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Abstract 1 

In this study, the WRF-Chem v4.4 model was utilized to evaluate three bottom-up 2 

emission inventories (EDGAR-HTAP v2, v3, and KORUS v5) using surface and 3 

aircraft data in East Asia during the Korea-United States Air Quality (KORUS-AQ) 4 

campaign period in 2016. All emission inventories were found to reproduce the diurnal 5 

variations of O3 and NO2 as compared to the surface monitor data. However, the spatial 6 

distributions of the daily maximum 8-hour average (MDA8) O3 in the model do not 7 

completely align with the observations. The model MDA8 O3 had a negative (positive) 8 

bias north (south) of 30°N over China. All simulations underestimated the observed CO 9 

by 50-60% over China and South Korea. In the Seoul Metropolitan Area (SMA), 10 

EDGAR-HTAP v2, v3, and KORUS v5 simulated the vertical shapes and diurnal 11 

patterns of O3 and other precursors effectively, but the model underestimated the 12 

observed O3, CO and HCHO concentrations. Notably, the model aromatic VOCs were 13 

significantly underestimated with the three bottom-up emission inventories, although 14 

the KORUS v5 shows improvements. The model isoprene estimations had a positive 15 

bias relative to the observations, suggesting that the Model of Emissions of Gases and 16 

Aerosols from Nature (MEGAN) version 2.04 overestimated isoprene emissions. 17 

Additional model simulations were conducted by doubling CO and VOC emissions 18 

over China and South Korea to investigate the causes of the model O3 biases and the 19 

effects of the long-range transport on the O3 over South Korea. The doubled CO and 20 

VOC emission simulations improved the model O3 simulations for the local emission 21 

dominant case, but led to the model O3 overestimations for the transport dominant case, 22 

which emphasizes the need for accurate representations of the local VOC emissions 23 

over South Korea.   24 
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1. Introduction 1 

Air pollutants not only harm human health but also affect radiative balance, resulting 2 

in climate change (Anenberg et al., 2018; Franklin et al., 2015; Lee et al., 2014; 3 

Manning and von Tiedemann, 1995; Rosenzweig et al., 2008; Wild et al., 2001).  4 

Anthropogenic activities are the primary source of air pollutant emissions, which have 5 

significant temporal and spatial variability. Chemical transport models (CTMs) use 6 

bottom-up emission data to simulate ambient concentrations of air pollutants. CTMs 7 

then process these emissions, tracking their impact through chemistry, transport, and 8 

loss through deposition (Zhong et al., 2016). Therefore, sensitivity evaluations of CTMs 9 

to anthropogenic emission data are an essential part of atmospheric modeling research.  10 

Several bottom-up emission inventories are available for chemical modeling of 11 

Asia, including the Multi-resolution Emission Inventory for China (MEIC), Regional 12 

Emission inventory in Asia (REAS), and Emissions Database for Global Atmospheric 13 

Research-Hemispheric Transport of Air Pollution (EDGAR-HTAP). Since 2010, 14 

Tsinghua University has developed the high-resolution MEIC emission inventory for 15 

China and updated the data to the v1.3, providing anthropogenic emissions by sector 16 

and species from 2008 to 2017 (Zheng et al., 2018). REAS provides emission data in 17 

Asia from 1950 to 2015 (Kurokawa and Ohara, 2020). In Europe, EDGAR-HTAP has 18 

been developed and widely used for CTM simulations from global to regional scale 19 

(Kim et al., 2021; Sharma et al., 2017; Sicard et al., 2021). Recently, EDGAR-HTAP 20 

v3 has been published, covering 19 years from 2000 to 2018 compared to only two 21 

years (2008 and 2010) in the version 2 data (Crippa et al., 2023). Zhong et al. (2016) 22 

compared REAS with EDGAR in July, 2007 over China, while Saikawa et al. (2017) 23 

compared 5 emission inventories including REAS, EDGAR, MEIC in China, without 24 
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validation. As bottom-up emission inventories are continuously updated for recent years, 1 

there is an ongoing need to evaluate new emissions data. 2 

The Ministry of Environment (MOE) in South Korea and National Aeronautics and 3 

Space Administration (NASA) in the U.S. conducted the Korea-United States Air 4 

Quality (KORUS-AQ) campaign in May-June 2016. The campaign provided a variety 5 

of data sets, including ground-based and airborne observations, useful for the validation 6 

of model simulations. The KORUS emissions, developed by Konkuk University, were 7 

used by many modeling teams to simulate the air pollutant concentrations during the 8 

campaign period. In this study, we selected the EDGAR-HTAP versions 2, v3, and 9 

KORUS version 5 emission data and used the Weather Research and Forecasting model 10 

coupled with Chemistry (WRF-Chem) version 4.4 for intercomparison of the three 11 

emissions data sets. O3 and its major precursors were selected for model evaluation and 12 

the model results were validated with surface observation data in China and South 13 

Korea and aircraft data acquired over the South Korean peninsula and surrounding 14 

waters.  15 

 16 

2. Data and Methods 17 

2.1. WRF-Chem model configurations 18 

In this study, we utilized the WRF-Chem v4.4, which was developed by the National 19 

Oceanic and Atmospheric Administration (NOAA) and National Center for 20 

Atmospheric Research (NCAR), to simulate meteorological variables and chemical 21 

species in the atmosphere (Grell et al., 2005). The WRF-Chem v4.4 includes N2O5 22 

heterogeneous chemistry that consists of several chemical reactions related with ClNO2 23 
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and N2O5 reactions, resulting in nitrate aerosol. The reactions are incorporated in 1 

Secondary Organic Aerosol-Volatility Basis Set (SOA-VBS) with Regional 2 

Atmospheric Chemistry Mechanism (RACM) chemistry option (chem = 108) in WRF-3 

Chem (Li et al., 2016).  4 

We set 59 vertically customized eta (η) levels as vertical layers. The model’s first 5 

layer height is approximately 40 m above ground level for the entire domain. The 6 

model’s vertical layers are designed to include about 17 layers under 1.5 km to simulate 7 

planetary boundary layer chemistry and near surface vertical distribution in detail. The 8 

horizontal resolution is 28 x 28 km2. The simulations in this study start at 12 UTC on 9 

April 24 and end at 12 UTC on June 11. The model meteorology restarts every 12 UTC 10 

(9 PM local time in South Korea) to minimize numerical errors. After the first 7 days 11 

of model initiation (spin-up), we analyzed the model results from May 1 to June 10. We 12 

used China standard time (+8 UTC) and Korea standard time (+9 UTC) for evaluations 13 

with observations. The model physics, chemistry, and aerosol schemes are summarized 14 

in Table S1 with corresponding references. The Global Forecast System (GFS) Final 15 

(FNL) analysis data are used for meteorological input and boundary conditions. The 16 

Community Atmosphere Model with Chemistry (CAM-Chem) output is used for 17 

chemical boundary conditions (https://www.acom.ucar.edu/cam-chem/cam-chem.html) 18 

(Buchholz et al., 2019; Emmons et al., 2020). We used the Model of Emissions of Gases 19 

and Aerosols from Nature (MEGAN) v2.04 to calculate biogenic emissions (Guenther 20 

et al., 2006). We did not account for fire emissions because of small impact on air 21 

quality simulations during the KORUS-AQ campaign period (Park et al., 2021). 22 
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2.2. The model simulations using different anthropogenic emissions 1 

2.2.1. Bottom-up emission data 2 

EDGAR-HTAP v2, v3, and KORUS v5 emissions are compared with respect to their 3 

spatial distribution and total amount in Figure 1 and Table S3. We applied the same 4 

diurnal factor for all three emissions data by species, following the diurnal patterns for 5 

the Los Angeles Basin as in Kim et al. (2016) (also see Figure S1).  6 

EDGAR-HTAP v2 provides 2-dimensional emissions of CH4, CO, SO2, NOx (NO 7 

+ NO2), non-methane volatile organic compound (NMVOC), NH3, PM10, PM2.5, BC, 8 

and OC in 2008 and 2010 with a horizontal resolution of 0.1˚ x 0.1˚. We used 2010 data 9 

since it is the most recent data available. The data are partitioned by each sector and its 10 

sources such as air, ships, energy, industry, transport, residential, and agriculture 11 

(https://edgar.jrc.ec.europa.eu/dataset_htap_v2). For East Asia, it included data from 12 

the Model Inter-Comparison Study for Asia (MICS-Asia) and REAS v2.1. In South 13 

Korea, it adopted data from the Clean Air Policy Support System (CAPSS) (Janssens-14 

Maenhout et al., 2015), and the underlying emission data had an original horizontal 15 

resolution of 0.25˚ x 0.25˚ over East Asia, which is resampled to 0.1˚ x 0.1˚ resolution 16 

by raster resampling and aggregation. The specifically mapped EDGAR-HTAP v2 data 17 

were obtained through the WRF-Chem site (https://www.acom.ucar.edu/wrf-18 

chem/download.shtml) in the anthro_emiss program with the Model for Ozone and 19 

Related chemical Tracers (MOZART) species. The anthro_emiss program converts the 20 

EDGAR-HTAP v2 data into 28 x 28 km2 grid by the RACM chemical species. It 21 

mapped the MOZART volatile organic compounds (VOC) species into the RACM 22 

VOC species (See the detailed equations in Supporting Information, Table S4) (Li et al., 23 

2014; Emmons et al., 2010).  24 
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The EDGAR-HTAP v3 is extended to much longer time scale than the previous 1 

version EDGAR-HTAP (v2). The EDGAR-HTAP v3 covers 2000 to 2018 with a more 2 

detailed horizontal resolution (https://edgar.jrc.ec.europa.eu/dataset_htap_v3) (Crippa 3 

et al. 2023). While EDGAR-HTAP v2 uses MICS-Asia, only the REAS data are used 4 

in China and India in the EDGAR-HTAP v3. It adopts the CAPSS-Konkuk University 5 

(CAPSS-KU) data for South Korea and emission data provided by the Japanese 6 

government for Japan. We chose the data for 2016, according to the KORUS-AQ 7 

campaign period. Because the original EDGAR-HTAP v3 data provide VOC as total 8 

NMVOC with the unit of ton/month, we distributed the total NMVOC to MOZART 9 

VOC species with the ratio of each VOC species to total NMVOC from EDGAR-HTAP 10 

v2 in anthro_emiss program. Then, the assigned EDGAR-HTAP v3 data were again 11 

converted to the RACM. 12 

The KORUS v5 emission data represent 2016 in China and 2015 in other regions. 13 

The Comprehensive Regional Emissions Inventory for Atmospheric Transport 14 

Experiment (CREATE) v2.3 data from 2015 were used and the ship emissions from 15 

CAPSS were added near the coastal region in South Korea (Jang et al., 2020; Woo et 16 

al., 2012). The CREATE is originally developed by combining REAS, MEIC, Japan 17 

Auto-Oil Program emission inventory (JATOP), and Korean Clear Air Policy Support 18 

System (CAPSS). The NMVOC species from KORUS v5 were mapped following the 19 

Statewide Air Pollution Research Center (SAPRC-99) mechanism, and we also 20 

assigned the SAPRC-99 species to RACM (Carter, 2000) (Supporting information, 21 

Table S4). 22 

Figure 1 shows the spatial distribution of NO, CO, and toluene emissions in May 23 

for each inventory. The NOX emissions were assumed to be emitted as NO. The major 24 
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cities in China and South Korea had relatively high NO, CO, and TOL (toluene and less 1 

aromatics defined in RACM, see Table S2) emissions, which are major precursors 2 

affecting O3 formation. We define three boxes representing Eastern China, South Korea, 3 

and the Seoul metropolitan area (SMA) and calculated the emissions (see Table S3). In 4 

South Korea including SMA, EDGAR-HTAP v3 had the largest NOX emission among 5 

the emission inventories. The KORUS v5 has lower NOX emissions in Eastern China 6 

by 46% and 39% compared to EDGAR-HTAP v2 and v3, respectively. The CO 7 

emission was the lowest in EDGAR-HTAP v2 in South Korea, being 56% (69%) lower 8 

than that in KORUS v5 (EDGAR-HTAP v3). KORUS v5 showed the highest CO 9 

emissions in SMA though EDGAR-HTAP v3 showed more CO emissions in South 10 

Korea. However, KORUS v5 had the smallest CO emissions in China, being 7% (9%) 11 

lower than that in EDGAR-HTAP v2 (v3). The TOL emission from KORUS v5 is higher 12 

than those from EDGAR-HTAP v2 (EDGAR-HTAP v3) by 176% (98%) in China. The 13 

relative difference between KORUS v5 and EDGAR-HTAP v2 (EDGAR-HTAP v3) is 14 

larger in South Korea by 263%. These discrepancies of VOC emissions may lead to a 15 

change in the NOx/VOC-sensitive regime and O3 production efficiency. The sensitivity 16 

of O3 formation to NOx emission has discrepancies by its regime, which will be further 17 

discussed in section 3.2. 18 

 19 

2.2.2. The model experiments 20 

The model experiments are summarized in Table 1. The simulations using EDGAR-21 

HTAP v2, v3, and KORUS v5 emissions are named as EDV2, EDV3, and KOV5, 22 

respectively. In this study, we found consistent underestimation of CO and VOC for all 23 
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emissions by -40% (± 2%) and -25% (± 1%) (HCHO) compared to DC-8 in South 1 

Korea. This is in line with the results reported by Park et al. (2021), who found that 2 

almost every model underestimated CO. Underestimation of CO in East Asia is a well-3 

known feature revealed by many studies. For example, Gaubert et al. (2020) mentioned 4 

that CAM-Chem underestimates CO during the KORUS-AQ campaign period and 5 

presented a CO compensation method utilizing data assimilation with CO observations. 6 

Wada et al. (2012) pointed out that EDGAR v4.1 underestimates anthropogenic CO 7 

emissions in China by 45% compared to observation-based estimations of CO 8 

emissions. Moreover, underestimation of VOC is also found for all anthropogenic 9 

emission inventories. Kwon et al. (2021) estimated top-down emissions of 10 

anthropogenic VOCs utilizing Geostationary Trace gas and Aerosol Sensor 11 

Optimization spectrometer (GeoTASO). They found that top-down VOC emissions 12 

were up to 6.9 times higher than bottom-up emissions (KORUS v5). With all emission, 13 

O3 is underestimated at most ground-based observation sites in South Korea. Therefore, 14 

we conducted two additional model simulations using EDGAR-HTAP v3 that shows 15 

lowest bias of O3 concentrations compared to DC-8 (-14.2 ppb) than EDGAR-HTAP 16 

v2 (-16.9 ppb) and KORUS v5 (-18.1 ppb) over the SMA: one is with twice the 17 

anthropogenic CO and VOC emissions in China (EDV3_Ch2) and the other simulation 18 

uses double CO and VOC emissions in both China and South Korea (EDV3_ChKo2) 19 

to investigate possible improvements in the simulated O3 and CO from these emission 20 

changes. 21 

 22 
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2.3. Observations 1 

2.3.1. Meteorological data 2 

The meteorological field that WRF-Chem reproduced is validated with the surface 3 

synoptic observation (SYNOP) data operated by the World Meteorological 4 

Organization (WMO) (http://www.meteomanz.com). Surface temperature, relative 5 

humidity, and surface wind speed are adopted for model validation. As the SYNOP data 6 

are provided every 3 or 6-hourly, we selected model data when the observation data are 7 

available. There were 271 sites in China-Taiwan-Hongkong and 48 sites in South Korea. 8 

 9 

2.3.2. Ground-based observations 10 

The surface observation network used in this study was obtained from Airkorea in South 11 

Korea and the China Ministry of Ecology and Environment (MEE) in China. The 12 

Airkorea observation network provides 1-hourly measurements of NO2, SO2, CO, O3, 13 

PM10, and PM2.5 at suburban, background, roadside, city, and port sites 14 

(www.airkorea.or.kr). The concentrations of NO2, CO, and O3 are measured using the 15 

chemiluminescent, non-dispersive infrared, and ultraviolet photometric methods, 16 

respectively. The model data with 28 x 28 km2 horizontal resolution were linearly 17 

interpolated to the 365 sites in South Korea, and we selected NO2, O3, and CO for model 18 

validation. The Chinese observations were provided by MEE through the website 19 

(beijingair.sinaapp.com). Surface NO2 over China was measured using a molybdenum 20 

converter, which has the potential for positive biases due to other NO2-related oxidation 21 

products (Dunlea et al., 2007). In South Korea, the positive biases exist regarding NO2 22 

surface observations, which could to overestimations of 28.9% at suburban sites in 23 
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spring (Jung et al., 2017). CO was measured using infrared absorption (Zhang and Cao., 1 

2015), and there were 1454 stations in China during the campaign period. 2 

For validation of NO2 and HCHO vertical column density, data from the Pandora 3 

spectrometer were used, which the model reproduced with emission inventories at the 4 

Olympic Park site (37.5232˚N, 127.126˚E). The HCHO data from Pandora is corrected 5 

because of internal off-gasing to avoid positive biases (Spinei et al., 2021). At the same 6 

observation site, surface NO2 was also measured by a KENTEK NOx analyzer with 7 

photolytic method, and surface O3 was measured using the same instrument. Ground-8 

based HCHO was measured using Aerodyne QCL. We compared the observed diurnal 9 

cycle of vertical column and surface concentrations of NO2 and HCHO with the model 10 

simulations utilizing EDV2, EDV3, and KOV5. We also used ground-based VOC data 11 

from gas chromatography flame ionization detector (GC-FID) operated by the Seoul 12 

Research Institute of Public Health and Environment (SIHE). 13 

 14 

2.3.3. Aircraft data 15 

The DC-8 research aircraft, operated by NASA, performed multiple flight 16 

measurements with a variety of measuring instruments. We utilized 1 minute interval 17 

merged data of O3, NO2, CO, HCHO, and VOC along the 20 flight paths (Figure 7). 18 

The nearest WRF-Chem grid is selected and then temporally and vertically interpolated 19 

to the aircraft data to fully utilize the observations. Atmospheric NO2 and O3 20 

concentrations were measured using a 4-channel chemiluminescence instrument, with 21 

an uncertainty of 100 pptv + 30% and 5 ppbv + 10%, respectively. CO concentrations 22 

were observed using a diode laser spectrometer, with an uncertainty of 2% or 2 ppbv. 23 
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The Compact Atmospheric Multi-species Spectrometer (CAMS) was used to measure 1 

HCHO concentration, with a possible 3% systematic error (Richter et al., 2015). We 2 

also utilized data from the Whole Air Sampler (WAS) to analyze VOC species from 3 

different emission inventories (Colman et al., 2001). In this study, we focused on DC-4 

8 observations below a height of 2 km to concentrate on planetary boundary layer (PBL) 5 

chemistry. The observation height was determined by GPS altitude above ground level.  6 

 7 

3. Results 8 

3.1. The model meteorology simulations  9 

The model temperature and relative humidity were compared with surface observations 10 

in China and South Korea. The model-simulated temperature had a slight negative mean 11 

bias of -0.91 ˚C (correlation coefficient R = 0.90) in China, with the largest negative 12 

bias in southwestern China. In South Korea, the mean bias was -1.71 ̊ C (R = 0.88). The 13 

simulated relative humidity showed a negative bias of -20 to -10% in the North China 14 

Plain (NCP) area and a positive bias of 10 to 20% in southwestern China. There was a 15 

negative bias of relative humidity over the west coastal area and a positive bias of 10 to 16 

20% at most observation stations in South Korea. The correlation coefficients between 17 

the model relative humidity and observations were 0.85 and 0.76 for China and South 18 

Korea, respectively. Overall, the comparisons showed decent model simulations of 19 

meteorology. During the KORUS-AQ campaign period, WRF-Chem accurately 20 

simulated the daytime PBL height from a laser ceilometer (CL-31, Vaisla Inc., Finland) 21 

observed at Yonsei University in Seoul, South Korea (Lee et al., 2019). But, Travis et 22 

al. (2022) has indicated the possibility of PBL height underestimations by CTM. 23 

Furthermore, due to limitations of the instrument, the ceilometer has potential to 24 
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inadequately estimate nighttime PBL height. It is primarily attributed to the method 1 

based on aerosol gradients (Jordan et al., 2020). Therefore, the interpretation of 2 

simulated nighttime concentrations of air pollutants should be approached with caution. 3 

More analysis of meteorological fields, including PBL height, can be found in the 4 

Supporting Information (Table S5 and Figure S2-S3). 5 

 6 

3.2. Evaluations with routine surface chemical observational data 7 

The study compared simulated concentrations of O3, NO2, and CO with data from 8 

routine surface observational networks (Table 2 and Figure 2-6). First, the diurnal 9 

variations of the model O3 using different emissions inventories were compared with 10 

observations for each subregion (Table 2 and Figure 2). Overall, all emissions 11 

successfully reproduced diurnal variations and absolute values of O3 for most regions, 12 

but there were notable discrepancies in several regions. In the North China Plain (NCP) 13 

region, EDV2 led to a negative model O3 bias (-12 ppb) with R=0.65, while EDV3 and 14 

KOV5 simulated O3 better with reduced biases and increased correlations (R=0.68-15 

0.71). Similarly, EDV2 had a negative O3 bias (-17 ppb) with R=0.62 in the Yangtze 16 

River Delta (YRD) area, but EDV3 and KOV5 much improved the simulations, which 17 

was also observed in the Northeastern China (NEC) area. However, the model O3 18 

concentrations based on the three emission inventories were overestimated in the 19 

Sichuan-Chongqing-Guizhou (SCG) and Southeastern China (SEC) area. In Pearl River 20 

Delta (PRD), EDV2 showed the lowest bias (-0.3 ppb) compared to EDV3 and KOV5. 21 

In the suburban area of Northern China (NOC), all emission inventories reasonably 22 

simulated hourly O3 concentrations. Averaged O3 was well simulated in South Korea 23 

(KOR) with low biases (-1 to 0.7 ppb), but a negative bias appears over the Seoul 24 
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metropolitan area (SMA) with all emissions (-5.5 to -3.5 ppb) (Table 2).  1 

The study also analyzed the mean values of daily maximum 8-hour average (MDA8) 2 

O3 concentration at each site and their spatial distributions for the entire campaign 3 

period (Figure 3). The spatial distributions of the model MDA8 O3 were not well 4 

correlated with those of the observations. But, notable disparities were observed in 5 

simulating MDA8 O3 when the different emissions were used. For the north and eastern 6 

part of China including Beijing and Shanghai, large negative biases disappear when 7 

using EDV3 and KOV5. KOV5 only shows a significant correlation with the surface 8 

MDA8 O3 observations (including 929 sites) than EDV2 and EDV3 in China (0.43 9 

versus 0.01, 0.20). The correlations between the time series of the model MDA8 O3 and 10 

observations varied at each site, with about 40-60% of sites (depending on the emission 11 

inventories) showing a correlation coefficient greater than 0.6 (see Supporting 12 

Information, Figure S4), and the locations of these sites were scattered. The correlation 13 

slightly improved with hourly O3 concentrations instead of MDA8 O3, with about 50-14 

60% of sites having a correlation coefficient greater than 0.6 (Supporting Information, 15 

Figure S4). For this metric, high correlations occurred in pollution hot spots north of 16 

30°N and the South Coast of China, in which the ratio of HCHO to NO2 (FNR) was 17 

much less than 1, suggesting VOC-limited/NOx-saturated chemical regime (Supporting 18 

Information, Figure S5). The model MDA8 O3 were underestimated for the pollution 19 

hot spots with a low HCHO to NO2 ratio located north of 30°N, suggesting a possibility 20 

of model underestimations of anthropogenic VOC emissions causing model MDA8 O3 21 

biases at these sites. In contrast, the simulated MDA8 O3 was generally overestimated 22 

for sites south of 30°N in which HCHO concentrations were high (Supporting 23 

Information, Figure S5). Zhang et al. (2020) reported that simulated biogenic isoprene 24 
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from MEGAN was overestimated compared to observation sites under 35˚N in China.  1 

The EDV2 and EDV3 showed a positive NO2 bias over the YRD, NCP, and PRD 2 

regions, which include large cities in China (Table 2 and Figure 4-5). On the other hand, 3 

EDV2 and EDV3 had low negative NO2 biases in the NEC and NOC regions (Figure 4 

4). All models demonstrated reasonable NO2 model performance in the SCG region, 5 

where MDA8 O3 was overestimated (Figure 2 and 4). In the YRD region, there were 6 

large positive NO2 biases with EDV2, EDV3, and KOV5 (ranging from 6.4 to 22.7 ppb). 7 

Liu et al. (2021) reported that YRD is in a VOC-limited regime when using EDV2 The 8 

findings indicated that a reduction in NOx emissions led to an increase in O3 9 

concentrations, while a reduction in VOC emissions resulted in lower O3 10 

concentrations. The lower bias of O3 in YRD can be attributed to the combined 11 

influence of higher anthropogenic NOx emissions and VOC originated from both 12 

anthropogenic and biogenic sources (Figure S5). In contrast, KOV5 underestimated 13 

NO2 in the NCP region, while EDV2 and EDV3 did not. All emissions showed 14 

significant discrepancies compared to NO2 observations in the SEC area, with a low 15 

correlation coefficient (0.19 to 0.26). EDV3 showed the lowest bias of -1.9 ppb (-0.8 16 

ppb) compared to EDV2 and KOV5 in South Korea (SMA). The daily averaged NO2 17 

exhibited spatial distributions similar to MDA8 O3 and CO (Figure 5). The slopes of 18 

regression between the three model simulations and observations were 1.31, 1.03, and 19 

0.8 for EDV2, EDV3, and KOV5, respectively, in China. The correlation coefficients 20 

between the simulated NO2 utilizing EDV2, EDV3, and KOV5 and surface data were 21 

around 0.6 in China. EDV2, EDV3, and KOV5 demonstrated good correlations with 22 

observations in South Korea (R = 0.69-0.74). Correlation coefficient (R) was the 23 

highest with KOV5 in South Korea (R=0.74).  24 
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The simulated CO was averaged at each site and compared with observations 1 

during the KORUS-AQ campaign period (Figure 6). The three model results showed 2 

similar spatial distributions to observations, indicating higher CO concentrations in the 3 

NCP, YRD, and PRD regions than their surrounding areas. However, all simulations 4 

failed to reproduce the abundance of CO, indicating large negative biases throughout 5 

the country. The bias was larger in South Korea than in China.  6 

 7 

3.3. Evaluations with the airborne and special surface chemical observations 8 

during KORUS-AQ 9 

 10 

3.3.1. The aircraft observations 11 

Figure 7 shows the flight paths flown by the DC-8 during the KORUS-AQ campaign 12 

period. In Table 3, we compare the model results for O3, NO2, CO, HCHO, TOL, XYL, 13 

ETE (Ethene or OL2), and ISO with the corresponding observed values for all flight 14 

tracks under 2 km height in South Korea (Table 3). On average, the model 15 

underestimated O3 by 15-18 ppb, with EDV3 exhibiting the lowest O3 bias (-15.1 ppb) 16 

compared to EDV2 and KOV5 (-16.8 and -17.5 ppb, respectively). All emissions 17 

showed positive biases for NO2 (0.64 to 1.72 ppb), ETE (0.08 to 0.14 ppb), and ISO 18 

(0.1 to 0.11 ppb). However, the model significantly underestimated CO, HCHO, TOL, 19 

and XYL for all three emissions. Given the large spatial variability of air pollutants in 20 

South Korea, we also sampled aircraft data from six regions (see Figure 7) and 21 

compared the three model results with the aircraft observations under 2 km height 22 

(Figure 8). 23 

The flight tracks that surveyed large power plants and factories in the Chungnam 24 

region on a daily basis are shown in Figure S6 in the Supporting Information. The 25 
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largest negative model O3 bias was observed over the Chungnam region, with a 1 

difference of 38-41 ppb. Emission estimation uncertainties can be significant over this 2 

region, where there are large point sources such as coal-burning power plants and 3 

petrochemical industries. The model NO2 agreed with the aircraft observations in SMA, 4 

but it tends to overestimate the measurements in the other areas. There were substantial 5 

model overestimations of NO2 with EDV3 over the Chungnam and Busan areas, while 6 

KOV5 showed the most reasonable model NO2 simulations. The model CO near the 7 

surface was underestimated in the entire domain, resulting in high negative model CO 8 

biases relative to the aircraft observations across the six regions (Figure 8). Additionally, 9 

the model HCHO was underestimated by all emission inventories for all subregions, 10 

with negative biases being evident in the SMA, Yellow Sea, and Chungnam regions. 11 

Other model VOC species, such as TOL, XYL, ETE, and ISO, were also analyzed. 12 

These VOC species are classified by their chemical structures and reactivities in the 13 

RACM (Stockwell et al., 1997) (Table S2). For example, TOL includes toluene and 14 

relatively less reactive aromatics, while XYL includes xylene and more reactive 15 

aromatics. The WAS data from DC-8 were lumped into RACM (Supporting 16 

Information Table S6, Lu et al., 2013) and were compared with aircraft observations. 17 

When the model TOL or XYL was compared with the observed toluene and xylene, the 18 

model using KOV5 reasonably reproduced the observed concentrations (light gray bars 19 

in Figure 8). However, the model TOL (even using KOV5) underestimated the observed 20 

lumped TOL for most of the regions except for Busan (bars including the dark gray part 21 

in Figure 8). The model using KOV5 reasonably reproduced the observed xylene or 22 

XYL, except for the Chungnam and Busan regions. The observed ethene (or ETE) 23 

concentrations were low (< 0.5 ppb), except for the Chungnam region, where the 24 
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average of measurements was 2.1 ppb. The model ethene concentration was higher than 1 

the observations for the SMA, Kyungbuk, and Busan regions, while it had a large 2 

negative bias (-1.6 ~ -1.3 ppb) for the Chungnam region. Regarding isoprene (ISO), one 3 

of the most important biogenic VOCs, the model values were larger than the 4 

observations by a factor of 2. In summary, underestimated CO and aromatic VOCs are 5 

the main features, along with underestimated ozone and HCHO. The largest 6 

discrepancies occur over the Chungnam region, where large point sources are located 7 

on the west coast of South Korea. The detailed statistics over the SMA and Chungnam 8 

area can be obtained from the Supporting Information (Table S7-S8). 9 

Figure 9 displays the vertical distributions of observed and simulated O3 and related 10 

species over SMA. The shapes of the simulated profile were in agreement with the 11 

observations. Particularly, the model accurately reproduced the observed NO2 profiles 12 

though the surface NO2 is underestimated by -4.2 to -0.8 ppb in SMA (Table 2 and 13 

Figure 9b). The underestimation of simulated surface NO2 is explained by the 14 

overestimation of molybdenum converter method; surface concentrations of NO2 from 15 

molybdenum converter is larger than photolytic converter by 13.6% on average and 64% 16 

at 4 pm (Figure 10). However, the simulated O3 and HCHO had negative biases of 16.4 17 

ppb and 0.73 ppb, respectively, persisting from the surface to 2 km. Additionally, the 18 

simulated CO underestimated the observations by 40% throughout the vertical layer. 19 

While the model TOL and XYL, utilizing KOV5, agreed well with the observations 20 

below 1 km, the results using EDV2 and EDV3 substantially underestimated the 21 

observations throughout the layer. On the other hand, the model simulated ETE and 22 

ISO overestimated the observations below 1 km over SMA. 23 

 24 
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3.3.2. The ground-based observations 1 

During the KORUS-AQ campaign, Pandora and surface measurements were co-located 2 

at the Olympic Park. Figure 10 compares the observed diurnal cycle of Pandora vertical 3 

columns and surface concentrations of NO2 and HCHO with the model simulations. 4 

The photolytic converter was used to measure surface NO2 to minimize positive bias 5 

from the molybdenum converter. All emissions reasonably simulated the diurnal 6 

patterns of vertical column and surface NO2 and HCHO concentrations. The surface 7 

NO2 peak appeared at 07 LT in the model and 08 LT in the observations, associated 8 

with the increase of traffic and the under-developed convective boundary layer. On the 9 

other hand, the Pandora NO2 column amount increased from 06 LT to 12 LT and stayed 10 

at that value throughout the afternoon, indicating the increase of NOx emissions from 11 

morning to afternoon. The model-simulated NO2 columns agreed with those from 12 

Pandora in terms of absolute values and diurnal variations. The opposite patterns 13 

between surface and column NO2 were also shown in Crawford et al. (2020). The 14 

simulated and observed HCHO show similar diurnal variations, but all three emissions 15 

underestimated both column and surface HCHO values by up to -8.5 x 1015 16 

molecules·cm-2 (-46%) at 7 LT and -0.9 ppbv (-26%) at the surface on average. The 17 

underestimations of the model HCHO relative to the Pandora and surface observations 18 

are similar to findings from comparisons of the model results with the aircraft data 19 

(Figure 9). Therefore, the model VOC performance needs to be investigated at the 20 

Olympic Park.  21 

The diurnal variations of the model O3, CO, TOL, and XYL were evaluated against 22 

the surface observations at the Olympic Park acquired during the KORUS-AQ 23 

campaign (Figure 11). The diurnal pattern and hourly averaged mixing ratio of O3 were 24 
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well simulated with the three emission inventories with slight model negative biases. 1 

The observed CO was 2.7 times higher than the model on average. Considering the 2 

diurnal profile of observed TOL and XYL, KOV5 reduced the model negative biases 3 

from EDV2 and EDV3, but it still showed negative biases. The model TOL and XYL 4 

showed peak concentrations at 08 LT, but the observation had a maximum value at 06 5 

LT. The model biases of XYL (-3.7 to -0.6 ppb, -89 to -20%) were much larger than 6 

those in TOL at the surface. Our study demonstrates that the improvement of VOC 7 

emission/chemistry representations in the model is necessary for better simulations of 8 

air quality over SMA and South Korea. 9 

 10 

3.4. The model performances for the Local and Transport Cases  11 

Previous studies have used meteorological conditions to classify synoptic patterns that 12 

affect air pollutant concentrations (Park et al. 2021; Peterson et al. 2019). In contrast, 13 

we defined the Transport and Local cases by comparing model results that used the 14 

EDV3 base emission and the EDV3 zero-out-Chinese emission (see Figure 12). The 15 

Local case comprises May 4, May 20, June 2, and June 3 (Supporting Information, 16 

Figure S7), while the Transport case includes May 25, May 26, and May 31 (Supporting 17 

Information, Figure S8). The Local (Transport) case in this study generally aligns with 18 

the Stagnant and Blocking (Transport) cases in Peterson et al. (2019). The Local case 19 

has a Chinese contribution to O3 of under 11%, whereas the Transport case has a 20 

Chinese contribution to O3 of over 46%. EDV3 performed better in simulating O3 for 21 

the Transport case compared to EDV2 and KOV5, with a bias of only 2.7 ppb in 22 

comparison with the DC-8 airborne observations. In contrast, for the Local case, all 23 

emissions had a negative bias ranging from 15.5-18.2 ppb. See the Table S9 in 24 
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Supporting Information to obtain detailed information of model performances against 1 

DC-8 measurements for different cases. Surface concentrations of O3 at Olympic Park 2 

also exhibited enhanced contributions from Chinese anthropogenic emissions for 3 

Transport case (Figure S9). This section focuses on the model simulations using EDV3 4 

and its modified versions, EDV3_Ch2 and EDV3_ChKo2 (doubling Chinese and South 5 

Korean CO and VOC emissions).  6 

Figure 13 illustrates the biases in the model O3, CO, and HCHO using EDV3 and 7 

its variants relative to DC-8 observations over SMA. The plot highlights differences in 8 

biases for the Local and Transport cases. The model O3 biases were negative, and the 9 

absolute values of biases were larger in the Local case than in the Transport case (-20% 10 

versus -6%). The model CO biases were also negative, and the absolute values of biases 11 

were larger in the Transport case than in the Local case. The model HCHO biases were 12 

negative and similar for the two cases, except for a larger discrepancy between model 13 

and observation in the Local case than in the Transport case. Doubling Chinese CO and 14 

VOC emissions (EDV3_Ch2) only slightly reduced biases in the Local case, whereas 15 

doubling South Korean CO and VOC emissions, as well as Chinese CO and VOC 16 

emissions (EDV3 ChKo2), were necessary to substantially reduce the model biases for 17 

the Local case. For the Transport case, doubling Chinese CO and VOC emissions 18 

reduced biases to almost zero for CO and HCHO, but the model O3 was much 19 

overestimated, with 14% positive biases (from an original bias of -6%). Further 20 

increasing South Korean CO and VOC emissions led to overestimations of O3 (20%) 21 

and HCHO (33%). These sensitivity tests modifying EDV3 indicate that increases in 22 

CO and VOC emissions over South Korea improve the model O3, CO, and VOC 23 

simulations. However, increasing Chinese VOC (and CO) emissions may overestimate 24 
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the model O3 for the studied period. 1 

 2 

4. Summary and conclusions 3 

We conducted sensitivity tests using WRF-Chem with three different bottom-up 4 

emission inventories (EDGAR-HTAP v2, v3, and KORUS v5) to investigate the 5 

impacts of different emissions on the simulation of O3 and precursors in East Asia. This 6 

study is the first to use EDGAR-HTAP v3 with WRF-Chem v4.4 and extends the 7 

validation domain to the whole of China during the KORUS-AQ campaign period. We 8 

extensively validated these emission inventories using both ground and aircraft 9 

observations in East Asia. 10 

The three emission inventories accurately reproduced the diurnal profiles and 11 

absolute values of surface O3 for most subregions in China, except for the SCG and 12 

SEC areas. However, discrepancies were observed in the model performance for the 13 

MDA8 O3 concentrations, with poor correlations observed over regions with high 14 

HCHO concentrations (south of 30°N) and relatively low ratios of FNR (north of 30°N). 15 

The emission inventories reasonably reproduced the spatial distribution of daily surface 16 

NO2 concentrations. However, we found that CO was considerably underestimated by 17 

the emission inventories over both China and South Korea. 18 

We evaluated the model simulations against vertical profile measurements of O3, 19 

NO2, CO, HCHO, TOL, XYL, ETE, and ISO from the DC-8 aircraft, as well as surface 20 

observations over South Korea. The simulated vertical shapes of O3, NO2, CO, HCHO, 21 

TOL, XYL, ETE, and ISO agreed well with the DC-8 measurements in the SMA, 22 

although negative biases were observed for O3, CO, TOL, XYL, and HCHO, with the 23 
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largest discrepancy between the model results and observations in the Chungnam area. 1 

When we compared the simulations with the surface in-situ measurements and 2 

PANDORA observations at the Olympic Park in Seoul, the model accurately 3 

reproduced the diurnal patterns of surface and vertical columns of NO2 and HCHO. 4 

However, we found that the model underestimated TOL and XYL. This underestimation 5 

of TOL and XYL is one of the reasons why the model underestimates O3 concentrations, 6 

as VOCs contribute to NO to NO2 conversions resulting in O3 production via 7 

photochemistry. 8 

We also classified the flight tracks into two categories: Local and Transport cases. 9 

We found that the negative bias of O3 was much larger under the Local case than the 10 

Transport case. When the increment of CO and VOC emissions in South Korea is taken 11 

into account, the biases of O3 are significantly reduced, indicating the need for local 12 

emission adjustments to decrease O3 bias in South Korea. 13 

Our study revealed a consistent overestimation of isoprene over SMA. The 14 

uncertainty of biogenic VOC emissions from MEGAN can affect the model O3 15 

performance. Therefore, to achieve more accurate simulations of O3 in East Asia, it is 16 

essential to explore precise representations of both anthropogenic and biogenic VOC 17 

emissions. 18 

 19 

Code and data availability 20 

 WRF-Chem source codes are distributed by NCAR  (https://doi:10.5065/D6MK6B4K). 21 

WRF-Chem v4.4 is available in the GitHub (wrf-model, 2022). The exact version of 22 

WRF-Chem codes and configuration files are archived at 23 
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https://doi.org/10.5281/zenodo.8260026 (Kim et al., 2023). National Centers for 1 

Environmental Prediction (NCEP) FNL data can be accessed from Research Data 2 

Archive (RDA) (NCEP, 2019). The CAM-Chem data for boundary conditions is also 3 

obtained from RDA (ACOM, 2019). The EDGAR-HTAP v2 data can be downloaded 4 

in the website (https://edgar.jrc.ec.europa.eu/dataset_htap_v2). The EDGAR-HTAP v3 5 

is archived on Zenodo (Crippa, 2023). The KORUS-AQ data are available in the 6 

website (https://www-air.larc.nasa.gov/cgi-bin/ArcView/korusaq) 7 

(doi:10.5067/Suborbital/KORUSAQ/DATA01). The EDGAR-HTAP v2, v3, and 8 

KORUS v5 data including emission processing programs are available at 9 

https://doi.org/10.5281/zenodo.8260026 (Kim et al., 2023). 10 
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Table List 1 

 2 

Table 1. The model experiments with different emissions. 3 

 4 

Table 2. Comparison of the ground-based hourly O3, NO2, and CO observations with 5 

the simulations utilizing EDGAR-HTAP v2 (EDV2) and v3 (EDV3) and KORUS v5 6 

(KOV5) in each regional box (unit = ppb). N is the number of samples. R is correlation 7 

coefficient. 8 

 9 

Table 3. Comparison of aircraft-based 1-minuite-interval O3, NO2, CO, HCHO, TOL, 10 

XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 for all flight cases 11 

under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient.  12 
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Figure List 1 

 2 

Figure 1. The averaged spatial distribution map of the NO, CO, and TOL emissions 3 

from EDGAR-HTAP v2, v3, and KORUS v5 in May. 4 

 5 

Figure 2. Averaged O3 concentrations from ground-based observations and model 6 

simulations over the areas that distinguish urban (red box) and non-urban (green box) 7 

region (central plot). Box-averaged diurnal cycle (solid lines) of O3 and 1/4 of standard 8 

deviations (filled area) from observations (black), EDV2 (green), EDV3 (blue), and 9 

KOV5 (red) by local time are shown. The results are shown for Northern China (NOC, 10 

38-42˚N/106-110˚E), Sichuan-Chongqing-Guizhou (SCG, 27-33˚N/103-109˚E), Pearl 11 

River Delta (PRD, 21.5-24˚N/112-115.5˚E), Southeastern China (SEC, 24-28˚N/116-12 

120˚E), Yangtze River Delta (YRD, 30-33˚N/119-122˚E), South Korea (KOR, 34.5-13 

38˚N/126-130˚E), North China Plain (NCP, 34-41˚N/113-119˚E), and Northeastern 14 

China (NEC, 43-47˚N/124-130˚E). 15 

 16 

Figure 3. Comparison of (a) the campaign averaged ground-based maximum daily 17 

average of 8-hour O3 (MDA8 O3) (unit: ppb) observations and WRF-Chem simulations 18 

with (d) EDGAR-HTAP v2 (EDV2), (e) v3 (EDV3), (f) KORUS v5 (KOV5) and (g, h, 19 

i) the differences between the observations and model results. The sub-regions are 20 

presented with red (urban) and green (non-urban) boxes. The scatter plots comparing 21 

averaged observations and the three-emission-based WRF-Chem simulations (green; 22 

EDV2, blue; EDV3, red; KOV5) are shown in (b) and (c) for Eastern China and South 23 

Korea, respectively. (a, d-e) Color-filled circles in (a), (d), (e), and (f) represent the 24 

averaged MDA8 O3 for the whole campaign period (1st May to 10th June). 25 

 26 

Figure 4. The same as Figure 2 except NO2. 27 

 28 

Figure 5. The same as Figure 3 except daily NO2 (unit: ppb). 29 

 30 

Figure 6. The same as Figure 3 except daily CO (unit: ppm). 31 

 32 

Figure 7. The DC-8 flight paths during the KORUS-AQ campaign period (black) and 6 33 

regional boxes (1: Seoul Metropolitan Area (SMA); 2: Yellow Sea; 3: Chungnam; 4: 34 

Kyungbuk; 5: Gwangju; 6: Busan) (red). 35 

 36 
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Figure 8. The mean (bars) and 1/4 of standard deviations (whiskers) of (a) O3, (b) NO2, 1 

(c) CO, (d) HCHO, (e) TOL, (f) XYL, (g) ethene (ETE), and (h) isoprene (ISO) (unit = 2 

ppb) from EDV2 (green), EDV3 (blue), and KOV5 (red) for each box are shown, 3 

respectively. TOL and XYL are calculated based on Table S6 (Supporting Information). 4 

The contribution of toluene to TOL and m/p-Xylene + o-Xylene to XYL is represented 5 

with light grey bars (e, f). The sampling numbers are represented with magenta color 6 

above the plots. 7 

 8 

Figure 9. Vertically averaged (a) O3, (b) NO2, (c) CO, (d) HCHO, (e) TOL, (f) XYL, (g) 9 

ETE, and (h) ISO from DC-8 (black), EDV2 (green), EDV3 (blue), and KOV5 (red) in 10 

SMA under 2 km height above ground level. The 1/2 of standard deviations are 11 

represented with black whiskers in each 200m layer. The sample number is presented 12 

with magenta color on the right side of the plots. 13 

 14 

Figure 10. The diurnal cycles of vertical columns and surface concentrations of (a) NO2 15 

and (b) HCHO from Pandora spectrometer (column), and ground-based instruments 16 

(TEI 42i NOx analyzer and Aerodyne QCL) at the Olympic Park site (37.5232˚N, 17 

127.126˚E). EDV2 (green), EDV3 (blue), and KOV5 (red) are compared with 18 

observations. The WRF-Chem vertical column concentrations are produced by 19 

summing all vertical layers. 20 

 21 

Figure 11. Diurnal cycles of surface (a) O3, (b) CO, (c) TOL, and (d) XYL at the 22 

Olympic Park site. EDV2 (green), EDV3 (blue), and KOV5 (red) are compared with 23 

the observations. 1/4 of standard deviations are represented with grey shades. The 24 

average period is from the 11th May to the 10th June. 25 

 26 

Figure 12. Averaged O3 (bars) and 1/4 of standard deviations (whiskers) (unit: ppbv) 27 

for the 20 DC8 flights (under 2 km height). The observations (grey) are compared with 28 

the model results utilizing EDV2 (green), EDV3 (blue), and KOV5 (red). White hatch-29 

filled bars over blue bars are the contribution of Chinese emissions to O3 concentrations 30 

obtained from the default and sensitivity model runs with/without Chinese 31 

anthropogenic emissions. The Local (5/4,20 and 6/2,3) and Transport (5/25,26,31) cases 32 

are shaded with light blue and orange, respectively. 33 

 34 

Figure 13. The biases in (a) the model O3, (b) CO, and (c) HCHO concentrations (bars) 35 

relative to the DC-8 observations under 2 km height over SMA (dark gray: EDV3, red: 36 

EDV3 Ch2, blue: EDV3 ChKo2): (left panel) Local and (right panel) Transport case. 37 

Fractional differences (%) are shown in the white boxes.   38 

https://doi.org/10.5194/gmd-2023-132
Preprint. Discussion started: 29 August 2023
c© Author(s) 2023. CC BY 4.0 License.



- 36 - 

 

Table 1. The model experiments with different emissions 1 

Experiments Emissions 

EDV2 EDGAR-HTAP v2 

EDV3 EDGAR-HTAP v3 

KOV5 KORUS v5  

EDV3_Ch2 EDGAR-HTAP v3 with double CO, VOC emission in China 

EDV3_ChKo2 EDGAR-HTAP v3 with double CO, VOC emission in China & South Korea 

  2 
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Table 2. Comparison of the ground-based hourly O3, NO2, and CO observations with 1 

the simulations utilizing EDGAR-HTAP v2 (EDV2) and v3 (EDV3) and KORUS v5 2 

(KOV5) in each regional box (unit = ppb). N is the number of samples. R is correlation 3 

coefficient. 4 

Region 1)
NCP 

1),a)
SCG 

1)
YRD 

1)
PRD 

1),b)
KOR (SMA) 

2),c)
NEC 

2),d)
NOC 

2),e)
SEC 

N 190 104 93 68 358 (125) 45 28 43 

O3 

OBS Mean 44.5 34.6 38.2 27.9 41.5 (36.6) 40.9 44.3 26.1 

EDV2 

Mean 32.2 53.5 21.6 27.6 40.5 (31.1) 28.6 39.4 40.8 

Bias -12.3 18.9 -16.6 -0.3 -1.0 (-5.5) -12.3 -4.9 14.7 

R 0.65 0.53 0.62 0.61 0.59 (0.60) 0.48 0.63 0.52 

EDV3 

Mean 43.4 57.5 35.7 34.7 41.0 (32.6) 35.2 43.7 45.5 

Bias -1.1 23.0 -2.5 6.8 -0.5 (-4.0) -5.7 -0.6 19.4 

R 0.68 0.55 0.66 0.65 0.56 (0.57) 0.63 0.67 0.55 

KOV5 

Mean 49.0 55.3 41.1 35.7 42.2 (33.1) 37.1 43.8 42.4 

Bias 4.5 20.7 2.8 7.8 0.7 (-3.5) -3.8 -0.5 16.3 

R 0.71 0.53 0.65 0.70 0.62 (0.64) 0.62 0.67 0.54 

NO2 

OBS Mean 17.5 13.8 17.1 12.9 23.2 (32.5) 13.5 11.9 9.6 

EDV2 

Mean 25.8 12.7 39.8 22.0 18.8 (29.6) 13.7 12.9 11.0 

Bias 8.3 -1.0 22.7 9.1 -4.3 (-3.0) 0.2 1.0 1.5 

R 0.45 0.37 0.38 0.54 0.51 (0.34) 0.49 0.47 0.19 

EDV3 

Mean 21.8 12.2 30.4 21.0 21.3 (31.8) 11.2 10.3 11.3 

Bias 4.3 -1.6 13.3 8.1 -1.9 (-0.8) -2.3 -1.6 1.7 

R 0.44 0.34 0.36 0.52 0.49 (0.31) 0.49 0.52 0.22 

KOV5 

Mean 13.9 7.5 23.5 13.3 17.7 (28.3) 7.0 7.7 7.7 

Bias -3.6 -6.3 6.4 0.3 -5.5 (-4.2) -6.5 -4.2 -1.9 

R 0.44 0.37 0.41 0.52 0.51 (0.39) 0.49 0.51 0.26 

CO 

OBS Mean 835 597 694 636 443 (493) 527 579 655 

EDV2 

Mean 373 389 455 282 175 (210) 206 162 258 

Bias -462 -208 -239 -354 -267 (-283) -321 -417 -397 

R 0.24 0.20 0.42 0.30 0.31 (0.30) 0.21 0.09 0.18 

EDV3 

Mean 374 359 535 282 196 (208) 221 162 256 

Bias -461 -238 -159 -354 -247 (-285) -306 -417 -398 

R 0.22 0.19 0.35 0.31 0.26 (0.33) 0.24 0.10 0.25 

KOV5 

Mean 355 358 475 305 190 (217) 231 176 266 

Bias -480 -239 -219 -331 -253 (-276) -296 -404 -388 

R 0.27 0.21 0.48 0.29 0.35 (0.36) 0.15 0.10 0.13 
1) Urban area, 2) Non-urban area 5 

a) Sichuan-Chongqing-Guizhou, b) South Korea, c) Northeastern China, d) Northern China, e) Southeastern China  6 
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Table 3. Comparison of aircraft-based 1-minuite-interval O3, NO2, CO, HCHO, TOL, 1 

XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 for all flight cases 2 

under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. 3 

Species Type N Mean Bias σ R 

O3 

OBS 

5191 

84.4  19.9  

EDV2 67.5 -16.8 16.7 0.44 
EDV3 69.3 -15.1 17.8 0.43 
KOV5 66.9 -17.5 15.8 0.50 

NO2 

OBS 

5047 

2.19  4.49  

EDV2 3.06 0.87 4.60 0.71 
EDV3 3.91 1.72 5.34 0.67 
KOV5 2.83 0.64 4.73 0.73 

CO 

OBS 

5575 

253  100  

EDV2 148 -105 48 0.60 
EDV3 156 -97 47 0.59 
KOV5 146 -107 43 0.62 

HCHO 

OBS 

5365 

2.37  1.64  

EDV2 1.75 -0.62 1.01 0.69 
EDV3 1.78 -0.59 1.02 0.67 
KOV5 1.80 -0.57 1.10 0.71 

TOL 

OBS 

730 

2.60  2.02  

EDV2 0.47 -2.13 0.38 0.39 
EDV3 0.55 -2.05 0.48 0.38 
KOV5 1.58 -1.01 1.30 0.37 

XYL 

OBS 

289 

0.73  0.65  

EDV2 0.23 -0.50 0.23 0.30 
EDV3 0.30 -0.43 0.31 0.30 
KOV5 0.49 -0.24 0.47 0.27 

ETE 

OBS 

2573 

0.42  1.59  

EDV2 0.51 0.09 0.65 0.14 
EDV3 0.56 0.14 0.76 0.15 
KOV5 0.51 0.08 0.58 0.20 

ISO 

OBS 

1294 

0.08  0.09  

EDV2 0.18 0.10 0.21 0.41 
EDV3 0.19 0.11 0.20 0.41 
KOV5 0.17 0.10 0.20 0.42 

  4 
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 1 

Figure 1. The averaged spatial distribution map of the NO, CO, and TOL emissions 2 

from EDGAR-HTAP v2, v3, and KORUS v5 in May.  3 
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 1 

Figure 2. Averaged O3 concentrations from ground-based observations and model 2 
simulations over the areas that distinguish urban (red box) and non-urban (green box) 3 
region (central plot). Box-averaged diurnal cycle (solid lines) of O3 and 1/4 of standard 4 
deviations (filled area) from observations (black), EDV2 (green), EDV3 (blue), and 5 
KOV5 (red) by local time are shown. The results are shown for Northern China (NOC, 6 
38-42˚N/106-110˚E), Sichuan-Chongqing-Guizhou (SCG, 27-33˚N/103-109˚E), Pearl 7 
River Delta (PRD, 21.5-24˚N/112-115.5˚E), Southeastern China (SEC, 24-28˚N/116-8 
120˚E), Yangtze River Delta (YRD, 30-33˚N/119-122˚E), South Korea (KOR, 34.5-9 
38˚N/126-130˚E), North China Plain (NCP, 34-41˚N/113-119˚E), and Northeastern 10 
China (NEC, 43-47˚N/124-130˚E).  11 
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 1 

Figure 3. Comparison of (a) the campaign averaged ground-based maximum daily 2 
average of 8-hour O3 (MDA8 O3) (unit: ppb) observations and WRF-Chem simulations 3 
with (d) EDGAR-HTAP v2 (EDV2), (e) v3 (EDV3), (f) KORUS v5 (KOV5) and (g, h, 4 
i) the differences between the observations and model results. The sub-regions are 5 
presented with red (urban) and green (non-urban) boxes. The scatter plots comparing 6 
averaged observations and the three-emission-based WRF-Chem simulations (green; 7 
EDV2, blue; EDV3, red; KOV5) are shown in (b) and (c) for Eastern China and South 8 
Korea, respectively. (a, d-e) Color-filled circles in (a), (d), (e), and (f) represent the 9 
averaged MDA8 O3 for the whole campaign period (1st May to 10th June).   10 
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  1 

Figure 4. The same as Figure 2except NO2.  2 
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 1 

Figure 5. The same as Figure 3 except daily NO2 (unit: ppb).  2 
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 1 

Figure 6. The same as Figure 3 except daily CO (unit: ppm).  2 
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 1 

Figure 7. The DC-8 flight paths during the KORUS-AQ campaign period (black) and 2 

6 regional boxes (1: Seoul Metropolitan Area (SMA); 2: Yellow Sea; 3: Chungnam; 4: 3 

Kyungbuk; 5: Gwangju; 6: Busan) (red).  4 
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 1 

Figure 8. The mean (bars) and 1/4 of standard deviations (whiskers) of (a) O3, (b) NO2, 2 

(c) CO, (d) HCHO, (e) TOL, (f) XYL, (g) ethene (ETE), and (h) isoprene (ISO) (unit = 3 

ppb) from EDV2 (green), EDV3 (blue), and KOV5 (red) for each box are shown, 4 

respectively. TOL and XYL are calculated based on Table S6 (Supporting Information). 5 

The contribution of toluene to TOL and m/p-Xylene + o-Xylene to XYL is represented 6 

with light grey bars (e, f). The sampling numbers are represented with magenta color 7 

above the plots.   8 
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 1 

Figure 9. Vertically averaged (a) O3, (b) NO2, (c) CO, (d) HCHO, (e) TOL, (f) XYL, 2 
(g) ETE, and (h) ISO from DC-8 (black), EDV2 (green), EDV3 (blue), and KOV5 (red) 3 
in SMA under 2 km height above ground level. The 1/2 of standard deviations are 4 
represented with black whiskers in each 200m layer. The sample number is presented 5 
with magenta color on the right side of the plots.  6 
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 1 

Figure 10. The diurnal cycles of vertical columns and surface concentrations of (a) NO2 2 
and (b) HCHO from Pandora spectrometer (column), and ground-based instruments 3 
(TEI 42i NOx analyzer and Aerodyne QCL) at the Olympic Park site (37.5232˚N, 4 
127.126˚E). Surface concentrations of NO2 are obtained by the two methods: 5 
molybdenum converter and photolytic method. EDV2 (green), EDV3 (blue), and 6 
KOV5 (red) are compared with observations. The WRF-Chem vertical column 7 
concentrations are produced by summing all vertical layers.   8 
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 1 

Figure 11. Diurnal cycles of surface (a) O3, (b) CO, (c) TOL, and (d) XYL at the 2 
Olympic Park site. EDV2 (green), EDV3 (blue), and KOV5 (red) are compared with 3 
the observations. 1/4 of standard deviations are represented with grey shades. The 4 
average period is from the 11th May to the 10th June.  5 
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 1 

Figure 12. Averaged O3 (bars) and 1/4 of standard deviations (whiskers) (unit: ppbv) 2 
for the 20 DC8 flights (under 2 km height). The observations (grey) are compared with 3 
the model results utilizing EDV2 (green), EDV3 (blue), and KOV5 (red). White hatch-4 
filled bars over blue bars are the contribution of Chinese emissions to O3 concentrations 5 
obtained from the default and sensitivity model runs with/without Chinese 6 
anthropogenic emissions. The Local (5/4,20 and 6/2,3) and Transport (5/25,26,31) cases 7 
are shaded with light blue and orange, respectively.  8 
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 1 

Figure 13. The biases in (a) the model O3, (b) CO, and (c) HCHO concentrations (bars) 2 
relative to the DC-8 observations under 2 km height over SMA (dark gray: EDV3, red: 3 
EDV3 Ch2, blue: EDV3 ChKo2): (left panel) Local and (right panel) Transport case. 4 
Fractional differences (%) are shown in the white boxes.  5 
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