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We appreciate the reviewer’s detailed comments on the manuscript. Those comments has 
helped improve and clarify the submitted manuscript. Especially, we have added more 
detailed information on how BUMP NICAS and HDIAG works. Please find our response to 
each of your comments below.  
 

1. Line 56: “heigh” -> “height” 

Done. 

 

2. Line 67: “United” -> “Unified” 

Done. 

 

3. Line 132-133: Can you clarify the purpose of using the same level only for calculating 
regression coefficients for δψ and δχ? Do you think their vertical cross-correlations are 
weak/negligible? 

It could be possible to have vertical cross-correlations between δψ and δχ. This could be 
tested and evaluated if that explains bigger amount of total sample variance (shown in 
Figure 2b). In this manuscript, however, we have considered the level-by-level correlation 
between δψ and δχ, following Wu et al. (2002).  

We have added a text “…, following Wu et al. (2002).” 

 

4. Line 138: I think this manuscript can contribute much to the research community. If the 
authors can include how BUMP implements these operators from the algorithm 
perspective in detail, this manuscript can be at a higher level. 

Thank you for the suggestion. We have improved the description on how BUMP VBAL, VAR, 
and especially NICAS works in the last paragraph of section 3.1 as follows: “The BUMP 
Vertical BALance (VBAL) driver is used for K2 and K2

T . It is based on the explicit 
vertical covariance matrices defined for a set of latitudes, and interpolated at the 
model grid points latitude. The BUMP VARiance (VAR) driver is used for Σ and ΣT . It 
simply applies the pre-computed error standard deviations. The spatial correlation 
matrix is pre-computed from the given correlation lengths with BUMP-NICAS. Similar 
to the GSI recursive filters, NICAS works in the grid-point space. However, it applies 
the convolution function explicitly, instead of recursively for GSI. Thus, the choice of 
the convolution function in NICAS is free, as long as it is positive-definite. We choose 
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a widely-used fifth-order piecewise function of Gaspari and Cohn (1999), which 
resembles the Gaussian function but is compactly supported. To make the explicit 
convolution affordable for high-dimensional systems, it is actually performed on a 
low-resolution unstructured mesh. A linear interpolation is required from the 
unstructured mesh to the full model grid. Finally, an exact normalization factor is 
pre-computed and applied to ensure that the whole NICAS correlation operator is 
normalized (i.e. diagonal elements of the equivalent correlation matrix are "1"). 
Thus, the NICAS correlation matrix can be written as: C=NS𝑪"STNT, where 𝑪" is the 
convolution operator on the low-resolution mesh, S is the interpolation from the 
mesh to the full model grid, and N is the diagonal normalization operator. The low-
resolution mesh density can be locally adjusted depending on the diagnosed 
correlation lengths (or provided by the user).” 
 
Also, we have added more description on BUMP VAR and especially HDIAG in the last two 
paragraph of section 3.2 as follows: ”For Σ, the BUMP VAR driver calculates variances 
for δψ, δχu, δTu, δq, and δps,u from the samples and filters them horizontally to damp 
the sampling noise. The horizontal smoother is also based on NICAS, with an 
appropriate mean-preserving normalization factor. 
 
The correlation matrix, C, consists of blocks that specify the univariate spatial 
correlation for δψ, δχu, δTu, δq, and δps,u. The BUMP Hybrid DIAGnostic (HDIAG) driver 
diagnoses the horizontal and vertical correlation lengths used in modeling C 
parameters. HDIAG can diagnose the horizontal and vertical spatial correlations 
from the samples. First, it defines a low- resolution unstructured mesh. Around each 
mesh node, diagnostic points are randomly and isotropically drawn for different 
horizontal separation classes. Second, HDIAG calculates the horizontal correlation 
between each mesh node and its own diagnostic points from the samples, at all 
levels. The vertical correlation is also calculated at each mesh node, between each 
level and the neighboring levels. The third step is a horizontal averaging of these raw 
correlations over all the mesh nodes. The average is binned depending on the level 
and the horizontal separation for the horizontal correlation, and depending on the 
concerned levels for the vertical correlation. As a final step, HDIAG fits a Gaspari and 
Cohn (1999) function for each averaged correlation curve. Thus, we obtain horizontal 
and vertical correlation length values for each level. These profiles can be stored and 
provided to NICAS in order to model the spatial correlation operator.” 
 

5. Line 147: You directly used GFS forecasts to calculate the static error statistics. Are GFS 
forecasts appropriate to be used to represent MPAS model errors? I doubt it. 

Thank you for your comment. As you mentioned, it is natural to use MPAS Model’s own 
forecast samples to diagnose the B parameters to consider the MPAS Model’s own 
characteristics. In this initial development and validation work, however, we have wanted to 
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use the pre-existing forecast samples from external model. After submission of this 
manuscript, we did use the MPAS Model’s own forecast samples (still with NMC-type 
perturbations) to diagnose the B parameters, but with a recent version of JEDI-MPAS 
source code (early June 2023). To summarize, the overall structures of B parameters (such 
as regression coefficients, vertical profiles of horizontal- and vertical correlation lengths) 
diagnosed from MPAS-based samples was similar to that from GFS-based samples. The 
largest difference was in the error standard deviation parameters, which were in larger 
values for MPAS-based samples, especially in the upper levels. In one-month cycling 
experiment, this lead to a reduction in temperature and wind RMSEs in 6 hour forecasts 
fields in the upper levels. In future efforts of further refinement on the JEDI-MPAS static B, 
we will definitely use the MPAS Model’s own forecast samples (either NMC or ensemble 
types of samples). 

 

6. Line 152: Using NCL first seems to make the procedure complicated. Is it an essential 
step, or the alternative strategies exist? 

Unfortunately, it is essential step for current strategy and yes, this makes the B training 
procedure a bit complicated. As described in the manuscript, it is not trivial to solving a 
Poisson equation efficiently on the unstructured grid. However, this step is only required 
once when we generate the perturbation samples for stream function and velocity 
potential from zonal and meridional wind. 

 

7. Line 166-171: This is one novelty part relative to the other utilities (e.g., gen_be_v2 in GSI), 
right? I suggest the authors give more details about HDIAG. 

We have added more description on BUMP HDIAG in the last paragraph of section 3.2 . 
Please see the response on the reviewer’s 4th comment above. 

 

8. Figure 8: Is it the same observation location used as Fig.7, but for the zonal wind? Can 
you clearly state the location of the single zonal wind observation and mark it in Fig. 8? 

Yes, the location is the same for zonal wind observation and temperature observation. It is 
marked as “x” in the left-mid panel. We also added the “x” mark in the other panels and 
revised the Figure 8 caption as follows: "Same as Fig. 7, except from a single zonal wind 
observation with 1 ms−1 innovation and 1 ms−1 observation-error standard deviation,  
located at (38.68° W, 40.41° N) on model level 15 with a marker ×.” 
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9. Figure 9: Same as the comment for Fig. 8. Please mark the location of the assimilated 
observations. 

The observation location is marked with “x” in the revised figure. 
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