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Abstract 51 

Error metrics are useful for evaluating model performance and have been used extensively in 52 

climate change studies. Despite the abundance of error metrics in the literature, most studies 53 

use only one or two metrics. Since each metric evaluates a specific aspect of the relationship 54 

between the reference data and model data, restricting the comparison to just one or two metrics 55 

limits the range of insights derived from the analysis. This study proposes a new framework 56 

and composite error metrics called Bergen Metrics to summarise the overall performance of 57 

climate models and to ease interpretation of results from multiple error metrics. The framework 58 

of Bergen Metrics are based on the p-norm, and the first norm is selected to evaluate the climate 59 

models. The framework includes the application of a non-parametric clustering technique to 60 

multiple error metrics to reduce the number of error metrics with minimum information loss. 61 

An example of Bergen Metrics is provided through its application to the large ensemble of 62 

regional climate simulations available from the EURO-CORDEX initiative. This study 63 

calculates 38 different error metrics to assess the performance of 89 regional climate 64 

simulations of precipitation and temperature over Europe. The non-parametric clustering 65 

technique is applied to these 38 metrics to reduce the number of metrics to be used in Bergen 66 

Metrics for 8 different sub-regions in Europe. These provide useful information about the 67 

performance of the error metrics in different regions. Results show it is possible to observe 68 

contradictory behaviour among error metrics when examining a single model. Therefore, the 69 

study also underscores the significance of employing multiple error metrics depending on the 70 

specific use case to achieve a thorough understanding of the model behaviour. 71 
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1. Introduction 84 

Climate models are important tools for predicting and understanding climate change, and 85 

climate processes (Kotlarski et al., 2014; IPCC, 2021a; IPCC, 2021b; Mooney et al., 2022). In 86 

the context of climate studies, climate model evaluation is essential for identifying models that 87 

poorly simulate the climate system, and for ranking of climate models (Randall et al., 2007; 88 

Flato et al., 2013). The main purpose of climate model evaluation is twofold; firstly, to ensure 89 

that the models are reproducing key aspects of the climate system and secondly to understand 90 

the limitations of climate projections from the models. This ensures proper interpretation and 91 

application of climate models and any climate projections produced by them. The performance 92 

of climate models is quantified by different error metrics such as root mean square error, and 93 

bias, which assess the agreement between the climate model data and reference data (e.g., 94 

gridded observational products, station data, reanalyses, or satellite observations). As the 95 

number of climate models has increased, the study of error metrics has become increasingly 96 

important. There are several error metrics available to evaluate the performance of climate 97 

models (Jackson et al., 2019), and the selection of an appropriate metric remains a topic of 98 

debate in the literature. For instance, Willmott & Matsuura (2005) advocate for mean absolute 99 

error (MAE) over root mean squared error (RMSE), as the latter is not an effective indicator of 100 

average model performance. In contrast, Chai & Draxler (2014) contend that RMSE is superior 101 

to MAE when errors follow a Gaussian distribution. 102 

Different error metrics are available in the literature, and each has a specific framework 103 

according to its purpose (Rupp et al., 2013; Pachepsky et al., 2016; Baker & Taylor, 2016; 104 

Collier et al., 2018; Jackson et al., 2019). For example, root mean square error compares the 105 

amplitude difference between modelled and reference data, while the correlation coefficient 106 

compares the phase difference between modelled and reference data. Depending on the specific 107 

error, the error metrics can be categorised into different classes; the most popular classes are 108 

accuracy, precision, and association. Accuracy measures the degree of similarity between 109 

climate model data and reference data. An extremely high accuracy indicates that the model 110 

has less error magnitude of any type and testing the model with other error metrics adds little 111 

value (Liemohn et al., 2021). However, if a model has moderate to low accuracy, testing the 112 

model with other metrics can reveal other similarities and dissimilarities between model data 113 

and reference data. Root mean square error and mean square error are the most used accuracy 114 

metrics to evaluate climate models (Watt‐Meyer et al., 2021; Wehner et al., 2021; He et al., 115 

2021), even though the metrics cannot reveal whether the model is under or over-predicting 116 

the observations. Precision metrics quantify the degree of similarity in the spread of the data. 117 
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A robust and commonly used metric for assessing the precision of model data is the ratio or 118 

difference of standard deviation between modelled data and reference data (van Noije et al., 119 

2021; Wood et al., 2021; Wehner et al., 2021). Finally, association metrics measure the degree 120 

of the phase difference between modelled data and observed data. Phase difference is important 121 

in climate studies as it affects the initiation and termination time of a season of climate 122 

variables. One metric that is extensively used to measure the association is the correlation 123 

coefficient (Richter et al., 2022; Bellomo et al., 2021; Yang et al., 2021). Liemohn et al. (2021) 124 

has described various other major categories of metrics and they suggest that assessment of 125 

models should not be restricted to one or two error metrics. Interested readers can follow the 126 

citations to read in detail about the discussed metrics. 127 

In addition to this, researchers have employed various characteristics of climatic parameters as 128 

measures to assess and compare climate models with observed datasets. Metrics encompassing 129 

the frequency of days with precipitation over 1 mm and over 15 mm, the 90% quantile of the 130 

frequency distribution, and the maximum number of consecutive dry days, along with 131 

parameters such as daily mean, daily maximum, daily minimum, yearly maximum, length of 132 

the frost-free period, growing degree days (> 5°C), cooling degree days (> 22°C), heating 133 

degree days (< 15.5°C), days with RR (> 99th percentile of daily amounts for all days), ratio 134 

of spatial variability, pattern correlation, ratio of interannual variability, temporal correlation 135 

of interannual variability, number of summer days, number of frost days, consecutive dry days, 136 

and ratio of yearly amplitudes, have been utilized for the validation of Euro-CORDEX data 137 

(Kotlarski et al., 2014; Giot et al., 2016; Smiatek et al., 2016; Torma, 2019; Vautard et al., 138 

2021). Other studies have employed the empirical orthogonal functions (Rasmus et al., 2023), 139 

structural similarity index metric (Wang & Bovik, 2002), fractions skill score (Roberts & Lean, 140 

2008), spatial pattern efficiency metric (Dembélé et al., 2020), spatial efficiency metric 141 

(Demirel, 2018; Ahmed et al., 2019) and probability distribution function (Perkins et al., 2007; 142 

Boberg et al., 2009; Boberg et al., 2010; Masanganise et al., 2014) to evaluate climate models. 143 

There are several composite error metrics that use the modified framework of other metrics to 144 

compute the error magnitude. A widely used example of this is the Taylor diagram (Taylor, 145 

2001), which incorporates correlation, root mean square deviation and ratio of standard 146 

deviation. A distinguishing feature of the Taylor Diagram is its ability to graphically evaluate 147 

the model performance. Another popular example is the Nash-Sutcliffe Efficiency (NSE; Nash 148 

& Sutcliffe, 1970) which is a normalised form of the mean squared error to evaluate and predict 149 

the model streamflow data. Later, it was observed that NSE can be decomposed into three 150 
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components which are the functions of correlation, bias and standard deviation (Murphy, 1988;  151 

   Weglarczyk, 1998). Other similar scores include the Kling-Gupta (K-G) efficiency (Gupta et 152 

al., 2009) which is a function of three components: ratio of model mean to observed mean, the 153 

ratio of model standard deviation to observed standard deviation and correlation coefficient. 154 

The study of Gupta et al. (2009) argued the NSE, which has a bias component normalised by 155 

the standard deviation of the reference data, will have a low weight on the bias component if 156 

the reference data has high variability. The modified Kling-Gupta efficiency developed by 157 

Kling et al. (2012) involves the ratio of covariance instead of the ratio of standard deviation.  158 

Both K-G efficiency and modified K-G efficiency use Euclidean distance as a basis to calculate 159 

the error magnitude of the model and the study argued that instead of finding a corrected NSE 160 

criterion, the whole problem can be viewed from the multi-objective perspective where the 161 

three error components can be used as separate criteria to be optimised. It identifies the best 162 

models by calculating the Euclidean distance from the ideal point and then finding the model 163 

with the shortest distance. The ideal value of an error metric is obtained when the model exactly 164 

simulates the observed data. The Euclidean distance is also used by Hu et al. (2019) to develop 165 

the DISO metric that incorporates correlation coefficient, absolute error and root mean squared 166 

error. The study of Hu et al. (2019) also argues that accuracy (root mean square error), bias 167 

(absolute error) and association (correlation coefficient) are the three major error classes based 168 

on which a model should be assessed and evaluating a model using a single error metric may 169 

lead to ill-informed results. The study pointed out a few limitations of the Taylor diagram such 170 

as quantification of error magnitude and low sensitivity to small error differences by the 171 

diagram. In a comparative study, Kalmár et al. (2021) found no substantial difference between 172 

DISO index and the Taylor diagram. However, based on quantification of error magnitude, 173 

DISO index can be helpful.  174 

The Euclidean distance framework has found increasing use in various fields, serving as an 175 

error function or metric in applications like model evaluation, parameter optimization, and 176 

classification problems. In essence, it calculates the straight-line distance between two points 177 

in the space, known as Euclidean distance. The Euclidean distance is essentially the second 178 

norm of a vector. Equation 1 represents the generalized form of the p-norm in an n-dimensional 179 

vector space, where 𝑥𝑖 is the vector. When p is set to 2, it transforms into the Euclidean norm. 180 

In the context of time series data, if the vector (𝑥𝑖) represents the difference between observed 181 

data (𝑢𝑖)  and model data (𝑣𝑖) i.e., 𝑥𝑖 =  𝑢𝑖 − 𝑣𝑖, then d is termed the Euclidean distance metric. 182 
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Here, 𝑖 represents the time series data. It's important to note that root mean squared error and 183 

mean squared error are different variants of the Euclidean distance metric. 184 

Furthermore, if the vector represents the difference between error metrics (correlation 185 

coefficient [𝑢1], absolute error [𝑢2] and root mean squared error [𝑢3]) and their ideal values 186 

(𝑣1:3), then d is referred to as the DISO index. In summary, the Euclidean distance framework 187 

offers a versatile approach applicable to various scenarios, providing valuable insights through 188 

different metrics and indices. A disadvantage of the Euclidean distance is that it suffers the 189 

curse of dimensionality (Mirkes et al., 2020; Weber et al., 1998) i.e. Euclidean distance as a 190 

dissimilarity index becomes less efficient as dimension increases. In this study, we assess the 191 

effect of the norm order on the overall error. We use different measures such as the contribution 192 

of outliers to the overall error, the difference between the maximum and minimum distances, 193 

and the average distances to compare different norms.  194 

𝑑𝑛(𝑢, 𝑣) =  (∑ |𝑥𝑖(𝑢𝑖 , 𝑣𝑖)|𝑝𝑛
𝑖=1 )1/𝑝                                                    (1) 195 

This study has the following objectives: 196 

i) Evaluation of 89 CMIP5 driven regional climate simulations from the Euro- 197 

CORDEX initiative using 38 error metrics; 198 

ii) Clustering of error metrics to assess their performance; 199 

iii) Assessment and recommendation of different p-norms based on their performance; 200 

iv) Formulation of a composite metric using the optimal norm. 201 

2. Data and Study area 202 

We focus on Europe due to the widespread availability of a large ensemble of high resolution 203 

(0.11o) regional climate simulations. In this study, we use 89 regional climate model (RCM) 204 

simulations from Euro-CORDEX to study the behaviour of different error metrics. The Euro-205 

CORDEX dataset provides both precipitation and temperature data at 0.11o grid resolution. 206 

The monthly data from 1975 to 2005, which is available in all the RCM simulations, have been 207 

used to calculate the index. Supplementary Table S1 provides an overview of the global climate 208 

models (GCMs) downscaled by the different RCMs. Supplementary Table S2 provides an 209 

overview of the RCMs and assigns a number (Column 1) to each RCM which is used to identify 210 

RCMs in plots that have limited space for labels. 211 

For reference data, both precipitation and temperature data are obtained from the E-OBS 212 

dataset. The study utilized the 0.25° grid resolution dataset to meet the specific requirements 213 

of the project. However, users can choose datasets of different resolutions based on their study 214 
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needs for climate model validation. To facilitate the comparison of model data with the 215 

reference data, all datasets need to be on a common grid. In this study, we remapped the RCM 216 

data onto the coarser 0.25° grid of E-OBS. 217 

The study uses the eight sub-regions of Europe defined by Christensen & Christensen (2007) 218 

– British Isles, Iberian Peninsula, France, Mid-Europe, Scandinavia, Alps, Mediterranean, and 219 

Eastern Europe - to conduct analysis in more homogeneous areas. 220 

3. Methodology 221 

This section outlines the framework for clustering error metrics and provides a brief overview 222 

of their characteristics. Additionally, the section describes the proposed metric's framework. 223 

3.1 Error metrics 224 
Error metrics play a crucial role in climate change studies, serving as essential tools to quantify 225 

the disparities between modelled and reference data over time series. Each error metric is 226 

designed to capture specific aspects of the relationship between model data and reference data, 227 

as discussed in the introduction section. To gain insight into the performance of error metrics, 228 

we have analysed Euro-CORDEX precipitation data and examined the differences in ranking 229 

of 89 GCM-driven regional climate simulations using 38 error metrics. The list of error metrics 230 

is provided in Table S3 and the details of all 38 error metrics have been provided in Jackson et 231 

al., (2019). All 89 models are ranked based on their performance using the 38 error metrics. 232 

The average (𝑟𝑀,𝑚𝑒𝑎𝑛; Equation 2) and maximum (𝑟𝑀,𝑚𝑎𝑥; Equation 3) rank differences are 233 

then calculated at each grid point. The former is the mean of all the pairwise rank differences, 234 

while the latter is the maximum of all the pairwise rank differences. These calculations allow 235 

us to understand the performance of different error metrics and the extent of the disparity in 236 

ranking of the climate models. 237 

Table 1: Example of ranking order 238 

Number Climate model Ranking order (RO) 

by ith error metric 

(𝐸𝑖) 

Ranking order (RO) 

by kth error metric 

(𝐸𝑘) 

1 M1 3 2 

2 M2 1 3 

3 M3 2 1 

 239 

            𝑟𝑀,𝑚𝑒𝑎𝑛 = 𝜇𝑔(𝑅𝑀,𝑘 − 𝑅𝑀,𝑖)                               (2) 240 
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               𝑟𝑀,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑔 (𝑅𝑀,𝑘 − 𝑀𝑀,𝑖)                     (3) 241 

𝑅𝑀,𝑘 and 𝑅𝑀,𝑖 are the rank assigned to model M by the kth and ith error metric, respectively. 242 

We have provided Table 1 as an example for better understanding of the notations. If there are 243 

three climate models (M1, M2 and M3) as shown in Table 1, all the models have been assigned 244 

to a number (first column) and the order must not change throughout the study. 𝑅𝑀,𝑘 and 𝑅𝑀,𝑖 245 

for model M1 are 2 and 3, respectively. 𝑘 varies from 1 to 𝑁𝐸-1 and 𝑖 varies from 𝑘+1 to 𝑁𝐸, 246 

where 𝑁𝐸 is the total number of error metrics. The difference in ranking is calculated for all 247 

possible combinations of error metrics. 𝜇𝑔() and 𝑚𝑎𝑥𝑔() are the mean and maximum operator, 248 

respectively, which is applied across all the grid points (g:1,2,..,gd). gd is the total number of 249 

grid points which is 11370 in this study. Figure 1 demonstrates that different error metrics used 250 

to assess climate models result in significantly different ranking orders. The average of  𝑟𝑀,𝑚𝑒𝑎𝑛 251 

across all the grid point varies from 16 to 26 whereas the average of 𝑟𝑀,𝑚𝑎𝑥 varies from 40 to 252 

70. The results indicate significant differences in the ranking of the climate models by different 253 

error metrics. The disparity in ranking order may be due to the distinctive error targeted by 254 

each metrics as discussed in the introduction section. 255 

 256 

Figure 1: Box plot of average rank difference (first column [a, c]) and maximum rank 257 

difference (second column; [b, d]) for precipitation (Pr; first row [a, b]) and temperature (T; 258 

second row [c, d]) over all the grid points in European region 259 

This study assumes that all the errors are important and that it may be necessary to evaluate 260 

model performance using multiple metrics. To achieve independence among the metrics, the 261 

study has attempted to cluster the error metrics based on model performance. This classification 262 

would enable different clusters to have unique characteristics, and metrics within the same 263 
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cluster would produce similar results, whereas those from different clusters would yield 264 

different ranking orders. In summary, the study proposes that using multiple error metrics and 265 

clustering them based on performance could improve the understanding and 266 

comprehensiveness of climate model analysis. 267 

3.2 Clustering of error metrics 268 

The aim of clustering error metrics is to group a set of metrics based on their similarities such 269 

that the metrics within the same cluster generate similar rankings of climate models compared 270 

to those in different clusters. This study clusters the error metrics using a non-parametric 271 

clustering approach inspired by the Chinese restaurant process (CRP; Pitman, 1995). This 272 

approach was chosen based on its performance compared to the k-means clustering approach 273 

(see Text S1) and its simpler framework. The algorithm follows two fundamental principles: 274 

(i) the first error metric (𝐸1) forms the first cluster (𝐶1), and (ii) the ith error metric (𝐸𝑖)  is 275 

assigned to a cluster which has the maximum of all the mean absolute error (𝑢𝑗) values greater 276 

than a particular threshold value (th). The clustering algorithm is presented in Fig. 2. 277 

Similar to the rank difference explained in the previous section, the MAE (𝑅𝑂𝑖,𝑅𝑂𝑘) between 278 

the ranking order produced by two error metrics is computed. RO is the ranking order and it 279 

can be calculated by assigning the climate models to a number. For example, the ranking order 280 

(𝑅𝑂𝑖 ) by ith error metric and the ranking order (𝑅𝑂𝑘 ) by kth error metric are [3, 1, 2] and [2, 281 

3, 1], respectively in Table 1. The MAE values are calculated for all possible combinations of 282 

error metrics in a particular cluster and the maximum of the MAE values is used to compare it 283 

to the threshold value. The exercise is repeated for all the clusters (𝑁𝐶) available at that time. 284 

The number of clusters (𝑁𝐶)  and the number of error metrics in each cluster (𝑁𝐶𝐸) are updated      285 

for each iteration (i) and if the criteria is not satisfied, then a new cluster is formed using that 286 

error metric. The whole exercise is repeated till all the error metrics (𝑁𝐸) gets assigned to a 287 

cluster.  288 

The threshold value is defined as qth percentile of a column matrix D where D is the collection 289 

of MAE values for all possible combinations of error metrics at all the grid points in a region. 290 

In this study, q has been assigned the value of 10 and the sensitivity of q is discussed in the 291 

results section.  292 

 293 
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 294 

Figure 2: Algorithm of the non-parametric clustering for classifying the error metrics 295 

3.3 Proposed metric- The Bergen Metrics 296 

The clustering of error metrics guarantees that metrics in different groups produce distinct 297 

ranking orders, implying that each group targets different errors. One of the objectives of this 298 

study is to integrate different errors and create a composite error to obtain a single value. One 299 

potential solution is to use the Euclidean distance approach with different error metrics as 300 

different dimensions in the Euclidean space. To illustrate this, we employed three widely used 301 

error metrics: Normalized Root Mean Square Error (RMSE), Standard Deviation ratio (SD) 302 

and correlation coefficient. In the Euclidean space, an ideal model that predicts the climate 303 

variable as accurately as the observed data would have values of 1, 1, and 0 for correlation 304 

coefficient, Standard Deviation ratio, and normalized RMSE, respectively. The coordinates of 305 

an ideal model in the Euclidean space would be (1, 1, 0), as represented by the red point in Fig. 306 

3a. Since different models have unique coordinates based on the three metrics, these 307 

coordinates serve as possible solutions to determine the best model. If a decision is required, 308 

one approach could be to calculate the Euclidean distance from the ideal point to all points and 309 

select the point with the shortest distance (Equation 4). The model that is closest to the ideal 310 

point, indicated by the optimal point in Fig.3b, can be considered as the best model. 311 

𝐸𝐷 𝑀𝑒𝑡𝑟𝑖𝑐 = √
(1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)2 + (1 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜)2

+(0 − 𝑅𝑀𝑆𝐸)2   (4) 312 
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 313 

Figure 3: Example for three-dimensional (a) ideal point and (b) the solution space      of 314 

correlation coefficient (x-axis), standard deviation (y-axis) and normalized RMSE (z-axis) 315 

 316 

The Euclidian distance has several benefits that make it a popular metric, primarily its 317 

simplistic framework. However, it also has some drawbacks. The Euclidian distance, also 318 

known as L2 norm, is less effective in higher dimensional spaces, which can lead to instability 319 

when additional error metrics are added (Weber et al., 1998; Aggarwal et al., 2001). To mitigate 320 

this issue, recent research has focused on the use of L1 norms, such as relative mean absolute 321 

error and mean absolute scaled error, which have become more popular than L2 norms like 322 

mean squared error. This approach reduces the impact of outliers in the data (Armstrong & 323 

Collopy, 1992; Hyndman and Koehler, 2006). Reich et al. (2016) found that relative MAE, 324 

based on an L1 norm, is advantageous in assessing prediction models. This study proposes the 325 

a new metrics called the Bergen Metrics (BM) which is a generalised p-norm framework to 326 

evaluate climate models.  327 
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 328 

Figure 4: The flowchart for the calculation of Bergen metric 329 

A case study has been conducted to understand the impact of different p norms on the ranking 330 

order of climate models. For this, five error metrics - RMSE, bias, correlation coefficient, 331 

standard deviation ratio, and mean ratio - have been considered (Equation 5) and the error 332 

metrics are normalised using model data. A flowchart has been provided to illustrate the various 333 

steps involved in calculating the Bergen metric (Fig. 4). It is important to note that equation 5 334 

serves as an illustration of  Bergen metrics, and users have the flexibility to include or remove 335 

metrics according to their preference. The study includes 89 RCM simulations for precipitation, 336 

and Fig. 5a shows the ranking of these models for different p norms. The lines corresponding 337 

to each model give information about the model’s ranking in different norms. The results 338 

demonstrate that climate models are highly sensitive to p norms. Significant change in ranking 339 

order is observed for the first four norms. Fig. 6 shows the percentage contribution of outliers 340 

to the total error magnitude for models that have outliers. Median absolute deviation technique 341 

(MAD) is used to identify outliers among the error metrics.  Some of the models have only one 342 

outlier (plots with a single solid line in Fig. 6) and other models have two outliers (plots with 343 

both solid and dotted lines in Fig. 6). The percentage contribution of outliers increases as the p 344 

norm increases, consistent with previous literature (Armstrong and Collopy, 1992; Hyndman 345 

and Koehler, 2006). The study has used two parameters to indicate the capability of each norm 346 

to differentiate between climate models - mean pairwise difference of the BM and the 347 

difference between the maximum and minimum values of the BM. Figure 5b shows that both 348 

parameters decrease as the p norm increases, indicating less differentiability. The results 349 

suggest that the first norm (p=1) is the optimal norm to use as a metric in this study and will be 350 

utilized in the following analyses. 351 

https://www.sciencedirect.com/science/article/pii/S136481521930427X#bib1
https://www.sciencedirect.com/science/article/pii/S136481521930427X#bib13
https://www.sciencedirect.com/science/article/pii/S136481521930427X#bib13
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𝐵𝑒𝑟𝑔𝑒𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 (𝐵𝑀) = √

(0 − 𝑅𝑀𝑆𝐸)𝑝 + (0 − 𝐵𝑖𝑎𝑠)𝑝

+ (1 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)𝑝

+(1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)𝑝 + (1 − 𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜)𝑝 

𝑝

(5) 352 

 353 

 354 

Figure 5: a) The change in the ranking of the climate models with different norm order (p) b) 355 

the change in the difference between the maximum and minimum distances and the average 356 

distances with different norm order 357 

 358 

Figure 6: The percentage contribution of outliers to the total error magnitude as a function of 359 

norm order. The colours represent different outliers. 360 
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4. Results 361 

4.1 Regional clustering of error metrics 362 

The study considers 38 error metrics (Table S3) which can take both positive and negative 363 

values as input.  Similar to the models, the error metrics have been assigned a number (column 364 

1; Table S3) and the error metrics have been labelled as those numbers in some figures.  365 

The clustering technique described in the methodology section can be applied to individual 366 

grid points, but for the sake of simplicity, we use a single cluster for all grid points within each 367 

of these regions defined by Christensen & Christensen (2007). The methodology is modified 368 

slightly to enable regional clustering. At a grid point scale, the maximum value of mean 369 

absolute error (𝑢𝑗) is used as a proxy for that specific error metric at a grid point. For regional 370 

clustering, the maximum MAE values are computed for all grid points within the region, and 371 

the average of those values is used as a proxy for that region and error metric. This value is 372 

then compared with a threshold to determine whether the error metric belongs to a certain 373 

cluster or it should be assigned to a new cluster. The clustering algorithm is executed for 374 

multiple thresholds. 375 

The 5th, 10th, and 20th percentiles are selected as potential thresholds to cluster the error 376 

metrics. However, users can select any number of thresholds for the sensitivity analysis. The 377 

clustering algorithm is allowed to run for all the thresholds to determine the optimal threshold. 378 

The efficiency of each cluster for a given threshold is represented by the mean of MAE over 379 

all the clusters. Another criterion used to determine the threshold is the number of clusters 380 

corresponding to each threshold. An increase in the percentile (q) is expected to increase the 381 

MAE as the magnitude of threshold increases. Similarly, the number of clusters are expected 382 

to decrease as q increases as it can allow more error metrics into a cluster due to higher 383 

threshold magnitude. From Fig. 7, we conclude that the results are according to our 384 

expectations. It is found that increasing the percentile resulted in an increase in MAE and a 385 

decrease in the number of clusters. The 10th percentile is selected as the threshold to cluster 386 

the error metrics for both temperature and precipitation, as it has a smaller number of clusters 387 

compared to 5th percentile and less MAE compared to 20th percentile. The  388 

 389 
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 390 

Figure 7: The variation in MAE (first box) and number of clusters (second box) corresponding 391 

to 5th, 10th and 20th percentile for precipitation (pr) and temperature (tas) for all the eight regions 392 

4.2 Results of clustering 393 

4.2.1 Precipitation 394 

For the British Isles region, the classification of 38 error metrics resulted in 15 clusters, with 8 395 

error metrics being single point clusters due to their unique behaviour (Fig. 8). These 8 metrics 396 

are d [2], (MB) R [17], MdE [19], MEE [21], MV [22], r2 [31], SGA [35], and R(Spearman) 397 

[36]. The threshold for precipitation data is 6.35, indicating that all 8 error metrics produced 398 

MAE values greater than 6.35 compared to the remaining 30 error metrics. RMSE [32] and its 399 

variants such as normalized RMSE by IQR [25], mean [26] and range [27] are assigned to the 400 

same cluster, as ED [7], IRMSE [9], MAE [13], MAPD [15], MASE [16], and MSE [23]. The 401 

reason could be the L-norm framework which is used by most of the error metrics in this cluster. 402 

D1 [3], d1 [4], and d(Mod.) [5] which share a similar framework, are also assigned to a single 403 

cluster. Error metrics that evaluate the phase difference between observed and modelled data, 404 

including ACC [1], R (Pearson) [30], SC [34], and M [38], are assigned to a single cluster. 405 

H10(MAHE) [8] and MALE [14] share the same cluster as both metrics consider the difference 406 

of logarithmic of the model and observed data to compute the error. Similarly, MdAE [18] and 407 
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MdSE [20] are assigned to a single cluster, as both metrics use the median of the difference 408 

between observed and modelled data. However, MdE [19] is assigned to a different cluster as 409 

it only considers the difference between observed and modelled data without bringing them to 410 

the positive domain. NED [24] and SA [33] are found to be in the same cluster, as both metrics 411 

are linearly associated while evaluating the model, even though their underlying frameworks 412 

are somewhat different. Although ED [7] and NED [24] follow the L2 norm, they are not 413 

assigned to the same cluster. This can be attributed to the normalisation of observed and 414 

modelled data by their respective means in NED, as the statistical parameters such as mean is 415 

sensitive to outliers, which can result in changes in ranking order. 416 

 417 

 418 

Figure 8: Clustering of error metrics using precipitation (pr) data for British Isles (BI) region. 419 

Each error metric can be identified by the number using Table S3. 420 

The Iberian Peninsula region is found to have 17 clusters, with 12 of them being single point 421 

clusters (Fig. 9). Seven of the eight error metrics that are single point clusters in British Isles 422 

are also single point clusters in Iberian Peninsula, except for r2 [31]. Five other error metrics: 423 

NED [24], KGE (2009) [10], KGE (2012) [11], SA [33], and M [38] are also single point 424 

clusters in Iberian Peninsula region. In British Isles,  KGE (2009) [10] and KGE (2012) [11]  425 

are assigned to the same cluster. The KGE (2012) is different from KGE (2009) since it used 426 

the ratio of coefficient of variation between modelled and observed data instead of the ratio of 427 

standard deviation to avoid the cross-correlation between bias and variability ratio. The 428 
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coefficient of variation is the ratio between the standard deviation and the mean of the data, 429 

which represents the extent of variability with respect to the mean of the data. A biased dataset 430 

can produce a significant change in the relative standard deviation, i.e., the coefficient of 431 

variation. That is a possible reason why both the metrics are in different clusters. r2 is assigned 432 

to the correlation metrics cluster in this region. The remaining clusters are almost identical to 433 

the clusters obtained for the British Isles region. 434 

 435 

Figure 9: Clustering of error metrics using precipitation (pr) data for Iberian Peninsula (IP) 436 

region. Each error metric can be identified by the number using Table S3. 437 

As the results for the other 6 regions are similar to either the British Isles or the Iberian 438 

Peninsula, we simply summarise their results here and refer the reader to the supplementary 439 

material for further information. France (Fig. S2), Mid-Europe (Fig. S3), Scandinavia (Fig. 440 

S4), Alps (Fig. S5), Mediterranean (Fig. S6) and Eastern Europe (Fig. S7) exhibit 15, 15, 16, 441 

16, 17, and 14 clusters, respectively, with 8, 8, 10, 10, 12, and 6 single point clusters. France 442 

and Mid-Europe have the same clusters as the British Isles, and the Mediterranean has the same 443 

clusters as Iberian Peninsula. Scandinavia has clusters similar to British Isles, except that M 444 

[38] is a single point cluster and r2 [31] has been assigned to the correlation metrics cluster in 445 

Scandinavia.  The Alps also has clusters similar to British Isles, except  KGE (2009) [10] and 446 

KGE (2012) [11] are single point clusters. Eastern Europe also has clusters similar to British 447 
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Isles, with the exception that d [2], which is a single point cluster in British Isles, forms a new 448 

cluster with M [38] in Eastern Europe. 449 

4.2.2 Temperature 450 

Compared to precipitation data, temperature data has a lower number of clusters, which can be 451 

attributed to the lower variability in temperature data. The clustering of error metrics for British 452 

Isles is shown in Fig. 10. For British Isles, 12 clusters are identified, with 5 single point clusters, 453 

namely KGE(2009) [10], KGE(2012) [11], MV [22], SGA [35], and R(Spearman) [36]. Similar 454 

to precipitation clusters, several error metrics, including ED [7], IRMSE [9], MAE [13], MAPD 455 

[15], MASE [16], MSE [23], NRMSE(IQR) [25], NRMSE(mean) [26], NRMSE(range) [27] 456 

and RMSE [32] are assigned to the same cluster.  457 

 458 

Figure 10: Clustering of error metrics using temperature (tas) data for British Isles (BI) region. 459 

Each error metric can be identified by the number using Table S3. 460 

The correlation metrics, such as ACC [1], r2 [31], SCO [34], and R(Pearson) [36] belong to 461 

the same cluster. France (Fig. S8) and Mid-Europe (Fig. S9) have the same cluster as British 462 

Isles for temperature data. For Iberian Peninsula (Fig. 11), 13 different clusters are identified, 463 

with 7 single point clusters, including MdE [19] and MEE [21] in addition to the 5 single point 464 

clusters from British Isles. The remaining clusters are similar to those in British Isles. 465 

Mediterranean (Fig. S10) has the same cluster as Iberian Peninsula for temperature data, with 466 

13 clusters and 7 single point clusters. Scandinavia (Fig. S11) and Eastern Europe (Fig. S12) 467 
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have the same number of clusters i.e. 14 clusters. Scandinavia has 8 single point clusters 468 

whereas Eastern Europe has 9 single point clusters. Alps (Fig. S13) has 15 clusters with 10 469 

single point clusters.  470 

 471 

Figure 11: Clustering of error metrics using temperature (tas) data for Iberian Peninsula (IP) 472 

region. Each error metric can be identified by the number using Table S3. 473 

4.3 Bergen Metrics 474 

A Bergen metric is computed for all eight regions using the respective clusters for both 475 

precipitation and temperature. A single metric is chosen from each cluster randomly; Random 476 

selection demonstrated no discernible impact on the ranking (see Text S2). Although computed 477 

for all 89 regional climate models, this paper focuses on discussing only one climate model for 478 

both precipitation and temperature. The CLM Community (CLMCom) regional model from 479 

ICHEC-EC-EARTH for r3i1p1 realisation is discussed as it performed best at over 25 grid 480 

points in 5 regions and more than 2 grid points in seven regions. For the temperature variable, 481 

the CLMCom model form CCCma-CanESM2 model for r1i1p1 realisation is discussed, as it 482 

performed best at over 25 grid points in seven regions. 483 

4.3.1 Precipitation 484 

A Bergen metric (BM) is used to assess the performance of the CLMCom model for 485 

precipitation in all eight different regions. The BM in British Isles region is a composite metric 486 

that takes into account 15 different error metrics i.e. ACC, D1, dr, H10(MAHE), KGE(2009), 487 



 20 

MdAE, NED, d, MB(R), MdE, MEE, MV, r2, SGA, and R(Spearman). Figure 12 provides an 488 

overview of the spatial distribution of the BM for all eight regions, while the spatial distribution 489 

of each of these metrics is shown in Fig. 13 for the British Isles region. 490 

The magnitude of BM ranges from 0 to 13, with a score of 0 indicating good performance by 491 

the model. Based on the results, the CLMCom model performed well in the western part of 492 

British Isles, as indicated by the BM. This is a result of the good performance of most of the 493 

individual metrics that comprise the Bergen Metric. This is shown in Fig. 13. There are some 494 

contradictory results from different error metrics in the eastern region. While all 13 metrics 495 

indicate good performance, the MV,  r2 and NED indicate very bad performance by the model. 496 

The use of individual error metrics can provide meaningful insights into the performance of 497 

the model in different regions. For example, metrics such as dr, MdAE, MdE, and MEE 498 

indicate good performance in the southeastern region, while R(Spearman) indicates bad 499 

performance by the CLMCom model which implies that the phase difference is significant 500 

between observed and modelled data in this region. It is worth noting that some metrics, such 501 

as r2 and R(Spearman), may provide different results even though they share a similar 502 

framework. R(Spearman) only tells how well the modelled data follow the observed data while 503 

r2 indicate how well the data represents the line of best fit (https://tinyurl.com/y52r3xed; 504 

https://tinyurl.com/yk2jmsxt). Overall, the use of multiple error metrics and the analysis of 505 

individual metrics can provide a more comprehensive assessment of the model's performance, 506 

particularly in regions where different metrics provide conflicting results. 507 

 508 

 509 

Figure 12: Spatial distribution of Bergen metric using precipitation data for all the eight 510 

regions 511 

https://tinyurl.com/y52r3xed
https://tinyurl.com/yk2jmsxt
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 512 

Figure 13: Spatial distribution of the error metrics used to compute the Bergen metric for 513 

precipitation and for British Isles (BI) region. The error metrics have been labelled by the 514 

abbreviation and the corresponding error metrics can be identified from Table S3. 515 

 516 

Figure 14: Spatial distribution of the error metrics used to compute the Bergen metric for 517 

precipitation and for Iberian Peninsula (IP) region. The error metrics have been labelled by the 518 

abbreviation and the corresponding error metrics can be identified from Table S3. 519 

Figure 14 shows a Bergen metric for Iberian Peninsula applied to the CLMCom model, which 520 

is based on 17 error metrics obtained from each cluster. These metrics, including ACC, D1, dr, 521 
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H10 (MAHE), MdAE, d, KGE (2009), KGE (2012), MB (R), MdE, MEE, MV, NED, SA, 522 

SGA, R (Spearman) and M, are presented in Fig. 14. The results indicate that the model 523 

performs relatively better in the northeast and southeast regions compared to the western region 524 

(see Fig. 12), possibly due to the influence of certain metrics such as ACC, R (Spearman), MV, 525 

NED, and SA. Additionally, while KGE (2009) and KGE (2012) exhibit similar spatial error 526 

patterns, further analysis in the southern region reveals the differences in the magnitude of 527 

error. Interestingly, despite their similarity, KGE (2009) and KGE (2012) are classified into 528 

different clusters based on a threshold MAE of 5.41, used to determine cluster membership.  529 

 530 

France (Fig. S14), and Mid-Europe (Fig. S15) have the same clusters as the British Isles, and 531 

therefore the same error metrics used in British Isles are used to calculate the Bergen metric 532 

for France and Mid-Europe. The Bergen metric indicates an average performance of the model 533 

for the entire study region of France (see Fig. 12). While r2 shows a very poor performance of 534 

the model for France, MEE metric shows a completely opposite trend, indicating a very good 535 

performance of the model. Similar disagreement between r2 and MEE is also observed in the 536 

British Isles. On the other hand, SGA, which compares the shape of the two signals, shows an 537 

average performance by the model. In terms of the spatial distribution of error, the Bergen 538 

metric shows lower error magnitudes for MEE in the southeast part of the study region.  539 

The Bergen metric is also used to assess the performance of the CLMCom model for 540 

Scandinavia and Alps using 16 error metrics from each cluster, including ACC, D1, dr, H10 541 

(MAHE), MdAE, NED, d, KGE (2009), KGE (2012), MB (R), MdE, MEE, MV, SGA, R 542 

(Spearman) and M. The spatial distribution of these metrics is presented in supplementary Fig. 543 

S16 (Scandinavia) and Fig. S17 (Alps). 544 

Fig. S16 and Fig. 12 suggest that the CLMCom model does not perform well for Scandinavia. 545 

However, some error metrics, including dr, MdAE, MdE, and MEE, show good performance 546 

in the southern part of the region. Although MdAE, MdE, and MEE are assigned to different 547 

clusters, they exhibit similar spatial distributions of error. It is worth noting that despite the 548 

similarity, the three error metrics are in different clusters due to their higher MAE between 549 

them. For the Alps, the Bergen metric indicates a relatively good performance of the CLMCom 550 

model. It can be observed in Fig. S17, all metrics except r2 show good performance for the 551 

model.  552 

The Mediterranean has the same clusters as the Iberian Peninsula, and the spatial distribution 553 

of each metric for the Mediterranean is presented in Fig. S18. The Bergen metric for the 554 

CLMCom model suggests an average performance for the entire Mediterranean region. Some 555 
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of the error metrics, such as KGE (2009), KGE (2012), dr, and MdAE, indicate good model 556 

performance. However, metrics such as SGA, SA, and NED, show relatively poor performance 557 

of the model.  558 

For  Eastern Europe, the Bergen metric is computed using 14 error metrics from each cluster, 559 

as listed: ACC, d, D1, dr, H10(MAHE), KGE(2009), MdAE, NED, MB(R), MdE, MEE, MV, 560 

SGA, and R(Spearman). The spatial distribution of each metric is presented in Fig. S19. One 561 

notable observation from the figure is the difference between SGA and MEE, which indicates 562 

that although the model data has a low bias, the direction of error of the modelled data is 563 

completely different from that of the observed data. This insight can be valuable in identifying 564 

areas where the model's performance can be improved. 565 

4.3.2 Temperature 566 

For temperature, we focus on the CLM Community (CLMCom) regional model driven by  567 

ICHEC-EC-EARTH to demonstrate the application of Bergen metrics for temperature. The 568 

spatial distribution of BM is shown in Fig. 15, which indicates average performance by the 569 

model, except in certain areas like northern part of Scandinavia, central part of Eastern Europe 570 

and western part of Iberian Peninsula, where the performance is bad. The British Isles (Fig. 571 

16), France  (Fig. S20), and Mid-Europe (Fig. S21) regions have 12 clusters, and 12 error 572 

metrics, including ACC, d, dr, H10(MAHE), MdAE, MdE, NED, KGE(2009), KGE(2012), 573 

MV, SGA, and R(Spearman) are used to compute the Bergen metric for these regions.  574 

 575 

Figure 15: Spatial distribution of Bergen metric using temperature data for all the eight regions 576 
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The Scandinavia (Fig. S22) and Eastern Europe (Fig. S23) regions have 14 clusters and all the 577 

error metrics from British Isles, along with VE and SA, are used to compute the Bergen metric 578 

for these regions. The Iberian Peninsula (Fig. 17) and Mediterranean (Fig. S24) regions have 579 

the same cluster, with a total of 13 clusters and all the error metrics from British Isles, plus 580 

MEE, are used to compute the Bergen metric. The Alps (Fig. S25) region has 15 clusters, with 581 

all the error metrics from Scandinavia, including MEE, used to compute the Bergen metric. 582 

MdE and MEE consistently indicate very bad model performance for all the regions, while the 583 

other metrics indicate relatively good performance. This suggests that the mean and median of 584 

the modelled data tend to underestimate/overestimate the observed mean and median, 585 

respectively. Histograms in Fig. 18 further investigate this, showing that the error values for 586 

ACC are more evenly distributed in the Iberian Peninsula region and close to its ideal point 1, 587 

while the source errors for MdE and MEE are concentrated between -0.5 to -1.5, resulting in 588 

most of the error values being concentrated between 0.9 to 1 after normalization. The source 589 

error represents the distance between the ideal values and actual magnitude after normalization. 590 

Similar patterns can be observed in the other regions for temperature.  591 

To illustrate inter-model variability, a random grid point (50.125, 1.875) is selected. The 592 

Bergen metric is calculated for both precipitation and temperature at this grid point, and models 593 

are ranked based on the Bergen metric (Fig. 19). The Bergen metric ranges from 2.29 to 11.39 594 

for precipitation and 1.85 to 8.37 for temperature. Notably, with a Bergen metric value of 2.29, 595 

ETH-COSMO (Model 6) is identified as performing well for precipitation. Similarly, with a 596 

Bergen metric value of 2.29, GERICS-REMO2015 (Model 16) is recognized for its good 597 

performance in temperature. The proposed metric offers a valuable tool for assessing the 598 

performance of climate models. 599 
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 600 

Figure 16: Spatial distribution of the error metrics used to compute the Bergen metric for 601 

temperature and for British Isles (BI) region. The error metrics have been labelled by the 602 

abbreviation and the corresponding error metrics can be identified from Table S3. 603 

 604 

Figure 17: Spatial distribution of the error metrics used to compute the Bergen metric for 605 

temperature and for Iberian Peninsula (IP) region. The error metrics have been labelled by the 606 

abbreviation and the corresponding error metrics can be identified from Table S3. 607 
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 608 

Figure 18: Histogram plot of error and source error for MdE, MEE and ACC for Iberian 609 

Peninsula region (IP).  610 

 611 

Figure 19: The Bergen metric for precipitation (a) and temperature (b) for all 89 climate 612 

models, along with the ranking of each model based on the Bergen metric for precipitation (c) 613 

and temperature (d), at a grid point (50.125, 1.875). 614 
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5.  Conclusions 615 

A framework of new error metrics, known as 'Bergen metrics', has been introduced in this study 616 

to evaluate the ability of climate models to simulate the observed climate through comparison 617 

with a reference field. The proposed metric integrates several error metrics, as described in the 618 

results section. To generate a single composite index, the methodology uses a generalized p-619 

norm framework to merge all the error metrics. The research determines that the first norm is 620 

the most effective norm to use in the analysis. 621 

The study also shows that the number of error metrics used in Bergen Metrics can be reduced 622 

using a non-parametric clustering technique. Although several clustering techniques are 623 

already available in the literature, they come with certain requirements. Either they require the 624 

number of clusters before running the algorithm or information on the class label of the feature 625 

vector. The adopted clustering technique tries to identify the natural cluster present in the data. 626 

The mean absolute error based on ranking order is used as a dissimilarity index to assign error 627 

metrics to different clusters. The technique also has a threshold parameter 5th, 10th and 20th are 628 

selected as candidates for threshold parameter and 10th percentile of the D matrix is adopted as 629 

a threshold in this study. It is selected because increase in threshold (20th percentile) resulted 630 

in increase in MAE and decrease in number of clusters, whereas, decrease in threshold (5th 631 

percentile) resulted in decrease in MAE and increase in number of clusters and the study chose 632 

a middle ground. However, users can investigate different values of q before choosing the 633 

threshold. The clustering technique is compared with the K-means clustering approach and it 634 

is found that the non-parametric technique has lower MAE compared to the K-means approach. 635 

The clustering is performed for all the eight regions and those are British Isles, Iberian 636 

Peninsula, France, Mid-Europe, Scandinavia, Alps, Mediterranean and Eastern Europe. For 637 

precipitation, 15, 17, 15, 15, 16, 15, 17, and 14 clusters are obtained for the eight regions, 638 

respectively. For temperature, 12, 13, 12, 12, 14, 15, 13, and 14 clusters are obtained for the 639 

eight regions, respectively. 640 

A single error metric from each cluster can be chosen randomly as a component to be used in 641 

the calculation of a Bergen Metric. We have shown that random selection does not have any 642 

effect on the ranking order produced by a Bergen Metric. The Bergen Metric which uses the 643 

L1 framework is found to be less sensitive to outliers compared to the other norms and more 644 

stable in higher dimensional space. Bergen Metrics are a multivariate error functions that can 645 

take any number of error metrics of different variables as shown in the last section. It can be 646 

further modified for a weighting-based metric that can allow the user to give more weightage 647 

to particular metrics depending on the requirement of the study. While some metrics show good 648 
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performance in certain regions, others indicate poor performance. It is also important to observe 649 

how a single metric can influence and change the ranking of climate models. Bergen metrics 650 

provide a comprehensive evaluation of the model's performance, which is useful for identifying 651 

the strengths and weaknesses of the model in different contexts. It is also crucial to underscore 652 

that our proposed metric evaluates the magnitude differences between modeled and reference 653 

data, prioritizing this aspect over spatial and temporal patterns. The application of this metric 654 

should be approached with careful consideration. 655 

Future research should address the sampling uncertainty associated with Bergen metrics. Each 656 

data point in time series data has a certain contribution to the total error and if the contribution 657 

is not evenly distributed for all the data points, the metric may give biased results. Also, each 658 

metric has probabilistic uncertainty associated with it. For example, RMSE works well when 659 

the errors are normally distributed and what if the errors are not normally distributed. 660 

Discussion on uncertainty may yield useful information that will be helpful in removing the 661 

bias from climate models in the future.   662 

 663 
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