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Abstract. This paper describes the three-dimensional variational (3DVar) data assimilation (DA) system for the Model for

Prediction Across Scales-Atmosphere with the Joint Effort for data Assimilation Integration (JEDI-MPAS). Its core element is

a multivariate background error covariance implemented through multiple linear variable changes, including a wind variable

change from stream function and velocity potential to zonal and meridional wind components, a vertical linear regression

representing wind-mass balance, and multiplication by a diagonal matrix of error standard deviations. The univariate spatial5

correlations for the “unbalanced” variables utilize the Background error on an Unstructured Mesh Package (BUMP), which is

one of generic components in the JEDI framework. The variable changes and univariate correlations are modeled directly on the

native MPAS unstructured mesh. BUMP provides utilities to diagnose parameters of the covariance model, such as correlation

lengths, from an ensemble of forecast differences, though some manual adjustment of the parameters is necessary because

of mismatches between the univariate correlation function assumed by BUMP and the correlation structure in the sample of10

forecast differences. The resulting multivariate covariances, as revealed by single-observation tests, are qualitatively similar

to those found in previous global 3DVar systems. Month-long cycling DA experiments using a global quasi-uniform 60 km

mesh demonstrate that 3DVar, as expected, performs somewhat worse than a pure ensemble-based covariance, while a hybrid

covariance, which combines that used in 3DVar with the ensemble covariance, significantly outperforms both 3DVar and the

pure ensemble covariance. Due to its simple workflow and minimal computational requirements, the JEDI-MPAS 3DVar can15

be useful for the research community.

1 Introduction

In the 1990s, three-dimensional variational (3DVar) data assimilation (DA) became the algorithm of choice in operational nu-

merical weather prediction centers (Parrish and Derber, 1992; Andersson et al., 1998; Gauthier et al., 1999; Lorenc et al., 2000),

owing to its numerous advantages relative to earlier optimal-interpolation assimilation schemes. 3DVar is no longer widely used20

operationally, both because its natural development path is to four-dimensional variational assimilation (Rabier et al., 2000;
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Rawlins et al., 2007) and because of the rapid development of ensemble data assimilation in the last two decades, including

ensemble-variational techniques that employ sample covariances from a forecast ensemble within the variational framework

(Lorenc, 2003; Buehner, 2005). The central component of 3DVar systems, however, are so-called static covariance models

(Bannister, 2008) that provide computationally tractable representations of complex spatial and multivariate covariances, and25

these remain in wide use to provide background covariances for 4DVar and as part of hybrid techniques that consider back-

ground covariance matrices that are the sum of a static covariance and an ensemble-based covariance (Hamill and Snyder,

2000).

This paper documents 3DVar and its associated static background covariance model for JEDI-MPAS, a data-assimilation

system using software infrastructure from the Joint Effort for Data assimilation Integration (JEDI; Trémolet and Auligné,30

2020) and the Model for Prediction Across Scales-Atmosphere (MPAS; Skamarock et al., 2012). Two companion papers are

Liu et al. (2022), which gives an overview of JEDI-MPAS and initial results from a three-dimensional ensemble-variational

(3DEnVar) scheme, and Guerrette et al. (2023), which documents an ensemble of data assimilations (EDA) for JEDI-MPAS.

Our motivation for implementing 3DVar is twofold. First, JEDI-MPAS is intended for use not only in our research, but also

by the broader research community. The minimal computational cost of 3DVar and its simple workflow makes it well suited35

where computing is a strong constraint and when introducing new users to the system. Experience with WRFDA (Barker et al.,

2012), our existing community DA system, has shown that 3DVar is often preferred by users. Equally important, the static

covariance model from 3DVar can be used in hybrid ensemble-variational assimilation schemes that are known to outperform

3DEnVar alone (Wang et al., 2008; Buehner et al., 2013; Clayton et al., 2013; Kuhl et al., 2013). We show the same result for

JEDI-MPAS here (see also Guerrette et al., 2023).40

The formulation of the static covariance model employed here has both familiar and novel elements. We generally follow

Wu et al. (2002), including i) our choice of analysis variables, ii) the use of linear regression from a training data set to define

the approximate mass-wind balances that implicitly determine the multivariate structure of the covariances (see also Derber

and Bouttier, 1999), and iii) representing univariate correlations directly on the forecast model’s grid (or mesh, in the case of

MPAS). Products of vectors with the univariate spatial correlation matrices, however, are computed directly on a thinned subset45

of the MPAS mesh and interpolated to the full-resolution mesh using the Background error on an Unstructured Mesh package

(BUMP; Ménétrier, 2020). This study is the first evaluation of BUMP for use in atmospheric DA.

The outline of the paper is as follows. In the next section, we give an overview of JEDI-MPAS as configured for 3DVar.

Section 3 describes the formulation of the static background covariances and their tuning using BUMP capabilities and a

training data set of forecast differences. Section 4 presents single-observations tests that illustrate the structure of the implied50

multivariate covariances. We summarize in section 5 results from cycling DA experiments with 3DVar and hybrid scheme,

which provide an overall evaluation of the effectiveness of the JEDI-MPAS static covariances. Section 6 concludes and offers

ideas for further refinements of the static covariances.
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2 JEDI-MPAS 3DVar configuration

2.1 The forecast model55

MPAS is described in detail in Skamarock et al. (2012) or see Liu et al. (2022) for a more concise summary. Briefly, MPAS

integrates the nonhydrostatic equations of motion cast in a height-based, terrain-following vertical coordinate and using dry

density and a modified moist potential temperature as thermodynamic variables. The equations are discretized on an unstruc-

tured mesh with the normal component of horizontal velocity defined on the edges of mesh cells and other prognostic variables

defined at the cell centers. MPAS supports global and regional meshes, as well as meshes with quasi-uniform or variable60

resolution.

In all experiments presented here, MPAS is configured with a global quasi-uniform mesh of 60 km resolution and 55 vertical

levels up to a model top of 30 km. The physical parameterizations are those of the “mesoscale reference" suite, as listed in

table 2 of Liu et al. (2022).

2.2 The DA system65

JEDI-MPAS implements various abstract classes for MPAS within the JEDI framework (Trémolet, 2020). Those abstract

classes reside in the Object Oriented Prediction Systems (OOPS) and comprise all the building blocks and operations on

them necessary for data assimilation algorithms. JEDI also contains generic (model independent) implementations of some

building blocks, including observation operators and quality control (the Unified Forward Operator, UFO), observation storage

and access (the Interface for Observation Data Access, IODA), the background-error covariance matrix (the System-Agnostic70

Background Error Representation, SABER).

The variational application of OOPS minimizes a cost function given in (3) of Liu et al. (2022). Denoting by x the concate-

nation the analysis variables across all model levels and mesh locations, the cost function measures the simultaneous fit of x

to a background state xb, which is our best estimate of x before considering the observations, and to the observations y (also

concatenated into a single vector) via an observation operator h(x) that maps a given state to the observation variables.75

The minimization proceeds iteratively by linearizing the observation operator in the neighborhood of the latest iterate xg

and computing the next iterate as the minimizer of the resulting quadratic cost function,

J(δx) =
1

2
(δx− δxg)

TB−1(δx− δxg)+
1

2
(Hδx−d)TR−1(Hδx−d), (1)

where δx= x−xg is the increment relative to xg , δxg = xb−xg . d= y−h(xg) is the observation departure from xg , H is

the linearization of h near xg , and B and R are the background and observational error covariance matrices, respectively. This80

incremental formulation is central to the architecture of OOPS and distinguishes increments, which can be operated on by B

and H, from the full state, which is an argument to h. In what follows, increments will be indicated by variables preceded with

δ.

All the minimization schemes for (1) and preconditioners available in OOPS involve only the application of B to increments,

rather than its square root or inverse. For the single observation test and cycling experiments shown later, we employ the B-85
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preconditioned incremental variational application of OOPS and the Derber-Rosati Inexact Preconditioned Conjugate Gradient

algorithm (Golub and Ye, 1999; Derber and Rosati, 1989).

2.3 Analysis variables and variable change

The analysis variables are the horizontal velocity (v), temperature (T ), specific humidity (q), and surface pressure ps at the

MPAS cell centers, as described in Liu et al. (2022). Transformations to other variables are necessary for some observation90

operators and for initial conditions for MPAS forecasts. Those transformations also follow Liu et al. (2022) but with one

significant improvement when computing the dry density ρd and potential temperature θd for MPAS initial conditions.

In Liu et al. (2022), ρd and θd are computed from the analyzed T , ps, and q by assuming hydrostatic balance. Here, we

instead compute increments for ρd, and θd (i.e., δρd, and δθd) from the increments δT , δps, and δq. This approach, which

is implemented by linearizing the corresponding calculations of Liu et al. (2022, steps 3 and 4 of their section 3.3), assumes95

hydrostatic balance only for the increments and not the full, analyzed fields.

Assuming hydrostatic balance just for the increments is preferable because that balance is only approximate and, moreover,

the discretized form of hydrostatic balance used in the variable transformation is not precisely equivalent to that implied by

the discrete MPAS equations. Since the hydrostatic integral is computed from the surface upward, differences between the

incremental and full-fields formulations can be expected to accumulate with height. Consistent with this, JEDI-MPAS cycling100

experiments (not shown) using the new, incremental update for ρd and θd exhibit reduced temperature bias in the stratosphere,

especially near the model top.

The state (x) and increment (δx) objects in JEDI-MPAS are basically inherited from MPAS’s "pool type" data structure.

Thus, it is natural to choose the existing mesh decomposition and communication utilities of MPAS to handle the parallelism of

the state and increment of JEDI-MPAS. The state and increment objects in JEDI-MPAS only contain their values on own grid105

point without a halo region. The halo exchange (and its adjoint) is performed when needed, such as horizontal interpolation of

state or increment to the observation location and a linear variation transform containing the spatial derivatives.

3 Multivariate background error covariance

In this section, we will present how the multivariate static background error covariance is designed for JEDI-MPAS. With a

series of linear variable changes, the JEDI-MPAS analysis variables are transferred into a set of variables that are independent110

of each other. Then, we will describe how the B statistics (or parameters) can be trained from samples. The characteristics of

diagnosed B statistics at MPAS 60 km uniform mesh will be discussed. Lastly, we will discuss what modification is made to

the diagnosed B statistics to resolve the discrepancy between the assumption and actual sample dataset.

3.1 Multivariate background error covariance design

The basic design of the JEDI-MPAS multivariate background error covariance follows that of the Gridpoint Statistical Inter-115

polation (GSI; Wu et al. (2002)) system, except in our use of BUMP-Normalized Interpolated Convolution from on Adaptive
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Subgrid (NICAS; Ménétrier, 2020), rather than recursive filters, to model the univariate spatial correlations (see further de-

scription at the end of this section). The multivariate covariances are implemented as two linear variable changes, K1 and K2,

applied to a block-diagonal covariance matrix

B=K1K2ΣCΣKT
2 K

T
1 , (2)120

where the block diagonal covariance matrix has been written as the product of a block-diagonal correlation matrix C and a

diagonal matrix Σ of standard deviations.

The linear variable changes K1 and K2 can be expressed in the following matrix forms:

K1 :


δv

δT

δq

δps

=


k×∇ −∇ 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I





δψ

δχ

δT

δq

δps


(3)

and125

K2 :



δψ

δχ

δT

δq

δps


=



I 0 0 0 0

L I 0 0 0

M 0 I 0 0

0 0 0 I 0

N 0 0 0 I





δψ

δχu

δTu

δq

δps,u


(4)

.

Here, K1 computes increments for v from spatial derivatives (indicated schematically by the gradient terms in the upper-

left block) of increments of stream function ψ and velocity potential χ. K1 and the corresponding adjoint operator, KT
1 , are

model-dependent JEDI components that operate on the MPAS native mesh and are implemented in "Control2Analysis", a linear130

variable change class. Details of the calculation of v from ψ and χ are given in the appendix.

K2 is a linear variable change that computes δχ, δT , and δps from δψ and the residual or “unbalanced” increments δχu, δTu,

and δps,u (for velocity potential, temperature, and surface pressure, respectively), so called because they are by assumption

independent of δψ. The relation of δχ, δT , and δps to δψ is based on linear regression from a training data set, following

Derber and Bouttier (1999). As in Derber and Bouttier (1999), we choose to use δψ at a given mesh cell and on the full set135

of vertical levels as predictors for δT and δps at the same mesh cell and on any specific level, which makes M and N block

diagonal with blocks corresponding to mesh cells and full matrices in each block. We retain δψ only on the same level as a

predictor for δχ, which makes L a diagonal matrix.

Lastly, ΣCΣT is the covariance matrix for δψ, δq, and the unbalanced increments δχu, δTu, and δps,u. We assume these

variables are mutually independent, so that C is block diagonal with blocks that give the univariate spatial (horizontal and140
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vertical) correlation for each variable. The matrix Σ is a diagonal matrix with elements that specify the standard deviation for

δψ, δχu, δTu, dq, and δps,u.

The operations K2, KT
2 , Σ, ΣT , and C use the Background error on Unstructured Mesh Package (BUMP) in the System-

Agnostic Background-Error Representation (SABER) repository, which is a generic component within JEDI, through the

MPAS model interfaces. The BUMP Vertical BALance (VBAL) driver is used for K2 and KT
2 . It is based on the explicit vertical145

covariance matrices defined for a set of latitudes, and interpolated at the model grid points latitude. The BUMP VARiance

(VAR) driver is used for Σ and ΣT . It simply applies the pre-computed error standard deviations. The spatial correlation

matrix is pre-computed from the given correlation lengths with BUMP-NICAS. Similar to the GSI recursive filters, NICAS

works in the grid-point space. However, it applies the convolution function explicitly, instead of recursively for GSI. Thus,

the choice of the convolution function in NICAS is free, as long as it is positive-definite. We choose a widely-used fifth-order150

piecewise function of Gaspari and Cohn (1999), which resembles the Gaussian function but is compactly supported. To make

the explicit convolution affordable for high-dimensional systems, it is actually performed on a low-resolution unstructured

mesh. A linear interpolation is required from the unstructured mesh to the full model grid. Finally, an exact normalization

factor is pre-computed and applied to ensure that the whole NICAS correlation operator is normalized (i.e. diagonal elements

of the equivalent correlation matrix are "1"). Thus, the NICAS correlation matrix can be written as: C=NSC̃STNT , where155

C̃ is the convolution operator on the low-resolution mesh, S is the interpolation from the mesh to the full model grid, and N

is the diagonal normalization operator. The low-resolution mesh density can be locally adjusted depending on the diagnosed

correlation lengths (or provided by the user). Figure 1 shows a diagram for Eq. 2 with corresponding BUMP drivers and

MPAS-specific linear variable change.

3.2 Training the covariance model160

The designed multivariate background error covariance has several parameters to be determined. These parameters are diag-

nosed from 366 samples of National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 48-h and

24-h forecast differences, valid at the same time of day and spanning the months of March, April and May 2018. Here, the

24-hr forecast lead time difference is chosen to remove the effect of diurnal cycle in the perturbation samples. The GFS forecast

files of 0.25 degree resolution on the pressure levels are interpolated to 60 km MPAS mesh with 55 vertical levels for following165

training procedures. With a recent (early June 2023) version of JEDI-MPAS source code after initial submission of this paper,

we have trained the static B parameters from MPAS model’s own forecast with the same methodology described here. The

overall B statistics diagnosed from MPAS-based samples were similar to that from GFS-based samples reported here, except

for the error standard deviations in the stratosphere, which were larger for MPAS-based samples. In the one-month cycling

experiment, this led to a reduction in temperature and wind RMSEs in 6 hour forecasts in the stratosphere.170

Since ΣCΣT depends on the statistics of δψ and δχ, we first need to calculate perturbations of ψ and χ from δv of each

forecast difference. This is essentially the inverse operation to K1 and can be expressed as solving a Poisson equation with

vorticity or divergence as a source term. Because solving a Poisson equation efficiently on the unstructured grid is not an easy

task, we have adopted a spherical-harmonics-based function from the NCAR Command Language (NCL, 2019) that operates
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on an intermediate latitude-longitude grid. We begin by interpolating δv fields to the intermediate grid, and then calculate δψ175

and δχ through the "uv2sfvpf " function of NCL and interpolate back to the MPAS mesh. Note that because the definition of

δχ (shown in Eq. 3) is opposite in sign with the definition of NCL function, multiplying (−1) to δχ (from NCL) is required.

For K2, the BUMP VBAL driver calculates the cross-variable linear regression coefficients, which are denoted as L, M, and

N in Eq. 4. The vertical autocovariance matrix of δψ and the vertical cross-covariance matrices between δψ and each of δχ,

δT , and δps are computed and averaged over latitude bands of ±10 degrees. The desired matrices of regression coefficients are180

obtained in the standard way by right multiplying the cross-variable covariance by the inverse autocovariance of the predictor

variable (δψ in our design). The vertical autocovariance matrices are usually poorly conditioned and thus direct computation

of their inverses will yield noisy results in the presence of sampling error. To overcome this, we apply a pseudo-inverse, which

only includes some dominant eigenmodes to calculate the inverse matrix. We have chosen the leading 20 modes (among total

55 modes) for the pseudo-inverse of the δψ autocovariance matrix.185

For Σ, the BUMP VAR driver calculates variances for δψ, δχu, δTu, δq, and δps,u from the samples and filters them hori-

zontally to damp the sampling noise. The horizontal smoother is also based on NICAS, with an appropriate mean-preserving

normalization factor.

The correlation matrix, C, consists of blocks that specify the univariate spatial correlation for δψ, δχu, δTu, δq, and δps,u.

The BUMP Hybrid DIAGnostic (HDIAG) driver diagnoses the horizontal and vertical correlation lengths used in modeling190

C parameters. HDIAG can diagnose the horizontal and vertical spatial correlations from the samples. First, it defines a low-

resolution unstructured mesh. Around each mesh node, diagnostic points are randomly and isotropically drawn for different

horizontal separation classes. Second, HDIAG calculates the horizontal correlation between each mesh node and its own

diagnostic points from the samples, at all levels. The vertical correlation is also calculated at each mesh node, between each

level and the neighboring levels. The third step is a horizontal averaging of these raw correlations, either over all the mesh nodes195

or over local neighborhoods. The average is binned depending on the level and the horizontal separation for the horizontal

correlation, and depending on the concerned levels for the vertical correlation. As a final step, HDIAG fits a Gaspari and Cohn

(1999) function for each averaged correlation curve. Thus, we obtain horizontal and vertical correlation length values for each

level. If the averaging and curve fitting steps are performed over local neighborhoods, an extra interpolation step is necessary

to obtain 3D fields of length-scales on the model grid. These length-scale profiles or 3D fields can be stored and provided to200

NICAS in order to model the spatial correlation operator. In this study, the local correlation lengths were obtained from raw

statistics within 3000 km radius for a given diagnostic point.

3.3 Diagnosed statistics

The regression coefficients that appear in the definition (4) of K2, which are computed by BUMP VBAL, are shown in Fig.

2 for a location near 34.8◦ N latitude. Considering first Fig. 2a, the δT–δψ coefficients are largest at small separations. Their205

structure is dipolar, with δT at a given level positively related to δψ at nearby but higher levels, and negatively related to δψ at

nearby but lower levels. The δT–δψ coefficients are generally consistent with approximate geostrophic and hydrostatic balance,

which together relate ψ to the mass field and the vertical derivative of the mass field to buoyancy. The coefficient structure is
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different for model levels lower than 10, perhaps due to the effects of the boundary layer and terrain. Figure 2b shows δχ–δψ

coefficients, which relate δχ at a given level to δψ at the same level. The balanced part of δχ depends positively on δψ near210

the surface, consistent with Ekman balance, under which vertical vorticity near the surface drives horizontal convergence in

the boundary layer. Finally and not unexpectedly, δps has a positive dependence on δψ in the lower troposphere (Fig. 2c).

Figure 3 shows the variance that can be predicted knowing δψ normalized by the total variance, for δT , δχ, and δps. There

are substantial variations with latitude and height. For δT , the δT–δψ regression can explain up to 70 % of the total variance

in mid- and high-latitude regions in the troposphere. For δχ, the regression explains up to 35 % of the total variance in the215

mid-latitude near the surface (below model level 10), while for δps, the regression explains substantial variance everywhere

except the tropics. These balanced ratios are similar to those found in Wu et al. (2002) (their Fig.1) and Barker et al. (2012)

(their Fig. 5), and their geographic variations confirm that the regressions primarily reflect dynamical balances characteristic

of mid- and high latitudes.

The other quantities that must be estimated from the training data set are the standard deviations that form the diagonal of Σ220

and the fields of horizontal and vertical correlation scales for each of the variables δψ, δχu, δTu, δq and δps,u, which together

specify the correlation matrix C. Figure 4 shows the vertical profiles of horizontally averaged standard deviations for each

variable. For δψ and δχu, the standard deviation increases upward from the surface to a peak near the tropopause. The standard

deviation of δTu, in contrast, generally decreases upward from a peak at the surface. For δq, the profile of standard deviations

has a shape similar to that for q itself, peaked in the lower troposphere and decreasing steadily with height above.225

Figures 5 and 6 show the vertical profiles of horizontally averaged horizontal and vertical correlation lengths, respectively.

The horizontal correlation lengths generally increase with height in the stratosphere and nearly constant in the troposphere,

though δχu has substantial variations in horizontal length scale throughout the profile. The horizontal correlation lengths for

δψ and δχu are larger than those for δTu and δq, while the horizontal correlation length for δps,u is roughly 3700 km, much

larger than the horizontal correlation lengths for δTu and δq near the surface. The vertical correlation lengths have minima near230

the surface for all variables and then increase with height toward a peak near the model top. The vertical correlation lengths

for δψ and δχu are again larger than those for δTu and δq.

3.4 Additional tuning

The parameters shown in the previous section are the raw statistics from the BUMP training applications. We have applied two

additional modifications to these raw statistics. Without these modifications, the resulting static B performs poorly in 3DVar235

and is unable to improve on 3DEnVar in hybrid applications (not shown).

First, the background error standard deviation for all variables (Σ) is scaled by a factor of 1/3. While the cycling interval

shown later in this study is 6 hours, which is typical, the forecast differences used in the training reflect forecast-error evolution

over 24 hours. Thus, it is reasonable to scale the diagnosed background error standard deviation to match the error growth for

a 6 hour interval. Here, we choose the single scaling factor of 1/3 for all variables, based on a limited set of sensitivity tests of240

cycling experiments with different scaling factors.
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We also reduce the diagnosed horizontal correlation lengths for δψ and δχu by half. Figure 7 shows the raw horizontal

correlation function for δψ on model level 15 together with the best-fit correlation function, which is diagnosed by BUMP

by adjusting the length scale of the fifth-order, compactly supported function from Gaspari and Cohn (1999). There is a clear

discrepancy between the sample correlation function and that assumed in BUMP—the raw correlation decreases more rapidly245

for small separations and has larger correlations at large separations. The implied velocity variance in the modeled covariance

(Eq. 2) is proportional to the second derivative at the origin of the δψ (and δχ) correlation (Lorenc, 1981; Daley, 1985). That

is, δψ correlations that are more strongly peaked at the origin will produce larger velocity variance even if the δψ variance

is fixed. Thus, the modeled covariances greatly underestimate the velocity variance relative to the statistics of the original

training data. Reducing the horizontal correlation length for δψ and δχu by a factor of two increases the second derivative250

of their correlation, and therefore the velocity variance, by a factor of 4, leading to a better fit to the velocity variance in the

training data. Ideally, the mismatch between the assumed correlation structure and that of the training data would be addressed

by a more flexible correlation model in BUMP. A capability is now available and we hope to report on its use in the future. In

other systems, the necessary flexibility has been achieved by using sums of recursive filters with different length scales (Wu

et al., 2002; Kleist et al., 2009) or modeling the correlations in spectral space (Parrish and Derber, 1992; Lorenc et al., 2000).255

4 Single Observation Tests

To explore the structure of diagnosed and tuned multivariate B, two sets of single observation test were performed; one for

assimilating a single zonal wind observation with 1 ms−1 innovation and 1 ms−1 observation-error standard deviation, and

the other for assimilating a single temperature observation with 1 K innovation and 1 K observation-error standard deviation.

Both single observations are placed at (38.68◦ W, 40.4113◦ N) and at roughly 800 hPa, a location that corresponds to one of260

the MPAS cell centers and vertical level 15.

Figure 8 shows the analysis increments from the single temperature observation, for the zonal and meridional components

of v (left and center columns, respectively) and for T (right column), on the three different vertical levels (10, 15, and 20,

shown in the bottom, middle and top rows) . The T increments have a horizontally isotropic structure with maximum values at

level 15, where the observation is located. The wind increments are, to a first approximation, linked to the T increment through265

the thermal-wind relation: cyclonic circulation is introduced on level 10, below the maximum temperature increment, an anti-

cyclonic circulation appears above, on level 20. This reflects the approximate geostrophic and hydrostatic relations captured

by K2, and is consistent with Parrish and Derber (1992) (their Fig. 2), which uses the linear balance equation between mass

and momentum variables.

Similarly, Fig. 9 shows the analysis increments from the single zonal-wind observation. The positive zonal-wind increment270

is maximized at the observation location on the 15th model level. To the north and south of the observation location, negative

zonal-wind increments are introduced, which—together with the increments of meridional winds—represent a cyclonic circu-

lation to the north of the observation and an anti-cyclonic circulation to the south. Temperature increments are negative below

the cyclonic circulation (i.e., on level 10) and positive above (on level 20), and vice versa for the anti-cyclonic circulation. The
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structure of the increments again reflects thermal-wind balance, and in this case is consistent with Wu et al. (2002) (their Fig.275

9) or Kleist et al. (2009) (their Fig. 3).

Figure 10 shows the surface pressure increments from two single observation tests. When the single temperature obser-

vation is assimilated, cyclonic circulation is introduced in the lower troposphere. The negative surface pressure increment is

approximately geostrophically related to this cyclonic circulation. When the single zonal wind observation is assimilated, the

zonal wind increments extend throughout the troposphere, including to the surface. The dipole of positive and negative surface280

pressure increments, south and north respectively of the observation location, are geostrophically related to the increment of

the surface wind.

5 Cycling Experiments

5.1 Experimental design and assimilated observations

For further evaluation of the multivariate static B for JEDI-MPAS, three sets of one-month (15 April–14 May 2018) cycling285

experiments were performed on NCAR’s High Performance Computing system, Cheyenne. As a reference experiment, the

“3DEnVar” experiment was performed using the pure ensemble covariances, as in Liu et al. (2022). At each cycle, a 20-member

ensemble of 6-hour MPAS forecasts was performed using initial conditions from the Global Ensemble Forecast System (GEFS;

Zhou et al., 2017)). Covariance localization was applied to the ensemble covariances via BUMP’s generic localization scheme,

using globally constant localization scales of 1200 km horizontally and 6 km vertically. To demonstrate the static covariances,290

the “3DVar” experiment was performed with the static B formulated and tuned as described in the preceding sections. Lastly,

the “Hybrid-3DEnVar” experiment was performed using a hybrid covariance given by a weighted sum of static and ensemble

B (Hamill and Snyder, 2000). Here, we choose a weight of 0.5 for each component, similar to Wang et al. (2013), Clayton

et al. (2013), and Kuhl et al. (2013). This final experiment evaluates the effectiveness of our static B for hybrid applications. In

all three experiments, the same global MPAS quasi-uniform 60 km mesh is used both for analysis and background fields and295

for analysis increment. For the minimization, two outer loops are used, with 60 inner iterations for each outer loop.

The observation files are converted from GSI’s ncdiag files, which contains the observation location, observation value,

observation error, GSI’s quality control, and satellite bias correction information. The observation quality control basically

follows the GSI’s quality control (called "PREQC"), and the background innovation check is added, which filters out the

observation when the absolute value of observation departure is larger than three times of given observation error. In all300

three experiments, the surface pressure, radiosondes (wind, temperature or virtual temperature, and specific humidity), aircraft

(wind, temperature, specific humidity), atmospheric motion vectors, Global Navigation Satellite System Radio Occultation

(GNSS RO) refractivity, and clear-sky Advanced Microwave Sounding Unit-A (AMSU-A) radiances from NOAA-15/18/19,

METOP-A/B, and Aqua satellites are assimilated. The AMSU-A radiances are bias-corrected from GSI’s information and

pre-thinned with 145 km mesh.305
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5.2 Results

Figure 11 shows the time series of background root mean square errors (RMSE)s for surface pressure during the cycling

period. The RMSEs are calculated with respect to GFS analysis at the valid time as a reference. For surface pressure, 3DVar

gives somewhat smaller RMSEs over the 3DEnVar experiment, except for the southern extratropical region. Hybrid-3DEnVar

gives smaller RMSEs over 3DVar. Figure 12 shows the vertical profiles of relative RMSE changes for background fields during310

the cycling period, with the RMSE of 3DEnVar as reference. The confidence intervals with 95 % significant level are also

shown as error bars, from bootstrap resampling method with resampling size of 10000. Compared to 3DEnVar, the 3DVar

experiment shows some degradation in the troposphere and some improvement in the stratosphere in general. The Hybrid-

3DVar shows overall improvement over both 3DEnVar and 3DVar experiments, and throughout levels in both the troposphere

and stratosphere.315

Figure 13 shows the observation space verification for radiosonde. The relative change of root mean square (RMS) first-guess

departure (OMB, observation minus background) are mostly consistent with model space verification in Fig. 12. Compared

to the RMSs of 3DEnVar, the RMSs of Hybrid-3DEnVar are significantly improved, except for temperature observation. The

RMSEs of 3DVar are degraded by ∼ 5 %. In the observation space verification for AMSU-A radiance observations (not

shown), which assimilates the channels sensitive to the atmospheric temperature profile, the Hybrid-3DEnVar shows neutral320

to slightly improved impact in the RMSEs for channels 5 and 6. For channels 7, 8, and 9, both 3DVar and Hybrid-3DEnVar

show significant improvement over 3DEnVar. Larger improvement is shown over both high latitudes. This is consistent with

the large temperature RMSE reduction in the model-space verification (Fig. 12a).

Additional 10-day extended forecasts were conducted at each 00:00 UTC initialization time to evaluate the impact of analysis

on the longer forecast lengths. The changes in RMSE for 3DVar and Hybrid-3DEnVar relative to 3DEnVar are shown in Fig. 14.325

At short forecast lead times, the relative RMSEs look similar to the relative RMSEs for the 6-h background forecasts shown in

Figs. 11 and 12. It is notable that the larger Qv RMSE for 3DVar lasts until 6 day forecasts (Fig. 14f). This might be because the

moisture variable is univariate in current B design (section 3.1) together with relatively less observation amount for moisture.

The benefit of hybrid background error covariance can be found up-to 5 day lead time for surface pressure, temperature, and

zonal and meridional wind fields. The benefit of hybrid covariance is only kept for ∼ 2 day lead time for humidity fields.330

6 Conclusions

This study has described the multivariate static background error covariances for JEDI-MPAS 3DVar. Similar to Liu et al.

(2022), JEDI-MPAS 3DVar utilizes generic JEDI components, through interfaces that are specific to MPAS.

The formulation of the JEDI-MPAS static B generally follows Wu et al. (2002), but with the novel use of BUMP for multiple

elements of the covariance model. Two linear variable transforms represent the multivariate relationship. One transform is a335

variable change from streamfunction ψ and velocity potential χ to v, which directly operates on the MPAS native mesh. The

other transform, which uses the BUMP driver VBAL from JEDI’s SABER repository, is based on linear regression over vertical

columns of increments in other variables against increments in ψ. The full multivariate covariances are then given by these
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linear transforms (and their adjoints) applied to a univariate covariance. The univariate correlation matrix employs BUMP

NICAS, which efficiently computes the three-dimensional convolution of an input vector with a specified spatial correlation340

function on an optimally subsampled mesh and then interpolates back to the full MPAS mesh.

For the experiments presented here, we estimated various parameters in the covariance model from a training dataset of

366 differences between 48-h and 24-h forecasts on the 60-km MPAS mesh. In general, the regression coefficients capture

the linear, approximately geostrophic balance between mass and momentum variables that holds outside the tropics. While

the error standard deviations for ψ and χu get larger at higher vertical levels, up to a peak near the tropopause, the error345

standard deviations for Tu and q are larger in the mid- to lower troposphere. The horizontal and vertical correlation lengths for

errors in ψ and χu are, in general, larger than those for errors in Tu and q. We also made two modifications to the parameters

objectively estimated by BUMP. The error standard deviation is scaled by a factor of 1/3 to match the 24 hour time differences

(i.e., 48 h forecast and 24 forecast pairs) in the training samples to the typical 6 hour DA cycling interval. In addition, the

horizontal correlation lengths for increments of ψ and χu are reduced by half to compensate for the discrepancy between350

the raw correlation structure from the training data set and the correlation function assumed in BUMP, which has much less

curvature at small separations.

We evaluated the JEDI-MPAS static B in cycling data-assimilation experiments extending over a month and assimilating

observations from a significant fraction of the global observing network, including GNSS RO, AMSU-A and conventional

observations. 3DVar using this static B generally performs close to, but worse than, EnVar using purely ensemble covariances355

as in Liu et al. (2022), while using a hybrid background covariance that is a weighted sum of the static B and ensemble

covariances improves significantly on both 3DVar and EnVar. Neither of these results is novel, as numerous studies have shown

the advantage of EnVar over 3DVar and of the hybrid algorithm over EnVar, but they do demonstrate clearly the effectiveness

of the static B.

The static background covariances presented here are an initial implementation, with plenty of room for further refinements.360

Two extensions that are already under way are training the covariance model based on an ensemble from JEDI-MPAS, such

as those provided by the EDA of Guerrette et al. (2023), and including hydrometeor increments, which will be especially

important for all-sky assimilation of radiances. There are also BUMP capabilities that we have yet to exercise, including more

general correlation functions that should remove the need for manual retuning of correlation lengths diagnosed by BUMP,

and joint estimation of hybridization and localization coefficients (Ménétrier and Auligné, 2015). We will also explore more365

sophisticated moisture variables, such as pseudo relative humidity (Dee and da Silva, 2003) or normalized relative humidity

(Hólm et al., 2002).

Code availability. JEDI-MPAS 2.0.0-beta is publicly released on GitHub, accessible in the release/2.0.0-beta branch of mpas-bundle (https:

//github.com/JCSDA/mpas-bundle/tree/release/2.0.0-beta). It is also available from Zenodo at https://doi.org/10.5281/zenodo.7630054 (Joint

Center For Satellite Data Assimilation and National Center For Atmospheric Research, 2022). Global Forecast System analysis data are370

downloaded from NCAR Research Data Archive https://rda.ucar.edu/datasets/ds084.1/ (last access: 1 June 2023; National Centers For En-
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vironmental Prediction/National Weather Service/NOAA/U.S. Department Of Commerce, 2015). Global Ensemble Forecast System en-

semble analysis data are downloaded from https://www.ncei.noaa.gov/products/weather-climate-models/global-ensemble-forecast (last ac-

cess: 1 June 2023). Conventional and satellite observations assimilated are downloaded from https://rda.ucar.edu/datasets/ds337.0/ (last

access: 1 June 2023; National Centers For Environmental Prediction/National Weather Service/NOAA/U.S. Department Of Commerce,375

2008) and https://rda.ucar.edu/datasets/ds735.0/ (last access: 1 June 2023; National Centers For Environmental Prediction/National Weather

Service/NOAA/U.S. Department Of Commerce, 2009).

Appendix A: Diagnosing velocity from stream function and velocity potential in MPAS

To compute horizontal velocity v from ψ and χ on the MPAS mesh, we rely on the fact that the irrotational component of

velocity is given by (minus) the gradient of χ, while the nondivergent component of velocity is given by cross product of the380

vertical unit vector and the gradient of ψ. The edge-normal component of velocity u on the MPAS mesh is oriented parallel

to the segment connecting the centers of adjacent cells and, naturally, normal to the edge itself. The natural finite difference

relation is then

u=−δcχ− δvψ, (A1)

where, in an abuse of our previous notation, δc is the difference operator between the centers of the mesh cells adjoining the385

edge and δv is the difference operator between the cell vertices at either end of the edge.

Implementing (A1) is straightforward given the MPAS mesh conventions and the mesh information in MPAS initialization

files (MPA, 2015). The difference operators are defined as

δcχ=
χc,2 −χc,1

∆c
,

δvψ =
ψv,2 −ψv,1

∆v
,

(A2)

where ∆c is the distance between cell centers sharing the edge, and ∆v is the distance between vertices on the edge. The390

ordering of the cells and vertices are such that this formula will give the correct signs for the velocities on the MPAS mesh.

For a given edge in the files, the lengths ∆c and ∆v are in the variables dcEdge(edge) and dvEdge(edge), respectively. The

cells sharing an edge are cellsOnEdge(2,edge) and cellsOnEdge(1,edge), and the vertices are verticesOnEdge(2,edge)

and verticesOnEdge(1,edge).

Although the equations A1 and A2 are using the full variables (i.e., ψ and χ), they are also applicable to the incremental395

variables (i.e., δψ and δχ) because of their linear form. The computation begins with δψ and δχ at the cell centers. Values

of δψ at the cell vertices are computed by interpolating δψ from the centers of the three cells containing each vertex, before

applying (A1). MPAS provides a utility that employs radial basis functions to reconstruct the vector wind at a cell center from

δu on the edges of the cell (following Bonaventura et al., 2011), which provides the final δv. Because these three steps involve

different subset of the MPAS mesh (i.e., cells, vertices, and edges), a halo exchange routine from MPAS is required and called400

between each step. We have also implemented the adjoint operator of the halo exchange, which is needed when applying KT
1 .
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Figure 1. A diagram for Eq. 2. The symmetric correlation matrix, C, is wrapped with a series of forward linear (or tangent linear; TL)

variable changes and corresponding adjoint (AD) varriable changes.
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Figure 2. Regression coefficients near 34.8◦ N between (a) δT and δψ [K(m2s−1)−1], (b) δχ and δψ [(m2s−1)(m2s−1)−1], and (c) δps

and δψ [Pa(m2s−1)−1]. These are the nonzero elements at this mesh cell of the submatrices M, L and N, repsectively, of K2 [see Eq. (4)].
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Figure 3. Ratio of balanced variance (i.e. that predicted by δψ) to total variance for (a) δT , (b) δχ, and (c) δps.
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Figure 4. Horizontally averaged standard deviations for (a) δψ, (b) δχu, (c) δTu, and (d) δq. The horizontally averaged standard deviation

for δps,u is 53.05 Pa.
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Figure 5. Horizontally averaged horizontal correlation lengths [km] for (a) δψ, (b) δχu, (c) δTu, and (d) δq. The horizontally averaged

length for δps,u is 3702.3 km.
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Figure 6. Horizontally averaged vertical correlation lengths [km] for (a) δψ, (b) δχu, (c) δTu, and (d) δq.
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Figure 7. The isotropic correlation function for δψ on the 15th model level, based on the sample of forecast differences (blue). Also shown

are the correlation function assumed in BUMP (orange) using the length scale that gives the best fit to the sample-derived correlation, as well

as the tuned correlation function (green).
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Figure 8. Analysis increments for (left column) zonal component of v [ms−1], (center column) meridional component of v [ms−1], and

(right column) T [K] on model level (upper row) 10, (middle row) 15, and (lower row) 20, from a single temperature observation with 1 K

innovation and 1 K observation-error standard deviation, located at (38.68◦ W, 40.41◦ N) on model level 15 with a marker ×.
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Figure 9. Same as Fig. 8, except from a single zonal wind observation with 1 ms−1 innovation and 1 ms−1 observation-error standard

deviation, located at (38.68◦ W, 40.41◦ N) on model level 15 with a marker ×.
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Figure 10. Analysis increments for ps [Pa] (left) from a single temperature observation with 1 K innovation and 1 K observation-error

standard deviation and (right) from a single zonal wind observation with 1 ms−1 innovation and 1 ms−1 observation-error standard deviation.

The observation location is marked with ×.
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Figure 11. Time series (00:00 UTC, 15 April to 18:00 UTC, 14 May 2018) of background RMSEs for ps verified with GFS analysis over

(a) northern extratropical (30–90◦N; NXTro), (b) tropical (30◦S–30◦N; Tro), and (c) southern extratropical (30–90◦S; SXTro) region.
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Figure 12. Vertical profiles of relative background RMSE changes (with respect to GFS analysis) for (a) zonal wind, (b) meridional wind,

(c) T , and (d) q, compared to 3DEnVar experiment. Statistics are aggregated for the period from 00:00 UTC, 18 April, to 18:00 UTC, 14

May 2018 with 95 % confidence intervals.

29



Figure 13. Vertical distribution of relative RMS changes of [observation minus background, or first-guess departure] for (a) virtual temper-

ature Tv , (b) specific humidity (c) zonal wind, and (d) meridional wind of radiosonde observations. Statistics are aggregated for the period

from 00:00 UTC, 18 April, to 18:00 UTC, 14 May 2018 with 95 % confidence intervals.
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Figure 14. Relative RMSE changes as a function of forecast lead time for (upper row) near-surface and (lower row) three-dimensional

variables, compared to 3DEnVar experiment. Shown are (a) T at 2 m, (b) q at 2 m, (c) zonal wind at 10 m, (d) ps, (e) T , (f) q, (g) zonal, and

(h) meridional winds. Statistics are aggregated over 27 extended forecasts with 95 % confidence intervals.
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