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Abstract 1 

In this study, the WRF-Chem v4.4 model was utilized to evaluate the sensitivity of O3 2 

simulations with three bottom-up emission inventories (EDGAR-HTAP v2, v3, and 3 

KORUS v5) using surface and aircraft data in East Asia during the Korea-United States 4 

Air Quality (KORUS-AQ) campaign period in 2016. All emission inventories were 5 

found to reproduce the diurnal variations of O3 and its main precursor NO2 as compared 6 

to the surface monitor data. However, the spatial distributions of the daily maximum 8-7 

hour average (MDA8) O3 in the model do not completely align with the observations. 8 

The model MDA8 O3 had a negative (positive) bias north (south) of 30N over China. 9 

All simulations underestimated the observed CO by 50-60% over China and South 10 

Korea. In the Seoul Metropolitan Area (SMA), EDGAR-HTAP v2, v3, and KORUS v5 11 

simulated the vertical shapes and diurnal patterns of O3 and other precursors effectively, 12 

but the model underestimated the observed O3, CO and HCHO concentrations. Notably, 13 

the model aromatic VOCs were significantly underestimated with the three bottom-up 14 

emission inventories, although the KORUS v5 shows improvements. The model 15 

isoprene estimations had a positive bias relative to the observations, suggesting that the 16 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.04 17 

overestimated isoprene emissions. Additional model simulations were conducted by 18 

doubling CO and VOC emissions over China and South Korea to investigate the causes 19 

of the model O3 biases and the effects of the long-range transport on the O3 over South 20 

Korea. The doubled CO and VOC emission simulations improved the model O3 21 

simulations for the local emission dominant case, but led to the model O3 22 

overestimations for the transport dominant case, which emphasizes the need for 23 

accurate representations of the local VOC emissions over South Korea.   24 
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1. Introduction 1 

Air pollutants not only harm human health but also affect radiative balance, resulting 2 

in climate change (Anenberg et al., 2018; Franklin et al., 2015; Lee et al., 2014; 3 

Manning and von Tiedemann, 1995; Rosenzweig et al., 2008; Wild et al., 2001).  4 

Anthropogenic activities are the primary source of air pollutant emissions, which have 5 

significant temporal and spatial variability. Chemical transport models (CTMs) use 6 

bottom-up emission data to simulate ambient concentrations of air pollutants. CTMs 7 

then process these emissions, tracking their impact through chemistry, transport, and 8 

loss through deposition (Zhong et al., 2016). Therefore, sensitivity evaluations of CTMs 9 

to anthropogenic emission data are an essential part of atmospheric modeling research.  10 

Several bottom-up emission inventories are available for chemical modeling of 11 

Asia, including the Multi-resolution Emission Inventory for China (MEIC), Regional 12 

Emission inventory in Asia (REAS), and Emissions Database for Global Atmospheric 13 

Research-Hemispheric Transport of Air Pollution (EDGAR-HTAP). Since 2010, 14 

Tsinghua University has developed the high-resolution MEIC emission inventory for 15 

China and updated the data to the v1.3, providing anthropogenic emissions by sector 16 

and species from 2008 to 2017 (Zheng et al., 2018). REAS provides emission data in 17 

Asia from 1950 to 2015 (Kurokawa and Ohara, 2020). In Europe, EDGAR-HTAP has 18 

been developed and widely used for CTM simulations from global to regional scale 19 

(Kim et al., 2021; Sharma et al., 2017; Sicard et al., 2021). Recently, EDGAR-HTAP 20 

v3 has been published, covering 19 years from 2000 to 2018 compared to only two 21 

years (2008 and 2010) in the version 2 data (Crippa et al., 2023). Zhong et al. (2016) 22 

compared REAS with EDGAR in July, 2007 over China, while Saikawa et al. (2017) 23 

compared 5 emission inventories including REAS, EDGAR, MEIC in China, without 24 
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validation. As bottom-up emission inventories are continuously updated for recent years, 1 

there is an ongoing need to evaluate new emissions data. 2 

The Ministry of Environment (MOE) in South Korea and National Aeronautics and 3 

Space Administration (NASA) in the U.S. conducted the Korea-United States Air 4 

Quality (KORUS-AQ) campaign in May-June 2016. The campaign provided a variety 5 

of data sets, including ground-based and airborne observations, useful for the validation 6 

of model simulations. The KORUS emissions, developed by Konkuk University, were 7 

used by many modeling teams to simulate the air pollutant concentrations during the 8 

campaign period. Numerous modeling studies were conducted for this period including 9 

validations of CTM results with diverse observation datasets. Miyazaki et al. (2019) 10 

adjusted emission inventories using various satellite data sets and Model for 11 

Interdisciplinary Research on Climate with chemistry (MIROC-Chem), resulting 12 

improved simulations of tropospheric O3. Goldberg et al. (2019) reported 13 

underestimations of NOx emissions in South Korea, particularly in Seoul. Souri et al. 14 

(2020) also revealed the same issue in South Korea and conducted analysis of the 15 

sensitivity of O3 formation to adjustments in NOx and volatile organic compound (VOC) 16 

emission derived from inverse modeling. Tang et al. (2019) revealed negative biases of 17 

simulated CO concentrations in East Asia by utilizing satellite data and the Community 18 

Atmosphere Model with Chemistry (CAM-Chem). Choi et al. (2022) modified 19 

anthropogenic VOC emissions through the inverse modeling using satellite HCHO 20 

observations with the Goddard Earth Observing System with Chemistry (GEOS-Chem), 21 

which reduced O3 and HCHO biases. 22 

Recently, the updated version of bottom-up emission inventories and CTMs have 23 

become available for the air pollution modeling studies in East Asia. In this study, we 24 
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selected the EDGAR-HTAP versions 2 and 3, and KORUS version 5 emission data and 1 

used the Weather Research and Forecasting model coupled with Chemistry (WRF-2 

Chem) version 4.4 for intercomparison of the three emissions data sets, aiming to 3 

understand the status of precursor emissions from bottom-up emission inventories and 4 

their uncertainties, which may impact the O3 formations in the model. O3 and its major 5 

precursors were selected for model evaluation and the model results were evaluated 6 

with surface observation data in China and South Korea and aircraft data acquired over 7 

the South Korean peninsula and surrounding waters.  8 

The manuscript is organized as follows. The data and methods section introduces 9 

emission inventories, the numerical model, and meteorological and chemical 10 

observations. The results section evaluates the model’s meteorology and chemistry 11 

using routine surface observations over China and South Korea. Subsequently, the 12 

model results employing three bottom-up emission inventories are compared with 13 

sophisticated chemical observations obtained during the KORUS-AQ field campaign, 14 

primarily over South Korea. This comparison summarized the model’s performance 15 

with each emission inventory. In the discussion section, strategies to enhance surface 16 

O3 simulations, along with accurate precursor simulations, are proposed based on 17 

various emission scenarios for urban and regional areas over China and South Korea. 18 

The summary and conclusion section follow, providing overview of the key findings 19 

and conclusions drawn from the study. 20 

 21 
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2. Data and Methods 1 

2.1. WRF-Chem model configurations 2 

In this study, we utilized the WRF-Chem v4.4, which was developed by the National 3 

Oceanic and Atmospheric Administration (NOAA) and National Center for 4 

Atmospheric Research (NCAR), to simulate meteorological variables and chemical 5 

species in the atmosphere (Grell et al., 2005). The WRF-Chem v4.4 includes N2O5 6 

heterogeneous chemistry that consists of several chemical reactions related with ClNO2 7 

and N2O5 reactions, resulting in nitrate aerosol. The reactions are incorporated in 8 

Secondary Organic Aerosol-Volatility Basis Set (SOA-VBS) with Regional 9 

Atmospheric Chemistry Mechanism (RACM) chemistry option (chem = 108) in WRF-10 

Chem (Li et al., 2016).  11 

We set 59 vertically customized eta (η) levels as vertical layers. The model’s first 12 

layer height is approximately 40 m above ground level for the entire domain. The 13 

model’s vertical layers are designed to include about 17 layers under 1.5 km to simulate 14 

planetary boundary layer chemistry and near surface vertical distribution in detail. The 15 

horizontal resolution is 28 x 28 km2. The simulations in this study start at 12 UTC on 16 

April 24 and end at 12 UTC on June 11. The model meteorology restarts every 12 UTC 17 

(9 PM local time in South Korea) to minimize numerical errors. After the first 7 days 18 

of model initiation (spin-up), we analyzed the model results from May 1 to June 10. We 19 

used China standard time (+8 UTC) and Korea standard time (+9 UTC) for evaluations 20 

with observations. The model physics, chemistry, and aerosol schemes are summarized 21 

in Table S1 with corresponding references. The Global Forecast System (GFS) Final 22 

(FNL) analysis data are used for meteorological input and boundary conditions. The 23 

Community Atmosphere Model with Chemistry (CAM-Chem) output is used for 24 
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chemical boundary conditions (https://rda.ucar.edu/datasets/ds313.7/) (Buchholz et al., 1 

2019; Emmons et al., 2020). We used the Model of Emissions of Gases and Aerosols 2 

from Nature (MEGAN) v2.04 to calculate biogenic emissions (Guenther et al., 2006). 3 

We did not account for fire emissions because of small impact on air quality simulations 4 

during the KORUS-AQ campaign period (Park et al., 2021). In our sensitivity 5 

simulation with the Fire INventory from NCAR (FINN) v2.5 fire emissions 6 

(Wiedinmyer et al., 2022), a marginal increase in the simulated averaged daily 7 

maximum 8-hour average (MDA8) O3 of approximately 1 ppbv (1.6 %) was noted in 8 

China (Supporting information, Figure S1). 9 

 10 

2.2. The model simulations using different anthropogenic emissions 11 

2.2.1. Bottom-up emission data 12 

EDGAR-HTAP v2, v3, and KORUS v5 anthropogenic bottom-up emission inventories 13 

are compared with respect to their spatial distribution and total amount in Figure 1 and 14 

Table S2. We applied the same diurnal factor for all three emissions data by species, 15 

following the diurnal patterns for the Los Angeles Basin as in Kim et al. (2016) (also 16 

see Figure S2).  17 

EDGAR-HTAP v2 provides 2-dimensional emissions of CH4, CO, SO2, NOx (NO 18 

+ NO2), total non-methane volatile organic compound (NMVOC), NH3, PM10, PM2.5, 19 

BC, and OC in 2008 and 2010 with a horizontal resolution of 0.1˚ x 0.1˚. We used 2010 20 

data since it is the most recent data available. The data are partitioned by each sector 21 

and its sources such as air, ships, energy, industry, transport, residential, and agriculture 22 

(https://edgar.jrc.ec.europa.eu/dataset_htap_v2). For East Asia, it included data from 23 
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the Model Inter-Comparison Study for Asia (MICS-Asia) and REAS v2.1. In South 1 

Korea, it adopted data from the Clean Air Policy Support System (CAPSS) (Janssens-2 

Maenhout et al., 2015), and the underlying emission data had an original horizontal 3 

resolution of 0.25˚ x 0.25˚ over East Asia, which is resampled to 0.1˚ x 0.1˚ resolution 4 

by raster resampling and aggregation. The speciated EDGAR-HTAP v2 VOC data were 5 

obtained through the WRF-Chem site (https://www.acom.ucar.edu/wrf-6 

chem/download.shtml) in the anthro_emiss program with the Model for Ozone and 7 

Related chemical Tracers (MOZART) species (Supporting Information, Table S3). The 8 

anthro_emiss program converts the EDGAR-HTAP v2 data into 28 x 28 km2 grid by 9 

the RACM chemical species (Supporting Information, Table S4). It mapped the 10 

MOZART volatile organic compounds (VOC) species into the RACM VOC species 11 

(See the detailed equations in Supporting Information, Table S5) (Li et al., 2014; 12 

Emmons et al., 2010).  13 

The EDGAR-HTAP v3 is extended to much longer time scale than the previous 14 

version EDGAR-HTAP (v2). The EDGAR-HTAP v3 covers 2000 to 2018 with a more 15 

detailed horizontal resolution (https://edgar.jrc.ec.europa.eu/dataset_htap_v3) (Crippa 16 

et al. 2023). While EDGAR-HTAP v2 uses MICS-Asia, only the REAS data are used 17 

in China and India in the EDGAR-HTAP v3. It adopts the CAPSS-Konkuk University 18 

(CAPSS-KU) data for South Korea and emission data provided by the Japanese 19 

government for Japan. We chose the data for 2016, according to the KORUS-AQ 20 

campaign period. Because the original EDGAR-HTAP v3 data provide VOC as total 21 

NMVOC with the unit of ton/month, we distributed the total NMVOC to MOZART 22 

VOC species with the ratio of each VOC species to total NMVOC from EDGAR-HTAP 23 

v2 in anthro_emiss program. Then, the assigned EDGAR-HTAP v3 data were again 24 
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converted to the RACM. 1 

The KORUS v5 emission data represent 2016 in China and 2015 in other regions. 2 

The Comprehensive Regional Emissions Inventory for Atmospheric Transport 3 

Experiment (CREATE) v2.3 data from 2015 were used and the ship emissions from 4 

CAPSS were added near the coastal region in South Korea (Jang et al., 2020; Woo et 5 

al., 2012). The CREATE is originally developed by combining REAS, MEIC, Japan 6 

Auto-Oil Program emission inventory (JATOP), and Korean Clear Air Policy Support 7 

System (CAPSS). The NMVOC species from KORUS v5 were mapped following the 8 

Statewide Air Pollution Research Center (SAPRC-99) mechanism, and we also 9 

assigned the SAPRC-99 species to RACM (Carter, 2000) (Supporting information, 10 

Table S5-6). 11 

Figure 1 shows the spatial distribution of NO, CO, and TOL (toluene + less reactive 12 

aromatics defined in RACM, see Table S4) emissions in May for each inventory. The 13 

NOX emissions were assumed to be emitted as NO. The major cities in China and South 14 

Korea had relatively high NO, CO, and TOL emissions, which are precursors affecting 15 

O3 formation. We define three boxes representing Eastern China, South Korea, and the 16 

Seoul metropolitan area (SMA) and calculated the emissions (see Table S2). In South 17 

Korea including SMA, EDGAR-HTAP v3 had the largest NOX emission among the 18 

emission inventories. The KORUS v5 has lower NOX emissions in Eastern China by 19 

46% and 39% compared to EDGAR-HTAP v2 and v3, respectively. The CO emission 20 

was the lowest in EDGAR-HTAP v2 in South Korea, being 56% (69%) lower than that 21 

in KORUS v5 (EDGAR-HTAP v3). KORUS v5 showed the highest CO emissions in 22 

SMA though EDGAR-HTAP v3 showed more CO emissions in South Korea. However, 23 

KORUS v5 had the smallest CO emissions in China, being 7% (9%) lower than that in 24 
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EDGAR-HTAP v2 (v3). The TOL emissions from in KORUS v5 is higher than those 1 

from in EDGAR-HTAP v2 (EDGAR-HTAP v3) by 176% (98%) in China. The relative 2 

difference of TOL between KORUS v5 and EDGAR-HTAP v2 (EDGAR-HTAP v3) is 3 

larger in South Korea by 263%. On the other hand, EDGAR-HTAP v3 hasve the 4 

largerest total NMVOC emissions over China than EDGAR-HTAP v2 and KORUS v5 5 

by 38% and 27 %, respectively. These discrepancies of in VOC emissions may lead to 6 

a change in the NOx/VOC-sensitive regime and O3 production efficiency in South 7 

Korea and China. The sensitivity of O3 formation to NOx emission has discrepancies 8 

by its regime; a reduction in NOx leads to a decrease in O3 in the NOx-limited regime, 9 

while in the VOC-limited regime (or NOx-saturated regime), it results in an increase in 10 

O3. This, which will be further discussed in section 3.2. 11 

 12 

2.2.2. The model experiments 13 

The model experiments are summarized in Table 1. The simulations using EDGAR-14 

HTAP v2, v3, and KORUS v5 emissions are named as EDV2, EDV3, and KOV5, 15 

respectively. In this study, we found consistent underestimation of CO, HCHO, TOL, 16 

and XYL for all emissions by -40% (± 2%), -25% (± 1%), -67% (± 21%), -53% (± 17 

18%), respectively, compared to observations from the DC-8 in South Korea. Here TOL 18 

and XYL are lumped species including toluene and xylene, respectively. This is in line 19 

with the results reported by Park et al. (2021), who found that almost every model 20 

underestimated CO. Underestimation of CO in East Asia is a well-known feature 21 

revealed by many studies. For example, Gaubert et al. (2020) mentioned that CAM-22 

Chem underestimates CO during the KORUS-AQ campaign period and presented a CO 23 
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compensation method utilizing data assimilation with CO observations. Wada et al. 1 

(2012) pointed out that EDGAR v4.1 underestimates anthropogenic CO emissions in 2 

China by 45% compared to observation-based estimations of CO emissions. Moreover, 3 

underestimation of VOC is also found for all anthropogenic emission inventories. 4 

Kwon et al. (2021) estimated top-down emissions of anthropogenic VOCs utilizing 5 

Geostationary Trace gas and Aerosol Sensor Optimization spectrometer (GeoTASO). 6 

They found that top-down VOC emissions were up to 6.9 times higher than bottom-up 7 

emissions (KORUS v5).  8 

For all emission inventories in simulations with WRF-Chem, O3 is underestimated 9 

at most ground-based observation sites in South Korea. To figure out the potential 10 

causes of negative biases of O3 in South Korea, we conducted three additional model 11 

simulations using EDGAR-HTAP v3 that shows the lowest bias of O3 concentrations 12 

compared to DC-8 than EDGAR-HTAP v2 and KORUS v5 over the SMA; the mean 13 

biases are -16.9, -14.2, and -18.1 ppb with EDV2, EDV3, and KOV5, respectively. Two 14 

simulations are with twice the anthropogenic CO and VOC emissions in China 15 

(EDV3_Ch2) and South Korea (EDV3_Ko2), respectively, and the third simulation 16 

uses double CO and VOC emissions in both China and South Korea (EDV3_ChKo2) 17 

to investigate possible improvements in the simulated O3 and CO from these emission 18 

changes. To propose the simulate possible strategies to improve surface O3 simulations 19 

over China and South Korea, we incorporated 4 additional emission scenarios involving 20 

the reduction of NOx and/or VOC emissions over China. Specifically, we considered 21 

the cases with a 50% reduction in NOx emissions only, a 50% reduction in VOC 22 

emissions only, a simultaneous 50% reduction in both NOx and VOC emissions, and a 23 

75% reduction in NOx emissions only. For more details, refer to Section 4 (Discussion). 24 
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 1 

2.3. Observations 2 

2.3.1. Meteorological data 3 

The meteorological field that WRF-Chem reproduced is evaluated with the surface 4 

synoptic observation (SYNOP) data operated by the World Meteorological 5 

Organization (WMO) (http://www.meteomanz.com). Surface temperature, relative 6 

humidity, and surface wind speed are adopted for model validation. As the SYNOP data 7 

are provided every 3 or 6-hourly, we selected model data when the observation data are 8 

available. There were 271 sites in China-Taiwan-Hongkong and 48 sites in South Korea. 9 

 10 

2.3.2. Ground-based observations 11 

The surface observation network used in this study was obtained from Airkorea in South 12 

Korea and the China Ministry of Ecology and Environment (MEE) in China. The 13 

Airkorea observation network provides 1-hourly measurements of NO2, SO2, CO, O3, 14 

PM10, and PM2.5 at suburban, background, roadside, city, and port sites 15 

(www.airkorea.or.kr). The concentrations of NO2, CO, and O3 are measured using the 16 

chemiluminescent, non-dispersive infrared, and ultraviolet photometric methods, 17 

respectively. In South Korea, there are indications of positive biases in NO2 surface 18 

observations, potentially resulting in overestimations of ~30%, particularly at suburban 19 

sites in spring (Jung et al., 2017). The model data with 28 x 28 km2 horizontal resolution 20 

were linearly interpolated to the 365 sites in South Korea, and we selected NO2, O3, and 21 

CO for model validation. 22 



- 12 - 

 

The Chinese observations were provided by MEE through the website 1 

(beijingair.sinaapp.com). Surface NO2 over China was measured using a molybdenum 2 

converter, which has the potential for positive biases due to other NO2-related oxidation 3 

products (Dunlea et al., 2007). CO was measured using infrared absorption (Zhang and 4 

Cao., 2015), and there were 1454 stations in China during the campaign period. 5 

For validation of NO2 and HCHO vertical column density, data from the Pandora 6 

spectrometer were used, which the model reproduced with emission inventories at the 7 

Olympic Park site (37.5232˚N, 127.126˚E). The HCHO data from Pandora is corrected 8 

because of internal off-gasing to avoid positive biases (Spinei et al., 2021). At the same 9 

observation site, surface NO2 was also measured by a KENTEK NOx analyzer with 10 

photolytic method, and surface O3 was measured using the same instrument. Ground-11 

based HCHO was measured using Aerodyne QCL. We compared the observed diurnal 12 

cycle of vertical column and surface concentrations of NO2 and HCHO with the model 13 

simulations utilizing EDV2, EDV3, and KOV5. We also used ground-based VOC data 14 

from gas chromatography flame ionization detector (GC-FID) operated by the Seoul 15 

Research Institute of Public Health and Environment (SIHE). 16 

 17 

2.3.3. Aircraft data 18 

The DC-8 research aircraft, operated by NASA, performed multiple flight 19 

measurements with a variety of measuring instruments. We utilized 1 minute interval 20 

merged data of O3, NO2, CO, HCHO, and VOC along the 20 flight paths (Figure 2). 21 

The nearest WRF-Chem grid is selected and then temporally and vertically interpolated 22 

to the aircraft data using linear interpolation method to fully utilize the observations. 23 
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Atmospheric NO2 and O3 concentrations were measured using a 4-channel 1 

chemiluminescence instrument, with an uncertainty of 100 pptv + 30% and 5 ppbv + 2 

10%, respectively. CO concentrations were observed using a diode laser spectrometer, 3 

with an uncertainty of 2% or 2 ppbv. The Compact Atmospheric Multi-species 4 

Spectrometer (CAMS) was used to measure HCHO concentration, with a possible 3% 5 

systematic error (Richter et al., 2015). We also utilized data from the Whole Air Sampler 6 

(WAS) to analyze VOC species from different emission inventories (Colman et al., 7 

2001). In this study, we focused on DC-8 observations below a height of 2 km to 8 

concentrate on planetary boundary layer (PBL) chemistry. The observation height was 9 

determined by GPS altitude above ground level.  10 

 11 

3. Results 12 

3.1. The model meteorology simulations  13 

The model temperature and relative humidity were compared with surface observations 14 

in China and South Korea. The model-simulated temperature had a slight negative mean 15 

bias of -0.91 ˚C (correlation coefficient R = 0.90) in China, with the largest negative 16 

bias in southwestern China. In South Korea, the mean bias was -1.71 ˚C (R = 0.88). The 17 

simulated relative humidity showed a negative bias of -20 to -10% in the North China 18 

Plain (NCP) area and a positive bias of 10 to 20% in southwestern China. There was a 19 

negative bias of relative humidity over the west coastal area and a positive bias of 10 to 20 

20% at most observation stations in South Korea. The correlation coefficients between 21 

the model relative humidity and observations were 0.85 and 0.76 for China and South 22 

Korea, respectively. Overall, the comparisons showed decent model simulations of 23 

meteorology. A negative temperature bias could result in a reduction of isoprene 24 
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emissions, as illustrated in Figure S3 of the Supporting Information, compared to the 1 

estimates based on accurately simulated temperature (Figure S3). 2 

During the KORUS-AQ campaign period, WRF-Chem accurately simulated the 3 

daytime PBL height from a laser ceilometer (CL-31, Vaisala Inc., Finland) observed at 4 

Yonsei University in Seoul, South Korea (Lee et al., 2019). But, Travis et al. (2022) has 5 

indicated the possibility of PBL height underestimations by CTMs. Furthermore, due 6 

to limitations of the instrument, the ceilometer has potential to inadequately estimate 7 

nighttime PBL height. It is primarily attributed to the method based on aerosol gradients 8 

(Jordan et al., 2020). Therefore, the interpretation of simulated nighttime concentrations 9 

of air pollutants should be approached with caution. More analysis of meteorological 10 

fields, including PBL height, can be found in the Supporting Information (Table S7 and 11 

Figure S4-S5). 12 

 13 

3.2. Evaluations with routine surface chemical observational data 14 

The study compared simulated concentrations of O3, NO2, and CO with data from 15 

routine surface observational networks (Table 2 and Figure 3-7). First, the diurnal 16 

variations of the model O3 using different emissions inventories were compared with 17 

observations for each subregion (Table 2 and Figure 3). Overall, all emission 18 

inventories successfully reproduced diurnal variations and absolute values of O3 for 19 

most regions, but there were notable discrepancies in several regions. 20 

In the North China Plain (NCP) region, EDV2 led to a negative model O3 bias (-12 21 

ppb) with R=0.65, while EDV3 and KOV5 simulated O3 better with reduced biases and 22 

increased correlations (R=0.68-0.71). The high NOx emissions relative to the VOC 23 
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emissions in NCP led to a low formaldehyde to NO2 ratio (FNR) (<1), suggesting that 1 

the NCP area is in a VOC-limited regime with all emission inventories (Table 3). Due 2 

to the elevated reactive VOC emissions in EDV3 and KOV5 compared to EDV2, both 3 

EDV3 and KOV5 show improved O3 simulations. Similarly, EDV2 had a negative O3 4 

bias (-17 ppb) with R=0.62 in the Yangtze River Delta (YRD) area, but EDV3 and 5 

KOV5 much improved the simulations, which was also observed in the Northeastern 6 

China (NEC) area. However, the model O3 concentrations based on the three emission 7 

inventories were overestimated in the Sichuan-Chongqing-Guizhou (SCG) and 8 

Southeastern China (SEC) area. In SCG and SEC, the WRF-Chem simulated higher 9 

biogenic isoprene emissions compared to anthropogenic TOL and XYL emissions by 10 

up to a factor of 10, leading to a high FNR (> 1). In Pearl River Delta (PRD), EDV2 11 

showed the lowest bias (-0.3 ppb) compared to EDV3 and KOV5 because EDV3 and 12 

KOV5 have elevated anthropogenic VOC emissions as well as enhanced biogenic 13 

isoprene emissions under a VOC-limited regime (Table 3). In the suburban area of 14 

Northern China (NOC), all emission inventories reasonably simulated hourly O3 15 

concentrations.  16 

Averaged O3 was well simulated in South Korea (KOR) with low biases (-1 to 0.7 17 

ppb), but a negative bias appears over the Seoul metropolitan area (SMA) with all 18 

emissions (-5.5 to -3.5 ppb) (Table 2). WRF-Chem simulations indicate SMA as a 19 

highly NOx-saturated region (FNR < 0.2), resulting in being VOC-sensitive for O3 20 

production. The underestimated model O3 levels in this region suggests the possibility 21 

of insufficient anthropogenic VOC emissions in SMA across all emission inventories 22 

(Table 3). A detailed discussion will be provided in section 3.3. 23 

The study also analyzed the mean values of MDA8 O3 concentration at each site 24 
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and their spatial distributions for the entire campaign period (Figure 4). The spatial 1 

distributions of the model MDA8 O3 were not well correlated with those of the 2 

observations. But, notable disparities were observed in simulating MDA8 O3 when the 3 

different emissions were used. For the north and eastern part of China including Beijing 4 

and Shanghai, large negative biases disappear when using EDV3 and KOV5. KOV5 5 

only shows a significant correlation with the surface MDA8 O3 observations (including 6 

929 sites) than EDV2 and EDV3 in China (0.43 versus 0.01, 0.20). The correlations 7 

between the time series of the model MDA8 O3 and observations varied at each site, 8 

with about 40-60% of sites (depending on the emission inventories) showing a 9 

correlation coefficient greater than 0.6 (see Supporting Information, Figure S6), and the 10 

locations of these sites were scattered. The correlation slightly improved with hourly 11 

O3 concentrations instead of MDA8 O3, with about 50-60% of sites having a correlation 12 

coefficient greater than 0.6 (Supporting Information, Figure S6). For this metric, high 13 

correlations occurred in pollution hot spots north of 30N and the South Coast of China, 14 

in which the ratio of HCHO to NO2 (FNR) was much less than 1, suggesting VOC-15 

limited/NOx-saturated chemical regime (Supporting Information, Figure S7). The 16 

model MDA8 O3 were underestimated for the pollution hot spots with a low HCHO to 17 

NO2 ratio located north of 30N, suggesting a possibility of model underestimations of 18 

anthropogenic VOC emissions causing model MDA8 O3 biases at these sites. In 19 

contrast, the simulated MDA8 O3 was generally overestimated for sites south of 30N 20 

in which HCHO concentrations were high (Supporting Information, Figure S7). Zhang 21 

et al. (2020) reported that simulated biogenic isoprene (ISO) from MEGAN was 22 

overestimated compared to observation sites under south of 35˚N in China.  23 
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The EDV2 and EDV3 showed a positive NO2 bias over the YRD, NCP, and PRD 1 

regions, which include large cities in China (Table 2 and Figure 5-6). On the other hand, 2 

EDV2 and EDV3 had small negative NO2 biases in the NEC and NOC regions. All 3 

models demonstrated reasonable NO2 model performance in the SCG region, where 4 

MDA8 O3 was overestimated (Figure 3 and 5). In the YRD region, there were large 5 

positive NO2 biases with EDV2, EDV3, and KOV5 (ranging from 6.4 to 22.7 ppb). Liu 6 

et al. (2021) reported that YRD is in a VOC-limited regime when using EDV2. The 7 

findings indicated that a reduction in NOx emissions led to an increase in O3 8 

concentrations, while a reduction in VOC emissions resulted in lower O3 concentrations. 9 

The O3 in YRD can be attributed to the combined influence of higher anthropogenic 10 

NOx emissions and VOC originated from both anthropogenic and biogenic sources 11 

(Figure S7). In contrast, KOV5 underestimated NO2 in the NCP region, while EDV2 12 

and EDV3 did not. All emissions showed significant discrepancies compared to NO2 13 

observations in the SEC area, with a low correlation coefficient (0.19 to 0.26). EDV3 14 

showed the smallest bias of -1.9 ppb (-0.8 ppb) compared to EDV2 and KOV5 in South 15 

Korea (SMA). The daily averaged NO2 exhibited spatial distributions similar to MDA8 16 

O3 and CO (Figure 6). The slopes of regression between the three model simulations 17 

and observations were 1.31, 1.03, and 0.8 for EDV2, EDV3, and KOV5, respectively, 18 

in China. The correlation coefficients between the simulated NO2 utilizing EDV2, 19 

EDV3, and KOV5 and surface data were around 0.6 in China. EDV2, EDV3, and 20 

KOV5 demonstrated good correlations with observations in South Korea (R = 0.69-21 

0.74). Correlation coefficient (R) was the highest with KOV5 in South Korea (R=0.74). 22 

Likewise, the diurnal patterns of Ox (= NO2 + O3) are well simulated with all 23 

emission inventories (Supporting Information, Figure S8). The spatial distribution and 24 
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diurnal patterns of Ox are similar to O3 except YRD (Supporting Information, Figure 1 

S9). In YRD, the overestimations of Ox with all emission inventories reveals that same 2 

issue of NO2 overestimations in Figure 5. Even though O3 is well simulated in this 3 

region, the negative impact of NOx titration to O3 formation is compensated with the 4 

overestimated anthropogenic and biogenic VOC emissions as mentioned above. 5 

The simulated CO was averaged at each site and compared with observations 6 

during the KORUS-AQ campaign period (Figure 7). The three model results showed 7 

similar spatial distributions to observations, indicating higher CO concentrations in the 8 

NCP, YRD, and PRD regions than their surrounding areas. However, all simulations 9 

failed to reproduce the abundance of CO, indicating large negative biases throughout 10 

the country. The bias was larger in South Korea than in China.  11 

 12 

3.3. Evaluations with the airborne and special surface chemical observations 13 

during KORUS-AQ 14 

 15 

3.3.1. The aircraft observations 16 

Figure 2 shows the flight paths flown by the DC-8 during the KORUS-AQ campaign 17 

period. In Table 4, we compare the model results for O3, NO2, CO, HCHO, TOL, XYL, 18 

ETE (Ethene or OL2), and ISO with the corresponding observed values for all flight 19 

tracks under 2 km height in South Korea. On average, the model underestimated O3 by 20 

15-18 ppb, with EDV3 exhibiting the lowest O3 bias (-15.1 ppb) compared to EDV2 21 

and KOV5 (-16.8 and -17.5 ppb, respectively). All emissions showed positive biases 22 

for NO2 (0.64 to 1.72 ppb), ETE (0.08 to 0.14 ppb), and ISO (0.1 to 0.11 ppb). However, 23 

the model significantly underestimated CO, HCHO, TOL, and XYL for all three 24 

emissions. Given the large spatial variability of air pollutants in South Korea, we also 25 
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sampled aircraft data from six regions (see Figure 2) and compared the three model 1 

results with the aircraft observations under 2 km height (Figure 8). 2 

The flight tracks that surveyed large power plants and factories in the Chungnam 3 

region on a daily basis are shown in Figure S10 in the Supporting Information. The 4 

largest negative model O3 bias was observed over the Chungnam region, with a 5 

difference of 38-41 ppb. Emission estimation uncertainties can be significant over this 6 

region, where there are large point sources such as coal-burning power plants and 7 

petrochemical industries. The model NO2 agreed with the aircraft observations in SMA, 8 

but it tends to overestimate the measurements in the other areas. There were substantial 9 

model overestimations of NO2 with EDV3 over the Chungnam and Busan areas, while 10 

KOV5 showed the most reasonable model NO2 simulations. The model CO near the 11 

surface was underestimated in the entire domain, resulting in high negative model CO 12 

biases relative to the aircraft observations across the six regions (Figure 8). We 13 

additionally conducted a sensitivity test to investigate the contribution of CO to O3 14 

concentrations in SMA (Supporting information, Figure S11). Doubling CO emissions 15 

in China did not significantly change O3 concentrations at all levels under 2 km. Only 16 

1.4 ppb of O3 concentrations are changed on average during all flight observations. 17 

We also evaluated the model HCHO, which can be formed by oxidation of other 18 

VOCs but also directly emitted by anthropogenic sources, to investigate uncertainties 19 

in anthropogenic VOC emissions. The model HCHO was underestimated by all 20 

emission inventories for all subregions, with negative biases being evident in the SMA, 21 

Yellow Sea, and Chungnam regions.  22 

Other model VOC species, such as TOL, XYL, ETE, and ISO, were also analyzed. 23 

These VOC species are classified by their chemical structures and reactivities in the 24 
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RACM (Stockwell et al., 1997) (Table S4). For example, TOL includes toluene and 1 

relatively less reactive aromatics, while XYL includes xylene and more reactive 2 

aromatics. The WAS data from DC-8 were lumped into RACM (Supporting 3 

Information Table S8, Lu et al., 2013) and were compared with aircraft observations. 4 

When the model TOL or XYL was compared with the observed toluene and xylene, the 5 

model using KOV5 reasonably reproduced the observed concentrations (light gray bars 6 

in Figure 8). However, the model TOL (even using KOV5) underestimated the observed 7 

lumped TOL for most of the regions except for Busan (bars including the dark gray part 8 

in Figure 8). The model using KOV5 reasonably reproduced the observed xylene or 9 

XYL, except for the Chungnam and Busan regions. The observed ethene (or ETE) 10 

concentrations were low (< 0.5 ppb), except for the Chungnam region, where the 11 

average of measurements was 2.1 ppb. The model ethene concentration was higher than 12 

the observations for the SMA, Kyungbuk, and Busan regions, while it had a large 13 

negative bias (-1.6 ~ -1.3 ppb) for the Chungnam region. Regarding ISO, one of the 14 

most important biogenic VOCs, the model values were larger than the observations by 15 

a factor of 2.  16 

In summary, underestimated CO and aromatic VOCs are the main features of the 17 

model evaluation with aircraft observations, along with underestimated ozone and 18 

HCHO. The largest discrepancies occur over the Chungnam region, where large point 19 

sources are located on the west coast of South Korea. The detailed statistics over the 20 

SMA and Chungnam area can be obtained from the Supporting Information (Table S9-21 

S10). 22 

Figure 9 displays the vertical distributions of observed and simulated O3 and related 23 

species over SMA. The shapes of the simulated profile were in agreement with the 24 
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observations. Particularly, the model accurately reproduced the observed NO2 profiles 1 

though the surface NO2 is underestimated by -4.2 to -0.8 ppb in SMA (Table 2 and 2 

Figure 9b). The underestimation of simulated surface NO2 is explained by the 3 

overestimation of molybdenum converter method; surface concentrations of NO2 from 4 

molybdenum converter is larger than photolytic converter by 13.6% on average and 64% 5 

at 4 pm (Figure 10). Although the diurnal pattern of surface NO2 at 12-20 LT is 6 

explained by the overestimation of by measurements using a molybdenum converter, 7 

there are still some other possible reasons; 1) the emission factor diurnal profile used in 8 

this study was developed for the Los Angeles Basin, which may need to be adjusted for 9 

SMA, 2) the uncertainty of HOx and ROx radicals from other sources can affect the 10 

NO2 concentrations. 11 

However, the simulated O3 and HCHO had negative biases of 16.4 ppb and 0.73 12 

ppb, respectively, persisting from the surface to 2 km. Additionally, the simulated CO 13 

underestimated the observations by 40% throughout the vertical layer. While the model 14 

TOL and XYL, utilizing KOV5, agreed well with the observations at surface level and 15 

had the lowest bias of -0.88 and -0.12 ppb under 2 km, the results using EDV2 and 16 

EDV3 substantially underestimated the observations throughout the layer (Supporting 17 

information, Table S9). On the other hand, the model model-simulated ETE and ISO 18 

overestimated the observations below 1 km over SMA. 19 

 20 

3.3.2. The ground-based observations 21 

During the KORUS-AQ campaign, Pandora and surface measurements were co-located 22 

at the Olympic Park. Figure 10 compares the observed diurnal cycle of Pandora vertical 23 

columns and surface concentrations of NO2 and HCHO with the model simulations. 24 
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The NO2 measurements were made using a photolytic converter, was used to measure 1 

surface NO2 to minimize positive bias from theproviding better accuracy compared to 2 

measurement with a molybdenum converter. All emissions reasonably simulated the 3 

diurnal patterns of vertical column and surface NO2 and HCHO concentrations.  4 

The surface NO2 peak appeared at 07 LT in the model and 08 LT in the observations, 5 

associated with the increase of traffic and the under-developed convective boundary 6 

layer. On the other hand, the Pandora NO2 column amount increased from 06 LT to 12 7 

LT and stayed at that value throughout the afternoon, indicating the increase of NOx 8 

emissions from morning to afternoon. The model-simulated NO2 columns agreed with 9 

those from Pandora in terms of absolute values and diurnal variations. The opposite 10 

patterns between surface and column NO2 were attributed to the change of boundary 11 

layer height; NO2 is concentrated near the surface layer as the mixed layer is shallow 12 

in the morning and vertically well mixed during the daytime resulting in low surface 13 

NO2 concentrations (Crawford et al., 2020). On the other hand, vertical column NO2 14 

concentrations show large values in the afternoon due to the consistent continued 15 

emission of NOx.  16 

All three emission inventories resulted in simulations that underestimated both 17 

column and surface HCHO values by up to -8.5 x 1015 molecules·cm-2 (-46%) at 7 LT 18 

and -0.9 ppbv (-26%) at the surface on average. The underestimations of the model 19 

HCHO relative to the Pandora and surface observations are similar to findings from 20 

comparisons of the model results with the aircraft data (Figure 9). Therefore, the model 21 

VOC performance needs to be investigated at the Olympic Park.  22 

The diurnal variations of the model O3, CO, TOL, and XYL were evaluated against 23 

the surface observations at the Olympic Park acquired during the KORUS-AQ 24 
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campaign (Figure 11). The diurnal pattern and hourly averaged mixing ratio of O3 were 1 

well simulated with the three emission inventories with slight model negative biases. 2 

The observed CO was 2.7 times higher than the model on average. Considering the 3 

diurnal profile of observed TOL and XYL, KOV5 exhibited smaller negative biases 4 

than EDV2 and EDV3, but it still showed negative biases. The model TOL and XYL 5 

showed peak concentrations at 08 LT, but the observation had a maximum value at 06 6 

LT. The model biases of XYL (-3.7 to -0.6 ppb, -89 to -20%) were much larger than 7 

those in TOL at the surface. Our study demonstrates that the improvement of VOC 8 

emissions and /chemistry representations in the model is necessary for better 9 

simulations of air quality over SMA and South Korea. 10 

 11 

3.4. The model performances over South Korea for the Local and Transport Cases  12 

Previous studies have used meteorological conditions to classify synoptic patterns that 13 

affect air pollutant concentrations (Park et al. 2021; Peterson et al. 2019). In contrast, 14 

we defined the Transport and Local cases by comparing model results that used the 15 

EDV3 base emission and the EDV3 zero-out-Chinese emission (see Figure 12). The 16 

Local case comprises May 4, May 20, June 2, and June 3 (Supporting Information, 17 

Figure S12), while the Transport case includes May 25, May 26, and May 31 18 

(Supporting Information, Figure S13). The Local (Transport) case in this study 19 

generally aligns with the Stagnant and Blocking (Transport) cases in Peterson et al. 20 

(2019); the Stagnant and Blocking is the period that a large anticyclone is was located 21 

over South Korea, and the Transport case is the period that South Korea wais largely 22 

affected by long-range transport of air pollutants by westerly wind. The Local case has 23 

a Chinese contribution to O3 of under 11%, whereas the Transport case has a Chinese 24 
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contribution to O3 of over 46%. EDV3 performed better in simulating O3 for the 1 

Transport case compared to EDV2 and KOV5, with a bias of only 2.7 ppb in 2 

comparison with the DC-8 airborne observations. In contrast, for the Local case, all 3 

emissions had a negative bias ranging from 15.5-18.2 ppb. See the Table S11 and S12 4 

in Supporting Information to obtain detailed information of model performances 5 

against DC-8 measurements for different cases. Surface concentrations of O3 at 6 

Olympic Park also exhibited enhanced contributions from Chinese anthropogenic 7 

emissions for Transport case (Figure S14). This section focuses on the model 8 

simulations using EDV3 and its modified versions, EDV3_Ch2, EDV3_Ko2 and 9 

EDV3_ChKo2 (doubling Chinese and South Korean CO and VOC emissions).  10 

Figure 13 illustrates the biases in the model O3, CO, and HCHO using EDV3 and 11 

its variants relative to DC-8 observations over SMA. The plot highlights differences in 12 

biases for the Local and Transport cases. The model O3 biases were negative, and the 13 

absolute values of biases were larger in the Local case than in the Transport case (-20% 14 

versus -6%). The model CO biases were also negative, and the absolute values of biases 15 

were larger in the Transport case than in the Local case. The model HCHO biases were 16 

negative and similar for the two cases, except for a larger discrepancy between model 17 

and observation in the Local case than in the Transport case.  18 

Doubling Chinese CO and VOC emissions (EDV3_Ch2) only slightly reduced 19 

biases in the Local case, whereas doubling South Korean CO and VOC emissions 20 

(EDV_Ko2) reduced biases more compared to the EDV3_Ch2 case. Doubling South 21 

Korean CO and VOC emissions as well as Chinese CO and VOC emissions (EDV3 22 

ChKo2) led to the best results in O3 and CO for the Local case. For the Transport case, 23 

doubling Chinese CO and VOC emissions reduced biases to almost zero for CO and 24 
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HCHO, but the model O3 was much overestimated, with 14% positive biases (from an 1 

original bias of -6%). Doubling South Korean CO and VOC emissions reduced the 2 

biases in O3 and CO a bit, but overestimated HCHO. The overestimation of O3 in the 3 

Transport case period in the EDV3_Ch2 and EDV3_ChKo2 cases can be explained by 4 

not only excessive ISO but also overpredicted background O3 from doubled CO and 5 

VOC emissions in China (Supporting information, Table S9-S13). Doubled CO and 6 

VOC emissions overestimated O3 concentrations over the Yellow Sea, which implies 7 

that the enhanced background O3 increase can increase the O3 level in SMA (Supporting 8 

Information, Figure S15) (Kim et al., 2023).  9 

Further increasing South Korean CO and VOC emissions in addition to the increase 10 

of Chinese CO and VOC emissions led to overestimations of O3 (20%) and HCHO 11 

(33%). These sensitivity tests modifying EDV3 indicate that increases in CO and VOC 12 

emissions over South Korea improve the model O3, CO, and VOC simulations. 13 

However, increasing Chinese VOC (and CO) emissions may overestimate the model 14 

O3 for the studied period. 15 

 16 

4. Discussion: strategy for accurate surface O3 simulations over urban and 17 

regional areas in China and South Korea 18 

Due to unprecedentedly rich observational data sets acquired during KORUS-AQ, we 19 

investigated the status of O3 simulations and outlined directions for their improvements 20 

in SMA and South Korea. In this section, strategies for the enhanced accuracy of surface 21 

O3 simulations over urban and regional areas in China and South Korea are discussed. 22 

The discussion is based on the model simulations incorporating various emission 23 

scenarios derived from EDV3. In Figures 14 and 15, diverse emission cases are labeled 24 
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from C1 to C7. Specifically C1, C2, and C3 correspond to EDV3_ChKo2, EDV3_Ch2, 1 

and EDV3_Ko2, respectively. Meanwhile, C4, C5, C6, and C7 represent scenarios 2 

involving a 50% reduction in Chinese NOx emissions, a 50% reduction in Chinese VOC 3 

emissions, a simultaneous 50% reduction in both Chinese NOx and VOC emissions, 4 

and a 75% reduction of Chinese NOx emissions, respectively, as discussed in Kim et al. 5 

(2023). Examining various options involving the increase and decrease of NOx and 6 

VOC emissions from C1 to C7 sheds light on the direction for improving O3 simulations. 7 

     Figure 14 illustrates the model O3 and NO2 biases (%) in each region for all cases 8 

based on EDV3 (Supporting Information, Table S14-S15 for detailsled). EDV3 9 

demonstrated good performance in simulating O3 and NO2 for the NCP, KOR, NEC, 10 

and NOC region. The most substantial model O3 biases were observed in SCG and SEC, 11 

with minimal model NO2 biases. Conversely, the largest model NO2 biases were found 12 

in YRD and PRD, accompanied by modest model O3 biases. Improvements are needed 13 

for model O3 in SCG, SEC, YRD, and PRD with reasonable NO2 simulations. For SCG 14 

and SEC, the C5 case (50% VOC emission reduction only) exhibited the lowest O3 15 

biases. Doubled Chinese VOC emission case (C1 and C2) in SCG and SEC resulted in 16 

increased O3 biases to ~100%, compared to 668% in the EDV3 case. In this study, the 17 

anthropogenic VOC emissions were reduced. Further reductions of biogenic VOC 18 

emissions as well as anthropogenic emissions need to be explored in the future. For 19 

SCG and SEC, a reduction in NOx emissions also led to a slight decrease in O3 biases. 20 

FNR values for the two regions are about 1.3, which turned out to be still VOC-limited 21 

or in a transitional state. For the YRD and PRD regions, first, NOx emissions need to 22 

be reduced to improve NO2 biases in the model. The case C6 (50% reductions in both 23 

NOx and VOC emissions) yielded the most favorable O3 and NO2 simulations. Solely 24 
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reducing NOx emissions (as in case C4) increase O3 biases by 256-367% relative to 1 

EDV3. The FNR values for YRD and PRD are 0.32 and 0.52, respectively, placing them 2 

in the VOC-limited regime (FNR < 1). In general, an increase in Chinese VOC 3 

emissions (as observed in cases C1 and C2) resulted in elevated surface ozone levels 4 

for all regions, including KOR. For NCP, KOR, NEC, and NOC where the model O3 5 

and NO2 agree with the observations, reducing VOC proves to be an effective strategy 6 

for decreasing surface O3. The biases of OX typically follow O3 biases across cases in 7 

all regions except NCP, YRD, PRD, and NOC, which experience high NOX conditions. 8 

Refer to Supporting Information Figure S16 for analysis of OX along with O3 across 9 

various regions. In these specific regions, a substantial reduction in NOX levels (as in 10 

C4 and C7) resulted in an increase in O3 bias, while there was a decrease in OX.Likewise, 11 

for reduction of Ox, reducing VOC emissions is more effective way to improve Ox in 12 

NCP, YRD, KOR, and NEC (as in case C5) (Supporting Information, Figure S16). In 13 

SCG and SEC, the 75% reduction of NOx (C7) showed the lowest Ox concentrations 14 

with the decrease in O3. However, O3 was increased despite the lowest Ox, revealing 15 

that PRD and NOC is in the NOx-saturated regime. 16 

     In Figure 15, the model O3 and NO2 biases (%) in the 12 mega cities in China and 17 

South Korea are illustrated for all cases. Refer to Supporting Information Table S16 and 18 

S17 for specific values. EDV3 showed effective performance in simulating O3 and NO2 19 

for cities such as Beijing, Tianjin, Hangzhou, SMA, and Xian. The most substantial 20 

model O3 biases were observed in Chengdu and Chongqing, with minimal model NO2 21 

biases. In contrast, the notable model NO2 biases were identified in Shanghai, Nanjing, 22 

Guangzhou, Shenzhen, and Wuhan, accompanied by modest model O3 biases. For 23 

Chengdu and Chongqing, situated roughly in SCG, the C5 case (50% VOC emission 24 
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reduction only) results in the lowest O3 biases with decent NO2 simulations. For 1 

Shanghai, Nanjing, Guangzhou, Shenzhen, and Wuhan, case C6 (50% reductions in 2 

both NOx and VOC emissions) produced the most favorable O3 and NO2 simulations. 3 

Simply reducing NOx emissions (as in case C4) increase O3 biases in these cities. 4 

Overall, the increase in Chinese VOC emissions (cases C1 and C2) resulted in elevated 5 

surface ozone levels as well as Ox for all cities, including SMA with an increase in 6 

biases, except for Shanghai. Reduction of only VOC emissions (C5) led to the lowest 7 

surface O3 levels for all cities. The biases of OX generally follow O3 biases in Chengdu 8 

and Chongqing, where the simulated O3 initially exhibits a notably high positive bias 9 

(50-60%), attributable to high VOC. Refer to Supporting Information Figure S17 for an 10 

analysis of Ox and O3 across cases and cities. In contrast, for other cities experiencing 11 

high NOX conditions with positive NO2 biases, a reduction in NOX levels (as in C4 and 12 

C7) led to a decrease in OX (and its bias for most cities). However, there was a 13 

simultaneous increase in O3 and its bias, attributed to the NOx-saturated regime (Figure 14 

S17).Likewise, VOC reductions (as in case C5) led to Ox reductions more effectively 15 

than the case C4 (50% NOx reduction) in all cities except Beijing and Tianjin because 16 

of their chemical regime is in the VOC-limited regime (Supporting Information, Figure 17 

S17).  18 

 19 

5. Summary and conclusions 20 

We conducted sensitivity tests using WRF-Chem with three different bottom-up 21 

emission inventories (EDGAR-HTAP v2, v3, and KORUS v5) to investigate the 22 

impacts of different emissions on the simulation of O3 and precursors in East Asia. This 23 

study is the first to use EDGAR-HTAP v3 with WRF-Chem v4.4 and extends the 24 
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validation domain to the whole of China during the KORUS-AQ campaign period. We 1 

extensively evaluated these emission inventories using both ground and aircraft 2 

observations in East Asia. 3 

The three emission inventories accurately reproduced the diurnal profiles and 4 

absolute values of surface O3 for most subregions in China, except for the SCG and 5 

SEC areas. However, discrepancies were observed in the model performance for the 6 

MDA8 O3 concentrations, with poor correlations observed over regions with high 7 

HCHO concentrations (south of 30°N) and relatively low ratios of FNR (north of 30°N). 8 

The emission inventories reasonably reproduced the spatial distribution of daily surface 9 

NO2 concentrations. However, we found that CO was considerably underestimated by 10 

the emission inventories over both China and South Korea. 11 

We evaluated the model simulations against vertical profile measurements of O3, 12 

NO2, CO, HCHO, TOL, XYL, ETE, and ISO from the DC-8 aircraft, as well as surface 13 

observations over South Korea. The simulated vertical shapes of O3, NO2, CO, HCHO, 14 

TOL, XYL, ETE, and ISO agreed well with the DC-8 measurements in the SMA, 15 

although negative biases were observed for O3, CO, TOL, XYL, and HCHO, with the 16 

largest discrepancy between the model results and observations in the Chungnam area. 17 

When we compared the simulations with the surface in-situ measurements and 18 

PANDORA observations at the Olympic Park in Seoul, the model accurately 19 

reproduced the diurnal patterns of surface and vertical columns of NO2 and HCHO. 20 

However, we found that the model underestimated TOL and XYL. This underestimation 21 

of TOL and XYL is one of the reasons why the model underestimates O3 concentrations, 22 

as VOCs contribute to NO to NO2 conversions resulting in O3 production via 23 

photochemistry. 24 



- 30 - 

 

We also classified the flight tracks into two categories: Local and Transport cases. 1 

We found that the negative bias of O3 was much larger under the Local case than the 2 

Transport case. When the increment of CO and VOC emissions in South Korea is taken 3 

into account, the biases of O3 are significantly reduced, indicating the need for local 4 

emission adjustments to decrease O3 bias in South Korea. 5 

To improve surface O3 simulations over China and South Korea using EDV3, 6 

lowering VOC emissions are advantageous for SCG and SEC including urban areas 7 

like Chengdu and Chongqing. Meanwhile, for YRD and PRD regions, as well as cities 8 

such as Shanghai, Nanjing, Guangzhou, Shenzhen, and Wuhan, both NOx and VOC 9 

emissions should be reduced to enhance model performances. Increase ining VOC 10 

emissions adversely affected the model’s accuracy in simulating O3 in China, leading 11 

to increased biases. 12 

Our study revealed a consistent overestimation of isoprene over SMA. The 13 

uncertainty of biogenic VOC emissions from MEGAN can affect the model O3 14 

performance. Therefore, to achieve more accurate simulations of O3 in East Asia, it is 15 

essential to explore precise representations of both anthropogenic and biogenic VOC 16 

emissions. 17 

 18 

Code and data availability 19 

 WRF-Chem source codes are distributed by NCAR  20 

(https://doi:10.5065/D6MK6B4K). WRF-Chem v4.4 is available in the GitHub (wrf-21 

model, 2022). The exact version of WRF-Chem codes and configuration files are 22 

archived at https://doi.org/10.5281/zenodo.8260026 (Kim et al., 2023). National 23 
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Centers for Environmental Prediction (NCEP) FNL data can be accessed from Research 1 

Data Archive (RDA) (NCEP, 2019). The CAM-cChem data for boundary conditions is 2 

also obtained from RDA (ACOM, 2019; doi.org/10.5065/CKR4-GP38). The EDGAR-3 

HTAP v2 data can be downloaded in the website 4 

(https://edgar.jrc.ec.europa.eu/dataset_htap_v2). The EDGAR-HTAP v3 is archived on 5 

Zenodo (Crippa, 2023). The KORUS-AQ data are available in from the website 6 

(https://www-air.larc.nasa.gov/cgi-bin/ArcView/korusaq) 7 

(doi:10.5067/Suborbital/KORUSAQ/DATA01). The EDGAR-HTAP v2, v3, and 8 

KORUS v5 data including emission processing programs are available at 9 

https://doi.org/10.5281/zenodo.8260026 (Kim et al., 2023). 10 
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Table 2. Comparison of the ground-based hourly O3, NO2, and CO observations with 5 

the simulations utilizing EDGAR-HTAP v2 (EDV2) and v3 (EDV3) and KORUS v5 6 

(KOV5) in each regional box (unit = ppb). N is the number of samples. R is correlation 7 

coefficient. 8 

 9 

Table 3. Comparison of total NOx, TOL, XYL, biogenic isoprene emissions, and 10 

formaldehyde to NO2 ratio (FNR) for different emission data sets in each regional box. 11 

The MEGAN biogenic isoprene emissions are equally applied to all simulations using 12 

different emission data. (unit = mol/s for emissions) 13 
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XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 for all flight cases 16 

under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient.  17 
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Figure List 1 

 2 

Figure 1. The averaged spatial distribution map of the NO, CO, and TOL (toluene + less 3 

reactive aromatics) emissions from EDGAR-HTAP v2, v3, and KORUS v5 in May. The 4 

boxes represent Northern China (NOC, 38-42˚N/106-110˚E), Sichuan-Chongqing-5 

Guizhou (SCG, 27-33˚N/103-109˚E), Pearl River Delta (PRD, 21.5-24˚N/112-115.5˚E), 6 

Southeastern China (SEC, 24-28˚N/116-120˚E), Yangtze River Delta (YRD, 30-7 

33˚N/119-122˚E), South Korea (KOR, 34.5-38˚N/126-130˚E), North China Plain (NCP, 8 

34-41˚N/113-119˚E), and Northeastern China (NEC, 43-47˚N/124-130˚E). NOC, NEC, 9 

and SEC are denoted by blue boxes (non-urban). NCP, SCG, PRD, YRD, and KOR are 10 

denoted by red boxes (urban). 11 

 12 

Figure 2. The DC-8 flight paths during the KORUS-AQ campaign period (black) and 6 13 

regional boxes (1: Seoul Metropolitan Area (SMA); 2: Yellow Sea; 3: Chungnam; 4: 14 

Kyungbuk; 5: Gwangju; 6: Busan) (red). 15 

 16 

Figure 3. Averaged O3 concentrations from ground-based observations and model 17 

simulations over the areas that distinguish urban (red box) and non-urban (green box) 18 

region (central plot). Box-averaged diurnal cycle (solid lines) of O3 and 1/4 of standard 19 

deviations (filled area) from observations (black), EDV2 (sky blue), EDV3 (blue), and 20 

KOV5 (red) by local time are shown. The results are shown for NOC, SCG, PRD, SEC, 21 

YRD, KOR, NCP, and NEC. 22 

 23 

Figure 4. Comparison of (a) the campaign averaged ground-based maximum daily 24 

average of 8-hour O3 (MDA8 O3) (unit: ppb) observations and WRF-Chem simulations 25 

with (d) EDGAR-HTAP v2 (EDV2), (e) v3 (EDV3), (f) KORUS v5 (KOV5) and (g, h, 26 

i) the differences between the observations and model results. The sub-regions are 27 

presented with red (urban) and green (non-urban) boxes. The scatter plots comparing 28 

averaged observations and the three-emission-based WRF-Chem simulations (sky blue; 29 

EDV2, blue; EDV3, red; KOV5) are shown in (b) and (c) for Eastern China and South 30 

Korea, respectively. (a, d-e) Color-filled circles in (a), (d), (e), and (f) represent the 31 

averaged MDA8 O3 for the whole campaign period (1st May to 10th June). 32 

 33 

Figure 5. The same as Figure 3 except NO2. 34 

 35 

Figure 6. The same as Figure 4 except daily NO2 (unit: ppb). 36 

 37 
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Figure 7. The same as Figure 4 except daily CO (unit: ppm). 1 

 2 

Figure 8. The mean (bars) and 1/4 of standard deviations (whiskers) of (a) O3, (b) NO2, 3 

(c) CO, (d) HCHO, (e) TOL, (f) XYL, (g) ethene (ETE), and (h) isoprene (ISO) (unit = 4 

ppb) from DC-8 (dark grey), EDV2 (sky blue), EDV3 (blue), and KOV5 (red) for each 5 

box are shown, respectively. TOL and XYL are calculated based on Table S8 6 

(Supporting Information). The contribution of toluene to TOL and m/p-Xylene + o-7 

Xylene to XYL is represented with light grey bars (e, f). The sampling numbers are 8 

represented with magenta color above the plots. 9 

 10 

Figure 9. Vertically averaged (a) O3, (b) NO2, (c) CO, (d) HCHO, (e) TOL, (f) XYL, (g) 11 

ETE, and (h) ISO from DC-8 (black), EDV2 (sky blue), EDV3 (blue), and KOV5 (red) 12 

in SMA under 2 km height above ground level. The 1/2 of standard deviations are 13 

represented with black whiskers in each 200m layer. The sample number is presented 14 

with magenta color on the right side of the plots. 15 

 16 

Figure 10. The diurnal cycles of vertical columns and surface concentrations of (a) NO2 17 

and (b) HCHO from Pandora spectrometer (column), and ground-based instruments 18 

(TEI 42i NOx analyzer and Aerodyne QCL) at the Olympic Park site (37.5232˚N, 19 

127.126˚E). EDV2 (sky blue), EDV3 (blue), and KOV5 (red) are compared with 20 

observations. The WRF-Chem vertical column concentrations are produced by 21 

summing all vertical layers. 22 

 23 

Figure 11. Diurnal cycles of surface (a) O3, (b) CO, (c) TOL, and (d) XYL at the 24 

Olympic Park site. EDV2 (sky blue), EDV3 (blue), and KOV5 (red) are compared with 25 

the observations. 1/4 of standard deviations are represented with grey shades. The 26 

average period is from the 11th May to the 10th June. 27 

 28 

Figure 12. Averaged O3 (bars) and 1/4 of standard deviations (whiskers) (unit: ppbv) 29 

for the 20 DC8 flights (under 2 km height). The observations (grey) are compared with 30 

the model results utilizing EDV2 (sky blue), EDV3 (blue), and KOV5 (red). White 31 

hatch-filled bars over blue bars are the contribution of Chinese emissions to O3 32 

concentrations obtained from the default and sensitivity model runs with/without 33 

Chinese anthropogenic emissions. The Local (5/4,20 and 6/2,3) and Transport 34 

(5/25,26,31) cases are shaded with light blue and orange, respectively. 35 

 36 

Figure 13. The biases in (a) the model O3, (b) CO, and (c) HCHO concentrations (bars) 37 

relative to the DC-8 observations under 2 km height over SMA (dark gray: EDV3, red: 38 
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EDV3 Ch2, blue: EDV3 ChKo2): (left panel) Local and (right panel) Transport case. 1 

Fractional differences (%) are shown in the white boxes.  2 

 3 

Figure 14. Comparison of relative biases ((Model-Observation)/Observation, unit=%) 4 

of daily O3 and NO2 at surface observation sites during the KORUS-AQ campaign 5 

period from sensitivity simulation (C1-7) with EDV3 in each region (NCP, SCG, YRD, 6 

PRD, KOR, NEC, NOC, and SEC). C1; EDGAR-HTAP v3 with double CO and VOC 7 

emission in China and South Korea, C2; EDGAR-HTAP v3 with double CO and VOC 8 

emission in China, C3; EDGAR-HTAP v3 with double CO and VOC emission in South 9 

Korea, C4; EDGAR-HTAP v3 with 50% NOx reduction in China, C5; EDGAR-HTAP 10 

v3 with 50% VOC reduction in China, C6; EDGAR-HTAP v3 with 50% NOx and VOC 11 

reduction in China, C7; EDGAR-HTAP v3 with 75% NOx reduction in China. 12 

 13 

Figure 15. Same as Figure 14 except that the region is changed to cities; Beijing (39.4-14 

41.1N, 115.4-117.5E), Tianjin (38.55-40.25N, 116.7-118.1E), Chengdu (30.05-31.5N, 15 

103-105E), Chongqing (28.15-32.25N, 105.3-110.2E), Shanghai (30.7-31.5N, 120.85-16 

122E), Hangzhou (29.2-30.6N, 118.3-120.9E), Nanjing (31.2-32.65N, 118.35-119.25E), 17 

Guangzhou (22.55-24N, 112.9-114.05E), Shenzhen (22.4-22.9N, 113.7-114.65E), 18 

SMA (37.2-37.8N, 126.5-127.3E), Wuhan (29.95-31.4N, 113.65-115.1E), and Xian 19 

(33.65-34.75N, 107.65-109.9E). 20 

  21 
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Table 1. The model experiments with different emissions. 1 

Experiments Emissions 

EDV2 EDGAR-HTAP v2 

EDV3 EDGAR-HTAP v3 

KOV5 KORUS v5 

EDV3_Ch2 EDGAR-HTAP v3 with double CO, VOC emission in China 

EDV3_Ko2 EDGAR-HTAP v3 with double CO, VOC emission in South Korea 

EDV3_ChKo2 EDGAR-HTAP v3 with double CO, VOC emission in China & South Korea 

 2 
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Table 2. Comparison of the ground-based hourly O3, NO2, and CO observations with 1 

the simulations utilizing EDGAR-HTAP v2 (EDV2) and v3 (EDV3) and KORUS v5 2 

(KOV5) in each regional box (unit = ppb). N is the number of samples. R is correlation 3 

coefficient. 4 

Region 
1)

NCP 
1),a)

SCG 
1)

YRD 
1)

PRD 
1),b)

KOR (SMA) 
2),c)

NEC 
2),d)

NOC 
2),e)

SEC 

N 190 104 93 68 358 (125) 45 28 43 

O3 

OBS Mean 44.5 34.6 38.2 27.9 41.5 (36.6) 40.9 44.3 26.1 

EDV2 

Mean 32.2 53.5 21.6 27.6 40.5 (31.1) 28.6 39.4 40.8 

Bias -12.3 18.9 -16.6 -0.3 -1.0 (-5.5) -12.3 -4.9 14.7 

R 0.65 0.53 0.62 0.61 0.59 (0.60) 0.48 0.63 0.52 

EDV3 

Mean 43.4 57.5 35.7 34.7 41.0 (32.6) 35.2 43.7 45.5 

Bias -1.1 23.0 -2.5 6.8 -0.5 (-4.0) -5.7 -0.6 19.4 

R 0.68 0.55 0.66 0.65 0.56 (0.57) 0.63 0.67 0.55 

KOV5 

Mean 49.0 55.3 41.1 35.7 42.2 (33.1) 37.1 43.8 42.4 

Bias 4.5 20.7 2.8 7.8 0.7 (-3.5) -3.8 -0.5 16.3 

R 0.71 0.53 0.65 0.70 0.62 (0.64) 0.62 0.67 0.54 

NO2 

OBS Mean 17.5 13.8 17.1 12.9 23.2 (32.5) 13.5 11.9 9.6 

EDV2 

Mean 25.8 12.7 39.8 22.0 18.8 (29.6) 13.7 12.9 11.0 

Bias 8.3 -1.0 22.7 9.1 -4.3 (-3.0) 0.2 1.0 1.5 

R 0.45 0.37 0.38 0.54 0.51 (0.34) 0.49 0.47 0.19 

EDV3 

Mean 21.8 12.2 30.4 21.0 21.3 (31.8) 11.2 10.3 11.3 

Bias 4.3 -1.6 13.3 8.1 -1.9 (-0.8) -2.3 -1.6 1.7 

R 0.44 0.34 0.36 0.52 0.49 (0.31) 0.49 0.52 0.22 

KOV5 

Mean 13.9 7.5 23.5 13.3 17.7 (28.3) 7.0 7.7 7.7 

Bias -3.6 -6.3 6.4 0.3 -5.5 (-4.2) -6.5 -4.2 -1.9 

R 0.44 0.37 0.41 0.52 0.51 (0.39) 0.49 0.51 0.26 

CO 

OBS Mean 835 597 694 636 443 (493) 527 579 655 

EDV2 

Mean 373 389 455 282 175 (210) 206 162 258 

Bias -462 -208 -239 -354 -267 (-283) -321 -417 -397 

R 0.24 0.20 0.42 0.30 0.31 (0.30) 0.21 0.09 0.18 

EDV3 

Mean 374 359 535 282 196 (208) 221 162 256 

Bias -461 -238 -159 -354 -247 (-285) -306 -417 -398 

R 0.22 0.19 0.35 0.31 0.26 (0.33) 0.24 0.10 0.25 

KOV5 

Mean 355 358 475 305 190 (217) 231 176 266 

Bias -480 -239 -219 -331 -253 (-276) -296 -404 -388 

R 0.27 0.21 0.48 0.29 0.35 (0.36) 0.15 0.10 0.13 

1) Urban area, 2) Non-urban area 5 

a) Sichuan-Chongqing-Guizhou, b) South Korea, c) Northeastern China, d) Northern China, e) Southeastern China  6 
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Table 3. Comparison of total NOx, TOL, XYL, biogenic isoprene emissions, and 1 

formaldehyde to NO2 ratio (FNR) for different emission data sets in each regional box. 2 

The MEGAN biogenic isoprene emissions are equally applied to all simulations using 3 

different emission data. (unit = mol/s for emissions) 4 

Type emissions NCP SCG YRD PRD KOR(SMA) NEC NOC SEC 

NOx 

emission 

EDV2 5967 1500 2366 1178 990(196) 987 688 590 

EDV3 5202 1654 1642 1091 1191(214) 876 597 662 

KOV5 3237 902 1166 607 886(191) 513 373 410 

TOL 

emission 

EDV2 140 56 84 47 27(6) 26 8 20 

EDV3 220 77 99 68 27(8) 40 9 36 

KOV5 403 106 234 155 98(26) 68 21 79 

XYL 

emission 

EDV2 84 34 51 28 15(4) 15 4 12 

EDV3 132 46 60 41 16(4) 24 6 22 

KOV5 133 35 79 52 41(9) 21 7 26 

Biogenic 

isoprene emission 
132 364 43 127 135(6) 106 23 310 

FNR 

(14-

16LT) 

EDV2 0.25 1.31 0.19 0.52 0.53(0.19) 0.68 0.76 1.18 

EDV3 0.44 1.30 0.32 0.52 0.43(0.18) 0.93 0.94 1.33 

KOV5 0.72 2.33 0.48 1.00 0.71(0.22) 1.44 1.49 1.91 

  5 
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Table 4. Comparison of aircraft-based 1-minuite-interval O3, NO2, CO, HCHO, TOL, 1 

XYL, ETE, and ISO observations with EDV2, EDV3, and KOV5 for all flight cases 2 

under 2 km height (unit = ppb). N is the number of samples. R is correlation coefficient. 3 

Species Type N Mean Bias σ R 

O3 

OBS 

5191 

84.4  19.9  

EDV2 67.5 -16.8 16.7 0.44 

EDV3 69.3 -15.1 17.8 0.43 

KOV5 66.9 -17.5 15.8 0.50 

NO2 

OBS 

5047 

2.19  4.49  

EDV2 3.06 0.87 4.60 0.71 

EDV3 3.91 1.72 5.34 0.67 

KOV5 2.83 0.64 4.73 0.73 

CO 

OBS 

5575 

253  100  

EDV2 148 -105 48 0.60 

EDV3 156 -97 47 0.59 

KOV5 146 -107 43 0.62 

HCHO 

OBS 

5365 

2.37  1.64  

EDV2 1.75 -0.62 1.01 0.69 

EDV3 1.78 -0.59 1.02 0.67 

KOV5 1.80 -0.57 1.10 0.71 

TOL 

OBS 

730 

2.60  2.02  

EDV2 0.47 -2.13 0.38 0.39 

EDV3 0.55 -2.05 0.48 0.38 

KOV5 1.58 -1.01 1.30 0.37 

XYL 

OBS 

289 

0.73  0.65  

EDV2 0.23 -0.50 0.23 0.30 

EDV3 0.30 -0.43 0.31 0.30 

KOV5 0.49 -0.24 0.47 0.27 

ETE 

OBS 

2573 

0.42  1.59  

EDV2 0.51 0.09 0.65 0.14 

EDV3 0.56 0.14 0.76 0.15 

KOV5 0.51 0.08 0.58 0.20 

ISO 

OBS 

1294 

0.08  0.09  

EDV2 0.18 0.10 0.21 0.41 

EDV3 0.19 0.11 0.20 0.41 

KOV5 0.17 0.10 0.20 0.42 

  4 
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 1 

Figure 1. The averaged spatial distribution map of the NO, CO, and TOL (toluene + 2 

less reactive aromatics) emissions from EDGAR-HTAP v2, v3, and KORUS v5 in May. 3 

The boxes represent Northern China (NOC, 38-42˚N/106-110˚E), Sichuan-Chongqing-4 

Guizhou (SCG, 27-33˚N/103-109˚E), Pearl River Delta (PRD, 21.5-24˚N/112-115.5˚E), 5 

Southeastern China (SEC, 24-28˚N/116-120˚E), Yangtze River Delta (YRD, 30-6 

33˚N/119-122˚E), South Korea (KOR, 34.5-38˚N/126-130˚E), North China Plain (NCP, 7 

34-41˚N/113-119˚E), and Northeastern China (NEC, 43-47˚N/124-130˚E). NOC, NEC, 8 

and SEC are denoted by blue boxes (non-urban). NCP, SCG, PRD, YRD, and KOR are 9 

denoted by red boxes (urban).10 
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 1 

Figure 2. The DC-8 flight paths during the KORUS-AQ campaign period (black) and 2 

6 regional boxes (1: Seoul Metropolitan Area (SMA); 2: Yellow Sea; 3: Chungnam; 4: 3 

Kyungbuk; 5: Gwangju; 6: Busan) (red).  4 
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 1 

Figure 3. Averaged O3 concentrations from ground-based observations and model 2 

simulations over the areas that distinguish urban (red box) and non-urban (green box) 3 

region (central plot). Box-averaged diurnal cycle (solid lines) of O3 and 1/4 of standard 4 

deviations (filled area) from observations (black), EDV2 (sky blue), EDV3 (blue), and 5 

KOV5 (red) by local time are shown. The results are shown for NOC, SCG, PRD, SEC, 6 

YRD, KOR, NCP, and NEC.  7 
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 1 

Figure 4. Comparison of (a) the campaign averaged ground-based maximum daily 2 

average of 8-hour O3 (MDA8 O3) (unit: ppb) observations and WRF-Chem simulations 3 

with (d) EDGAR-HTAP v2 (EDV2), (e) v3 (EDV3), (f) KORUS v5 (KOV5) and (g, h, 4 

i) the differences between the observations and model results. The sub-regions are 5 

presented with red (urban) and green (non-urban) boxes. The scatter plots comparing 6 

averaged observations and the three-emission-based WRF-Chem simulations (sky blue; 7 

EDV2, blue; EDV3, red; KOV5) are shown in (b) and (c) for Eastern China and South 8 

Korea, respectively. (a, d-e) Color-filled circles in (a), (d), (e), and (f) represent the 9 

averaged MDA8 O3 for the whole campaign period (1st May to 10th June).   10 
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 1 

Figure 5. The same as Figure 3 except NO2.  2 
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 1 

 2 

Figure 6. The same as Figure 4 except daily NO2 (unit: ppb).  3 
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 1 

Figure 7. The same as Figure 4 except daily CO (unit: ppm).  2 
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 1 

Figure 8. The mean (bars) and 1/4 of standard deviations (whiskers) of (a) O3, (b) NO2, 2 

(c) CO, (d) HCHO, (e) TOL, (f) XYL, (g) ethene (ETE), and (h) isoprene (ISO) (unit = 3 

ppb) from DC-8 (dark grey), EDV2 (sky blue), EDV3 (blue), and KOV5 (red) for each 4 

box are shown, respectively. TOL and XYL are calculated based on Table S8 5 

(Supporting Information). The contribution of toluene to TOL and m/p-Xylene + o-6 

Xylene to XYL is represented with light grey bars (e, f). The sampling numbers are 7 

represented with magenta color above the plots.   8 
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 1 

Figure 9. Vertically averaged (a) O3, (b) NO2, (c) CO, (d) HCHO, (e) TOL, (f) XYL, 2 

(g) ETE, and (h) ISO from DC-8 (black), EDV2 (sky blue), EDV3 (blue), and KOV5 3 

(red) in SMA under 2 km height above ground level. The 1/2 of standard deviations are 4 

represented with black whiskers in each 200m layer. The sample number is presented 5 

with magenta color on the right side of the plots.  6 
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 1 

Figure 10. The diurnal cycles of vertical columns and surface concentrations of (a) NO2 2 

and (b) HCHO from Pandora spectrometer (column), and ground-based instruments 3 

(TEI 42i NOx analyzer and Aerodyne QCL) at the Olympic Park site (37.5232˚N, 4 

127.126˚E). Surface concentrations of NO2 are obtained by the two methods: 5 

molybdenum converter and photolytic method. EDV2 (sky blue), EDV3 (blue), and 6 

KOV5 (red) are compared with observations. The WRF-Chem vertical column 7 

concentrations are produced by summing all vertical layers.   8 
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 1 

Figure 11. Diurnal cycles of surface (a) O3, (b) CO, (c) TOL, and (d) XYL at the 2 

Olympic Park site. EDV2 (sky blue), EDV3 (blue), and KOV5 (red) are compared with 3 

the observations. 1/4 of standard deviations are represented with grey shades. The 4 

average period is from the 11th May to the 10th June.  5 
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 1 

Figure 12. Averaged O3 (bars) and 1/4 of standard deviations (whiskers) (unit: ppbv) 2 

for the 20 DC8 flights (under 2 km height). The observations (grey) are compared with 3 

the model results utilizing EDV2 (sky blue), EDV3 (blue), and KOV5 (red). White 4 

hatch-filled bars over blue bars are the contribution of Chinese emissions to O3 5 

concentrations obtained from the default and sensitivity model runs with/without 6 

Chinese anthropogenic emissions. The Local (5/4,20 and 6/2,3) and Transport 7 

(5/25,26,31) cases are shaded with light blue and orange, respectively.  8 
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Figure 13. The biases in (a) the model O3, (b) CO, and (c) HCHO concentrations (bars) 2 

relative to the DC-8 observations under 2 km height over SMA (dark gray: EDV3, red: 3 

EDV3 Ch2, orange: EDV3 Ko2, red: EDV3_ChKo2): (left panel) Local and (right panel) 4 

Transport case. Fractional differences (%) are shown in the white boxes.   5 
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Figure 14. Comparison of relative biases ((Model-Observation)/Observation, unit=%) 3 

of daily O3 and NO2 at surface observation sites during the KORUS-AQ campaign 4 

period from sensitivity simulation (C1-7) with EDV3 in each region (NCP, SCG, YRD, 5 

PRD, KOR, NEC, NOC, and SEC). C1; EDGAR-HTAP v3 with double CO and VOC 6 

emission in China and South Korea, C2; EDGAR-HTAP v3 with double CO and VOC 7 
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emission in China, C3; EDGAR-HTAP v3 with double CO and VOC emission in South 1 

Korea, C4; EDGAR-HTAP v3 with 50% NOx reduction in China, C5; EDGAR-HTAP 2 

v3 with 50% VOC reduction in China, C6; EDGAR-HTAP v3 with 50% NOx and VOC 3 

reduction in China, C7; EDGAR-HTAP v3 with 75% NOx reduction in China.  4 
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Figure 15. Same as Figure 14 except that the region is changed to cities; Beijing (39.4-2 

41.1N, 115.4-117.5E), Tianjin (38.55-40.25N, 116.7-118.1E), Chengdu (30.05-31.5N, 3 

103-105E), Chongqing (28.15-32.25N, 105.3-110.2E), Shanghai (30.7-31.5N, 120.85-4 

122E), Hangzhou (29.2-30.6N, 118.3-120.9E), Nanjing (31.2-32.65N, 118.35-119.25E), 5 

Guangzhou (22.55-24N, 112.9-114.05E), Shenzhen (22.4-22.9N, 113.7-114.65E), 6 

SMA (37.2-37.8N, 126.5-127.3E), Wuhan (29.95-31.4N, 113.65-115.1E), and Xian 7 

(33.65-34.75N, 107.65-109.9E). 8 


