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Abstract. Deep learning (DL) methods have recently garnered attention from the climate change community, as an innovative 

approach for downscaling climate variables from Earth System and Global Climate Models (ESGCMs) with horizontal 

resolutions still too coarse to represent regional-to-local-scale phenomena. In the context of the Coupled Model 

Intercomparison Project phase 6 (CMIP6), ESGCMs simulations were conducted for the Sixth Assessment Report (AR6) of 10 

the Intergovernmental Panel on Climate Change (IPCC), at resolutions ranging from 0.70º to 3.75º. Here, four Convolutional 

Neural Network (CNN) architectures were evaluated for their ability to downscale, to a resolution of 0.1º, seven CMIP6 

ESGCMs over the Iberian Peninsula - a known climate change hotspot, due to its increased vulnerability to projected future 

warming and drying conditions. The study is divided into three stages: (1) evaluating the performance of the four CNN 

architectures in predicting mean, minimum, and maximum temperatures, as well as daily precipitation, trained using ERA5 15 

data, and compared with the Iberia01 observational dataset; (2) downscaling the CMIP6 ESGCMs using the trained CNN 

architectures and further evaluating the ensemble against Iberia01; and (3) constructing a multi-model ensemble of CNN-based 

downscaled projections for temperature and precipitation over the Iberian Peninsula at 0.1º resolution throughout the 21st 

century, under four Shared Socioeconomic Pathway (SSP) scenarios. Upon validation and satisfactory performance evaluation, 

the DL downscaled projections demonstrate overall agreement with the CMIP6 ESGCM ensemble in terms of magnitude for 20 

temperature projections and signal for both temperature and precipitation projections. Moreover, the advantages of using a 

high-resolution DL downscaled ensemble of ESGCM climate projections are evident, offering substantial added value in 

representing regional climate change over Iberia. Notably, a clear warming trend is observed in Iberia, consistent with previous 

studies in this area, with projected temperature increases ranging from 2ºC to 6ºC depending on the climate scenario. Regarding 

precipitation, robust projected decreases are observed in western and southwestern Iberia, particularly after 2040. These results 25 

may offer a new tool for providing regional climate change information for adaptation strategies based on CMIP6 ESGCMs 

prior to the next phase of the European branch from the Coordinated Regional Climate Downscaling Experiment (EURO-

CORDEX) experiments. 
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1 Introduction 

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) was released in August 2021, 30 

dramatically calling for urgent action to reduce global greenhouse gas emissions (GGE) due to the scale of projected changes 

for the climate system, from the mean state to extremes (IPCC, 2021). The extensive results presentedin the report are based 

on the Coupled Model Intercomparison Project phase 6 (CMIP6) simulations, which were performed using Earth System and 

Global Climate Models (ESGCMs), and included runs with spatial resolution in the range of 0.70o to 3.75o. The IPCC report 

projects worrying changes in what concerts to global-scale extreme events, such as significant increases in the frequency and 35 

intensity of heatwaves, droughts and extreme precipitation. Although based on global simulations, the AR6 showed particularly 

pronounced changes on a regional leveloffered a regional view of those changes being especially intense, in some climate 

change hotspots, like the Mediterranean region (Turco et al., 2015; Cos et al., 2022; Lionello and Scarascia, 2018).  

It iIs widely accepted that most resolutions used by ESGCMs are still too coarse to represent many regional to local scale 

processes that define the local climate (Randall et al., 2007; Soares et al., 2012; Rummukainen, 2016). SuchThis disadvantage 40 

fostershighlights the necessityneed for downscaling methods, at higher resolution, which often provide regional to local fine 

scale information, crucial for impact and adaptation studies. There is a plethora of downscaling methods, including dynamical 

ones using Regional Climate Models (RCMs), statistical ones using Statistical Downscaling Methods (SDMs) and, recently, 

an umbrella group of the latter, designated as Artificial Intelligence (AI) approaches, which include Machine Learning (ML) 

and Deep Learning (DL) methods. 45 

RCMs are forced at the boundaries by ESGCMs (Dickinson et al., 1989; Giorgi and Bates, 1989; Giorgi and Mearns, 1991; 

McGregor, 1997; Christensen et al., 2007), using higher resolutions (~10km) in limited area domains, which improve 

significantly the description of regional to local climates (Giorgi and Mearns, 1999; Laprise, 2008; Rummukainen, 2010, 2016; 

Feser et al., 2011; Soares et al., 2012, 2017a,b; Rios-Entenza et al., 2014; Giorgi et al., 2016; Lucas-Picher et al., 2017; Cardoso 

et al., 2019). Nevertheless, considering local and, especially, sub-daily climate features, RCMs still present limitations in 50 

capturing sub-grid processes such as convection (Prein et al., 2013). In order to bridge this gap, RCMs are running at very high 

resolutions, usually described as convective permitting resolutions (approximately 1 km), where deep convection is explicitly 

resolved by the grid mesh at grid spacing below 3 km (Prein et al., 2015; Coppola et al., 2020; Pichelli et al., 2021; Soares et 

al., 2022a). 

SDMs are based on the establishment of empirical relationships between large-scale atmospheric predictors and local observed 55 

predictands describing local climate (Wilby and Wigley, 1997; Fowler et al., 2007; Nikulin et al., 2018; Hertig et al., 2019; 

Maraun et al., 2019; Gutierrez et al., 2019; Rössler et al., 2019; Soares et al., 2019; Widmann et al., 2019). Subsequently, 

projections of future regional to local climate variables are determined from future large-scale atmospheric conditions. SDMs 

include model output statistics and perfect prognosis approaches (Maraun et al., 2010; 2017). However, when compared to 

dynamical downscaling, the model formulation of SDMs lack physical constraints and, in general, do not ensure a full 60 

multivariate consistency (Le Roux et al., 2018). Since SDMs use observations for training, they are able to overcome the 
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systematic biases often displayed by RCMs. Additionally, since SDMs are not computationally demanding, it avoids the need 

for large computational infrastructures is avoided.  

There is a continuous improvement in SDMs, and new AI approaches are being proposed for climate applications, with Deep 

Learning (DL) being one of the most promising ones. DL is a subdomain of Machine Learning (ML) which, in turn, is a 65 

subdomain of AI. In ML, the models train by themselves, learning the optimal value of their parameters automatically. Since 

parameter tuning is based on the input data fed to the model, the model is able to make predictions when forced by new data 

(see Alzubi et al. (2018) for an overview of ML). Unlike “shallow” learning models (e.g., Random Forests, Support Vector 

Machines), DL models learn non-linear relationships between data due to their “deep” layered structure. DL has become a 

common approach in research over the past decade (Schmidhuber, 2015), including in Earth Sciences in the last few years 70 

(Reichstein et al., 2019), thanks to advances in computational power and data availability. For example, the European Centre 

for Medium-Range Forecasts (ECMWF) features DL as the main showcase in its Destination Earth project (Bauer et al., 2021) 

that will attempt to create Digital Twins of the Earth System in the next decade. 

The most common DL model type is t”he Ar’tIificial Neural Network (ANN), an attempt to design an artificial analogous to 

the biological neural networks that exist in the human brain. One of the most used types of ANNs are the Convolutional Neural 75 

Networks (CNNs). These models are widely used in the field of Computer Vision, as they extract information and identify 

objects in images (LeCun and Bengio, 1995). However, CNNs’ value is not restricted to Computer Vision, as CNNs have been 

used in other research areas, including in Earth Sciences, for example in model parameterization (Chantry et al., 2021a) and 

ensemble postprocessing (Rasp and Lerch, 2018), showing promising results. Climate downscaling is another promising area 

benefitting from the implementation of CNNs. There have been eEarly attempts of downscaling using simple ANN structures, 80 

but the results were not compelling enough due to limited input data, computational resources and scarcer observations (e.g. 

Wilby et al., 1998; Trigo and Palutikof, 1999). Recent studies have shown more favourable results, equalling and even 

surpassing classic SDMs (e.g. Baño-Medina et al., 2020; Hernanz et al., 2022; Baño-Medina et al., 2022). Recently, and for 

the first time, Baño-Medina et al. (2022) was able to downscale climate projections with the aid of DL for precipitation and 

temperature, based on a set of GCMs from CMIP phase 5 (CMIP5). These authors showed that DL reduced the biases in the 85 

historical period when compared to an ensemble of RCMs with 0.44º resolution, from EURO-CORDEX (European branch 

from the Coordinated Regional Climate Downscaling Experiment). In addition, the resulting climate change signals have 

similar spatial patterns to those obtained from the RCMs, and when looking at the uncertainty, the DL preserves the uncertainty 

of the climate change signal for temperature and reduces it for precipitation. 

Despite their promising results, DL methods are perceivedviewed with precaution in the scientific community due to their 90 

black-box nature. DL models usually have thousands (if not millions) of trainable parameters that hinder a physically-based 

explanation for the quality of their results. There have been attempts to improve the understanding of models’ reasoning (e.g., 

Carter et al., 2018), attempts at building an overall framework for DL studies in Earth Sciences, including weather/climate 

modelling and postprocessing, and to generatinge consistent intercomparable studies (Reichstein et al., 2019; Chantry et al., 

2021b; Haupt et al., 2021). As a result, the first benchmark dataset for data-driven weather forecasting has been created (Rasp 95 
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et al., 2020). DL also presents other general limitations, including the need for hardware (GPUs accelerate the model training 

while the more common CPUs can be computationally costly; Chantry et al., 2021a)., and Other DL limitations concernspecific 

to the climate research field.: fFor example, lack of explicit physics in the DL models, and the need to split the data in a way 

that includes long-term patterns and trends (e.g. ENSO and global warming) in both training and test phases for long-term 

datasets (Schultz et al., 2021). 100 

The Iberian Peninsula, within the Mediterranean basin, is a known climate change “hotspot” (Planton et al., 2012; Diffenbaugh 

et al., 2012; Turco et al., 2015; Russo et al., 2019; Cos et al., 2022) due to its high vulnerability to warming and drying 

conditions (Argüeso et al., 2012; Cardoso et al., 2019; Soares et al., 2017; Lima et al., 2023a,b; Soares et al., 2022b), leading 

to high strong impacts on the occurrence of extreme events, such as droughts, heatwaves, and wildfires (Hoerling et al., 2012; 

Bento et al., 2022; Bento et al., 2023; Soares et al., 2023a). Future projections point to a warming trend stronger for daytime 105 

values during summer and autumn seasons, and during daytime, than in other seasons, resulting in an amplification of the daily 

and annual temperatures (Cardoso et al., 2019; Lima et al., 2023a). Also, it is projected a significant reduction inof the mean 

precipitation is projected throughoutalong the entire year (Argüeso et al., 2012; Lima et al., 2023a; Soares et al., 2017). 

ConcomitantAligned with the projected warming and drying trends, the occurrence of hot and dry extreme events is expected 

to become more frequent, intense, and longer (Hoerling et al., 2012; Lima et al., 2023b), which may have significant impact 110 

on human and natural sectors, such as agriculture (Bento et al., 2021), forests (Palma et al., 2015; Palma et al., 2018), coastal 

areas (Pereira et al., 2013), water resources (Soares et al., 2022b). The Iberia01 regular gridded product (hereafter Iberia01) is 

the highest resolution observational daily dataset including mean, maximum and minimum temperatures and precipitation, 

covering the full domain of continental Iberia (Herrera et al., 2019). Iberia01 is commonly used for assessing the performance 

of ESGCMs (Soares et al., 2022a), RCM results (Herrera et al., 2020; Careto et al., 2022a, 2022b), building of multi-model 115 

ensembles for climate change assessments (Soares et al., 2023a; Lima et al., 2023a; Lima et al., 2023b) and other studies, such 

as related to water availability (Soares et al., 2022b) and droughts (Páscoa et al., 2021; Soares et al., 2023a). 

The most consistent and widely used high-resolution climate change dataset for Iberia remains the EURO-CORDEX and 

CORDEX-Core runs (Jacob et al., 2014; Jacob et al., 2020). These regional climate simulations were forced by the previous 

CMIP5 global climate simulations and are becoming less useful after the recent release of the CMIP6 results forced by the 120 

Shared Socio Economic (SSPs) - Representative Concentration Pathways (RCPs) greenhouse gas emissions scenarios. At the 

present date, the new EURO-CORDEX simulations protocol, to be forced by CMIP6 runs, is being finished, and widespread 

availability of new simulations and results for the scientific community and society is not expected before one-two years’ time. 

Additionally, the building of new multi-model and multi-approach ensembles is highly beneficial to assess robustness and 

uncertainty of future climate projections (Lima et al., 2023a). The increasing need for exploring and updating regional climate 125 

information for Iberia requires and benefits from the use of other approaches to downscale the current CMIP6 runs. 

In the present study, a DL methodology based on the work of Baño-Medina et al. (2022) is used and tested to downscale, in a 

consistent manner, the CMIP6 runs at high-resolution for Iberia. A matrix of plausible futures is used to select the CMIP6 

models considered in agreement with the EURO-CORDEX evaluation study (Sobolowski et al., 2023). The DL algorithm is 
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trained using ERA5 and compared to the high-resolution regular gridded dataset Iberia01 (Herrera et al., 2019) for the current 130 

climate, covering the period 1979-2014, and then used to downscale future projections in agreement with four SSPs-RCPs 

scenarios: SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0 and SSP5-RCP8.5 (O’Neill et al., 2016), for three future periods 

throughout the 21st century: beginning of the century (2015-2040), middle of the century (2041-2070), and end of the century 

(2071-2100). Firstly, different architectures of DL are trained and evaluated for present climate and then multi-model 

projections are performed based on a simple-averaged “democratic” multi-model ensemble approach. This study is focused on 135 

four of the main climate variables and their extremes: minimum, mean, maximum temperatures and precipitation. The main 

goals of this study are to understand the reliability of downscaling CMIP6 GCMs to a much finer spatial resolution using DL, 

and to take advantage of the growing AI methods to compile information that may be crucial to timely assist mitigation and 

adaptation plans being developed at the national, regional, and local levels within Iberia. 

2 Data and Methods 140 

2.1 Study area 

The Iberian Peninsula (IP) is located in the southwestern tip of Europe (Fig. 1), bordered by the Atlantic Ocean and the 

Mediterranean Sea. The IP sits in a climate transition zone between the arid and semiarid climates of subtropical regions and 

the humid temperate climates of northern Europe. Despite having a surface area of less than 0.6 million square kilometres, it 

shows a diverse climate, with significant regional variations. In fact, while the north and northwest regions are marked by long 145 

rainy seasons and temperate summers, the south and southeast are characterized by long and hot summers, as well as by a clear 

dry season. The interior regions are defined by a continental climate, with hot summers and cold winters. Additionally, local 

and regional topographic features play a significant role in modulating climate features throughout the IP. Here, the IP domain 

is considered as the land area between 36ºN and 44ºN and 10ºW and 4ºE (Fig. 1, inside the orange line). The predictors domain 

(Fig. 1, red dashed line) is a larger region than the IP domain to ensure that large-scale phenomena are included in the 150 

information provided by the predictors to train the DL models. 
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Figure 1. Western Europe and Northwestern Africa topography (m) and Earth System and Global Climate Model predictors’ (red dashed 

line) and predictands’ (full orange line) domains considered. 

2.2 ERA5 reanalysis 155 

ERA5 is the latest European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (Hersbach et al., 2020), 

produced within the Copernicus Climate Change Service (C3S). ERA5 provides a comprehensive, high-resolution record of 

the global atmosphere, land surface, and ocean from 1950 onwards. Benefitting from advanced research and model physics 

development, outputs are archived at 0.25º x 0.25º horizontal and 1-hourly time resolutions, considering 137 atmospheric 

levels up to 0.01 hPa. The ECMWF Integrated Forecast System (IFS) Cy41r2, used operationally for forecasting from March 160 

to November 2016, is used to produce ERA5. Additional details are available in Hersbach et al. (2020). Here, the period from 

January 1st, 1979, to December 31st, 2014, is considered. The original ERA5 reanalysis data was interpolated to a 1º x 1º 

horizontal resolution, using a bilinear interpolation method, to build a common grid to the CMIP6 ESGCMs (section 2.3). 

2.3 CMIP6 Earth System Global Climate Models 

The ESGCMs selected for the current study closely follow the model array built in Sobolowski et al. (2023) for the ongoing 165 

CMIP6 dynamical downscaling that is being performed, i.e., the regional climate model simulations of EURO-CORDEX phase 

II. The authors analysed thoroughly the ability of the CMIP6 ESGCMs to describe the most important large-scale features that 

define the European climate, such as the storm-track position, and that span the AR6 IPCC climate sensitivity range. The 

ESGCMs considered are listed in Table 1; understandably, the list is additionally constrained by the data availability of the in 
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what concerns to predictors data. The predictor data were extracted for the domain in Fig. 1 (inside the dashed red line), limited 170 

by 15ºW - 7ºE; 30ºN - 50ºN, being then interpolated to a common grid at a 1º x 1º resolution using the bilinear interpolation 

method. 

2.4 Iberia01 Observational regular gridded dataset 

The Iberia01 regular gridded product (hereafter Iberia01) is the highest resolution observational daily dataset including mean, 

maximum and minimum temperatures and precipitation, covering the full domain of continental Iberia (Herrera et al., 2019). 175 

This observational dataset was built using an unprecedented number of ground station observations: 275 for temperatures and 

3486 for daily accumulated precipitation, resulting in a high quality regular gridded dataset at 0.1º x 0.1º horizontal resolution. 

Iberia01 is commonly used for assessing the performance of ESGCMs (Soares et al., 2022a), RCM results (Herrera et al., 

2020; Careto et al., 2022a, 2022b), building of multi-model ensembles for climate change assessments (Soares et al., 2023; 

Lima et al., 2023a; Lima et al., 2023b) and other studies, such as related to water availability (Soares et al., 2022b) and droughts 180 

(Páscoa et al., 2021; Soares et al., 2023). Here, the Iberia01 product is used both to calibrate and evaluate the deep learning 

approach considering the period 1979-2014 (same as ERA5). 

 

 

 185 

Table 1. CMIP6 Earth System Global Climate Models 

ESGCM 

(CMIP6) 

Institute Reference 

Hor. & Vert. Res. 

Atmosphere 

Hor. & Vert. Res. 

Ocean 

ACCESS-CM2 CSIRO / BOM Bi et al. (2012) 1.25º x 1.875º, L85 1.00º x 1.00º, L50 

MPI-ESM1-2-HR MPI Müller et al. (2018); Gutjahr 

et al. (2019) 

0.90º x 0.90º, L95 0.40º x 0.40º, L40 

IPSL-CM6A-LR IPSL Boucher et al. (2020) 1.25º x 2.50º, L79 0.5-1.00º x 1.00º, 

L75 
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MIROC6 AORI / NIES / 

JAMSTEC 

Tatebe et al. (2019) 1.40º x 1.40º, L81 1.00º x 1.00º, L62 

NorESM2-MM NCC Seland et al. (2020) 0.90º x 1.25º, L32 1.00º x 1.00º, L53 

UKESM1-0-LL UKMO Sellar et al. (2019) 1.25º x 1.875º, L85 1.00º x 1.00º, L75 

CNRM-ESM2-1 CNRM Séférian et al. (2019) 1.40º x 1.40º, L91 1.00º x 1.00º, L75 

 

2.5 Deep learning methodology 

Convolutional Neural Networks (CNNs) are Deep Learning (DL) model structures specialized in extracting features 

automatically from geospatial data. The architecture of a CNN model includes convolutional layers that perform feature 190 

identification and extraction using filters that apply the mathematical operation of cross-correlation to the data (LeCun and 

Bengio, 1995; see Fig. 3 of Baño-Medina et al., 2020). The general outline of one epoch, i.e., a full cycle of the training phase, 

is as follows:  

● The 2D filters in a convolutional layer “scan” the set of predictor variables, computing a set of filter maps based on 

each filter, highlighting different features/patterns of the original data. These filter maps are then used as input for the 195 

following convolution layer; 

● The output of the final convolutional layer is flattened (reshaped to 1D) before being fed to the fully connected (dense) 

layer that follows;  

● The units in a dense layer are connected to every unit in the previous and following layers, allowing the network to 

learn potential relationships between all units in successive layers. The final dense layer must have the size of the 200 

target data in order to generate the predictions;  

● The predictions are compared with the observations by calculating the loss according to the loss function defined by 

the user; 

● Finally, the model attempts to lower the loss by the use of the Stochastic Gradient Descent optimization algorithm, 

tuning the parameters of each model layer according to the direction of the gradient that minimizes the loss the fastest. 205 

This process begins in the output layer, computing the gradients on that layer, and backtracks all the way to the first 

convolutional layer, in what is known as the Back-propagation algorithm. 

The model then repeats the training until it reaches a convergence mark defined by the user (usually a set number of epochs 

after the loss stops decreasing). While the learnable parameters are optimized automatically by the model, there is a set of 

hyperparameters that is defined by the user, including: 210 

● The maximum number of epochs that the model can run;  

● The batch size of observations used to tune the model in each training cycle; 

● The learning rate at which the model incorporates new information after each epoch. 

The main goal of DL is to achieve generalization, i.e., the ability to make quality predictions when given new, never-before-
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seen data (extrapolation). Such a feature is particularly important when training DL models for climate studies, due to global 215 

warming and other long-term trends. The model structures considered in this study were retrieved from the Baño-Medina et 

al. (2020) and are described in Table 2. Although all models have similar structures, differing only in small details, they are 

designed in such a way so that every model is slightly more complex than the previous one. All models comprise: 

● Three convolutional layers (the first two layers have 50 and 25 filters each); 

● A final dense layer that outputs the predictions; 220 

● The same hyperparameters: batch size = 100 and learning rate = 0.0001. 

The differences among the models are the following: 

● The third convolutional layer has 1 filter in BMlinear and BM1 and 10 filters in BM10 and BMdense; 

● BMdense presents two additional dense layers, both with 50 units, prior to the output layer;  

● The activation function in every layer of every model is the Rectified Linear Unit (ReLU), a non-linear function, 225 

except in BMlinear, in which the function is linear. 

 

The loss function used for the temperature predictions is based on the mean squared error. The same DL models were used to 

downscale precipitation, differing however from the temperature ones, so that For precipitation, however, the DL models 

feature a multi-output structure (see Fig. 3 of Baño-Medina et al., 2020). Instead of predicting precipitation directly, the model 230 

attempts to obtain three parameters: the shape (alpha) and scale (beta) of the gamma distribution, and the probability of 

precipitation (p). This is achieved by applying a custom loss function that computes the negative log likelihood of the 

Bernoulli-gamma distribution (Cannon, 2008), following the methodology presented in Baño-Medina et al. (2020). The 

precipitation value is obtained by multiplying the alpha and beta parameters. 

 235 

 

 

 

Table 2. CNN architectures used in this study (adapted from Baño-Medina et al., 2022). The architecture is divided in one input and one 

output layer and several hidden layers in between. Numbers represent the units in each hidden layer, convolutional layers in bold, dense 240 
layers otherwise. The input format is LAT x LON x 15 (5 predictors, times 3 pressure levels) and the output is a 6523 x 1 vector (the number 

of 0.01º land grid points over Iberia). 

Model Architecture 
Activation 

function 
Rationale 

BMlinear Input – 50 – 25 – 1 – Output Linear Using convolutions to perform the downscaling 

BM1 Input – 50 – 25 – 1 – Output ReLU Add non-linearity to the model structure 

BM10 Input – 50 – 25 – 10 – Output ReLU Increase the number of filters in the last convolution layer 

BMdense Input – 50 – 25 – 10 – 50 – 50 – Output ReLU Deepen the model structure 
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2.6 Selection of predictors, training, and evaluating 

The predictors selected follow the Baño-Medina et al. (2022) study and are included in Table 3. The data wereas pre-processed 245 

before being used to train and evaluate the DL models. The ERA5 variables, used as predictors, were standardized to facilitate 

the training of the DL models. Gridpoints with Any missing data in the CMIP6 ESGCMs wereas filled with an average of the 

surrounding gridpoints. If the surrounding gridpoints had missing data as well, a domain average was applied. and aAfterwards, 

the dataset was standardized (with the same parameters used for ERA5). The ESGCMs were bias corrected in relation to ERA5 

through a simple mean-variance scaling method. The climate change trend was removed in the future scenarios before the bias 250 

correction and reintroduced afterwards (Vrac and Ayar, 2017). 

Two stages were pursued with the aim of training and evaluating the four architectures (Fig. 2). The first stage was to train 

them using ERA5 predictors (Table 3) considering the 1979–2004 period, validating their performance between 2005 and 

2009, and finally testing the architectures for the period 2010–2014. This process was performed to obtain each of the four 

predictands, namely daily mean temperature (T), daily minimum temperature (Tmin), daily maximum temperature (Tmax), 255 

and daily accumulated precipitation (Pr) (Table 3). The results of the DL downscaled predictands from ERA5 were then 

compared with the Iberia01 reference data. In this case, since the DL used ERA5 reanalysis predictors, the evaluation was 

performed with daily synchronized climate data. This evaluation, conducted between 2010 and 2014, was based on error 

metrics such as the bias, the root mean squared error (RMSE), the standard deviation ratio (SDR) and the Perkins skill score 

(PSS), and the relative operating characteristic skill score (ROCSS). 260 

The mean bias, used for temperature and precipitation is defined as: 

𝐵𝑖𝑎𝑠 =
1

N
∑ (𝑚𝑘 − 𝑜𝑘)
𝑁
𝑘=1  ,          (1) 

where 𝑜𝑘 and 𝑚𝑘 are respectively the observed and modelled time-series, and N is the total number of grid-points. 

The root-mean squared error (RMSE), used for temperature and precipitation, is defined as: 

𝑅𝑀𝑆𝐸 = √
1

N
∑ (𝑚𝑘 − 𝑜𝑘)

2𝑁
𝑘=1  ,          (2) 265 

The standard deviation ratio, used only for temperature, is expressed as: 

𝜎𝑛 =
𝜎𝑚

𝜎𝑜
=

√
1

N
∑ (𝑚𝑘−𝑚)

2𝑁
𝑘=1

√1

N
∑ (𝑜𝑘−𝑜)

2𝑁
𝑘=1

 ,          (3) 

where 𝜎𝑜 and 𝜎𝑚 are standard deviations of the observed and modelled time-series, respectively, while 𝑜 and 𝑚 represent the 

respective mean values. 

The Perkins skill score (PSS; Perkins et al., 2007) quantifies the model’s ability to reproduce the observed probability 270 

distribution functions (PDFs): 
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𝑆 = 100 × ∑ 𝑚𝑖𝑛[𝐸𝑚,𝑖 , 𝐸𝑜,𝑖]
𝐵
𝑖=1  ,          (4) 

where 𝐸𝑚 and 𝐸𝑜 are, respectively, the modelled and observed empirical PDFs and 𝑚𝑖𝑛⁡[𝐸𝑚,𝑖 , 𝐸𝑜,𝑖]⁡ is the minimum between 

the two values. B is the total number of bins used to compute the PDF. 

Finally, the relative operating characteristic skill score (ROCSS) is given by: 275 

𝑅𝑂𝐶𝑆𝑆 = 2 × Area⁡under⁡the⁡ROC⁡Curve − 1 .        (5) 

For the extreme values, the 2nd and 98th percentiles of T, the 10th (90th) percentile of Tmin (Tmax), and the 98th percentile 

of Pr were computed and compared with those from Iberia01 (bias). 

 

The second stage consisted in training the DL architectures with ERA5, this time using the complete 1979–2014 period. These 280 

architectures were then used to downscale the individual CMIP6 ESGCMs for the same period, for each of the four predictands. 

The resulting DL downscaled ESGCMs, at 0.1º horizontal resolution (ESGCM-DL) are non-synchronized with the Iberia01, 

and consequently only a statistical comparison was performed. Therefore, Julian years with 365 multi-year daily means were 

computed for each ESGCM-DL, and for the Iberia01, and a performance evaluation based on the same error metrics as in the 

first stage was conducted. Finally, a democratic (simple average) ensemble was built for each architecture, containing seven 285 

ESGCM-DL membersmodels, and compared to the 1º ESGCM ensemble, the 1º ERA5 reanalysis, and the interpolated 0.1º 

ERA5 reanalysis. 

 



12 

 

 

Figure 2. Summary of the two phases of the methodology (detailed in section 2.6), describing the predictors and training and 290 
projections periods considered in each phase. 

Table 3. ERA5 and CMIP6 predictors and predictands and the respective atmospheric levels. 

Levels 850 hPa - 700 hPa - 500 hPa 

Predictors 

(daily) 

Temperature 

(ta) 

Humidity (hus) Geopotential 

Height (zg) 

Zonal wind 

speed (ua) 

Meridional wind 

speed (va) 

Levels Surface 

Predictands 

(daily) 

Mean temperature 

(tas) 

Minimum 

temperature (tasmin) 

Maximum 

temperature (tasmax) 

Precipitation (pr) 

 

2.7 Future climate projections 

The present climate historical period considered here corresponds to 1981-2010. The future climate projections are focused on 295 

three periods: 2015-2040 (beginning of the 21st century), 2041-2070 (middle of the 21st century), and 2071-2100 (end of the 
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21st century), encompassing four CMIP6 SSPs (Rozenberg et al., 2014; O’Neill et al., 2016): SSP1-2.6, SSP2-4.5, SSP3-7.0 

and SSP5-8.5. These scenarios range from a strong mitigation level, resulting in low greenhouse gas emissions (GGE), with 

CO2 emissions cut to net zero around 2075 (SSP1-2.6), to an intermediate trajectory of future GGE, with CO2 emissions 

maintaining current levels until 2050 and then reducing, but not achieving net zero by 2100 (SSP2-4.5), and finally, two 300 

scenarios with increasing GGE: SSP3-7.0 and SSP5-8.5, where the former considers that CO2 emissions double by 2100, and 

the latter consider an increase of threefold by 2075. In this study, results of future climate projections correspond to anomalies 

(differences) between the future and the historical climatological values, given by a simple averaged (democratic) multi-model 

ensemble consisting of all ESGCM-DL outputs. It should be noted that the projected temperature increase depends on the 

chosen historical period. Downscaling using the four DL algorithms is performed for each ESGCM considered in this study 305 

(Table 1) for the disclosed future periods. As reference, the climate change signal linked to all ESGCMs is also computed. The 

future ESGCM-DL projected climate of Iberia is analysed in terms of mean climate and extreme values. Anomaly maps for 

the annual projected changes for Iberia are presented for all variables, where the differences between the 1º-ESGCMs and 0.1º 

ESGCM-DL projections are highlighted. Boxplots summarizing the projected changes (median, interquartile range, variability) 

are also presented, for the four predictands. 310 

3 Results 

3.1 Evaluation of DL forced by ERA5 

The four DL architectures are trained and validated with ERA5 for the 1979–2004 and 2005–2009 periods, respectively, and 

finally tested during 2010–2014 against Iberia01 considering minimum, mean, and maximum temperatures, and precipitation. 

The performance evaluation metrics are shown in Fig. 32 (T), Fig. 43 (Tmin), Fig. 54 (Tmax) and Fig. 65 (Pr). The comparison 315 

between the ERA5 (interpolated to 0.1º horizontal resolution; iERA5 from here on) and Iberia01 is also shown, as reference 

for all fields (dark grey boxplot). 

Considering T (Fig. 32), three main outcomes emerge: (1) all the DL approaches display rather small errors and even slightly 

improvements in comparison with iERA5, such as concerning RMSE and the PSS; (2) the DL architectures present less 

variability in accuracy metrics (bias) than iERA5, but in some cases the error distribution of the latter is more closely centered 320 

around zero than for the DL outcomes; and, (3) the four architectures present small warm (cold) biases for lower (higher) T 

extreme values. When considering the total bias, the four architectures show somewhat interchangeable results, with median 

values slightly below zero for BMlinear, virtually zero for BM1, and slightly over zero for BM10 and BMdense. The small 

warm bias found for the 2nd percentile of T is observed both in the DL outcomes and in the iERA5. However, the cold bias 

found in the 98th percentile of T is only found in the DL outcomes, with values close to zero for the iERA5. Regarding the 325 

RMSEs, DL results show lower variability ranges than iERA5, and overall lower median values with increasing DL 

complexity. The interquartile range for the RMSEs of the DL results encompasses values from 1.25ºC to 1.5ºC. In terms of 

SDR, in relation to Iberia01, the iERA5 shows the median value closest to 1, however, it also shows the largest interquartile 
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distance and largest variability range (from ~0.90 to ~1.08, compared with ~0.93 to ~1.04 for the DL outcomes). Finally, 

regarding the PSS, the four architectures show more similarity between distributions of T with Iberia01 than the iERA5. A 330 

distinction between the DL outcomes for this error metric is rather unnoticeable. 

Regarding Tmin (Fig. 43), the overall results show the following: (1) the DL architectures present better results in comparison 

to Iberia01 than the simple interpolation of ERA5, showing lower RMSEs, biases closer to zero and larger PSSs; (2) the four 

architectures show, to some extent, similar results between them. On a more detailed analysis, median biases presented by the 

four architectures are all near zero, while the iERA5 shows a median bias larger than 1ºC. Furthermore, when comparing the 335 

bias of the architectures to the interpolated ERA5, a lower interquartile range (circa 1ºC) is observable in the first compared 

to the latter (~2ºC). Additionally, a narrower extreme bias variability range (about 2.5ºC versus about 4ºC, respectively) is 

seen. Results for extreme low temperatures (bias p10) are in line with the total bias, nevertheless showing a slight tendency to 

lower median biases as the complexity of the architecture increases. This is also noticeable in the precision metric, with reduced 

RMSEs for increasing DL architecture complexity. However, here, BM10 and BMdense show very similar results. All 340 

architectures present median RMSEs below 2ºC, being the third quartile of the three more complex ones below this value as 

well. The maximum RMSE does not surpass 3ºC. On the other hand, the iERA5 shows a median RMSE slightly above 2ºC, 

the third quartile close to 3ºC, and a maximum value above 4.5ºC. Similar to the T results in Fig. 32, the median SDR is closer 

to 1 for the iERA5, nevertheless, the DL architectures show greater variability ranges for Tmin in comparison to T. Among 

the architectures, BMdense is the one with a standard deviation ratio median closer to 1. Finally, considering the PSSs, it is 345 

once again noticeable that the distributions of the downscaled ERA5 using DL and Iberia01 tend to match better with the 

increase in complexity of the architectures. 

When assessing Tmax (Fig. 45), three main results may be highlighted: (1) all the error metrics are improved by the DL 

methods when compared with iERA5 (2) the DL architectures show much less variability in the biases and RMSEs in 

comparison to iERA5 (having Iberia01 as reference); and (3) the four architectures show, to some extent, similar results 350 

between them. In terms of bias, and considering the four architectures, neither Tmax nor the extremely Tmax show cold or 

warm biases, being both centered around zero. Conversely, iERA5 shows a cold bias in both cases. Once again, precision tends 

to be larger with more complex DL architectures, with BMdense showing lower RMSEs. The Tmax SDR between BM10 and 

Iberia01 seems to indicate a better agreement than BMlinear, BM1, and BMdense. Nevertheless, the four architectures present 

SDR values closer than 1 when compared with iERA5. Finally, the matching between the four DL architectures outcomes 355 

distributions and Iberia01 is greater than for iERA5. The high-quality DL results for temperatures w.r.t. to iERA5 are rather 

promising since those variables are assimilated by ERA5. 

For Pr, the error metrics from the comparison between the DL downscaled ERA5, iERA5, and Iberia01, are shown in Fig. 65. 

In this case, between the four architectures, BMdense is the most accurate and precise one, also surpassing iERA5. While the 

iERA5 shows an overall slightly negative bias (median of -8 mm), the DL outcomes show generally positive values (between 360 

1 and 10 mm). Considering the extreme Pr (98th percentile), all approaches show an underestimation, performing slightly 

worse than the iERA5, despite the lower error variability ranges. The distributions of the RMSEs of iERA5 and BMlinear, 
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BM1, and BM10, show somewhat similar results for the median and overall variability. In this case, BMdense presents the 

best results. Finally, the ROCSS shows that all four DL architectures provide a better skill at representing Pr over the Iberian 

Peninsula, in comparison with iERA5, with median values ranging between 0.82 and 0.86, contrasting with 0.67 for the iERA5. 365 

The results from Figs. 32 to 65 show that the four DL architectures are successful to downscale temperature and precipitation 

from ERA5 at high resolution, presenting, in the vast majority of instances, a better performance than iERA5. Given the similar 

behavior of the four architectures, choosing the “best” one is not straightforward. BM10 and BMdense show the best precision 

(RMSEs) for the four variables (with BMdense being the most precise). However, considering the biases, BMdense produces 

the best results for 10th percentile Tmin, BMlinear comes first for the 2nd percentile of T, and BM10 produces more accurate 370 

results for Tmax. Regarding Pr, BMdense and BM1 retain the best performance for the mean and 98th percentile. Therefore, 

a clear distinction between architectures for all variables is not meaningful. Therefore, and assuming that all DL architectures 

are able to partially contribute to the overall performance of the downscaled datasets, the ensemble-building process considers 

equally all DL downscaling for each ESGCM. 

 375 



16 

 

 

Figure 32. Error measures of the DL downscaling of ERA5 for the daily mean temperature (2010-2014) in relation to the Iberia01 

observations. The errors considered are bias, bias of the 2nd and 98th percentiles, root mean square error (RMSE), standard deviation ratio 

and Perkins skill score (PSS). As reference the errors of ERA-5 interpolated to 0.1º are also shown. Each boxplot represents the value of all 

gridpoints of the output of each CNN model forced with ERA5. The box represents the interval between the 25th and 75th percentiles. The 380 
orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 
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Figure 43. Error measures of the DL downscaling of ERA5 for the daily minimum temperature (2010-2014) in relation to the Iberia01 

observations. The errors considered are bias, bias of the 10th percentile, root mean square error (RMSE), standard deviation ratio and Perkins 

skill score (PSS). As reference the errors of ERA-5 interpolated to 0.1º are also shown. Each boxplot represents the value of all gridpoints 385 
of the output of each CNN model forced with ERA5. The box represents the interval between the 25th and 75th percentiles. The orange line 

is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 
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Figure 54. Error measures of the DL downscaling of ERA5 for daily maximum temperature (2010-2014) in relation to the Iberia01 

observations. The errors considered are bias, bias of the 90th percentile, root mean square error (RMSE), standard deviation ratio and Perkins 390 
skill score (PSS). As reference the errors of ERA-5 interpolated to 0.1º are also shown. Each boxplot represents the value of all gridpoints 

of the output of each CNN model forced with ERA5. The box represents the interval between the 25th and 75th percentiles. The orange line 

is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 
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Figure 56. Error measures of the DL downscaling of ERA5 for daily precipitation (2010-2014) in relation to the Iberia01 observations. The 395 
errors considered are bias, bias of the 98th percentile, root mean square error (RMSE), and ROC skill score (ROCSS). As reference the 

errors of ERA-5 interpolated to 0.1º are also shown. Each boxplot represents the value of all gridpoints of the output of each CNN model 

forced with ERA5. The box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower 

(upper) whisker represents the 10th (90th) percentile. 

3.2 Evaluation of DL forced by the ESGCMs 400 

In this section, the error metrics comparing the DL downscaling’s of the CMIP6 ESGCMs and Iberia01 are displayed, for the 

four analysed variables (T, Tmin, Tmax and Pr), and evaluated in the context of the baseline dataset errors, like: the CMIP6 

ESGCMs at 1°, and ERA5 (interpolated at both 1° and 0.1°, henceforth iERA5-1 and iERA5-0.1, or simply iERA5). Note that, 

for each DL downscaled ESGCM, a 4-member ensemble is considered, comprising the results from the four DL architectures. 

In general, for T (Fig. 76), the DL ESGCMs show a much better performance in comparison to the ESGCMs, and even w.r.t. 405 

the ERA5, at 0.1º. All biases for the DL ESGCMs results are around zero and show small variabilities (below 0.3ºC), The 
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forcing ESGCMs display both positive and negative median values for the three biases (total, 2nd and 98th percentiles’), 

ranging in general between -1ºC and 2ºC, but some rise to 3ºC. The medians for iERA5 are generally closer to zero (below 

0.3ºC). Regarding the RMSE, the DL downscaled ESGCMs show similar values, below 0.5ºC, while the iERA5 values are 

typically below 1ºC, and most of the ESGCMs reach almost 4ºC, except for MIROC6, which exceeds this threshold. The SDR 410 

of all models is around 1, nevertheless, the DL ensembles for each ESCGM present less variability. Finally, the PSS metric 

shows that the DL ESGCMs are able to represent the Iberia01 PDFs remarkably well, yielding scores above 0.93. The ESGCMs 

display median PSS values between 0.8 and 0.9 and are characterized by large variability.  

Considering Tmin (Fig. 87), the biases for the DL ESGCMs results are around zero (ranging no more than 0.5ºC), while the 

forcing ESGCMs and iERA5 show mainly positive values, with medians reaching 4.5°C and 2°C, respectively. The error 415 

variability range for the DL ESGCMs is considerably smaller than for the ESGCMs counterparts. For the extreme Tmin values 

(10th percentile), a similar pattern is visible, however with slightly greater biases for the ESGCMs. Regarding RMSEs, the DL 

ESGCMs ensemble shows a great improvement with values around 1°C whereas the medians of ESGCMs and ERA5 exceed 

4°C and reach ~2°C, respectively, accompanied by much larger variability ranges. In terms of SDR, all DL downscaling 

medians are near 1 and with rather small interquartile ranges when compared with ESGCMs and iERA5, reaching 0.3 units. 420 

Finally, the PSSs metric consistently reveals the added value of the DL ensemble in representing the PDFs with values ~0.94 

that compare with values in the range of 0.70 and 0.87 of the ESGCMs. 

Regarding Tmax (Fig. 98), the DL ensemble show a clear improvement w.r.t. to the forcing ESCGMs, with median biases less 

than -0.2ºC, compared with a general underestimation of median values that reach 4°C for Tmax and its 90th percentile. The 

MIROC6 is the only model overestimating Tmax in ~1ºC. The RMSE values display a striking reduction given by the DL 425 

approaches, from median RMSE values ranging from 4ºC and 1.5ºC to less than 0.5ºC. The SDRs are closer to 1 than the 

ESGCM counterparts as well as the iERA5. Considering the PSS, similarly to what was previously shown, the DL downscaled 

inter-member variability ranges between 0.92 and 0.97, contrasting with the forcing ESGCMs and iERA5 (although the median 

PSSs for iERA5 are also high, above 0.9). 

Finally, for precipitation (Fig. 109), the performance of the DL ensembles for each ESGCM is less remarkable then for 430 

temperatures. Nevertheless, the DL downscalings outperform the forcing counterparts in all the error metrics, presenting lower 

errors and variability ranges. Biases, both for Pr and its 98th percentile, point to a general underestimation, ranging between -

25% and 10%, yet corresponding to much lower overall differences in comparison to Iberia01 than the ESGCMs and iERA5. 

For the RMSE, the DL ESGCMs and iERA5 are relatively equivalent, with median values of about 10 mm/day. However, the 

ESGCMs RMSEs show values above 70 mm/day, but with medians between 18 e 35 mm/day. A similar behaviour is 435 

identifiable for the ROCSS, with good results for both the DL ESCGMs and iERA5, with most median values above 0.95, 

whether the ESGCMs median ROCSSs are in the range of 0.7 and 0.9, and extreme values reach -0.2. In contrast, the PSSs of 

the DL downscaled ESGCMs show lower values, with medians around 0.5, smaller than the ~0.72 of the ESGCMs. In some 

sense this is not that surprising since we are comparing the ESGCMs and Iberia01 precipitation at 1º, which has a much 

smoother spatial pattern than at 0.1. 440 
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Figure 76. Error measures of the DL downscaling of CMIP6 ESGCMs for daily mean temperature (1979-2014) in relation to the Iberia01 

observations. The errors considered are bias, bias of the 2nd and 98th percentile, root mean square error (RMSE), standard deviation ratio, 445 
and Perkins skill score. As reference the errors of ERA-5 interpolated to 1º and 0.1º and the errors of CMIP6 ESGCMs at 1º are also shown. 

Each boxplot represents the value of all gridpoints of the output of all CNN models pooled together forced with each CMIP6 ESGCM. The 
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box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents 

the 10th (90th) percentile. 

 450 
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Figure 78. Error measures of the DL downscaling of CMIP6 ESGCMs for daily minimum temperature (1979-2014) in relation to the Iberia01 

observations. The errors considered are bias, bias of the 10th percentile, root mean square error (RMSE) and Perkins skill score (PSS), and 

standard deviation ratio. As reference the errors of ERA-5 interpolated to 1º and 0.1º and the errors of CMIP6 ESGCMs at 1º are also shown. 

Each boxplot represents the value of all gridpoints of the output of all CNN models pooled together forced with each CMIP6 ESGCM. The 455 
box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents 

the 10th (90th) percentile. 
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Figure 98. Error measures of the DL downscaling of CMIP6 ESGCMs for daily maximum temperature (1979-2014) in relation to the 460 
Iberia01 observations. The errors considered are bias, bias of the 90th percentile, root mean square error (RMSE), standard deviation ratio, 

and Perkins skill score. As reference the errors of ERA-5 interpolated to 1º and 0.1º and the errors of CMIP6 ESGCMs at 1º are also shown. 

Each boxplot represents the value of all gridpoints of the output of all CNN models pooled together forced with each CMIP6 ESGCM.  The 

box represents the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents 

the 10th (90th) percentile. 465 
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Figure 109. Error measures of the DL downscaling of CMIP6 ESGCMs for daily precipitation (1979-2014) in relation to the Iberia01 

observations. The errors considered are bias, bias of the 98th percentile, root mean square error (RMSE) and Perkins skill score, and ROC 

skill score. As reference the errors of ERA-5 interpolated to 1º and 0.1º and the errors of CMIP6 ESGCMs at 1º are also shown. Each boxplot 470 
represents the value of all gridpoints of the output of all CNN models pooled together forced with each CMIP6 ESGCM. The box represents 
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the interval between the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th 

(90th) percentile. 

3.3 Iberian future mean climate 

The evaluation of the DL architectures’ ability to downscale both the ERA5 and the ESGCMs during the historical climate 475 

provided the necessary confidence to apply this method to downscale the future ESGCMs climate simulations. Therefore, here, 

the projected changes from the DL downscaled ESGCM ensemble are shown, obtained from the comparison of three future 

time-slices (2015-2040, 2041-2070 and 2071-2100) with the 1981-2010 historical period, in terms of anomalies (i.e., future 

minus historical). The four SSP-RCP pairs are analysed (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), for each of the four 

variables. The simple-averageddemocratic unweighted ensembles were built considering all ESCGMs and DL architectures. 480 

Therefore, the DL ESCGM ensembles are composed of 28 members (7 members models times 4 architectures). Figures 110 

to 143 refer to the projections for T, Tmin, Tmax and Pr, respectively. If less than two-thirds of the ESGCMs members agree 

on the climate change signal, the grid-point is signalized with a grey dot, which reveals the lack of robustness of the projected 

change. A spatial comparison between the projected changes from the 1º ESGCMs ensemble, the 0.1º DL downscaled ESGCM 

ensemble, and the interpolated version of the latter, at 1º (to offer a fair comparison with the original datasets), is conducted, 485 

to highlight the differences and added value brought by the DL downscaled ensembles. 

The future projected changes for T are displayed in Fig. 110, for the forcing 1º ESGCMs (“1º GCM” in the panels) and for the 

DL downscaled ESGCM ensemble (“DL-MM_01” in the panels), for the three future time-slices under the four scenarios. 

Overall, the results show a projected increase in T, starting from the 2015-2040 period and continuing towards the end of the 

21st century (Fig. 110a). Naturally, the SSP1-2.6 (SSP5-8.5) scenario depicts the smallest (greatest) changes. Under the SSP1-490 

2.6, projected changes of up to 2.5ºC are discernible, and the patterns exhibit analogous characteristics when comparing the 

ensemble of ESGCM to the downscaled ensembles generated using DL (Fig. 101a). This similarity is also evident in the 

remaining scenarios, albeit with the additional advantage of DL downscaled ESGCM ensembles displaying more detailed 

patterns of warming. Both DL and ESGCM ensembles demonstrate temperature increases of up to 1.5ºC, 3.5ºC, and 6ºC during 

the periods 2015-2040, 2041-2070, and 2071-2100, respectively, under the SSP5-8.5 scenario. But the corresponding median 495 

warming values for Iberia are around 1.23ºC, 2.5ºC and 5ºC. In the case of SSP2-4.5 and SSP3-7.0, there is less pronounced 

warming, although it may still reach up 3.5. and 4.5ºC, respectively. These results are more easily observed by condensing the 

spatial information into boxplots (Fig. 101b). Overall, differences between DL and ESGCM ensemble are more pronounced 

from the middle of the century onwards, especially for the two worst-case scenarios (SSP3-7.0 and SSP5-8.5).  

Considering Tmin (Fig. 121), results present similar features to those from T. Within the SSP1-2.6, projected changes between 500 

0.5ºC and 2ºC are visible, with more pronounced warming in the end of the century. The behavior is similar between the 

ESGCM ensemble and the downscaled one. Local variations in the patterns of Tmin projected changes are visible for all time-

slices and scenarios in the outcomes from the DL downscaled ensemble, compatible with the results from higher-resolution 

models, able to describe local phenomena in greater detail (contrarily to a simple interpolation method). For the SSP5-8.5 
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scenario, results for the 2041–2070 (2071–2100) period are similar between ensembles, with projected increases from 2ºC to 505 

3.5ºC (3ºC to 5.5ºC). Note, however, that the DL ensemble projects local increases of up to 6ºC in central Iberian Peninsula, 

which are not present in the ESGCM ensemble projections. This behaviour is also depicted in the boxplots of Fig. 121b. 

Tmax (Fig. 132) presents similar characteristics to T and Tmin. In the beginning of the 21st century (2015-2040), the magnitude 

of the projections from both the ESGCM and DL ensemble ranges from 0.5ºC to 2ºC in most of the Iberian Peninsula (Fig. 

132a), independently of the scenario. In the mid-21st century (2041-2070), projections from both the ESGCM and DL 510 

downscaled ensembles represent a similar range of projected changes (up to 3.5ºC, depending on the scenario; Fig. 132b). By 

2071-2100, warming values are almost twofold than those of the middle of the century, surpassing 6.5ºC in the worst-case 

scenario. It should be highlighted that the DL downscaled ensemble shows different areas of extreme projected increases in 

Tmax (towards south), that are not present in the ESGCM ensemble (where the largest warming is found towards more central 

and northeastern regions). 515 

Figure 143 shows the Pr projected changes for the future time-slices and scenarios, in this case, considering the mean daily 

accumulated values, and their changes, in mm/day. In opposite manner, the changes depicted in Fig. 143 are rather different 

from the ones in Figs. 110 to 132. While the ESGCM ensemble projects rather homogeneous decrease in the mean daily 

precipitation for all future periods and scenarios, the DL downscaled ensemble show mostly consistent decreases in the western 

and north areas of Iberia, and non-robust regional increases throughout central and eastern Iberia, independently of the period 520 

and scenario. It is important to emphasize that most of these projected increases are not robust (i.e., less than ⅔ of the ensemble 

members agree on the signal), whereas almost all projected decreases are (Fig. 143a). Negative Pr projections are found mainly 

in the northern, western and southwestern portions of Iberia, increasing in area and robustness towards 2100, and with the 

SSP5-8.5 scenario. These features are in overall agreement with the ESGCM ensemble, nevertheless, with much increased 

detail due to the enhanced horizontal resolution. In fact, for the 2071-2100 time-slice under the SSP5-8.5, the ESCGM (DL 525 

downscaled) ensemble shows projected decreases of down to -0.75 mm/day (-1 mm/day in the northern and northwestern 

Iberia). The boxplots in Fig. 143b are largely affected by the compensating effect of different signal projected changes, 

resulting in overall larger ranges of projected change (even for the interpolated DL ensemble, at 1º), and median values closer 

to zero, in comparison with the ESGCM ensemble. Nonetheless, an overall decrease of Iberian precipitation is visible, that for 

the DL ensemble is smaller than the one shown by the forcing ESCGM ensemble. 530 
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Figure 110. Mean temperature relative changes given by the DL CMIP6 ESGCMs multi-model ensemble at 0.1º for SSP1-2.6, SSP2-4.5, 

SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2100. a) Maps. Grey dots specify gridpoints where 

less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal (no occurrences). b) Boxplots. The DL CMIP6 535 
ESGCMs multi-model ensemble were interpolated to 1º and the results are also displayed. As reference, the climate change signal linked to 

the ESGCMs ensemble at 1º is also shown in a) and b). Each boxplot represents the value of all gridpoints of the output of all CNN models 
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pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th percentiles. The 

orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 

 540 
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Figure 121. Minimum temperature relative changes given by the DL CMIP6 ESGCMs multi-model ensemble at 0.1º for SSP1-2.6, SSP2-

4.5, SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2100. a) Maps. Grey dots specify gridpoints 

where less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal (no occurrences). b) Boxplots. The DL 

CMIP6 ESGCMs multi-model ensemble were interpolated to 1º and the results are also displayed. As reference, the climate change signal 545 
linked to the ESGCMs ensemble at 1º is also shown in a) and b). Each boxplot represents the value of all gridpoints of the output of all CNN 
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models pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th 

percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 
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 550 

Figure 132. Maximum temperature relative changes given by the DL CMIP6 ESGCMs multi-model ensemble at 0.1º for SSP1-2.6, SSP2-

4.5, SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2100. a) Maps. Grey dots specify gridpoints 

where less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal (no occurrences). b) Boxplots. The DL 

CMIP6 ESGCMs multi-model ensemble were interpolated to 1º and the results are also displayed. As reference, the climate change signal 

linked to the ESGCMs ensemble at 1º is also shown in a) and b). Each boxplot represents the value of all gridpoints of the output of all CNN 555 
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models pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th 

percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 
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Figure 143. Daily mean precipitation relative changes given by the DL CMIP6 ESGCMs multi-model ensemble at 0.1º for SSP1-2.6, SSP2-560 
4.5, SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2100. a) Maps. Grey dots specify gridpoints 

where less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal (no occurrences). b) Boxplots. The DL 

CMIP6 ESGCMs multi-model ensemble were interpolated to 1º and the results are also displayed. As reference, the climate change signal 

linked to the ESGCMs ensemble at 1º is also shown in a) and b). Each boxplot represents the value of all gridpoints of the output of all CNN 
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models pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th 565 
percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 

3.4 Iberian future climate extremes 

Considering climate extremes, in this section, the projected changes of three climate extreme indices are compared for both 

the ESGCM and the DL downscaled ESCGM ensembles, similar to section 3.3. For the Tmin and Tmax, the 10th and 90th 

percentiles were considered, respectively, while, for the extreme precipitation, the 95 th percentile of the daily mean 570 

accumulated values was computed. 

In general, the future 10th percentile of Tmin (Fig. 154) reveals lower warming projections than for Tmin (Fig. 112) and also 

different patterns. The most pronounced warmings are located in the south-central and eastern regions of Iberia (Fig.14a), 

which may reach 2ºC (4ºC) in the 2041-2070 (2071-2100) period, for the SSP5-8.5 scenario. The remaining scenarios show 

lower warmings, reaching 1.5ºC, 2.5ºC, and 3.5ºC for SSP1-2.6, SSP2-4.5, and SSP3-7.0, respectively, by the end of the 575 

century. As expected, the warming patterns are much more detailed and localized when the DL ensemble is considered. 

Similar to extreme Tmin, the projections of extreme Tmax (Fig. 165) exhibit comparable patterns to those of the mean climate 

variable (Fig. 132), albeit with much more pronounced warming values. In particular, over a significant portion of Iberia, the 

warming reaches over 8ºC by the end of the century for SSP5-8.5 scenario. The use of a precise and performance-evaluated 

technique to downscale a large ensemble of ESGCM climate projections at a high resolution provides substantial added value 580 

in capturing local climate change for the 90th percentile of Tmax, as demonstrated in Fig. 156a. For instance, when considering 

the 2071-2100 period under SSP5-8.5, both the ESGCM and DL downscaled ensembles project changes exceeding 8ºC. 

However, the DL downscaled ensemble surpasses this threshold over a wider area, locally exceeding 9ºC and even extending 

to the southern coast of Iberia, where the projections from the ESGCM ensemble do not surpass 6ºC. 

Regarding the extreme Pr (Fig. 176), the DL projections point to reductions of the extreme precipitation across southwestern 585 

Iberia, expanding eastward (for part of southern Iberia) throughout the 21st century, and more pronounced for SSP3-7.0 and 

SSP5-8.5 scenarios. These decreases can reach more than 320 mm/day in these regions. On the other hand, essentially over 

central, southeastern and northwestern Iberia, DL projections show an intensification in extreme precipitation in all scenarios 

and time periods, reaching increases that surpass 320 mm/day. The ESGCMs projections mostly present decreases in extreme 

precipitation (for all time-slices and scenarios except the SSP1-2.6 during 2015-2040 and 2041-2070 in the northern half of 590 

the Peninsula; Fig. 176a). The spatial pattern of changes in extreme precipitation are dissimilar for the DL and ESGCMs 

projections. The boxplots in Fig. 176b summarize the differences between the ESGCM and DL downscaled ensembles, being, 

nevertheless, slightly affected by the lack of robustness of some of the outcomes – the DL ensemble shows a larger variability 

than the ESGCM ensemble. 
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Figure 154. Mean minimum temperature 10th percentile relative changes given by the DL CMIP6 ESGCMs multi-model ensemble at 0.1º 

for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2010. a) Maps. Grey dots 

represent gridpoints where less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal (no occurrences). As 

reference the climate change signal linked to all ESGCMs at 1º is also shown. b) Boxplots. Each boxplot represents the value of all gridpoints 600 
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of the output of all CNN models pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between 

the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 
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Figure 165. Mean maximum temperature 90th percentile relative changes given by the DL CMIP6 ESGCMs multi-model ensemble at 0.1º 605 
for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2010. a) Maps. Grey dots 

represent gridpoints where less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal (no occurrences). As 

reference the climate change signal linked to all ESGCMs at 1º is also shown. b) Boxplots. Each boxplot represents the value of all gridpoints 
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of the output of all CNN models pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between 

the 25th and 75th percentiles. The orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 610 
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Figure 176. Precipitation 95th percentile relative changes given by the DL CMIP6 ESGCMs, multi-model ensemble at 0.1º for SSP1-2.6, 

SSP2-4.5, SSP3-7.0 and SSP5-8.5, (2015-2040, 2041-2070, 2071–2100 minus 1981–2010)/1981–2010. a) Maps. Purple Red dots represent 

gridpoints where less than two-thirds of the DL-CMIP6 ESGCMs pairs agree on the climate change signal. As reference the climate change 615 
signal linked to all ESGCMs is also shown. b) Boxplots. Each boxplot represents the value of all gridpoints of the output of all CNN models 



46 

 

pooled together forced with all CMIP6 ESGCMs pooled together. The box represents the interval between the 25th and 75th percentiles. The 

orange line is the median value, and the lower (upper) whisker represents the 10th (90th) percentile. 

4. Discussion and Conclusions 

The Iberian Peninsula, situated in the southwestern tip of the European continent, within the Mediterranean region, is 620 

considered a climate change hotspot, due to the projected future warming and drying conditions. These changes can 

significantly impact the natural environment and human health in the region (Giorgi, 2006; Soares et al., 2017; Cramer et al., 

2018; Lionello and Scarascia, 2018; Cardoso et al., 2019; Tuel and Eltahir, 2020; Soares and Lima, 2022; Lima et al., 2023a,b; 

Soares et al., 2023a). Consequently, there is an urgent need for accurate climate information to assist the planning and 

development of adaptation strategies. Recent climate change studies focusing on the Iberian Peninsula relied on RCM 625 

simulations forced by CMIP5 GCMs (Soares et al., 2017; Cardoso et al., 2019; Lima et al., 2023a,b; Soares et al., 2023a) to 

project future climate change with increased resolution, accounting for regional features not captured by coarse ESGCMs. 

However, following the release of the improved CMIP6 global climate simulations and projections (in the context of the most 

recent IPCC report: AR6; IPCC, 2019), the need for an updated climate change assessment in the Iberia Peninsula arose. The 

new high-resolution CMIP6 EURO-CORDEX regional climate simulations and projections will become available within one 630 

to two years. In the interim, however, there is a need for high-resolution climate information to accurately assess future 

projections over Iberia. In this context, an opportunity emerges, to explore alternative approaches to downscale the current 

CMIP6 simulations and projections. Therefore, this study leverages innovative AI methods to evaluate the evolution of mean, 

minimum, and maximum temperatures, as well as precipitation, across the Iberian Peninsula, throughout the 21st century. The 

analysis is based on a multi-model, multi-architecture ensemble of CNN-based downscaled projections derived from CMIP6 635 

ESGCMs. The investigation encompasses three distinct future time-slices (2015-2040, 2041-2070, 2071-2100) in line with 

four SSPs-RCPs scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. 

On a first instance, the ability of four DL architectures to reproduce the historical T, Tmin, Tmax and Pr climates was evaluated 

over Iberia during 2010-2014 (Figs. 32 to 65). During this period, all DL architectures, trained using ERA5 data between 1979 

and 2004, revealed a good agreement with observations (Iberia01) for the predictand variables (using solely the predictors as 640 

input data). Although more complex architectures, such as the BMdense, revealed better performance for Pr (lower overall 

biases and RMSEs, and higher ROCSS), a clear distinction between architectures was not meaningful. Therefore, we opted to 

consider all four DL architectures to downscale the CMIP6 ESGCMs, obtaining a 4-member ensemble per model. The results 

showed that during the 1979-2014 historical period, the DL downscaled ESGCMs were able to represent the Iberia01 reference 

climate with large increased performance in comparison with the forcing ESGCMs, and even compared with the ERA5 and 645 

iERA5 datasets (Figs. 76 to 109). For Pr, nevertheless, the downscaled error metrics were shown to be similar to the reanalysis’ 

ones, despite greater differences in the overall variable distributions (as shown by the PSS values). Such disagreement could 

be related to the singular behaviour of Pr, especially considering its extreme events, which can occur under distinct atmospheric 

synoptic patterns (predictor sets), becoming challenging for the DL architectures to establish empirical relationships between 
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the vertical atmospheric structure and surface level precipitation accumulation. Overall, the evaluation of the DL downscaled 650 

ESGCMs showed a rather good performance in representing the historical climate (mean, minimum and maximum 

temperatures, and precipitation), providing the necessary confidence to project the future climate change under different 

scenarios using this new approach. It should be noted that the DL models trained with predictors from ERA5 were used to 

generate the ESGCMs output for the historical and future periods. The bias correction procedure applied to the ESGCMs’ 

predictors is an important asset that may allow their values to better agree with those from ERA5. As a result, we believe that 655 

the relationship between the predictors of both ERA5 and ESGCMs and Iberia 01 are comparable. 

The DL downscaled T projections revealed a projected increase between 1ºC and 1.5ºC over Iberia (Fig. 110), for all scenarios, 

during the earliest future period (2011-2040). By the end of the 21st century, nevertheless, the DL ensemble projected changes 

were shown to become more heterogeneous between scenarios, generally varying between 1.5ºC (SSP1-2.6) and 5ºC (SSP5-

8.5). In all instances, the DL downscaled T projected changes showed a strong agreement with the original CMIP6 ESGCM 660 

ensemble, in both the signal and main spatial patterns of climate change. Nevertheless, regional-to-local features are clearly 

enhanced by the increased resolution. In fact, the most poignant difference between the DL and the original ensembles is the 

horizontal discretization. Local differences can be identified in the most inland areas of the Iberian Peninsula in the DL results, 

which are not captured by the original ESGCMs, due to the coarse grid, neglecting valleys and other geographically enclosed 

areas, which foster greater horizontal heterogeneities. Similar features were found for Tmin (Fig. 121) and Tmax (Fig. 132), 665 

and for the respective extreme values (10th percentile of Tmin and 90th percentile of Tmax in Figs. 154 and 165, respectively). 

Between those, Tmax showed larger projected increases than Tmin (approximately twofold), revealing greater intra-daily 

temperature ranges to be expected in the future. For the extreme Tmax values, even under the SSP1-2.6 “optimistic” scenario, 

DL downscaled projections revealed increases exceeding 3ºC by the end of the 21st century. For the “less optimistic” ones 

(SSP3-7.0 and SSP5-8.5), extreme Tmax projected changes of up to 7ºC were shown for most of Iberia (Fig. 156). DL 670 

downscaled projections for extreme Tmin, on the other hand, were shown to be higher in the eastern and southern Iberia (Fig. 

154), locally surpassing 3.5ºC (for 2071-2100 under SSP5-8.5). Overall, these projections are aligned with the EURO-

CORDEX ensemble projections for Iberia (Soares et al., 2017; Cardoso et al., 2019, Lima et al., 2023a; Amblar et al., 2017), 

but with small value differences which are also linked to the dissimilarities regarding the emission scenarios. 

The significance of DL downscaling techniques in the context of Pr projections unveiled further intricacies when compared to 675 

T, Tmin, and Tmax projections. Given that the behaviour of daily mean accumulated precipitation is heavily influenced by 

local topography and other phenomena, particularly owing to convective processes, which can result in local, large 

precipitation accumulations, projecting Pr was shown to be more complex for DL downscaling methods, considering the 

widespread continental, mountainous areas of the Iberian Peninsula. Therefore, for both Pr (Fig. 143) and extreme Pr (95th 

percentile; Fig. 176), the original and DL downscaled ESGCM ensemble projections showed greater discrepancies. While the 680 

ESGCM projected changes showed essentially negative values, corresponding to the future large-scale expected drying over 

Iberia, DL results revealed: a drying trend in western and south-western regions of Iberia, stronger for the upper-end scenarios, 

and, local projected increases, mostly in the central and eastern continental regions. The southern and western precipitation 
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reductions are consistent with a significant reduction of large-scale precipitation from frontal activity, due to the northern 

displacement of the storm-tracks (Tamarin et al., 2017). In fact, the northward expansion of the Hadley Cell lead to a northward 685 

shift of the storm tracks over the North Atlantic, resulting in the reduction of large-scale precipitation across southern and 

western of Iberia (Bengtsson et al., 2006; Harvey et al., 2014; Kang and Lu, 2012; Ulbrich et al., 2008).The projected local 

increases of precipitation, although non-robust, mostly with less than ⅔ of agreement between ensemble members, may be 

consistent with local-to-regional changes in convective precipitation that are not captured by the original ESGCMs, 

highlighting potential applications of DL techniques to long-term projections (or even short-term forecasting).  690 

The projected changes of warming and drying over Iberia, as reported in recent studies using previous CMIP outputs (CMIP5), 

as well as in the most recent IPCC report (IPCC, 2021), are consistent with the multi-model, multi-scenario, multi-architecture 

DL downscaled ESGCM ensemble projections presented in this study. This behaviour is also in accordance with the resulting 

DL climate change signals from Baño-Medina et al. (2022) for Iberia, which showed similar spatial patterns to those obtained 

from the CMIP5 RCMs, nevertheless, with local-to-regional added value. Previous research has demonstrated that the warming 695 

and drying trends over Iberia are more pronounced under high anthropogenic emission scenarios, reflecting the influence of 

human activities on climate change, compared to the natural variability of the climate system. Our results demonstrated that 

in the CMIP6 context, within the new set of scenarios encompassing socioeconomic and radiative concentration pathways, AI-

based DL methods are able to accurately simulate the historical Iberian climate, and produce consistent high-resolution 

scenario-based projections, consistent with each other and with previous studies, by the use of (coarse) GCM forcing and a 700 

high-resolution training database. Thus, the present study highlighted the substantial advantages of employing novel 

approaches based on DL to obtain efficiently up-to-date, high-resolution climate information at a local scale, specifically for 

Iberia. This is crucial for supporting and designing mitigation and adaptation strategies. 
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