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Abstract. Wildfires are becoming an increasing challenge to the sustainability of boreal peatland (BP) ecosystems and can 

alter the stability of boreal carbon storage. However, a quantitative understanding of natural and anthropogenic influences on 

the changes in BP fires remains elusive. Here, we quantified the predictability of BP fires and their primary controlling 

factors from 1997 to 2016 using a two-step correcting machine learning (ML) framework that combines multiple ML 15 

classifiers, regression models, and an error-correcting technique. We found that (1) the adopted oversampling algorithm 

effectively addressed the unbalanced data and improved the recall rate by 26.88%–48.62% when using multiple datasets, and 

the error correcting technique tackled the overestimation of fire sizes during fire seasons, (2) non-parametric models 

outperformed parametric models in predicting fire occurrences, and the machine learning model of Random Forest 

performed the best with the area under the Receiver Operating Characteristic curve ranging from 0.83 to 0.93 across multiple 20 

fire data sets, and (3) four sets of factor-control simulations consistently indicated the dominant role of temperature, air 

dryness, and climate extreme (i.e., frost) for boreal peatland fires, overriding the effects of precipitation, wind speed, and 

human activities. Our findings demonstrate the efficiency and accuracy of ML techniques in BP fire prediction and 

disentangle the primary factors determining BP fires, which are critical for predicting future fire risks under climate change. 

1 Introduction 25 

The carbon-rich boreal peatlands (BPs) cover only ~2% of the Earth’s surface (Gorham, 1991) but have accumulated ~20%–

40% (450 ± 150 PgC) of the global soil carbon, historically playing a net cooling effect on the global radiation balance 

(Hugelius et al., 2020; Page and Hooijer, 2016; Scharlemann et al., 2014). This major land carbon pool, however, is highly 

vulnerable to current global warming, which tends to induce carbon emissions into the atmosphere through increasing 

decomposition of peat soil organic matter and fire combustions (Turetsky et al., 2014). In particular, BP fire regimes have 30 
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been undergoing pronounced changes over recent decades in terms of fire extent, frequency, and duration (Field and 

Raupach, 2004; Kelly et al., 2013). In BPs, there are two types of wildfires—surface flaming and underground 

smouldering—that can transition from one to the other at different phases. It is noteworthy that compared to flaming 

combustion, smouldering combustion is easier to ignite, harder to suppress, more persistent in low temperature and high 

moisture peat (Huang and Rein, 2019). Besides releasing CO2, smouldering produces more CO, CH4, smokes, and even 35 

gaseous mercury (Haynes et al., 2017; Urbanski et al., 2008), altering global carbon balance and threatening public health 

(Liu et al., 2015; Reid et al., 2016). Yet smouldering combustion remains poorly understood, despite recent efforts on using 

experimental, statistical, and computational tools to investigate smouldering ignition, spread, extinction, fuel types, burning 

depth, and emission estimation (Che Azmi et al., 2021; French et al., 2004; Rein and Huang, 2021). As a consequence, 

smouldering is not fully characterized in prevalent wildfire physical models (Rabin et al., 2017), although peatland fires are 40 

thought to be modulated by heat transfer and water content (Frandsen, 1997; Ohlemiller, 1985). Without an improved 

understanding of smouldering fires, therefore, our current understanding of BP fires and their predictability are still very 

limited, hampering the peat fire hazard mitigation and firefighting.  

Most studies ascribe the ignition and propagation of flaming fires to the joint impact of heat source, fire-favor climate, fuel, 

and anthropogenic factors. Flameless smouldering peatland fires are not an exception although upland flaming fires and 45 

underground smouldering in BPs are fundamentally different in their chemical and physical aspects (Certini, 2014; 

Costafreda-Aumedes et al., 2017; Rabin et al., 2017). However, compared to our understanding of flaming fires and their 

drivers and burning processes (Rothermel, 1972), we still know very little about key factors controlling smouldering fires. 

Importantly, Yuan et al. (2021) suggested that the smouldering process is a series of exothermic and often nonlinear events 

that include three key steps: biological reaction, chemical oxidative reaction, and drying. However, quantifying the 50 

exothermic process is not easy. For example, experiments using phospholipid fatty acid (PLFA)-based microorganism 

revealed that peat self-heating reactions (soil respiration and microorganism growth) could happen at temperatures as low as 

25–55 oC (Ranneklev and Bååth, 2003), while temperature could reach 500–700 oC during smouldering (Hurley et al., 2015). 

The dramatic changes in micro process of smouldering reactions consequently bring difficulties and uncertainties in 

measuring parameters for physical models. Furthermore, without a clear understanding of nonlinear interactions of climate, 55 

heat transformation and fire, the use of traditional bottom-up statistic models can be clueless.  

Rather than traditional linear models, more complicated process-based physical models and data-driven statistical models—

including machine learning (ML) techniques—have been extensively used to explore the environmental determinants and 

predictability of peat wildfires (Bedia et al., 2014; Burgan and Rothermel, 1984; Castelli et al., 2015). Process-based fire 

models are primarily based on well-established mathematical or physical laws that can describe fire processes, but these 60 

models may struggle with uncertain initiation and boundary conditions, and model parameters (Hantson et al., 2016). 

According to the Fire Modelling Intercomparison Project (Rabin et al., 2017), most fire schemes in current land surface 

models focus on forest fire occurrence, spread, distinction, and associated impact assessment. Only few models (e.g., the 

Community Land Model [Li et al., 2013; Rabin et al., 2017]) explicitly characterize peatland fire impacts with constrains 
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from climate (e.g., BP wetness and tropical dryness), peat fraction, water table depth, and grid cell area (Li et al., 2013). 65 

Substantial gaps in the knowledges and understanding of peat fire combustions, the solution of the primal and inverse 

problems, and the unavailable large scale peat soil and peat burning characteristic data are still obstacles in building the peat 

fire combustion theory and parameterizing peat fire in process-based models (Grishin et al., 2009). Unlike general statistic 

models which require assumptions and unlike physical models which are supported by physical mechanisms, ML models 

require very few assumptions and can achieve high performance in solving nonlinear fitting and predictions (Jain et al., 70 

2020). These benefits have stirred the application of a broad range of ML algorithms in wildfire science research, such as fire 

detection, fire weather exploration, fire behaviour prediction, fire impacts evaluation, and fire management (Jain et al., 

2020). ML algorithms are not only used to attribute the primary causes of fires (Yu et al., 2020) but also applied to model 

evaluation and diagnosis (Forkel et al., 2019). However, the majority of ML research focuses on forest fires, and just a small 

number of recent studies have used ML in the study of BP fires. For example, Rudiyanto et al. (2018) applied artificial 75 

intelligence in peatland monitoring and mapping with the support of remote sensing data, while some others investigated 

peat fire risk prediction and attribution with different ML methods (Bali et al., 2021; Horton et al., 2021; Rosadi et al., 2020). 

However, it is noteworthy that the recall or precision rate of peat fires was typically low in these ML studies, despite 

generally high (>70%) prediction accuracies (Bali et al., 2021; Horton et al., 2021; Rosadi et al., 2020). These low recall or 

precision rates (i.e., high Type I and Type II errors) are likely caused by unbalanced fire data, which also indicated that 80 

predicting severely unbalanced fire by single models could be still full of challenges, and further studies are needed to deal 

with such commission and omission problems and to improve the predictability of peat fires.  

For that reason, by collating and harmonizing monthly climate-, vegetation-, soil-, and human-related variables from 1997 to 

2015, we created a two-step ML framework with various ML classification and regression techniques to evaluate the model 

reproducibility and predictability on severely skewed fire data, and a series of sensitivity tests were performed on each of 85 

multiple fire data sets to address possible drivers of BP fires. Specific research goals include to (1) examine the 

performances of multiple ML algorithms on reproducing and predicting fire occurrence, fire counts, and fire impacts (i.e., 

burned area and carbon emissions), (2) diagnose dominant environmental controls on peatland fire activities, and (3) 

quantify uncertainties in the two-step ML framework and correct predicting errors to improve the ML predicting accuracy 

that is suppressed by the severely skewed input data.  90 

2 Data 

Multiple sources of environmental data—including climate-, vegetation-, soil- and human-related data—and multiple fire 

products were used in this study, as listed in Table S1. All data sets were regridded to 1° × 1° with a monthly time resolution.  
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2.1 Response Variables  

To evaluate ML framework robustness for difference response variables, five fire data sets were used in this study: the 95 

Global Fire Emission Database (GFED) version 4.1s (GFED4.1s) carbon emissions, the GFED4.1s burned area (BA), the 

Fire Climate Change Initiative (FireCCI) version 5.1 (FireCCI5.1) BA, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) active fire products MCD45A1, and MCD64A1 burning date. The monthly BA fraction and carbon emissions 

from GFED4.1s span from 1997 to 2016 with a spatial resolution of 0.25° × 0.25° (Giglio et al., 2013; Randerson et al., 

2012). The FireCCI5.1 BA data set ranges from 2001 to present and has a spatial resolution of 250 m at monthly or biweekly 100 

temporal resolutions (Chuvieco et al., 2018; Lizundia-Loiola et al., 2020). Monthly MCD45A1 and MCD64A1 burn date 

data sets were derived from the MODIS Terra and Aqua satellites products at a spatial resolution of 500 m. MCD45A1 was 

derived from surface reflectance dynamics by a bidirectional reflectance distribution function–based change detection 

approach (Roy et al., 2002), whereas MCD64A1 was produced by a burn-sensitive vegetation index algorithm based on a 

combination of reflectance data and active fire observations (Giglio et al., 2018). Because only burn dates were provided, 105 

both MCD45A1 and MCD64A1 were only applied for evaluating fire occurrences rather than fire impacts.  

2.2 Explanatory Variables   

2.2.1 Meteorology Data 

To reflect the climate from 1997 to 2016, this study used the monthly 0.5° × 0.5° gridded Climatic Research Unit (CRU) 

Time-Series data version 4.04 (Harris et al., 2020). CRU data provide meteorological variables, including mean temperature 110 

(TMP), temperature minimum (TMN), temperature maximum (TMX), cloud cover (CLD), diurnal temperature range (DTR), 

ground frost frequency (FRS), wet day frequency (WET), evapotranspiration (ET), precipitation (PRE), and vapor pressure 

(VP). Additionally, the CRU Palmer Drought Severity Index (PDSI) and the Modern-Era Retrospective analysis for 

Research and Applications Version 2 (MERRA-2) 2m windspeed (WIN) were included as feature inputs. Using the CRU 

saturated VP (SVP) and relative humidity (RH), we also calculated the VP deficit (VPD) based on the transforming 115 

formulations shown in Table S1.  

2.2.2 Vegetation Data  

Monthly third-generation Global Inventory Monitoring and Modeling System (GIMMS-3g) NDVI from 1982 to 2015 with a 

spatial resolution of 0.83° × 0.83° was used to characterize the vegetation growth condition (Pinzon and Tucker, 2014). The 

8 km gridded monthly GIMMS-3g gross primary productivity (GPP) from 1982 to 2016 were also included in this study to 120 

characterize the fuel availability (Madani and Parazoo, 2020).  
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2.2.3 Soil Moisture Data  

To estimate the effects of soil moisture on BP fire initiation and expansion, the Global Land Evaporation Amsterdam Model 

(version 3.3) surface soil moisture (SMsurf) and root-zone soil moisture (SMroot) were used (Martens et al., 2017; Miralles 

et al., 2011). These two datasets, which range from 1980 to 2018, were gridded at a spatial resolution of 0.5° × 0.5° for each 125 

month.  

2.2.4 Human Activity Data  

The population density data were used as a proxy for human activities. The History Database of the Global Environment 

(version 3.2) were interpolated and re-gridded into a monthly scale at a spatial resolution of 0.5° × 0.5° (Klein Goldewijk et 

al., 2017).  130 

Multiple sources of environmental data—including climate-, vegetation-, soil- and human-related data—and multiple fire 

products were used in this study, as listed in Table S1. All data sets were regridded to 1° × 1° with a monthly time resolution.  

3 Methods 

This study proposes a two-step error-correcting ML framework that includes the classification and regression steps. The 

classification step (Step One) primarily predicts fire occurrence and fire counts, whereas the regression step (Step Two) 135 

primarily predicts fire impacts if a peat fire occurs. The evaluation metrics from Step One, denoting the model uncertainties, 

are used at Step Two to correct fire size prediction uncertainties. The two-step ML framework is detailed in Figure 1.  

Five fire datasets were applied as the target variable separately at Step One: FireCCI5 BA, GFED BA, GFED carbon, 

MCD45A1, and MCD64A1 active fires, and three of these datasets—FireCCI BA, GFED BA, and GFED carbon—were also 

used in Step Two. Because of the notable imbalances of fire occurrence data (i.e., there are more nonoccurrence records than 140 

occurrence records), multiple principal evaluation metrics were checked to evaluate ML performance in predicting fire 

occurrences at Step One. For each dataset and simulation, all evaluation metrics were extracted and ensembled from all six 

ML algorithms. Evaluation accuracy results are listed in Tables S2–S5.  
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Figure 1. The two-step ML framework, where PPV, FDR, FOR, and NPV stand for positive predictive value, false discovery rate, 145 
false omission rate, and negative predictive value, respectively. SMOTE stands for the oversampling algorithm– Synthetic 
Minority Oversampling Techniques. The error-correcting process is detailed in the Methods part.  

We first preprocessed the data, including data integration, missing values treatment, and standardization, and then randomly 

split the data by 70% for training and 30% for testing. An oversampling algorithm called Synthetic Minority Oversampling 

Techniques (SMOTE) was applied onto the training dataset to address the imbalance between the two fire occurrence 150 

classes.  

In Step One, six common classification algorithms—logistic regression (LogR), linear support vector machines (SVMs), 

Random Forest (RF), Bagging (BAG), k-nearest neighbors (KNN), and Gaussian Naïve Bayes (GNB)—were applied to 

classify fire occurrence at each grid in each month. Then, key factors driving peat fire occurrences were ranked by these ML 

algorithms to find the feature subset with large contributions. Feature importance values in RF and BAG were calculated as 155 

the mean decrease in node impurity (i.e., Gini index) weighted by reaching probability of samples to each node. For LogR 

and SVM, the coefficients of the features in LogR’s decision functions and in linear SVM’s weights were extracted to assess 

feature importance. The KNN and GNB classifiers did not offer direct ways to assess feature importance. This study used a 

permutation method to assess feature importance based on the loss function and increased prediction error after shuffling 

features. Because the feature importance values assessed from different ways were not in the same value range, feature 160 

importance values were processed using the normalized absolute value for a consistent comparison. The mean and standard 

variation of the normalized feature importance values from different ML models characterized the relative importance of 

driving factors and model differences. 

Using the predicted monthly fire occurrence from the best-performing ML classifier, the corresponding fire data were 

retrieved to predict fire impacts (including burned area and C emissions). For months without fire occurrences, the fire 165 

impacts were estimated as zero before error correction. In Step Two, 14 regression techniques—simple linear, ridge, least 
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absolute shrinkage and selection operator (LASSO), adaptive boosting (AdaBoost), gradient boosting, Bagging, RF, 

Bayesian, elastic net, kernel ridge, decision tree, CatBoost, and light gradient boosting—were tested to predict fire impacts. 

The study further corrected the predicted fire impacts by applying evaluation metrics of classifications—including the 

positive predictive value (PPV, namely precision), false discovery rate (FDR), false omission rate (FOR), and negative 170 

predictive value (NPV)—to amend the classification uncertainties in the regression. The details of the error-correction are 

below. 

After classification, in the training dataset, C emissions/Burned area equals 0 are classified as no-fire months, which is 

denoted as class 0, while values greater than 0 are classified as fire months which are correspondingly denoted as class 1. In 

the original training set, samples are separated into fire months (𝑋𝑋𝑚𝑚𝑚𝑚) and months with no fire (𝑋𝑋𝑚𝑚𝑚𝑚).  175 

Here, we selected samples with C emissions/Burned area greater than 0 (namely class 1) to train the fire regression model for 

the month m, 𝑅𝑅𝑚𝑚𝑚𝑚:  

𝑅𝑅𝑚𝑚𝑚𝑚�𝑋𝑋𝑚𝑚𝑚𝑚� = 𝑌𝑌𝑚𝑚𝑚𝑚 ,           (1) 

Where 𝑋𝑋𝑚𝑚𝑚𝑚   is the explanatory data in fire month 𝑚𝑚; and  𝑌𝑌𝑚𝑚𝑚𝑚   is predictive variable (C emission/burned area) at month 𝑚𝑚.  

For month m with no fires, we suppose regression model 𝑅𝑅𝑚𝑚𝑚𝑚: 180 

𝑅𝑅𝑚𝑚𝑚𝑚(𝑋𝑋𝑚𝑚𝑚𝑚) = 0,            (2) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋𝑚𝑚𝑚𝑚 𝑖𝑖s the explanatory data in month m with no fires. 

For each month (𝑚𝑚), we have split the training dataset into 𝑋𝑋𝑚𝑚𝑚𝑚(𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓) and 𝑋𝑋𝑚𝑚𝑚𝑚 (𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑤𝑤 𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓), and split the testing 

dataset into 𝑋𝑋𝑚𝑚𝑚𝑚′  (𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓) and  𝑋𝑋𝑚𝑚𝑚𝑚′ (𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑤𝑤 𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓). Keeping the input data as the same, 14 regressors are applied in 

this experiment, and they are: Linear Regressor, Ridge, Lasso, AdaBoost Regressor, Gradient Boosting Regressor, Bagging 185 

Regressor, Random Forest Regressor, Bayesian Ridge Regressor, Elastic Net Regressor, Kernel Ridge Regressor, Decision 

Tree Regressor, CatBoost Regressor, LGBM Regressor, and Stacking Regressor.  

For each month (𝑚𝑚) in {1,2,3 … 12} and regression model (𝑅𝑅𝑟𝑟) in {𝑅𝑅1,   𝑅𝑅2,𝑅𝑅3 …𝑅𝑅15}, we constructed regression models 

𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟  for fires at month m and 𝑅𝑅𝑚𝑚
𝑟𝑟,𝑚𝑚 for month m without fires:  

𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 �𝑋𝑋𝑚𝑚𝑚𝑚� = 𝑦𝑦𝑚𝑚𝑚𝑚
𝑟𝑟 ,           (3) 190 

𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 (𝑋𝑋𝑚𝑚𝑚𝑚) = 𝑦𝑦𝑚𝑚𝑚𝑚𝑟𝑟 = 0,           (4) 

Then, with testing data, we do prediction of fire size using the above-trained regression model 𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 .   

For fire month m (class 1) in testing data, the predicted fire size 𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 : 

𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 =  𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 �𝑋𝑋′𝑚𝑚𝑚𝑚�,           (5) 

Fire size that might be caused by the wrong classification (namely, no fire happens in reality) could be expressed by 𝐸𝐸𝑃𝑃𝑚𝑚𝑚𝑚: 195 

𝐸𝐸𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 =  𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 �𝑋𝑋′𝑚𝑚𝑚𝑚� = 0,           (6) 

While for months without fires (class 0), the predicted fire size 𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 : 

𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 =  𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 (𝑋𝑋′𝑚𝑚𝑚𝑚) = 0,           (7) 
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And the fire size that might be caused by the wrong classification (namely, fire happens in reality) could be expressed by: 

𝐸𝐸𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 =  𝑅𝑅𝑚𝑚𝑚𝑚𝑟𝑟 (𝑋𝑋′𝑚𝑚𝑚𝑚),           (8) 200 

Four evaluation metrics from classification are used to adjust prediction uncertainties, and they are:  

𝑃𝑃𝑜𝑜𝑓𝑓𝑖𝑖𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑣𝑣𝑣𝑣𝑜𝑜𝑒𝑒(𝑃𝑃𝑃𝑃𝑃𝑃) =  𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 (𝑇𝑇𝑃𝑃)
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝐹𝐹𝑃𝑃)

,       (9) 

𝐹𝐹𝑣𝑣𝑣𝑣𝑓𝑓𝑒𝑒 𝐷𝐷𝑖𝑖𝑓𝑓𝑝𝑝𝑜𝑜𝑃𝑃𝑒𝑒𝑒𝑒𝑦𝑦 𝑒𝑒𝑣𝑣𝑤𝑤𝑒𝑒 (𝐹𝐹𝐷𝐷𝑅𝑅) =  𝐹𝐹𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃 

 ,         (10) 

𝐹𝐹𝑣𝑣𝑣𝑣𝑓𝑓𝑒𝑒 𝑜𝑜𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜 𝑒𝑒𝑣𝑣𝑤𝑤𝑒𝑒 (𝐹𝐹𝐹𝐹𝑅𝑅) =  𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 (𝐹𝐹𝑁𝑁)
𝐹𝐹𝑁𝑁+𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇 𝑚𝑚𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇(𝑇𝑇𝑁𝑁)

 ,       (11) 

𝑁𝑁𝑒𝑒𝑁𝑁𝑣𝑣𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑤𝑤𝑖𝑖𝑃𝑃𝑒𝑒 𝑃𝑃𝑣𝑣𝑣𝑣𝑜𝑜𝑒𝑒 (𝑁𝑁𝑃𝑃𝑃𝑃) =  𝑇𝑇𝑁𝑁
𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁 

 ,        (12) 205 

Applying classification evaluation metrics to the actual predictions (P) and potential wrong classification caused predictions 

(EPs), we could obtain the error-corrected prediction  𝐴𝐴𝑃𝑃′𝑚𝑚𝑝𝑝
𝑟𝑟  for the record of (𝑝𝑝,𝑚𝑚) ∈ 𝑋𝑋′ (in the testing set).  

𝐴𝐴𝑃𝑃′𝑚𝑚𝑝𝑝
𝑟𝑟  =  �

𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑚𝑚𝑚𝑚
𝑟𝑟 + 𝐹𝐹𝐷𝐷𝑅𝑅 × 𝐸𝐸𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 , 𝐼𝐼𝑓𝑓 𝑍𝑍′𝑚𝑚𝑝𝑝 =  1  

𝑁𝑁𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑚𝑚𝑚𝑚𝑟𝑟 + 𝐹𝐹𝐹𝐹𝑅𝑅 × 𝐸𝐸𝑃𝑃𝑚𝑚𝑚𝑚
𝑟𝑟 , 𝐼𝐼𝑓𝑓 𝑍𝑍′𝑚𝑚𝑝𝑝 =  0        (13) 

Where (𝑓𝑓,𝑜𝑜) ∈ 𝑝𝑝, 𝑣𝑣𝑜𝑜𝑝𝑝 𝑍𝑍𝑚𝑚𝑝𝑝′   stands for the original prediction in testing data.  

To validate the ranking of feature importance from MLs, a range of factorial simulations that grouped features with similar 210 

physical meanings were designed and conducted. The temperature-related group contains TMP, TMN, and TMX; PRE is the 

only PRE-related feature; the air dryness-related group include SVP, VAP, VPD, RH, WET, ET, and PDSI; the soil 

moisture–related features are SMsurf and SMroot; and the Others group includes features representing vegetation biomass 

(e.g., GPP and NDVI), windspeed (WIN), cloud cover percentage (CLD), climate extremes (e.g., FRS and DTR), and 

anthropogenic activities (e.g., POPD). During the first set simulation, we conducted the simulation ALL with all features. As 215 

will be shown in Section 4.3, the features in the Others group are generally ranked at low level. As the Other group contain 

various features with different physical meanings and the large variety of features could be one primary source of feature 

collinearity, the Others group features were also kept in the following three sets of simulations and we targeted to compare 

the other four groups of features (temperature group, precipitation group, air-dryness group, and soil moisture group). During 

the second set of simulations, each simulation opted out one group of features to explore the top-ranked group among the 220 

four groups. For example, the TMP group features were removed in the NO-TMP simulation to compare the relative 

importance of the remaining feature groups (i.e., the PRE group, the air dryness group, the soil moisture group, the Others 

groups). Similarly, we excluded the PRE group, the air dryness group, the soil moisture group in the NO-PRE, NO-HUMI, 

and NO-SOM, respectively. The temperature group was consistently ranked the highest in the NO-PRE, NO-HUMI, and 

NO-SMO. During the third set of simulations, only the relative importance of the PRE group, air dryness group, soil 225 

moisture group, and the Others group needed to be compared because the TMP group was already identified as the top-

ranked features. Thus, the TMP group was removed in all simulations in the third set. Additionally, The NO-TMP-PRE, NO-

TMP-SOM, and NO-TMP-HUMI simulations were designed by respectively removing the PRE group, soil moisture group, 

and air dryness group to diagnose the relative importance of soil moisture group V.S. air dryness group, PRE group V.S. air 
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dryness group, and PRE group V.S. soil moisture group. The air dryness group ranked the highest in the third set of 230 

simulations, and PRE ranked the lowest in the first, second, and third sets of simulations. Based on this, we continued setting 

up the fourth set of simulations, NO-TMP-PRE-HUMI, to check the relative importance between soil moisture and the other 

vegetation and human factors. Table 1 lists the experimental designs of simulations.  
Table 1. Simulation experiments for assessing environmental factor cluster impacts on ML predictability 

Simulations 
Explanatory variable groups 
Temperature-
related 

Precipitation-
related 

Air-dryness related 
(i.e., Humidity)  

Soil moisture-
related Others 

First ALL Yes Yes Yes Yes Yes 

Second 

NO-TMP No Yes Yes Yes Yes 
NO-PRE Yes No Yes Yes Yes 
NO-HUMI Yes Yes No Yes Yes 
NO-SOM Yes Yes Yes No Yes 

Third 
NO-TMP-PRE No No Yes Yes Yes 
NO-TMP-SOM No Yes Yes No Yes 
NO-TMP-HUMI No Yes No Yes Yes 

Fourth NO-TMP-PRE-HUMI No No No Yes Yes 

4 Results 235 

4.1 Fire Occurrence Predictability  

The averaged area under the receiver operating characteristic curve (AUC) which indicate the diagnostic ability of 

classification ranged from 0.70 ± 0.03 (MCD64A1, the No-TMP-PRE-HUMI simulation) to 0.88 ± 0.05 (MCD45A1, the 

ALL simulation) for multiple MLTs (Table S2). The ALL simulation had the AUC value of 1 at the training stage and the 

AUC value of 0.72–0.93 at the testing stage. The RF algorithm showed the best predictive performance for fire occurrences 240 

(i.e., fire counts) (Table S3) and provided a basis for fire impacts prediction. Among all datasets, MCD45A1 had the highest 

recall rate (0.94) and highest precision (0.96), indicating that few months were incorrectly classified (Table S3). MCD64A1 

had the lowest recall rate and precision rate, indicating discrepancies among different data sources. Using the SMOTE 

oversampling algorithm, the testing recall rate was effectively improved at an average rate of 26.88% and with the highest 

growth of 48.62% for the FireCCI BA dataset (Tables S4 and S5). 245 

Besides evaluation metrics, the spatial disparities of predicted fires from MLTs and multiple datasets were also examined 

against corresponding observations. The BP with a histosol fraction greater than 30% is mainly located in the Hudson Bay 

Lowland (HBL) and West Siberia (WS) (Figure S2). Observations from FireCCI BA, GFED BA, GFED carbon emissions, 

and MCD64A1 fire detection consistently show that there were fewer than 60 fire events in the HBL region from 1997 to 

2015, but the fire count in WS during the same time period ranged from 30 to more than 150. This demonstrates the spatial 250 

disparity of peatland fire occurrences in the boreal area and possibly implies that WS is more fire-prone than the HBL 

(Figures S3–S6[a-1], [a-2]). FireCCI, GFED, and MCD64A1 showed good consistencies among these three products with 
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respect to the data distribution. Unlike these three datasets, MCD45A1 had higher estimation and lower spatial heterogeneity 

of fire counts in BP (Figures S7[a-1], [a-2]). The more evenly distributed data in MCD45A1 may be the primary reason why 

MCD45A1 had the highest predicting accuracy and best performance in reproducing the distribution of fire counts spatially 255 

(Figure S12) and temporally (Figure S16) in the testing stage (Figures S8–S11 and S13–S15).  

Predictability discrepancies were also compared among multiple ML algorithms. The validation results demonstrate that the 

bootstrap-based ML algorithms (i.e., RF, BAG, and KNN)—in which there is no requirement for data distribution 

assumption, and resampling supports the inference of the population distribution—had better predictability than other 

algorithms (i.e., LogR, linear SVM, and GNB) (Figure S1 and Figure 2). For RF and BAG, the reproducing accuracy rate 260 

(i.e., true positive rate and true negative rate) was higher than 90% for the FireCCI data (Figure S1). The inaccurate 

predictions of KNN, LogReg, SVM, and GNB were significantly influenced by the overestimated fire occurrence (namely 

false positive) during fire season (April–October), as shown in Figure 2. Without a prescribed underlying function, the 

nonparametric RF and BAG models exhibited advantages over other ML algorithms on reproducing peatland fire 

distributions spatially (Figures S9–S12[b-1], [b-2], [c-1], [c-2], [d-1], [d-2]) and temporally (Figure 2, Figures S13–S16[a-1], 265 

[b-1]). Therefore, the predictions of fire occurrence from the best-performed RF were employed as the basis of fire impact 

predictions. 

 
Figure 2. Seasonality of observational and predicted fire counts from the six ML algorithms with the FireCCI BA dataset. 
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4.2 Fire Impacts Predictability 270 

ML regression models exhibit moderate predictabilities of fire sizes (Figure S35). ML classification at Step One and 

regression models at Step Two overestimated fire size during fire season (Figures S29–S31) for the monthly aggregated fire 

impacts. This study developed an error-correcting technique to tackle such overestimation during fire reason and achieved 

satisfying performance (Figure 3, Figures S29–S31).  

 275 

Figure 3. Seasonality of the observed, not-adjusted, and error-adjusted FireCCI BA based on the testing phase from multiple ML 
regression models: (a) linear, (b) Bayesian linear, (c) ridge, (d) LASSO, (e) elastic net, (f) kernel ridge, (g) decision tree, (h) 
Bagging, (i) RF, (j) AdaBoost, (k) gradient boosting, (l) light gradient boosting, (m) CatBoost, and (n) stacking. 

WS has more fire counts and thus higher carbon emissions than the HBL (Figures S26–28). The predicted carbon emissions 

from the stacked ML algorithms were overall consistent with the observations in WS and western Canada but had 280 

overestimations in the HBL (Figure S28). The error-correcting technique could slightly lower the overestimation in the HBL 

(Figure S28) but could greatly lower the overestimation temporally, especially in July (Figure S31). Meanwhile, the 

underestimation of fire impacts in June remained a common problem for all 14 regression models (Figure S31).  

GFED BA and FireCCI BA were used to determine the reliability of fire impact predictions within the two-step ML 

framework. In terms of spatial reproducibility, the predictions from GFED BA (Figures S30[d], [e], [f]) were more accurate 285 

than those from FireCCI BA (Figures S29[a], [b], [c]), particularly in the HBL, where the BA is less than 50 km2 (Figures 
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S26–S28[a-1], [b-1]). Figures S26–S28 [a-2] and [b-2] show that the framework underestimated burned area in northern WS 

and overestimated burned area in the northern HBL for FireCCI BA (Figures S26–S28[a-1], [b-1]). Different BA datasets 

can also have temporal inconsistencies. FireCCI BA exhibits its fire season from March to May, whereas GFED BA exhibits 

its fire season from March to October. Despite the fact that April and May were the fire peak months according to both 290 

FireCCI BA and GFED BA, the burned areas predicted by the framework based on FireCCI and GFED show differences in 

BP. According to FireCCI, the predicted entire burned area in May has about 55,792 km2, whereas the prediction based on 

GFED is only about 12,183 km2. A further investigation shows that GFED BA has a bimodal distribution while FireCCI BA 

is unimodally distributed (Figure S30). Therefore, it is important to determine whether ML is applicable for various datasets. 

Overall, the 14 tested regression models were able to well reproduce fire impact magnitudes and seasonality for the FireCCI 295 

BA, GFED BA, and GFED carbon (Figures S32–34). Figures 3, S30, and S31 show that for all datasets, the ML regression 

models appear to overestimate the fire effects, including carbon emissions and burned area during fire season. However, the 

error-correcting approach could successfully reduce this bias (Figures S29–34). Discrepancies among model predictabilities 

were small. For example, for the FireCCI data, the decision tree had the best performance with estimations that were 4.05% 

higher than the observations, whereas Bagging had the worst performance with estimations that were 10.84% higher than the 300 

observations. Such small biases and discrepancies verified the reproducibility and predictability of the two-step ML 

framework.  

4.3 Primary Causes of BP Fires 

To exclude feature collinearity, four sets of simulations in Table 1 were designed by opting out grouped features to confirm 

the importance ranking of features (Figure 4). The first two sets of simulations (i.e., ALL, NO-TEMP, NO-PRE, NO-HUMI, 305 

and NO-SOIMOI) showed that the temperature-related feature group had the highest importance (Figure s3[a], [c], [d], [e]). 

The third sect of simulations, which removed two feature groups, showed that the air dryness had the highest importance 

among the remaining four feature groups, namely the PRE, air dryness, soil dryness, and other groups. PRE was found to be 

the third-ranked feature according to the first three sets of simulations. The last set simulation was conducted to compare the 

relative importance of soil moisture and the other human and natural features and found that frost (FRS) and vegetation 310 

biomass (GPP) in the other human and natural features group were more important than soil moisture (Figure 3[i]). Such 

ranks were also indicated by other simulations in Figures 3[a], [c], [d], [f], and [h]. Thus, this study found that BP fires were 

significantly affected by temperature, air dryness, frost, and GPP (Figure 3[a]), which collectively account for more than 

80% of the predictive interpretability (Figure 3[a]). Moreover, BP fires were not sensitive to PRE, soil moisture, windspeed, 

and human activities.  315 
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Figure 4. The bar plot stands for the factor importance rank of multiple simulation scenarios using FireCCI BA as the target 
variable in which the importance was determined by standardized mean and uncertainty range (minimum and maximum) from 
multiple ML algorithms; the dashed vertical line indicates the group mean importance of temperature (blue), PRE (yellow), air 
dryness (purple), soil moisture (orange), and other factors (green).  320 

The feature importance ranks were not only validated by FireCCI BA but also by GFED BA, GFED carbon, MCD45A1, and 

MCD64A1. The rankings from GFED BA and GFED carbon were highly consistent with those from FireCCI (Figures 4, 

S22, and S23), in which temperature, air dryness, frost, and GPP were more important than PRE, soil moisture, windspeed, 

and other natural and anthropogenic factors. Feature rank discrepancies were found when the ML algorithms were applied to 
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MCD64A1 and MCD45A1, for which the top three features were still air dryness, temperature, and FRS, but soil moisture 325 

was more significant than GPP (Figures S24 and S25). 

Collectively, the multisource datasets and multi-feature simulation experiments consistently suggested that air dryness–

related variables (RH, VPD, and VAP), temperature-related variables (TMN, TMP, TMX) and FRS play more important 

roles in the peat fires than other factors, such as PRE, wind speed, and other natural and human factors. The importance of 

soil moisture and GPP were both ranked in the middle, but their relative rankings could not be determined because soil 330 

moisture was considered more significant than GPP according to MCD64A1 and MCD45A1 but GPP was viewed more 

important based on FireCCI, GFED BA, and GFED carbon. 

5. Discussion  

5.1 ML Predictability   

The global peatland contains ~25% of global soil carbon (600 GtC) (Yu et al., 2010) and is at risk of shifting from the 335 

world’s largest carbon sink to the largest carbon source with warming climate and increasing fire events (Hugelius et al., 

2020; Loisel et al., 2021; Turetsky et al., 2014). Predicting fire risks and fire impacts is extremely challenging given the 

inadequate representation of the peatland ecosystems and fire interruptions in current process-based models. As an 

alternative, ML algorithms can capture nonlinear relationships between the controlling factors and fire impacts (including 

burned area and C emissions) and provide a unique method to explore fire driving mechanisms and predictability based on 340 

big data.  

In this study, a two-step error-correcting framework was built to investigate the BP fire predictability and the individual 

impacts from meteorological, vegetational, soil, and anthropogenic factors. Although ML algorithms have been extensively 

used in the wildfire research (e.g., fire spots detection, predictive models development) (Coffield et al., 2019; Jain et al., 

2020; Sayad et al., 2019; Wang and Wang, 2020; Yu et al., 2020), few studies explicitly describe what the criteria they 345 

would use to choose the ML models. Predicting accuracy may depend on the modeling algorithms and the input data. In this 

study, results from six classification models and 14 regression models indicate that nonparametric ML algorithms, including 

RF, Bagging, and KNN, outperformed the other employed parametric models, such as LogR, linear SVM, and GNB, by 

overcoming the severe imbalance of fire data (the non-fire classes have six times as many records as fire classes) (Figures 1 

and 2). Unlike parametric models that are highly restricted to specified functional forms and a fixed number of parameters, 350 

nonparametric models can fit various functional forms, and the number of parameters grow with the size of the training set, 

promoting the performance of model predictability.  

In BPs, it is challenging to predict fire occurrence because of the extremely unbalanced fire data. Several previous studies 

have employed ML to investigate the peatland fire predictability. For example, Rosadi et al. (2020) employed a variety of 

ML algorithms to predict fire occurrence in peatland and used the accuracy as the only evaluation metric. Such an evaluation 355 

method could fail to measure fire predictability once the fire data are imbalanced. According to another study that predicted 
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peatland fire occurrence in Canada (Bali et al., 2021), the recall rates were very high (0.82–0.99) but the precision metrics 

were very low (0.002–0.05), which indicates a high Type Ⅰ error. In our study, RF regressions yielded high precision metrics 

(0.56–0.96) and recall rate (0.6–0.94) and well-identified fire months, suggesting relatively low Type Ⅰ and Type Ⅱ errors.  

To address the extreme data imbalance, this study used both preprocessing (oversampling) and postprocessing (error 360 

correcting) in the two-step ML framework to improve the predictability. In Step One, the SMOTE algorithm significantly 

improved the recall rate by ~26.88%–48.66% across all fire datasets. Processing approaches (e.g., oversampling and 

undersampling) were also found beneficial in earlier studies for certain ML algorithms (Farquad and Bose, 2012; Malik et 

al., 2021; Zhou et al., 2020). To quantify and reduce uncertainty in ML frameworks, procedures are typically highly tailored 

for specific research challenges and ML algorithms (Jiang and Nachum, 2020; Pan et al., 2019; Wang et al., 2020). In our 365 

two-step ML framework, applying evaluation metrics from the classification step (Step One) in error correcting effectively 

lowered the overestimated BA and carbon emissions during fire season (Figures S29–S31). 

5.2 Primary Driving Factors of Peatland Fires  

ML-derived statistical correlations do not necessarily indicate the causality, and biophysical or biochemical principles are 

thus needed to further examine whether such relationships are reasonable (Schölkopf et al., 2021). In this study, four sets of 370 

ML simulations were designed to determine the primary driving factors of peatland fires by removing feature groups 

sequentially. The results revealed that the feature importance rank exhibited general consistency in multiple fire datasets. 

PRE in boreal or sub-arctic regions is primarily in form of snow rather than rainfall due to cold weather (Behrangi et al., 

2016) and has little impact on BP fires. Moreover, smouldering fires can persist for a long time (months to years) even in 

rainfall weather (Lin et al., 2020). This low importance was verified by our ML simulations. Similarly, in the sparsely 375 

populated boreal peatland, human activities showed marginal effect. Factorial simulations consistently demonstrated that 

temperature (i.e., minimum, maximum, and average values), air dryness–related variables (e.g., RH, VPD, VAP, ET), and 

FRS were the primary factors driving the BP wildfire activities (Figure 4 and Figure S22-23). Although these factors 

eventually lead to dry and combustible conditions for peatland fire occurrence and propagation, the processes in which they 

play roles are quite different. 380 
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Figure 5 Processes in which environmental factors participate for self-heating peatland fires. ML-identified primary factors are 
marked in blue; green arrows indicate negative correlation between the connected two factors, and orange arrows indicate positive 
correlation between the connected two factors. 

The BP fires are intimately tied to weather, and warming appears to increase ignitions, fire frequency, and fire severity 385 

(Duffy et al., 2005; Flannigan et al., 2005; Kohlenberg et al., 2018). In peatlands without frost (Figure 5[a]), rising 

temperatures increase saturation vapor pressure (SVP) and continually induce an increase in vapor pressure deficit (VPD) if 

actual atmospheric VP does not increase as much as SVP. A recent investigation indicates that RH (i.e., ratio of actual water 

VP to SVP) has plunged rapidly since year 2000, leading to a sharp rise in VPD on a global scale (Yuan et al., 2019). Such a 

warming-induced increase of VPD increases evapotranspiration (ET) more in peatlands than in forests with a simulated 390 

percentage of up to 30% (Helbig et al., 2020). Because atmospheric demand (i.e., VPD) dominates the limitation of ET over 

the soil moisture (Helbig et al., 2020; Novick et al., 2016), the water table turns out to be the water supplier in response to 

the rising VPD, which consequently results in the decrease of water table depth. The water table depth decrease tends to 

change the physical characteristics of peat in many aspects, such as by lowering the capacity of water storage, causing the 

peat volume to shrink and volumetric soil moisture to decrease (Price and Schlotzhauer, 1999), and inducing surface 395 

subsidence with a concomitant decrease of bulk density and an increase of peat oxidations and decomposition (Leifeld et al., 

2011; Whittington and Price, 2006). These changes ultimately lead to more carbon being released into the atmosphere and 

the formation of dryer and more flammable peat soil (Figure 5[a]). In peatland with frost, frost heaving deepens the active 
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layers (Jones et al., 2015; Wang et al., 2020), changes the hydrological and thermal properties of peatland, promotes 

microbial and chemical exothermic reactions, strengthens peatland dryness, and consequently facilitates more frequent 400 

peatland fires (Kim et al., 2020) (Figure 5[b]). 

Our ML-based sensitivity simulations demonstrated the power of using big data to determine the primary causes of peat 

fires: temperature, atmospheric dryness (e.g., RH, VAP, VPD, ET), and frosts (i.e., FRS). These simulations also helped 

identify the less important factors and processes. For example, wind speed and population density were ranked at the bottom, 

suggesting that human activities may not be the main causes of peatland fire occurrence, and that the wind speed, unlike for 405 

forest fires, does not significantly affect peatland fire spread. Another intriguing discovery is that the simulations in this 

study consistently revealed the important role that FRS has played in causing peatland fires and their spreads, though FRS 

has been understudied in previous studies. Dixon et al. (2018) revealed that seasonal frost layer alters Spring water balance, 

induces drier Spring, and enhances risks of deep smouldering. More specifically, ground freezing frost can greatly change 

the structure and properties of peatland. During the water icing process, the pore diameter is enlarged, which consequently 410 

results in peat volume expansion, water tension decreases, water storage capacity increase, and air capacity surges (Dijk and 

Boekel, 1965). As the air capacity increases, the oxidation of the soil organic carbon is likely increasingly. This oxidation 

produces heat and makes the soil temperature increase, which can start peatland fires by self-ignition (Arief et al., 2019; 

Restuccia et al., 2017). During the seasonal freezing process, soil water diffuses vertically from the bottom unfrozen layer to 

the upper frozen layer (frost front) (Nagare et al., 2012). After cycles of freezing and thawing (i.e., frost heaving), surface 415 

peat soil becomes dryer, and the freezing surface becomes thicker in the form of surface lift above the water table. At low 

temperatures, heat generated from respiration and the growth of micro-organisms dominate heat generated from chemical 

oxidation in peat decomposition (Yuan et al., 2021). If frost heaving causes the peatland to dry out year by year, exothermic 

processes from biological reactions may intensify chemical oxidation with high temperature and thus induce spontaneous 

peatland fires (Figure 5[b]).  420 

Collectively, the important factors uncovered by the ML framework indicated two peatland fire mechanisms that suit two 

types of peat soil: unfrozen and seasonal frozen peatlands (Figures 5[a] and 5[b]). Temperature, air dryness, and the 

facilitated warming and drying in an underground environment may start fires in unfrozen peatland. For seasonal freezing 

and thawing in seasonal frozen peatland, frost heaving induces a deep drying and oxygen-rich underground environment and 

may speed up exothermic progress in biological reactions, thereby promoting peatland fire occurrences.  425 

There are several limitations of this study. Because of a lack of gridded burned depth data and bulk density, this ML-based 

work could not predict and evaluate peat fire severity. The satellite-based fire datasets used in this study do not provide 

underground smouldering peat fire as a single product. Fires detected by satellites could be a mixture of peatland surface 

flaming fires and smouldering fires because the detected radiant signature of smouldering is much weaker than that of 

flaming fires (Rein and Huang, 2021). In addition, for peat fire C emissions, it has been estimated largely by multiplying 430 

detected burned area by a range of parameters, such as average burning depth, combustion completeness, emission factors of 

major carbon species. Those estimated parameters may induce large uncertainties due to the limited ability of optical 

https://doi.org/10.5194/gmd-2023-14
Preprint. Discussion started: 21 February 2023
c© Author(s) 2023. CC BY 4.0 License.



18 
 

satellites to detect underground smouldering and burning depth (Graham et al., 2022). The limited data availability, such as 

vegetation types (moss and vascular plants), burning depth, bulk density, water table depth, and soil temperature, makes ML 

algorithms limited in fully accounting for all contributing factors. Moreover, since the relationships identified by the ML 435 

framework do not automatically imply causality, the underlying physical mechanisms still need to be further validated by 

future experimental work or theoretical analyses, such as the overriding control of temperature-related variables on inducing 

boreal peatland fires and the mechanism by which frost impacts on peat drying and smouldering (Dixon et al., 2018).  

6. Conclusion 

This study constructed a two-step error-correcting ML framework to explore the predictability of peatland fire occurrences 440 

and impacts (including burned area and C emissions). Major climate, vegetation, soil, and human factors that possibly induce 

BP fires were included in a range of factorial simulations. The framework successfully predicted the fire counts 

(occurrences) and fire impacts with an accuracy in general greater than 80%. Temperature and air dryness were identified to 

dominate the fires in unfrozen BPs, while FRS was determined to dominate fire in frozen BPs through the impacts of frost 

heaving (seasonal freezing-thawing) on changing thermal-hydrological characteristics of peat soil. Our research provides 445 

preliminary insights into the overriding impacts of temperature (including temperature related air-dryness and frost heaving) 

on BP fires via big data and ML. To overcome the ML's limitations in inferencing causality from data association and to 

further validate the underlying physical mechanisms in BPs fire, more field data (such as peat soil properties and peat 

burning properties) as well as additional experimental, statistical, or computational works are needed in the future. 
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