-unions-copernicus-programme-planning-monitoring-capacity-anthropogenic-co2-emissions.

One of the objectives of CO2M is to provide independent and consistent estimations, including power plants with ground-

truth data.

– 3. The authors acknowledge this to a certain extent, but the structure of the simulated data are likely quite different from

true CO2 emissions data. True background noise in greenhouse gas remote sensing is generally not purely Gaussian,
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but includes significant surface artifacts due to highly reflective/absorptive surface features, as illustrated in Zhang et

al. 2023. A model trained only on simulated Gaussian noise may experience difficulty when given more realistic data.

This paper is about methodological development/exploratory work and is not about the construction of a ready-to-be-

used model. It needs to be adapted to be used on real images, as several challenges have not be assessed. This is stated

in the Discussions part of the paper: "In terms of future research, several areas should be explored such as the challenge

posed by clouds. In this respect, CNNs can be trained to ignore missing data caused by cloud cover and to make effective

use of the available data. Another aspect to consider is the presence of noise in CO2M data. While Gaussian noise

may not pose significant issues, if the satellite noise exhibits structured patterns, it would becomes crucial to develop

robust noise modelling techniques to enable CNNs to accurately distinguish and remove such noise. Finally, in real-world

applications, training on synthetic datasets and applying the trained models to real datasets may encounter distributional

differences. Strategies such as importance weighting, specific data augmentation techniques, transfer learning, or active

learning methods may be necessary to account for these differences and ensure reliable performance." Following your

comment, we have added one more mention of systematic error retrieval in the introduction.

– 3. Probably more importantly, the authors use simulated wind data from ERA-5 that appears to be much more uniform

and less turbulent than true wind fields. All the plumes shown in this paper appear to be more or less Gaussian, with a

little variability in direction (presumably caused by slow changes in wind speed over time).

The training dataset was generated from high-resolution CO2 simulations with the COSMO-GHG numerical weather

prediction model at 1 km resolution (Kuhlmann et al., 2019), which has been shown to realistically capture turbulent

plume structures in a recent validation study with measurements (Brunner et al., 2023). It should be noted that at 1-

km resolution (CO2M resolution is 2 km), plumes show less turbulent structures than at <100-m as seen in many CH4

measurements (e.g., Joyce et al. (2023)). Nonetheless, many plumes that are assessed by the CNNs do not follow neat

Gaussian plume-style dispersion. Figure 2 in the new version of the manuscript is showing a variety of plumes in terms

of shape. Furthermore, in our previous paper (Dumont Le Brazidec et al., 2022), more plumes illustrations can be found,

many of them not following Gaussian plume-style dispersion (see in particular Fig. 7).

– 4. This raises the related question of limited references to the previous literature in CO2/greenhouse gas remote sens-

ing. CO2M will not be the first CO2 remote sensing instrument. For example, Cusworth et al. 2021 use the PRISMA

satellite and the AVIRIS-NG aircraft (based on a spectrometer very similar to the upcoming Carbon Mapper satellite

constellation) to detect CO2 emissions from power plants. As you can see from the emissions detected in this paper, they

are not really following neat Gaussian plume-style dispersion. More accurately capturing realistic emission shapes will

likely require large-eddy simulation, e.g. the approach employed in Gorroño et al. 2023 in the context of satellite-based

methane sensing.

The pixel size in our images is 2km, which is significantly different from the resolutions used in studies like those by

Cusworth et al. 2021 or Gorroño et al. 2023. This accounts for the discrepancies between the characteristics of the plumes

observed in our work (which are not gaussian) and those described in the mentioned studies. Large Eddy Simulation
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(LES) is generally most beneficial for resolving small-scale, turbulent flow structures. In atmospheric sciences or fluid

dynamics, it is often used for very high-resolution simulations, often finer than 100 meters. LES seem much more adapted

in the case of resolutions such as the one of Cusworth et al. 2021 than in our case (Brunner et al., 2023). With a 2km

pixel size, other forms of turbulence modelling are usually adopted.

Length scales have been added on all images.

– 4. The paper mentions the OCO-2 and OCO-3 satellites as already doing CO2 monitoring, but does not include a clear

assessment of their CO2 quantification capabilities. How much of an advance would we expect CO2M to be?

It would also be valuable to situate this work in the context of other remote sensing-based GHG monitoring initia-

tives, such as Climate TRACE 3. GHGSat also has targeted CO2 detection capabilities: https://www.ghgsat.com/en/

newsroom/ghgsat-to-launch-worlds-first-commercial-co2-satellite/

CO2M is designed to provide more comprehensive plume imagery than either OCO-2 or OCO-3. Therefore, it should,

in principle, allow for more accurate estimations. This point has been explored in (Danjou, 2022). Our methodology

specifically relies on the type of imagery that CO2M will provide, which is not available from OCO-2 or OCO-3.

Consequently, applying our convolutional neural network (CNN) approach to the limited data from OCO-2 or OCO-3

(even SAM) would not be appropriate. Some researchers have worked with OCO-2 and OCO-3 data using CSF methods

or Gaussian plume models (Nassar et al., 2022). Notably, our work demonstrates that, even on somewhat idealised

images, our approach outperforms methods like CSF. The target of OCO-2 is more on natural sources and sinks https:

//ig3is.wmo.int/en/outcomes/publications/oco-3-mission-overview-science-objectives-and-status while the emphasis of

CO2M is on anthropogenic emissions, particularly from point sources like cities and power plants.

Our primary focus in this manuscript is on the CO2M satellite, which remains the leading mission for the scales of

interest in our study. While there are numerous other projects and initiatives, including private ones, they often focus

on very high-resolution data over small image areas, such as GHGSat. These are not directly comparable to the scales

we are examining with CO2M. As for Climate TRACE 3, we found it challenging to understand their methods based

on the available information, making it difficult to draw direct comparisons. However, it’s worth noting that our general

approach could potentially be adapted for finer scales. To do so would require training the model with Large-Eddy

Simulation (LES) models, which would be computationally expensive. This could necessitate a reduction in the number

of simulated cases to manage computational costs.

– 5. It is difficult to tell how the cross-sectional flux algorithm was implemented and how representative it is of the current

standard of practice in the field. Please explain this more clearly, including any ways in which your implementation

differs from current standard practice for this method.

We have revised the manuscript now stating that the CSF method is one of several state-of-the-art techniques that have

been recently benchmarked with synthetic CO2M data. The CSF shows similar accuracy than other methods such as

Gaussian plume inversion and the light-cross sectional flux method. CSF should therefore be representative for current
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standard practice. We have some more details in Section 4.4 describing the CSF method. The implementation is the same

as in (Kuhlmann et al., 2020, 2021).

– 6. What do your error metrics mean? Figure 6 and similar figures have no negative values. Are these simply reporting

error magnitudes, or are there no underestimates? Absolute value of % error is not a very informative metric here, as an

error -99% is quite different than an error of +99%. It would be better to include negative values in error distributions.

It would also be useful to compare error metrics to errors achieved in past studies, e.g. Cusworth et al. 2021 and Zhang

et al. 2023. It might also be valuable to compare your error metrics with those achieved in satellite-based remote sensing

of methane, e.g. Sherwin et al. 2023, but this is not necessary.

Error metrics are relative and absolute errors:

Relative Error =
|Prediction−True Value|

True Value
(1)

Absolute Error = |Prediction−True Value| (2)

Following your comment, the absolute component of the relative error has been removed in figures to provide a more

insightful metric on the model’s tendency to overestimate or underestimate the true value.

About comparisons with errors achieved in past studies, this has been done with the studies of (Kuhlmann et al.,

2020, 2021). Beyond these studies, I think comparing error metrics would be misleading: errors can change radically

with the dataset considered. Specifically, in our case, in an other study (not yet submitted) performed by two of the

co-authors of this paper, the relative error achieved with the cross-sectional fluxes methods was found to be between

26 and 35 %. In this paper, it is found to be close to 40 %. In both cases, the same cross-sectional fluxes method and

implementation was used, but a slightly different dataset was used (images from 24-hour per day were used here, while

the other study only uses images at CO2M overpass) and caused this ∼ 10% difference.

– 7. This study does not appear to include many/any zeroes (instances with zero CO2 flux from the target source). This

is a significant limitation and its implications should be discussed in more detail. While this study does not focus on

detection, it is presumably still possible to have a false positive (i.e. to estimate nonzero emissions when the power plant

is not emitting). This issue is related to the question of class imbalance that the authors note. Class imbalance is very

common in computer vision, and a balanced training dataset is not always possible, especially for models aiming to

detect/quantify features of multiple sizes. Enforcing an artificially balanced dataset could easily lead to this type of effect

if one is not careful. To help clarify these points, I recommend including more detailed summary statistics and/or full

time series trend plots of power plant emission rates in the supplementary information. Furthermore, re-training the

Boxberg model on a more representative training dataset (presumably after the main Boxberg model had already seen

the test data) means that this latter model in particular really does not have a test set in the true sense of the word. This
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highlights the exploratory nature of this work, which is still valuable, but requires additional testing on independent data

to claim external validity.

This study does not include zeroes but it includes very low emission power plants (from 3 to 40 Mt/yr). Furthermore,

plumes from training images are multiplied by a factor of 0.25 to 2 (plume scaling) so technically, the CNN is trained

on plumes corresponding to emissions of 0.25×3 = 0.75Mt/yr which is very close to 0. Therefore, including zero cases

is not expected to change our conclusions.

Additionally, CO2M provides an easy indicator for whether a power plant is emitting or not, through local anomalies in

NO2 levels. This can serve as a binary switch for activating or not activating the inversion algorithm. Our segmentation

algorithm also supports this approach. While the study does not focus on detection per se, the presence of local NO2

anomalies and our segmentation algorithm can help mitigate the risk of false positives, i.e., estimating non-zero emissions

when the power plant is not emitting.

Following your comment, plots of the PPs emission rates have been added in the supplementary information.

Smaller comments:

– For simulated satellite images, please include a length scale in kilometers or other appropriate units of distance.

A length scale in kilometers has been added on Figures 1, 2, 3, 4, 5 (simulated satellite images).

– Why are hourly emission rates reported in MtCO2/yr instead of an hourly unit?

The unit MtCO2/yr was the one used in the SMARTCARB dataset. We continued to use it for the sake of practicality.

– Figure 2: Are the results shown here from training, test, or validation data? Suggest “Targetted” -> “Targeted”

These results are from the test dataset.

– L183: When the model takes 4-5 images as input, are these representative of 4-5 separate satellite overpasses? If so, are

they from different simulated times (presumably with different emission rates in each)? This should be clarified.

The 3 to 4 images (not 4 to 5: this was an error that has been corrected) correspond to the XCO2 field and ancillary data

such as the winds. We have added details on this in the manuscript.

– L287: What is the meaning of the “Precisely” in “Precisely, the segmentation model does not discriminate between

plume pixels with high amplitude and those with low amplitude.”

"Precisely" is used in a similar sense to "In other words" to emphasise the last part of the previous sentence: "is due to

the segmentation model not capturing NO2 or CO2 plume amplitude variations."

– The results section would be easier to read with a single multi-panel figure for the three power plants side by side,

and with one big table instead of one for each power plant. The surrounding text could also be consolidated to be less

repetitive.
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We have reorganised the manuscript following your comment. Now section 5.1 is about the model performances, 5.2 is

about the two "investigations" (effect of segmentation/NO2 fields, and then overfitting). Thank you, this is indeed better

organised now.

– Figure 10: Why does only Boxberg have a residual density plot? Why does this plot have negative residuals when none

of the other density plots do?

Figure 10 was included as part of the overfitting investigation on Boxberg specifically. This is why it was not shown for

Turow/Lippendorf cases. More generally, we have now modified the plot of the relative errors to not be absolute but to

show the negative/positive values.

– In the overfitting section, please include citations about overfitting in ML remote sensing models to support your points

here.

We do not know of an other remote sensing model paper that would be relevant to cite in this section. The reasons why

we specify overfitting as the problem here is not linked to remote sensing, satellite data: rather, it is the evolution of

the relative errors during training that show us that there is overfitting. We have added a reference to a very good deep

learning book (https://d2l.ai/index.html) that tackles overfitting issues.

– Figure 11: Please include a sentence in the figure caption explaining how it suggests overfitting (presumably the fact that

validation error decreases monotonically with number of epochs, while test error does not). Also, make sure to explain

what “None”, “Segmentation”, and “NO2” mean in the figure caption. Also, why are there epochs for the test set? Were

the authors applying archived versions of the model from each epoch to the test dataset and computing error?

We have added a note in the caption to consider your comments. " Three models are considered: each is trained with

the XCO2 field and the winds as inputs. Two of the models additionally assimilate the NO2 field or the predictions of the

segmentation model. The validation error decreases monotonically with the number of epochs, while the test error does

not, which suggests overfitting of the model."

We do not keep archived versions of the model. The epoch/error graph in this investigation section has been drawn from

a new training of the same model: at each epoch, the model was evaluated on the validation and the test dataset. This was

done for investigations purposes (why the original model proposed was not performing well on Boxberg) on overfitting.

Given that the architectural framework was adjusted based on the overfitting investigation, this new model needs further

validation using an entirely unseen dataset.

– L360: If you do not include a result in the paper (or at least in the supporting information), then it is best not to reference

it in the paper.

We have removed this result from the paper.

– Not really clear to me whether there is improvement on the overfitting front around Figure 12. I may be missing some-

thing. Where are the results that suggest this?
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We have added the following sentence in the "overfitting investigations" section, to clarify:

"For example, the median relative error for the CNN with NO2 as additional input is 23.8%, comparing to 36.9% in

section ..."

– When were hyperparameter values set? Before or after any of the models saw test data?

In section "5.1 Inversion of plumes performance", the choice of the hyperparameters such as learning rate etc has not been

tuned based on the test data. In section "5.2.2 Overfitting investigation", the plume scaling hyperparameter specifically as

well as the choice of the training dataset was set after seeing test data, as we were investigating why we had overfitting.

It is therefore true that this section is purely exploratory.

– Figure 13: The gradient method shows that the model exclusively focuses on the plume in the centre of the image. This

seems like a sign that the model was able to pick up on structured elements of the data it is given, which will not

necessarily be present in real satellite data.

We are not sure to understand or to agree. The plume of interest (the one linked to the target emissions) is always located

in the centre of the image. And the model is able to "pick up" the right plume. The model implicitly understands that the

plume of interest is the one in the centre of the image. It means that the model successfully understands the relationship

between the plume and the targeted emissions. In the case of real images, we can also place the PP in the centre of the

image, and if necessary fill in the pixels in the resulting image not measured by the satellite as NaNs values.

– Table 6: Please explain in the figure caption what “Seg.” Means. What are the units of numbers in this table? Are these

percent error? What do the colors mean? Simply saying in the caption that the colors will be discussed later is fairly

confusing to the reader. Please explain in the figure caption what “Fourth feature” means.

Seg. is for segmentation. (added in the manuscript). The errors are percent errors (the "degradation in relative error"

precisely). We have deleted the colouring as it is forbidden in GMD. Fourth feature has been replaced by "Additional

input" and an explanation has been added in the manuscript.

– In the feature permutation analysis section, please include citations to other studies that do this, or to the method itself.

To what extent are the hypotheses listed here supported by the analysis in this paper? How were the colors chosen? Was

this arbitrary, or was there a clear method developed in advance of the analysis? Have previous papers done this sort of

color-based analysis before?

A citation to a book describing the feature permutation method has been added in the beginning of the section. The

following sentence has also been added "As input variables used here are not independent, the interpretation of the

following permutation analysis should be taken with caution."

About the colors, these are simply used to clarify the analysis of the table. This was confusing, in any case there seems

to be rules in GMD to not allow colouring in tables so we changed.
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– The point about clouds is worth highlighting further. I recommend including some summary statistics of cloudiness in

Germany, e.g. from https://earthobservatory.nasa.gov/global-maps/MODAL2_M_CLD_FR.

Clouds are mentioned several times in the conclusion:

– "This approach does not account for all the challenges that real satellite images present, specifically issues related

to cloud cover and systematic error patterns due to surface reflectance and the aerosol dependency of retrievals."

– "Future prospects of the CNN plume inversion method from satellite images encompass the challenges of clouds,

cities and real satellite images. Concretely, the method should be able to handle missing data caused by clouds. "

We prefer not to include statistics of cloudiness in Germany, as the paper is more methodological than on Germany in

particular. Furthermore, we do not tackle the challenge of clouds in this paper. However, it should be noted that the

SMARTCARB dataset used in this paper includes realistic cloud fraction fields at 1 km model resolution.

– L459: Suggest “oppurtunities” -> “opportunities”

Thank you, this typo has been missed.

– L476: “We demonstrated that the design of a "universal" CNN, trained on a small power plant subset and highly accurate

on all of them, is possible.” Unless I am missing something, this paper does not do this. As I understand it, the authors

train one CNN per target power plant, using other power plants as training and validation data. They appear to use

the same network architecture in each case, but these plant-specific models are definitely not a “universal” CNN that is

highly accurate on all of them Also, it looks like these bespoke models have significant difficulty if the training dataset

includes lower-emitting power plants but the test dataset is a higher-emitting power plant.

This is a methodological paper and what we propose is an architectural framework rather than a ready-to-be-used model.

Specifically, we show that the method/architecture is right since for whatever the target power plant is, we can train

a model on the remaining power plants and then achieve a ∼ 20% relative error on the target power plant. This is an

argument in favour of the architectural framework: if a model trained on 7 power plants can achieve accurate results on

the eighth, then the model trained on all 8 power plants would likely achieve accurate results on new power plants. As it

is not a definite proof, we have changed the wording in the conclusion for "highly suggest that ..."

About the second part of your comment: we train in total 9 models (3 for each target power plant, and 3 different sets of

inputs). Of these 9 models,

– 7 achieve very accurate results with our methodology;

– 2 achieve less accurate results.

Two things should be noted:
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– all the models with only XCO2 and winds achieve accurate results. Only models with additional input are achieving

less accurate results on Boxberg. This means that the methodology without additional input has proven successful

on all power plants;

– in the case of Boxberg, the dataset was significantly unbalanced with a ratio of 5 (lower emission PPs than Boxberg)

to 1 (higher emission PP than Boxberg). It was a particularly extreme case.

– L488: “The training dataset for each CNN is restricted to a dataset conswisting of all other power plants except their

target.” You mean the training and validation datasets, right?

Yes this is what we meant. We have modified the sentence as "The training/validation dataset for each CNN is restricted

to a dataset consisting of all power plants except their target." for clarity. Thank you.

– What does the terrain around the power plants look like? Would be good to include satellite images of the three test

power plants studied in the main text (together with their surrounding scenes), perhaps including images of the rest of

the plants in the SI.

Kuhlmann et al. (2019, 2020, 2021) describe these synthetic satellite observations in depth and provide numerous addi-

tional details.

– Would be good to have numbers in the abstract, e.g. the error profile of the best-performing method

This is a very good idea. We have added "and a relative error of 20% when only the XCO2 and wind fields are used as

inputs." in the abstract. Thank you for the suggestion.

Many thanks to this reviewer for his time and long, complete, and precise review of our work. It allowed to highlight several

points of this paper that were probably unclear in the current state and we think it really improves the overall clarity. We have

added a note of thanks in the acknowledgments section of the paper.
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