Sensitivity of the WRF-Chem v4.4 ozone, formaldehyde, and precursor simulations to multiple bottom-up emission inventories over East Asia during the KORUS-AQ 2016 field campaign

Supporting Information

Kyoung-Min Kim¹, Si-Wan Kim^{2*}, Seunghwan Seo¹, Donald R. Blake³, Seogju Cho⁴, James H. Crawford⁵, Louisa Emmons⁶, Alan Fried⁷, Jay R. Herman^{8,9}, Jinkyu Hong¹, Jinsang Jung¹⁰ Gabriele Pfister⁶, Andrew J. Weinheimer⁶, Jung-Hun Woo¹¹, and Qiang Zhang¹²

¹Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
²Irreversible Climate Change Research Center, Yonsei University, Seoul, South Korea
³Department of Chemistry, University of California at Irvine, Irvine, CA, US
⁴Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, South Korea
⁵NASA Langley Research Center, Hampton, VA, US
⁶National Center for Atmospheric Research, Boulder, CO, US
⁷Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, US
⁸NASA Goddard Space Flight Center, Greenbelt, MD, US
⁹University of Maryland Baltimore County, Baltimore, MD, USA
¹⁰Korea Research Institute of Standards and Science, Daejeon, South Korea
¹¹Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea

*Corresponding author: siwan.kim@yonsei.ac.kr

The document includes Tables S1-S11 and Figures S1-S9(end).

Table list

Table S1. The physics and chemistry schemes that are used in this study

Table S2. The list of RACM species.

Table S3. The area total emissions in Eastern China (27.7-40°N, 115-123°E), South Korea (34.5-38°N, 126-130°E), and Seoul Metropolitan Area (SMA: 37.2-37.8°N, 126.5-127.3°E) for each emission data set in May.

Table S4. The chemical species of anthropogenic emissions used in RACM chemistry option and their mapping formulas from MOZART chemistry option that is the input format of anthro_emiss program

Table S5. Comparison of surface meteorological variables from SYNOP and WRF-Chem for the KORUS-AQ campaign period. N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S6. The mapping table from WAS to RACM VOC based on Lu et al., 2013.

Table S7. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in SMA under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S8. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in the Chungnam region under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S9. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, and HCHO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S10. Comparison of the aircraft-based 1-minuite-interval TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height. TOL, XYL, ETE, and ISO are defined in regional atmospheric chemical model (RACM) and compared with WAS based on Table S5 (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S11. Comparison of the aircraft-based 1-minuite-interval O₃, NO₂, CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV3_Ch2 and EDV3_ChKo2 in each case. The sampling number (N), mean, mean bias compared to DC-8 observations, standard deviations (σ), and correlation coefficient (R) with observations are presented (unit = ppb).

Figure list

Figure S1. Diurnal emission factors of VOC and NOx.

Figure S2. Averaged surface temperature (unit: °C) and relative humidity (unit: %) from (a, d) ground-based observations (SYNOP) and (b, e) the weather research and forecast (WRF) model coupled with chemistry (WRF-Chem) from 1st May to 10th June for each station and countries. The differences and correlation coefficients between averaged observations and WRF-Chem are shown (c, f).

Figure S3. Comparison of PBL heights derived from the ceilometer at Yonsei University $(37.564^{\circ}N, 126.935^{\circ}E)$ with the WRF-Chem results during the KORUS-AQ campaign period: (a) time series of planetary boundary layer height from ceilometer and WRF-Chem (unit = m), (b) scatter plot of which x axis is ceilometer and y axis is WRF-Chem PBL height, (c) comparison of diurnal variations of PBL heights from ceilometer (grey) and WRF-Chem (red) with box whisker plot.

Figure S4. Correlation coefficient (R) between observed and simulated (a-c) MDA8 O3 and (d-f) hourly O3 with (a, d) EDV2, (b, e) EDV3, and (c, f) KOV5 emissions. The observation sites with R greater than 0.6 are indicated by a black circle.

Figure S5. (a-c) Simulated surface HCHO to NO2 ratio (FNR) and (d-f) HCHO concentrations with (a, d) EDV2, (b, e) EDV3, and (c, f) KOV5 emissions for 14-16 LST. FNR greater than 1 is marked with black circles. The simulated FNR and HCHO are linearly interpolated to ground-based observation sites.

Figure S6. The DC-8 flight tracks on the 22nd May and 5th June.

Figure S7. The DC-8 flight tracks on the 4th, 20¬th May and 2nd, 3rd June (Local case).

Figure S8. The DC-8 flight tracks on the 22nd, 27th, 31st May (Transport case).

Figure S9. The contribution of Chinese emissions (%) to daily surface O_3 concentrations at Olympic Park obtained from the EDV3 simulations with/without Chinese anthropogenic emissions.

Physics	Scheme	Reference
Planetary Boundary Layer (PBL)	Yonsei University Scheme (YSU)	Hong and Noh, 2006
Land surface	Unified Noah Land Surface Model	Tewari et al., 2004
Microphysics	Purdue Lin Scheme	Chen and Sun, 2002
Cumulus parameterization	Grell 3D Ensemble	Grell, 1993 Grell and Devenyi, 2002
Chemistry	Scheme	Reference
Photolysis	Madronich	Madronich, 1987
Gas-phase chemistry	NOAA/ESRL RACM	Stokwell et al., 1997
Aerosols	MADE/VBS	Ackermann et al., 1998 Ahmadov et al., 2012

Table S1. The physics and chemistry schemes that are used in this study

Species	Definition
ISO	Isoprene
SO2	Sulfur dioxide
NO	Nitric oxide
NO2	Nitrogen dioxide
CO	Carbon monoxide
ETH	Ethane
НС3	Alkanes, alcohols, esters, and alkynes with HO rate constant(298 K, 1 atm) less than $3.4 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$
HC5	Alkanes, alcohols, esters, and alkynes with HO rate constant(298K, 1 atm) between 3.4×10^{-12} and 6.8×10^{-12} cm ³ s ⁻¹
HC8	Alkanes, alcohols, esters, and alkynes with HO rate constant(298 K, 1 atm) greater than $6.8 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$
XYL	Xylene and more reactive aromatics
OL2	Ethene
OLT	Terminal alkenes
OLI	Internal alkenes
TOL	Toluene and less reactive aromatics
CSL	Cresol and other hydroxy substituted aromatics
НСНО	Formaldehyde
ALD	Acetaldehyde and higher aldehydes
КЕТ	Ketones
ORA2	Acetic acid and higher acids
NH3	Ammonia
SULF	Sulfuric acid
PM2.5	Particulate matter under 2.5 µm diameter
PM10	Particulate matter under 10 µm diameter
OC	Organic carbon
BC	Black carbon

Table S2. The list of RACM species.

Region	Ea	stern Ch	ina	South Korea			SMA			
Species	EDV2	EDV3	KOV5	EDV2	EDV3	KOV5	EDV2	EDV3	KOV5	
unit = mol/s										
ISO*	0.0	0.0	31.3	0.0	0.0	2.5	0.0	0.0	0.1	
SO2	3627	1991	1648	183	349	165	18	92	10	
NO	10063	9034	5482	990	1191	886	196	214	191	
NO2	0	0	0	0	0	0	0	0	0	
CO	52304	53183	48489	921	3004	2113	268	240	388	
ETH	519	715	579	18	16	30	5	5	6	
HC3	406	542	545	60	58	45	16	18	10	
HC5	508	695	507	66	65	36	18	20	8	
HC8	317	435	534	53	54	41	13	16	9	
XYL	176	246	270	15	16	41	4	4	9	
OL2	1144	1599	1043	62	59	73	16	17	14	
OLT	410	573	352	30	29	26	7	8	4	
OLI	118	165	312	14	13	27	3	4	6	
TOL	294	410	810	27	27	98	6	8	26	
CSL	176	246	0	15	16	0	4	4	0	
нсно	96	134	47	15	16	9	4	5	2	
ALD	430	599	41	34	34	6	8	10	1	
КЕТ	106	144	43	7	6	5	3	2	1	
ORA2	0	0	0	0	0	0	0	0	0	
NH3	4065	6056	4594	80	395	510	9	30	43	
SULF	0	0	0	0	0	0	0	0	0	
			un	it = kg/s						
PM2.5	98.8	95.2	42.1	2.5	4.3	1.0	0.3	0.8	0.1	
PM10	142.3	133.2	96.7	3.6	6.6	7.3	0.4	1.3	1.1	
OC	18.0	16.8	13.7	0.2	0.4	1.7	0.0	0.1	0.1	
BC	12.5	11.6	8.5	0.7	0.5	0.6	0.1	0.1	0.1	

Table S3. The area total anthropogenic emissions in Eastern China (27.7-40°N, 115-123°E), South Korea (34.5-38°N, 126-130°E), and Seoul Metropolitan Area (SMA: 37.2-37.8°N, 126.5-127.3°E) for each emission data set in May.

* Note ISO in Table S3 is only from anthropogenic sources. ISO is mainly emitted from biogenic sources using MEGAN.

WRF-Chem	EDGAR-HTAP v2 (v3)	KORUS v5
RACM	MOZART to RACM	SAPRC-99 to RACM
ISO	0	ISOP
SO2	SO2	SO2
NO	NOx	NO + NO2
NO2	0	0
СО	CO	СО
ETH	C2H6 ¹⁾	ALK1 ²⁾
HC3	$0.5*C2H5OH^{1)} + CH3OH^{1)} + C3H8^{1)}$	$ALK2^{2}$ + 1.11 x $ALK3^{2}$ + 0.4 x $MEOH^{2}$
HC5	$0.5 \times BIGALK^{1} + 0.5 \times C2H5OH^{1}$	0.97*ALK4 ²⁾
HC8	$0.5 \times BIGALK^{1)}$	ALK5 ²⁾
XYL	$0.2 \times \text{TOLUENE}^{1)}$	ARO2 ²⁾
OL2	C2H4 ¹⁾	ETHE ²⁾
OLT	$0.3 \times BIGENE^{1)} + C3H6^{1)}$	$OLE1 + 0.5 \times MACR + 0.5 \times MVK$
OLI	$0.4 \times \text{BIGENE}^{1)}$	OLE2 ²⁾
TOL	$0.1 \times BIGENE^{1)} + 0.3 \times TOLUENE^{1)}$	ARO1 ²⁾
CSL	$0.2 \times \text{TOLUENE}^{1)}$	$PHEN^{2)} + CRES^{2)}$
НСНО	CH2O	НСНО
	$0.2 \times BIGENE^{1)} + CH3CHO^{1)}$	$CCHO^{2)} + RCHO^{2)} + BALD^{2)} + GLY^{2)}$
ALD	$+0.3 \times \text{TOLUENE}^*$	$+ MGLY^{2)} + BACL^{2)} + 0.5 \times MACR^{2)}$
KET	$CH3COCH3^{1} + MEK^{1}$	$0.3 \times ACET^{2)} + 1.61 \times MEK^{2)} + 1.61 \times PRD2^{2)}$ + 0.5 x MVK ²⁾ + IPRD ²⁾
ORA2	0	0
NH3	NH3	NH3
PM2.5	PM2.5	PM2.5+PMFINE
PM10	PM10	PM10
OC	OC	POA
SULF	0	SULF
BC	BC	PEC

Table S4. The chemical species of anthropogenic emissions used in RACM chemistry option and their mapping formulas from MOZART chemistry option that is the input format of *anthro_emiss* program

¹⁾Note that those are MOZRT VOC species (Emmons et al., 2010).

²⁾Note that those are SAPRC99 VOC species (Carter, 2000).

Nation		Eastern	n China (sites	s = 271)	South Korea (sites = 48)			
V	ariable	Temperature (°C)	Relative humidity (%)	Wind speed (m/s)	Temperature (°C)	Relative humidity (%)	Wind speed (m/s)	
	Ν	83698	83696	79595	14948	14946	14103	
Maaa	Obervation	20.13	65.02	2.87	18.94	65.81	2.56	
Mean	WRF-Chem	19.22	65.35	4.12	17.23	71.35	3.84	
	R	0.90	0.85	0.55	0.88	0.76	0.62	
Μ	ean bias	-0.91	0.32	1.25	-1.71	5.54	1.27	
]	RMSE	3.20	13.94	2.45	2.84	15.88	2.31	

Table S5. Comparison of surface meteorological variables from SYNOP and WRF-Chem for the KORUS-AQ campaign period. N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

RACM	WAS
TOL	Toluene, Benzene, Ethylbenzene, i-Propylbenzene, n-Propylbenzene
XYL	m/p-Xylene , o-Xylene , 1-3-5-Trimethylbenzene, 1-2-4-Trimethylbenzene, 1-2-3-Trimethylbenzene, 4-Ethyltoluene
ETE	Ethene
ISO	Isoprene

Table S6. The mapping table from WAS to RACM VOC based on Lu et al., 2013.

Table S7. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in SMA under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Species	Туре	Ν	Mean	Bias	σ	R
0	OBS		80.9		21.6	
	EDV2	1001	64.0	-16.9	16.3	0.61
O_3	EDV3	1081	66.6	-14.2	16.3	0.63
	KOV5		62.7	-18.1	15.4	0.70
	OBS		4.89		7.53	
NO	EDV2	1069	5.33	0.44	7.28	0.81
\mathbf{NO}_2	EDV3	1008	5.55	0.66	7.44	0.80
	KOV5		5.34	0.46	7.56	0.82
	OBS		247		98	
CO	EDV2	1150	148	-98	53	0.65
CO	EDV3	1150	151	-96	49	0.67
	KOV5		145	-102	49	0.71
	OBS		2.65		1.75	
	EDV2	1100	1.89	-0.76	1.24	0.84
нсно	EDV3	1120	1.99	-0.66	1.32	0.82
	KOV5		1.86	-0.78	1.26	0.85
	OBS		3.12		1.71	
тоі	EDV2	328	0.63	-2.49	0.43	0.38
IOL	EDV3		0.78	-2.34	0.57	0.36
	KOV5		2.24	-0.88	1.47	0.40
	OBS		0.76		0.60	
VVI	EDV2	107	0.31	-0.46	0.25	0.41
AIL	EDV3	182	0.40	-0.37	0.34	0.41
	KOV5		0.64	-0.12	0.51	0.45
	OBS		0.33		0.44	
ETE	EDV2	970	0.79	0.46	0.90	0.71
EIE	EDV3	870	0.89	0.56	1.07	0.73
	KOV5		0.69	0.35	0.71	0.71
	OBS		0.10		0.11	
160	EDV2	555	0.28	0.17	0.27	0.40
120	EDV3	222	0.27	0.16	0.26	0.40
	KOV5		0.26	0.16	0.26	0.41

Species	Туре	Ν	Mean	Bias	σ	R
	OBS		101.6		17.1	
	EDV2	560	63.5	-38.1	14.3	0.10
O_3	EDV3	560	60.2	-41.3	13.7	0.06
	KOV5		62.4	-39.2	14.1	0.11
	OBS		3.46		5.07	
NO	EDV2	557	4.88	1.43	4.75	0.26
NO_2	EDV3	337	8.09	4.63	6.34	0.30
	KOV5		4.79	1.34	4.79	0.28
	OBS		302		102	
CO	EDV2	570	148	-153	49	0.51
CO	EDV3	578	157	-145	37	0.59
	KOV5		142	-159	34	0.61
	OBS		4.04		2.48	
	EDV2	570	2.25	-1.79	1.06	0.41
нсно	EDV3	579	2.18	-1.86	1.02	0.39
	KOV5		2.49	-1.55	1.19	0.44
	OBS		2.65		2.36	
тоі	EDV2	130	0.47	-2.18	0.35	0.13
IOL	EDV3		0.50	-2.15	0.35	0.09
	KOV5		1.17	-1.48	0.81	-0.06
	OBS		1.20		1.01	
VVI	EDV2	20	0.11	-1.10	0.09	0.01
AIL	EDV3	30	0.14	-1.06	0.10	0.03
	KOV5		0.17	-1.03	0.21	-0.42
	OBS		2.08		4.64	
ETE	EDV2	255	0.53	-1.55	0.50	0.05
EIE	EDV3	233	0.59	-1.49	0.48	0.06
	KOV5		0.75	-1.33	0.64	0.10
	OBS		0.06		0.06	
150	EDV2	101	0.06	0.00	0.06	-0.17
150	EDV3	101	0.09	0.04	0.09	-0.10
	KOV5		0.06	0.00	0.06	-0.13

Table S8. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in the Chungnam region under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Table S9. Comparison of the aircraft-based 1-minuite-interval O_3 , NO_2 , CO, and HCHO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Species	Case	Туре	Ν	Mean	Bias	σ	R
		OBS		81.2		15.3	
	Local	EDV2	1105	65.2	-15.9	13.4	0.66
	(5/4,20,6/2,3)	EDV3	1123	65.2	-16.0	12.8	0.59
0		KOV5		62.6	-18.5	11.5	0.70
03		OBS		95.6		19.1	
	Transport	EDV2	605	87.3	-8.3	13.8	0.64
	(5/25,26,31)	EDV3	005	93.1	-2.5	16.0	0.67
		KOV5		84.8	-10.8	14.3	0.69
		OBS		2.62		4.92	
	Local	EDV2	1066	2.57	-0.05	3.45	0.63
	(5/4,20,6/2,3)	EDV3	1000	3.51	0.89	4.39	0.67
NO ₂ -		KOV5		2.34	-0.28	3.62	0.67
		OBS		1.28		3.60	
	Transport	EDV2	501	1.89	0.61	4.45	0.85
	(5/25,26,31)	EDV3	591	2.34	1.06	5.02	0.83
		KOV5		1.67	0.39	4.47	0.86
		OBS		214		61.7	
	Local	EDV2 EDV3 1225	130	-83	24.9	0.64	
	(5/4,20,6/2,3)		137	-77	27.7	0.64	
CO		KOV5	KOV5		-83	25.0	0.67
co		OBS		345		128.5	
	Transport	EDV2	651	209	-136	60.7	0.59
	(5/25,26,31)	EDV3	0.51	209	-135	61.6	0.58
		KOV5		201	-143	57.7	0.58
		OBS		2.43		1.82	
	Local	EDV2	1177	1.70	-0.73	0.86	0.49
	(5/4,20,6/2,3)	EDV3	11//	1.72	-0.71	0.84	0.48
нсно		KOV5		1.78	-0.65	0.96	0.54
neno		OBS		1.70		1.08	
	Transport	EDV2	605	1.32	-0.38	0.72	0.74
	(5/25,26,31)	EDV3	005	1.36	-0.34	0.71	0.73
		KOV5		1.21	-0.49	0.69	0.72

Table S10. Comparison of the aircraft-based 1-minuite-interval TOL, XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 in each case distinguished by Chinese contribution to O_3 concentration under 2 km height. TOL, XYL, ETE, and ISO are defined in regional atmospheric chemical model (RACM) and compared with WAS based on Table S5 (unit = ppb). N is the number of samples. R is correlation coefficient. RMSE is root-mean-square-error.

Species	Case	Туре	Ν	Mean	Bias	σ	R
		OBS		1.67		1.40	
	Local	EDV2	170	0.35	-1.32	0.25	0.22
	(5/4,20,6/2,3)	EDV3	170	0.42	-1.25	0.35	0.19
TOI		KOV5		1.14	-0.53	1.00	0.03
IOL		OBS		1.99		1.48	
	Transport	EDV2	70	0.49	-1.50	0.37	0.54
	(5/25,26,31)	EDV3	12	0.59	-1.41	0.50	0.55
		KOV5		1.64	-0.35	1.42	0.57
		OBS		0.76		0.85	
	Local	EDV2	77	0.13	-0.63	0.17	0.21
	(5/4,20,6/2,3)	EDV3	11	0.18	-0.58	0.24	0.23
VVI		KOV5	KOV5 (-0.50	0.40	0.15
AIL -		OBS		0.70		0.42	
	Transport	EDV2	30	0.28	-0.42	0.22	0.23
	(5/25,26,31)	EDV3	30	0.37	-0.33	0.30	0.24
		KOV5		0.60	-0.10	0.48	0.19
		OBS		0.75		2.78	
	Local (5/4,20,6/2,3)	EDV2	535	0.44	-0.30	0.51	-0.01
		EDV3	555	0.52	-0.23	0.66	0.02
FTF		KOV5		0.49	-0.26	0.49	0.09
		OBS EDV2		0.24		0.38	
	Transport			0.37	0.13	0.60	0.65
	(5/25,26,31)	EDV3	290	0.39	0.15	0.70	0.65
		KOV5		0.31	0.06	0.51	0.65
		OBS		0.08		0.09	
	Local	EDV2	352	0.16	0.07	0.20	0.32
	(5/4,20,6/2,3)	EDV3	552	0.17	0.09	0.20	0.31
ISO		KOV5		0.16	0.07	0.20	0.34
150		OBS		0.10		0.10	
	Transport	EDV2	76	0.18	0.08	0.19	0.56
	(5/25,26,31)	EDV3	70	0.19	0.08	0.18	0.58
		KOV5		0.17	0.06	0.17	0.55

Table S11. Comparison of the aircraft-based 1-minuite-interval O₃, NO₂, CO, HCHO, TOL, XYL, ETE, and ISO observations with EDV3_Ch2 and EDV3_ChKo2 in each case. The sampling number (N), mean, mean bias compared to DC-8 observations, standard deviations (σ), and correlation coefficient (R) with observations are presented (unit = ppb).

Species	Case	Туре	Ν	Mean	Bias	σ	R
	Local	EDV3_Ch2	1105	68.5	-12.7	12.3	0.6
0	(5/4,20,6/2,3)	EDV3_ChKo2	1123	72.3	-8.9	14.3	0.68
O_3	Transport	EDV3_Ch2	605	111.0	15.4	23.4	0.65
	(5/25,26,31)	EDV3_ChKo2	005	112.6	17.0	23.1	0.66
NO ₂ (5	Local	EDV3_Ch2	1066	3.30	0.68	4.31	0.7
	(5/4,20,6/2,3)	EDV3_ChKo2	1000	3.05	0.44	3.95	0.67
	Transport	EDV3_Ch2	501	2.09	0.81	4.75	0.83
	(5/25,26,31)	EDV3_ChKo2	391	1.92	0.64	4.17	0.84
	Local	EDV3_Ch2	1225	158	-56	43	0.7
CO (5/4,20 , 6/2 Transpor (5/25,26 ,3	(5/4,20,6/2,3)	EDV3_ChKo2	1223	176	-38	53	0.65
	Transport	EDV3_Ch2	651	331	-13	122	0.56
	(5/25,26,31)	EDV3_ChKo2	051	339	-6	122	0.56
нсно <u>(</u>	Local	EDV3_Ch2	1177	1.82	-0.61	0.87	0.5
	(5/4,20,6/2,3)	EDV3_ChKo2	11//	2.13	-0.30	1.17	0.51
	Transport	EDV3_Ch2	605	1.78	0.08	0.98	0.69
	(5/25,26,31)	EDV3_ChKo2	005	1.94	0.24	1.33	0.72
	Local	EDV3_Ch2	170	0.46	-2.33	0.40	0.1
TOI	(5/4,20,6/2,3)	EDV3_ChKo2	170	0.79	-2.00	0.65	0.18
IOL	Transport	EDV3_Ch2	72	0.68	-2.20	0.46	0.50
	(5/25,26,31)	EDV3_ChKo2	12	1.14	-1.75	0.90	0.55
	Local	EDV3_Ch2	77	0.19	-0.64	0.25	0.2
VVI	(5/4,20,6/2,3)	EDV3_ChKo2	11	0.31	-0.52	0.42	0.23
AIL	Transport	EDV3_Ch2	30	0.35	-0.43	0.30	0.22
	(5/25,26,31)	EDV3_ChKo2	30	0.61	-0.17	0.53	0.23
	Local	EDV3_Ch2	535	0.62	-0.13	0.92	0.0
FTF	(5/4,20,6/2,3)	EDV3_ChKo2	555	0.87	0.12	1.17	0.00
DID	Transport	EDV3_Ch2	200	0.51	0.26	0.69	0.65
	(5/25,26,31)	EDV3_ChKo2	290	0.74	0.50	1.22	0.67
	Local	EDV3_Ch2	352	0.17	0.08	0.20	0.3
180	(5/4,20,6/2,3)	EDV3_ChKo2	332	0.15	0.06	0.17	0.33
130	Transport	EDV3_Ch2	76	0.16	0.06	0.16	0.57
	(5/25,26,31)	EDV3_ChKo2	70	0.14	0.03	0.14	0.55

Figure S1. Diurnal emission factors of VOC and NO_x .

Figure S2. Averaged surface temperature (unit: °C) and relative humidity (unit: %) from (a, d) ground-based observations (SYNOP) and (b, e) the weather research and forecast (WRF) model coupled with chemistry (WRF-Chem) from 1st May to 10th June for each station and countries. The differences and correlation coefficients between averaged observations and WRF-Chem are shown (c, f).

Figure S3. Comparison of PBL heights derived from the ceilometer at Yonsei University $(37.564^{\circ}N, 126.935^{\circ}E)$ with the WRF-Chem results during the KORUS-AQ campaign period: (a) time series of planetary boundary layer height from ceilometer and WRF-Chem (unit = m), (b) scatter plot of which x axis is ceilometer and y axis is WRF-Chem PBL height, (c) comparison of diurnal variations of PBL heights from ceilometer (grey) and WRF-Chem (red) with box whisker plot.

Figure S4. Correlation coefficient (R) between observed and simulated (a-c) MDA8 O_3 and (d-f) hourly O_3 with (a, d) EDV2, (b, e) EDV3, and (c, f) KOV5 emissions. The observation sites with R greater than 0.6 are indicated by a black circle.

Figure S5. (a-c) Simulated surface HCHO to NO₂ ratio (FNR) and (d-f) HCHO concentrations with (a, d) EDV2, (b, e) EDV3, and (c, f) KOV5 emissions for 14-16 LST. FNR greater than 1 is marked with black circles. The simulated FNR and HCHO are linearly interpolated to ground-based observation sites.

Figure S6. The DC-8 flight tracks on the 22nd May and 5th June.

Figure S7. The DC-8 flight tracks on the 4th, 20th May and 2nd, 3rd June (Local case).

Figure S8. The DC-8 flight tracks on the 22nd, 27th, 31st May (Transport case).

Figure S9. The contribution of Chinese emissions (%) to daily surface O_3 concentrations at Olympic Park obtained from the EDV3 simulations with/without Chinese anthropogenic emissions.