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Abstract. We propose a discrete multilayer shallow water model based on z−layers which, thanks to the insertion and removal

of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is

based on a classical two steps procedure used in numerical simulations with moving boundaries (grid movement followed by a

grid topology change, that is the insertion/removal of surface layers) which avoids the appearance of surface layers with very

small or even negative thickness. With ad-hoc treatment of advection terms at non-conformal edges that may appear due to5

insertion/removal operations, mass conservation and the compatibility of the tracer equation with the continuity equation are

preserved at a discrete level. This algorithm, called z−surface-adaptive, can be reduced, as a particular case when all layers

are moving, to the z−star coordinate. With idealized and realistic numerical experiments, we compare the z−surface-adaptive

against z−star and we show that it can be used to simulate effectively coastal flows.

1 Introduction10

The accuracy of ocean models in reproducing many dynamical processes is highly related to their vertical coordinate system.

In literature, many choices exist covering the spectrum of coordinate systems. There are four main types of vertical coordi-

nates which correspond to different vertical subdivisions of the fluid domain: 1) isopycnal layers with the interfaces that are

material surfaces (Lagrangian framework); 2) z−layers with fixed interfaces parallel to geopotentials (Eulerian framework); 3)

terrain/surface-following σ or s-layers with interfaces adapted to the ocean surface and bottom boundaries; 4) adaptive coordi-15

nate with interfaces that dynamically adapt to better capture different flow features (Lagrangian tendencies, stratification and

shear). The last two types move "arbitrarily" with respect to the flow, either to adapt to the free surface or any other features,

and belong to the Arbitrary Lagrangian Eulerian framework (ALE).

z−layers were used in early ocean models and are nowadays implemented and used in some ocean models (HAMSOM,

Backhaus, 1985), (TRIM-3D, Cheng et al., 1993), (UNTRIM-3D, Casulli and Walters, 2000), (SHYFEM, Umgiesser, 2022).20

They are attractive when simulating strongly stratified flows (Hordoir et al., 2015) and low frequency motions (Leclair and

Madec, 2011). This occurs because the isopycnals are well aligned to the z−interfaces or they slowly depart from them. At the

same time, the truncation error of the internal pressure gradient term remains very weak.
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A vertical discretization based on fixed interfaces is expected to have issues with the complex and moving boundaries

represented by the free surface and by the ocean bottom. In this manuscript, we focus on z−layers performances relative to the25

treatment of the free surface boundary. To simplify the boundary condition at the free surface, z−layers were typically coded

allowing the surface layer to vary in thickness (Griffies et al., 2001). However, in such models, the surface layer cannot vanish,

which implies that the free surface variation must be smaller than the surface layer thickness. For coastal applications, this is

a serious drawback, especially for the vertical resolution in shallow areas with high tidal elevations. In order to overcome this

problem, other z−type coordinates have been introduced over the years: the are based on z−layers that move to accommodate30

the tidal oscillation, but the bottom is not a coordinate surface (they are surface-following but not terrain-following). These

coordinates are clearly of ALE-type but in the ocean modelling literature they are classified as z because the deviation from

the geopotentials is very small. They combine small diapycnal mixing, specially for internal tides computations, and small

truncation error on the pressure gradient term. The z−star of Adcroft and Campin (2004), the quasi−z of Mellor et al. (2002)

and the hybrid z/σ of Burchard and Petersen (1997) all belong to such z−surface-following system. An alternative to deal with35

the moving surface is to keep the vertical grid perfectly aligned to geopotentials, thus working in a truly Eulerian framework,

but allowing the surface layer(s) to be removed or inserted. We refer to this system as z−surface-adaptive. Insertion/removal of

the surface layer has been discussed in Casulli and Cheng (1992) and it is used for example in Burchard and Baumert (1998).

However "both the accuracy and stability are suspect; it is most likely difficult to make the transition of a vanishing layer

smooth enough to not generate numerical problems; conservation issues are a major concern and the likelihood of vanishing40

layers become more frequent with increasing vertical resolution" (Adcroft and Campin, 2004).

In this manuscript we propose an algorithm for the z−surface adaptive coordinate which goes beyond such limitations.

We employ a classical grid adaptation strategy when the adaptation is driven by a moving boundary (Guardone et al., 2011).

It combines a first ALE grid movement step (surface interface displacement stretched by the free surface displacement) and

a second topology modification step (layer insertion, layer removal). All these operations are easily performed on the one-45

dimensional vertical grid. If the water depth is positive, the thickness of the surface layers remains positive, avoiding stability

issues related to the appearance of small or even negative layers. We show that the mass is conserved. Also the discrete

preservation of a constant tracer can be easily accomplished, which guarantee a complete consistency at a discrete level of the

tracer equation with the the continuity equation as shown since the work of Lin and Rood (1996); Gross et al. (2002).

This solution generalizes z−layers in the sense that the same algorithm can be easily reduced to z−star and can be added50

to a flexible vertical coordinate system. In fact, the grid adaptation has one free parameter that controls the number of moving

layers. Tuning such parameter, so that all the layers along the water column are moving, we show the link of the proposed

approach with the z−star.

The algorithm is implemented in the SHYFEM finite-element ocean model of the CNR-ISMAR (Umgiesser et al. (2004),

https://github.com/SHYFEM-model/shyfem) which implements the multilayer shallow water equations with z and σ layers.55

SHYFEM uses a popular choice for many coastal ocean models influenced by the work of Backhaus (1983), that is a semi-

implicit finite element discretization on unstructured B-type grids.
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The manuscript is organized as follows: in Section 2 we introduce the vertical discretization and the multilayer shallow

water model. Three different vertical discretizations are considered: the standard multilayer shallow water model based on σ-

layers, then the z−star and the standard z-layers. In Section 3 we provide the semi-implicit finite element discretization of the60

multilayer equations. In Section 4 we describe the z−surface-adaptive algorithm, in Section 5 we detail the issue of a spatially

variable number of surface layers caused by the insertion/removal operations. In Section 6 we provide numerical tests and in

Section 7 we conclude with a discussion.

2 Multilayer shallow water model

We start considering the multilayer (or layer integrated) shallow water model for stratified flows studied in Audusse et al.65

(2011). The space variable is (x,z) ∈ R3 with x= (x,y) ∈ R2 that denotes the horizontal space variable. We consider the

fluid domain Ω:

Ω=
{
(x,z) : x ∈ Ωx, −zb(x)≤ z ≤ ζ(x, t)

}
where Ωx is the projection of Ω onto the horizontal plane, ζ(x, t) is a function that represents the free-surface elevation and

zb(x) is the bathymetry that does not depend on time. The water depth is H(x, t) = ζ(x, t)+ zb(x). As depicted in Figure 1,70

right panel, the multilayer shallow water model is based on a discretization of the domain Ω with a vertical grid composed

of N layers denoted Ωα with α= 1, ...,N , ordered from the free surface to the bottom. The layers are non-overlapping with

Ω=
⋃N

α=1Ωα. Each layer Ωα is delimited laterally by the vertical domain boundary and in the vertical by the time dependent

interfaces Γα±1/2(t) defined by the set of points of coordinates (x,z) such that z = zα±1/2(x, t). The free-surface Γζ and the

bottom interfaces Γb are described respectively by the free-surface elevation z1/2 = ζ(x, t) and by the bathymetry function75

zN+1/2 =−zb(x). In order to provide the rules for such slicing of the domain, we define a reference domain which is constant

in time, with space variables (x,s) ∈ R3 such that:

Ω0 =
{
(x,s) : x ∈ Ωx, −1≤ s≤ 0

}
and discretized by means of a vertical grid similarly composed ofN layers, each denoted Ω0

α. The reference layers are delimited

vertically by the fixed-in-time interfaces Γ0
α±1/2, which are placed at the vertical coordinate given by the function sα±1/2. Such80

constants can be ordered:

s1/2 = 0< s2−1/2 < ... < sN+1/2 =−1

Then the interface position can be obtained by mapping the reference interface Γ0
α−1/2 to the actual or physical interface

Γα−1/2(t). In general we assume that exists a function, for α= 1, ...,N :

A : Γ0
α−1/2 → Γα−1/2(t), zα−1/2 =A(x,sα−1/2, t) x ∈ Ωx (1)85

To prescribe this function we use the generalized vertical coordinate transformation, see Mellor et al. (2002):

zα−1/2 = ζ(x, t)+ sα−1/2 (ζ(x, t)+ zb(x)) (2)
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Figure 1. One-dimensional sketch of the reference (left) and physical (right) domains for the multilayer shallow water model.

which assures a surface and terrain-following grid that is limited by the interfaces Γ1/2(t) = Γζ(t) and ΓN+1/2 = Γb. The

reference and the physical domains with their vertical subdivisions are sketched in Figure 1. Using this transformation, the

layer thickness can be deduced from the water depth, for α= 1, ...,N :90

hα(x, t) = zα−1/2(x, t)− zα+1/2(x, t) (3)

=
(
sα−1/2 − sα+1/2

)
H(x, t) = lαH(x, t) (4)

where the coefficients lα = sα−1/2 − sα+1/2 are prescribed after the creation of the reference grid. They are positive and they

sum to one
∑N

α=1 lα = 1. The multilayer model is based on a piecewise constant approximation, on the vertical grid, of the

horizontal fluid velocity and of a generic tracer. For α= 1, ...,N :95

uα(x, t) =
1

hα

zα−1/2∫
zα+1/2

u(x,z, t)dz (5)

Tα(x, t) =
1

hα

zα−1/2∫
zα+1/2

T (x,z, t)dz (6)

The tracer for us will be the salinity. We assume that the fluid density depends on salinity through an equation of state of type

ρ= ρ(T ). The density vertical discretization derives from the tracer one, for α= 1, ...,N :

ρα(x, t) = ρ(Tα(x, t)) (7)100

We introduce the following notation for a generic function f(z):

– To express a function which is discontinuous at the interface, we use the same notation of Fernández-Nieto et al. (2014):

f+α−1/2 =
(
f |Ωα

)
Γα−1/2

, f−α−1/2 =
(
f |Ωα−1

)
Γα−1/2

– if the function is continuous

fα−1/2 = f+α−1/2 = f−α−1/2 = f |Γα−1/2
105
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– the difference of the function between the upper and lower interface is[
f
]α−1/2

α+1/2
= fα−1/2 − fα+1/2

Mass conservation reads:

∂ζ

∂t
+∇ ·

 N∑
β=1

hβuβ

= 0 (8)

In this work we consider the multilayer shallow water model for stratified fluid with the Boussinesq assumption. Momentum110

and tracer equations in the multilayer approach can be written for α= 1, ...,N :

∂hαuα

∂t
+∇ · (hαuα ⊗uα) =

[
uG

]α−1/2

α+1/2
− ghα∇ζ +

[
K

]α−1/2

α+1/2
+Bα (9)

∂hαTα
∂t

+∇ · (hαTαuα) =
[
TG

]α−1/2

α+1/2
+
[
KT

]α−1/2

α+1/2
(10)

where Gα±1/2 is the mass-transfer function responsible for the vertical mass exchange between the layers, Kα±1/2 are the

vertical viscous fluxes that model the shear stress between the layers, Bα models the pressure force related to the buoyancy115

gradient. The system (8)(9) and (10) is implemented in the SHYFEM model, as well as in many other ocean models (Bur-

chard and Petersen, 1997; Klingbeil et al., 2018). If N is the number of vertical layers, the equations are solved for 2N +1

unknown variables, which are: the free surface elevation, the layer discharges hαuα and the layer-integrated tracer hαTα. The

layer thickness is deduced from the water depth through equation (4). In the following we give the details of the SHYFEM

implementation of each term of the right-hand side.120

From the derivation of Fernández-Nieto et al. (2014), the definition of the mass-transfer function is:

Gα−1/2 =
(
∇zα−1/2 ·uα

)
+σα−1/2 −w+

α−1/2

=
(
∇zα−1/2 ·uα−1

)
+σα−1/2 −w−

α−1/2 (11)

with σα−1/2 the velocity of the grid interface:

σα−1/2 =
∂zα−1/2

∂t
(12)125

and w±
α−1/2 the vertical fluid velocity at the interface. The vertical velocity is computed from the following relationships:

w+
α−1/2 =−w−

α+1/2 −hα∇ ·uα and w−
α−1/2 = w+

α−1/2 +∇zα−1/2 · (uα −uα−1) (13)

which are evaluated starting from the bottom α=N,...,1, where the no slip condition is imposed w−
N+1/2 = uN · ∇zb. In

practice and as it is standard in ocean models, the mass-transfer function is computed directly from the layer-integrated mass

equation130

Gα−1/2 =Gα+1/2 +
∂hα
∂t

+∇ · (hαuα) (14)
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Summing from N to α as:

Gα−1/2 =GN+1/2 +

α∑
β=N

∂hβ
∂t

+

α∑
β=N

∇ · (hβuβ) (15)

which implies G1/2 = 0 or no mass loss at the free-surface. The vertical velocity at the interfaces w±
α−1/2 no more appears

in the system but it can be computed from the incompressibility condition (13) in a post-processing step. With a horizontal135

velocity and tracer discontinuous at the interfaces, the vertical momentum flux in (9) is computed with a numerical flux. An

upwind flux is used in this study, for Γα−1/2 it reads:

Gα−1/2uα−1/2 =G+
α−1/2uα +G−

α−1/2uα−1

with G+
α−1/2 =max(0,Gα−1/2) and G−

α−1/2 =min(0,Gα−1/2). For the tracer a TVD flux is employed (LeVeque, 2002).

The terms Kα−1/2 and KT,α−1/2 are the vertical viscous and diffusive fluxes computed at the interface Γα−1/2:140

Kα−1/2 = να−1/2Dzuα−1/2

KT,α−1/2 = νT,α−1/2DzTα−1/2

where να−1/2 is the vertical viscosity and νT,α−1/2 the vertical diffusivity. Dz(·) is an approximation of the vertical derivative

evaluated at the interface and resolved with finite differences. The vertical viscosity and diffusivity can be laminar or computed

with a turbulent model. The bottom momentum flux is specified with a quadratic formulation. Then, the viscous fluxes read:145

Kα−1/2 =


τw = 0, α= 1

να−1/2
uα−1−uα

(hα−1+hα)/2 , α= 2, ...,N

τ b =−CF |uN |uN , α=N +1

with CF the bottom friction coefficient. Similarly the diffusive fluxes read:

KT,α−1/2 =


0, α= 1

νT,α−1/2
Tα−1−Tα

(hα−1+hα)/2 , α= 2, ...,N

0, α=N +1

with no tracer fluxes through the free-surface and the bottom.

Finally, the term Bα represents the internal pressure gradient force. The layer-integrated pressure gradient term
∫ zα−1/2

zα+1/2
∇p(z)dz,150

instead of applying the Leibniz rule (Audusse et al., 2011), it as been split into the external pressure gradient, related to the

free-surface slope, and the internal pressure gradient, related to the buoyancy gradient. The internal pressure gradient term is

written in the density Jacobian form of Song (1998):

Bα = hαb1∇ζ +hα

α∑
β=1

J(bβ−1/2,zβ−1/2)hβ−1/2

6



Figure 2. Figure. One-dimensional sketch of the reference (left) and physical (right) domains for the multilayer shallow water model with

z-star layers.

where hβ−1/2 is the distance between the layer centers, that is hβ−1/2 = (hβ−1 +hβ)/2 for β = 2, ...,N and hβ−1/2 = h1/2155

for β = 1. The summation over the layers corresponds to a vertical integration of the density Jacobian based on the piecewise

constant profile of the density with the quadrature points placed at the interfaces. The density Jacobian at the interface is:

J(bβ−1/2,zβ−1/2) =∇bβ−1/2 −Dz(bβ−1/2)∇zβ−1/2

If bβ = g
ρ0−ρβ

ρ0
is the layer buoyancy, the buoyancy at the interface is computed with an average bβ−1/2 =

1
2 (∇bβ−1 +∇bβ)

for β = 2, ..N and bβ−1/2 =
1
2∇b1 for β = 1. The approximation of the vertical derivative evaluated at the interface is resolved160

with finite differences. It is taken zero for the first interface Dz(bβ−1/2) = 0 for β = 1 and Dz(bβ−1/2) = (bβ−1−bβ)/hβ−1/2

for β = 2, ...,N . These choices allows to recover a standard formula that can be found in Shchepetkin and McWilliams (2003)

or in Klingbeil et al. (2018).

The tracer equation (10) admits a trivial solution which we want to inherit also at the discrete level, the so-called tracer

constancy condition: for a constant tracer, equation (10) reduces to the layerwise mass equation (14). The importance of165

preserving this property at a discrete level has been discussed extensively in Gross et al. (2002).

2.1 z−star

The multilayer model presented so far is based on vertical subdivision of the fluid domain through the surface/ terrain-following

transformation (2) which leads to the coefficients lα given in (4). Other vertical subdivisions can be used leading to different

coefficients that however, must verify both the positivity constraint and they have to sum to one. In the following we specify170

a slicing of the domain with both these properties based on a vertical coordinate transformation called z−star (Adcroft and

Campin, 2004). The reference domain, with vertical coordinate Z, is:

Ω0 =
{
(x,Z) : x ∈ Ωx, −zb(x)≤ Z ≤ 0

}
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This domain is discretized by means of a vertical grid composed of N layers, with interfaces Γ0
α−1/2, which are aligned to the

geopotential. These interfaces can be described by constant functions:175

Z1/2 = 0< Z2−1/2 < ... < ZN+1/2 =−maxzb(x)

As shown in Figure 2, there is a substantial difference with the vertical subdivision of the terrain-following grid. The grid

interfaces could intersect the bathymetry and should be defined only in the fluid domain. We define the projection of the

interface Γ0
α−1/2 onto the horizontal plane as:

Ωx,α =
{
x : x ∈ Ωx and − zb(x)≤ Zα−1/2

}
(16)180

If a layer is bounded laterally by the bathymetry interface we can denote this lateral land boundary of the layer as :

Γb
α =

{
(x,Z) : Z =−zb(x) and Zα+1/2 ≤ Z ≤ Zα−1/2, x ∈ Ωx,α\Ωx,α+1

}
Each layer Ω0

α results delimited on the upper and bottom side by Γ0
α∓1/2 and laterally by the vertical domain boundary as

well as it could be delimited by Γb
α (see Figure 2, right panel). To map the reference interface Γ0

α−1/2 to the physical interface

Γα−1/2, again, we can use a generalized coordinate transformation, for α= 1, ...,N :185

zα−1/2 = ζ(x, t)+Sα−1/2(x)(ζ(x, t)+ zb(x)) , x ∈ Ωx,α (17)

with Sα−1/2 a stretching function defined as:

Sα−1/2(x) =
Zα−1/2

zb(x)

As in the previous Section, the layer thickness can be deduced from the total water depth. After some calculations we get:

hα(x, t) = zα−1/2(x, t)−max
(
zα+1/2(x, t),−zb(x)

)
190

=
(
Zα−1/2 −max

(
Zα+1/2,−zb(x)

))
H(x, t) = lα(x)H(x, t), x ∈ Ωx,α (18)

If we define ∆Zα(x) = Zα−1/2 −max
(
Zα+1/2,−zb(x)

)
we can rewrite the coefficients, for α= 1,N :

lα(x) =
∆Zα(x)

zb(x)
, x ∈ Ωx,α

which is prescribed once the reference grid is created. The coefficient satisfy both the positivity constraint and locally they sum

to one.195

An important property of the z−star transformation is the that the horizontal domain Ωx,α where the layer thickness hα

is defined, does not depend on time, as one can verify after computing the transformation (17) for Zα−1/2 =−zb(x). This is

particularly helpful because the number of layers does not depend on time, and the coefficients too. Other z−layers formu-

lations based on similar mappings, such as the quasi−z layers (Mellor et al., 2002) or the hybrid z/σ layers (Burchard and

Petersen, 1997) do not share this property. For these coordinates a special treatment of the bottom is necessary: either an ad200

hoc modification of the bottom geometry or more interestingly these coordinates could be coupled with the porosity approach

recently proposed by Debreu et al. (2020) where all the layers present in the computation. For z−star the bottom momentum

and tracer fluxes must be properly modified, replacing the maximum number of layers N , with the local number of layers

Nb(x) = {α : Zα+1/2 <−zb(x)≤ Zα−1/2}.
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Figure 3. Grid and notation. Left: triangle K with nodes and scaled normals. Middle: set Di with dual cell area Ci and dual cell boundary

∂Ci. The degrees of freedom are also shown: discharge , tracer and free-surface O. Right: stepped bathymetry with masked boxes in

brown, after the horizontal discretization.

2.2 z−layers205

The z−layers are a particular case where the interfaces do not depend on time and space:

zα−1/2 = Zα−1/2

This method is implemented in the ocean models by allowing the top layer to vary in thickness without vanishing (Griffies

et al., 2001). For the above transformation with fixed interfaces, the mass-transfer function (eq. (14)) coincides with the vertical

velocity:210

Gα−1/2 =−w−
α−1/2 =−w+

α−1/2, α= 2,N +1

Replacing the mass transfer function with the vertical velocity in the multilayer model, we obtain the Eulerian model of Ram-

baud (2011).

3 Semi-implicit staggered finite element discretization

The discretization for both the z−star and the z−layers shallow water model can proceed in an equivalent fashion. We consider215

a discretization of the horizontal domain Ωx ∈ R2 composed by non-overlapping triangular elements. We denote the horizontal

grid by T with K ∈ T the generic triangle, |K| its area. The local reference element length is hK and it is computed as the

minimum length of the triangle sides. With i ∈ T we denote the nodes of the grid. When no confusion is generated, we will

locally number as (j = 1,2,3 or j ∈K) the nodes of the generic triangle. Given a node i in an element K, nK
i denotes the

inward vector normal to the edge of K opposite to i, scaled by the length of the edge, see Figure 3, left panel. For every node220

of the triangulation, Di denotes the subset of triangles containing i. The dual cell Ci is obtained by joining the barycenters of
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the triangles in Di with the midpoints of the edges meeting in i as illustrated in Figure 3, middle panel. Its area is

|Ci|=
∑

K∈Di

|K|
3

delimited by the boundary ∂Ci. The edge of ∂Ci separating Ci∩K and Cj∩K has an exterior normal called nK
ij , as illustrated

in Figure 3, left panel. As before it is scaled by the edge length. Moreover, due to the definition of the dual cell, we have:225 ∑
j∈K,j ̸=i

nK
ij =−nK

i

2
(19)

After the horizontal discretization, the domain results subdivided into prismatic boxes K × [zα+1/2,zα−1/2]. At the bottom,

z−layers models apply a mask to non-existing land boxes that make the bathymetry stepped, as sketched in Figure 3, right

panel. The bottom layer for each element will be denoted as NK . For a staggered discretization it is helpful also to define a

nodal bottom layer Ni =maxK∈DiNK . The projections of the interfaces onto the horizontal plane are still denoted as Ωx,α230

and defined with (16), this time evaluated with the stepwise approximation of the bathymetry. Then a layer dual cell Cα,i can

be defined by considering Dα,i the subset of elements sharing node i and in Ωx,α. Its area is

|Cα,i|=
∑

K∈Dαi

|K|
3

On a B-staggered grid the free-surface elevation, the discharges and the tracers are described with basis functions of different

order and support. The discharge field and the tracer field belong to a finite dimensional space with basis composed by the235

piecewise constant functions. For the discharges, the space has basis {ψK}K∈T composed by the characteristic functions on

the triangle, while for the tracers we choose {ϕi}i∈T composed by the characteristic functions on the dual cell. The discharge

fields qα = hαuα and the tracers Tα are approximated through (we use an abuse of notation employing the same symbol of

the continuous variable):

qα(x, t) =
∑
K∈T

ψK(x)qα,K(t) (20)240

Tα(x, t) =
∑
i∈T

ϕi(x)Tα,i(t) (21)

with qα,K(t), defined for α= 1, ...,NK , being the elemental discharge values and with Tα,i(t), defined for α= 1, ...,Ni, the

nodal tracer values. The free-surface belongs to a space of finite dimension with basis {φi}i∈T which denotes the standard

continuous piecewise linear Lagrange basis. The discrete free-surface is given by:

ζ(x, t) =
∑
i∈T

φi(x)ζi(t) (22)245

where ζi(t) are the nodal free-surface values. Note that the discrete discharges and discrete tracers are discontinuous respec-

tively across the boundaries of the triangles and of the dual cells whereas the discrete free-surface is globally continuous. On a

B-grid the layers thickness is naturally computed at the grid nodes hα,i, where the free-surface is available. The element values

hα,K are a conservative average of the nodal values. The element velocities are obtained from uα,K =
qα,K

hα,K
.
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We obtain the weak formulation multiplying mass and momentum equations (8) and (9) by the test functions that belongs to250

the same space of the solution and integrating it on the horizontal domain. The finite element discretization reduces to compute

the integrals accounting for the different terms. For the mass flux term, which is integrated by parts we need to compute with

a proper quadrature rule the following integral (only x−component shown):

axiK =

∫
K

∂φi

∂x
dx

The boundary term has been neglected since it cancels out except at the lateral domain boundary. Similarly, for the terms that255

will be treated explicitly in the momentum equation namely the horizontal/vertical advection and the internal pressure gradient,

we have:

fxα,K = −
∫
∂K

q̂αuα ·nds+
∫
K

(
Bx

α +
[
uG

]α−1/2

α+1/2

)
dx

The horizontal advection term is resolved with a first-order upwind flux q̂αuα (Umgiesser et al., 2004). In order to write the

scheme in matrix form, exploiting the compactness of the staggered discretization, we introduce "vertical" vectors/matrix, that260

pile-up all the layers for a single element K, and we denote them with bold capital letters. For example, the layer discharges

and the layers thickness are regrouped in the following vectors:

UK =


qx1,K
...
qxα,K
...

qxNK ,K

 , V K =


qy1,K
...
qyα,K
...

qyNK ,K

 , HK =


h1,K
...
hα,K
...

hNK ,K


and analogously the explicit terms:

F x
K =


fx1,K
...
fxα,K
...

fxNK ,K

 , F y
K =


fy1,K
...
fyα,K
...

fyNK ,K

265

The vertical viscous term is recast in matrix form via a tridiagonal matrix Ad
K ∈ RNK×NK . The bottom momentum flux has to

be integrated into this matrix. Note that all these vectors/matrix are restricted to non-masked boxes.

We build a semi-implicit time discretization, as it is standard for ocean models, by treating semi-implicitly the mass flux

and the free surface gradient in the momentum equation. The vertical viscous term can also cause a restrictive time-step and is

handled here implicitly without major computation issues but allowing to relax the CFL condition. We define the variation of270

a quantity in a time step as ∆u= un+1 −un, then:

un+θ = θun+1 +(1− θ)un = θ∆u+un

We consider different implicitness parameters for the mass fluxes (θz) and for the external pressure gradient (θm). After

applying the previous definition into the semi-discrete equations, the semi-implicit momentum equations on an unstructured
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B-grid read:275

∆UK = ∆U∗
K −∆tgA−1

K Hn
K

∑
j∈K

axjKθm∆ζj (23)

∆V K = ∆V ∗
K −∆tgA−1

K Hn
K

∑
j∈K

ayjKθm∆ζj (24)

with AK =
(
I|K| −∆tAd

K

)
a tridiagonal, positive definite and diagonally dominant matrix. The non-linear dependence of

the external pressure gradient term from HK has been resolved by using the old value. Also the viscous matrix has been

computed with frozen values at tn. In F n
K all the quantities are computed at tn, included the mass-transfer function. These280

choices avoid to solve a non-linear system at each time step. The variation ∆(·)∗ = (·)∗ − (·)n is the solution of the following

Euler step with an explicit external pressure gradient:

∆U∗
K = ∆tA−1

K

(
F x,n

K +Ad
KUn

K − gHn
K

∑
j∈K

axjKζ
n
j

)
(25)

∆V ∗
K = ∆tA−1

K

(
F y,n

K +Ad
KV n

K − gHn
K

∑
j∈K

ayjKζ
n
j

)
(26)

If the expressions for ∆UK and ∆V K , (23) and (24), are introduced into the discrete mass equation, we obtain a linear system285

with only the free-surface coefficients as unknowns:∑
K∈Di

∑
j∈K

(
mK

ij + gθzθm∆t2
(
axiK1TA−1

K Hn
K a

x
jK + ayiK1TA−1

K Hn
K a

y
jK

))
∆ζj =

∆t
∑

K∈Di

(
axiK1T (θz∆U∗

K +Un
K)+ ayiK1T (θz∆V ∗

K +V n
K)

)
(27)

where mK
ij =

∫
K
φiφj dx is the Galerkin mass matrix based on the piecewise linear Lagrange basis functions. The Galerkin

mass matrix, in SHYFEM, is lumped. The vector 1 ∈ RNK has all components being one.290

The hydrodynamic time step flow chart is thus the following: we first perform the Euler step (25) and (26). Then we resolve

the mass equation (27) and we complete momentum update with the semi-implicit step (23) and (24). Finally we compute

the layers thickness at the grid nodes. For a z−star we use the expression (18) at the grid nodes. For the z-layers, the layers

thickness does not change except for the first layer.

3.1 Mass-transfer function295

After the hydrodynamic update of the previous paragraph, the discrete mass-transfer function is computed. We employ the

same continuous piecewise linear approximation used for the free-surface. The nodal values are computed from a finite-element

mass-lumped discretization of the layerwise mass equation (14). As for the depth-integrated mass equation, the discharge is

evaluated semi-implicitly. Starting from the bottom with Gn+1
Ni+1/2,i = 0, for α=Ni, ...,1:

|Cα,i|Gn+1
α−1/2,i = |Cα+1,i|Gn+1

α+1/2,i + |Cα,i|
∆hα,i
∆t

−
∑

K∈Dαi

(
axiK q

x,n+θz
α,K + ayiK q

y,n+θz
α,K

)
(28)300
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Note that the semi-implicit discretization ensures vertical mass-conservation. Summing up (28) for all the layers and using

equation (27) with a lumped Galerkin mass-matrix to cancel the right-hand side, we get the impermeability condition at the

free-surfaceGn+1
1/2,i = 0. With standard z−layers, the contribution related to the grid velocity is zero ∆hα,i =∆t[σi]

α−1/2
α+1/2 = 0,

except for the first layer.

3.2 Tracers305

The semi-implicit update is completed with the time-stepping of the tracer. Vertical diffusion is treated implicitly and the

remaining advection terms are explicit. The spatial discretization of the the explicit terms implies the computation of the

following integrals which account for the horizontal and vertical advection terms:

fα,i = −
∫

∂Cα,i

T̂αqα ·nds+
∫

Cα,i

[
TG

]α−1/2

α+1/2
dx

where T̂αqα is an appropriate numerical tracer flux across the dual cell boundary. At the lateral boundary ∂Ωx,α, the tracer310

flux is zero for land boundaries while it is determined by the boundary conditions at the domain boundary. In the discussion

that follows we consider only nodes that do not lie on the domain boundary. On a triangular grid the two terms read:∫
∂Cα,i

T̂αqα ·nds =
∑

K∈Dα,i

∑
j∈K,j ̸=i

T̂αqα ·nK
ij =

∑
K∈Dα,i

∑
j∈K,j ̸=i

Ĥα(Tα,i,Tα,j) (29)

∫
Cα,i

[
TG

]α−1/2

α+1/2
dx = |Cα,i|Tα−1/2,iGα−1/2,i − |Cα+1,i|Tα+1/2,iGα+1/2,i (30)

with Ĥα(Tα,i,Tα,j) being the numerical flux in the horizontal direction and Tα+1/2,iGα+1/2,i the numerical flux in the vertical315

direction. The SHYFEM model implements second-order consistent TVD fluxes in both directions.

Using the notation with bold capital letters denoting "vertical" vectors, the tracer values and the explicit term at the nodes

are regrouped in the following:

T i =


T1,i
...
Tα,i
...
TNi,i

 , F i =


f1,i
...
fα,i
...

fNi,i,


Vertical diffusion can also be assembled in matrix form through the discrete matrix Ad

i ∈ RNi×Ni . Then, the discretization of320

the layerwise tracer equation (10) read:

AiT
n+1
i = Diag{|Cα,i|hnα,i}T

n
i +∆tF n

i (31)

with Ai =
(
Diag{|Cα,i|hn+1

α,i }−∆tAd
i

)
the vertical tracer matrix. Although the advection terms are explicit, it should be

noted that the horizontal numerical flux are computed with the discharges evaluated at qn+θz
α while the vertical numerical flux

uses the last available mass-transfer function Gn+1
α±1/2 from (28). This choice is important in order to mantain a consistency of325

the discrete tracer equation with the layerwise mass equation. In fact inserting a constant tracer in equation (31), yields exactly

the discrete layerwise mass equation (28). The proof is left in the Appendix.
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initial state grid movement layer collapse and 
removal

final state

initial state grid movement layer insertion 
and expansion

final state

Figure 4. Grid and tracer evolution during one time step. The process is interpreted as four stages which bring from the pair (Tn, ζnh ) to

(T̃n+1, ζn+1). The vector T = {T1,T2} collects the layer values of the tracer. Dashed line means removed interface. Left: case of surface

layer insertion. Right: case of surface layer removal.

To conclude, we summarize the whole time step flow chart: after the hydrodynamic update described in Section 3, we

compute the mass-transfer function (28) and, lastly, we update the tracers with (31).

4 z−surface-adaptive layers330

In this section, we enhance the z−layers shallow water model by introducing a new algorithm that allows for the dynamic

insertion and removal of surface boxes or, with an abuse of language, of surface layers. To differentiate it from the standard

z−layers, we will refer to this enhanced version as z−surface-adaptive layers. The key idea is to interpret the area swept by the

layer interface in the time step ∆t ∈
[
tn, tn+1

)
as the sum of two contributions: one due to the mesh movement driven by the

free surface oscillation (grid movement) and one due to the collapse/expansion of the layer (topology change). These topology335

changes in fact can be seen as a continuous deformation of the layer interfaces performed within the time step. With this in

mind, the final position of the interfaces at the grid nodes z̃n+1
α−1/2,i = z̃α−1/2(xi, t

n+1) is:

z̃n+1
α−1/2,i = zn+1

α−1/2,i +∆z̃α−1/2,i

where zn+1
α−1/2,i = zα−1/2(xi, t

n+1) is the interface position after the grid movement and ∆z̃α−1/2,i is the contribution of the

interface collapse/expansion, basically a correction term. Similarly, the grid velocity in the time step can be decomposed as:340

σα−1/2,i =
z̃n+1
α−1/2,i − znα−1/2,i

∆t
= σmov

α−1/2,i +σtop
α−1/2,i

with:

σmov
α−1/2,i =

zn+1
α−1/2,i − znα−1/2,i

∆t
, σtop

α−1/2,i =
∆z̃α−1/2,i

∆t

14



In the solution of the multilayer shallow water equations we employ a splitting procedure, where the two aforementioned

contributions are treated in two steps. In a first step (grid movement) we solve the multilayer model on a vertical grid where the345

surface layers adjust locally in order to maintain a positive thickness. In the subsequent step, we locally remove surface fluid

boxes with minimal thickness or split fluid boxes that are excessively thick. The evolution of the vertical grid and of the tracer

in one time step is shown in Figure 4. The top row shows the case of a layer removal and the bottom row the case of a layer

insertion. As a remark, we stress that the above interpretation of the interface displacement, reveals many beneficial aspects

with respect to a direct insertion and removal of a layer. Without the grid movement step, it would be more complicated to350

time step the tracers on a grid with positive layer thickness, with all the related stability issues. In fact in the tracer update (24)

the layer thickness at tn+1 is needed. One may think to compute the tracer after the insertion/removal operations have been

performed (thus having positive layer thickness both at tn and tn+1), but then the configuration on which the discrete tracer

equation is solved is ambiguous and it seems hard to ensure the consistency with the continuity or to verify the tracer constancy

property.355

In the following we provide the technical details to realize such adaptation to the free-surface with the z-layers. First we

notice that, since the beginning of the simulation, the index of the surface layer may change spatially at the element boundaries.

Given the initial free-surface elevation ζ0(x), we define a set of active indices and the surface layer index, by element, as:

αactive,K =
{
α ∈αK : Zα+1/2 + ϵtop < min

x∈K
ζ0(x)

}
, αtop,K =minαactive,K (32)

with αK =
{
1, ...,Nb,K

}
. Due to the staggering of the grid, it is convenient to define also at each node:360

αactive,i =
{
α ∈αi : Zα+1/2 + ϵtop < ζ0i

}
, αtop,i =minαactive,i (33)

with αi =
{
1, ...,Nb,i

}
. The parameter ϵtop is a small positive constant that fixes the minimum allowable depth for a surface

layer to exist. Below this threshold the layer is removed. We have fixed it as ϵtop = 0.2∆Zα. It turns out that this parameter is

quite important since it avoids the presence of very small layers, for which the vertical diffusion matrix becomes ill-conditioned.

In Figure 5 we illustrate the spatial variation of the top layer index for a one-dimensional example.365

4.1 Vertical grid movement

We evolve the discrete multilayer shallow water equations with the semi-implicit finite element method detailed in Section 3.

The vertical vectors/matrices are restricted to the layers with active index. Moreover, to account for the movement of the surface

layers, the layer thickness is updated as follows:

– we identify the indices associated to the layers that, locally, undergo a deformation. They are defined as the layers of the370

reference grid whose top-interface finds above the free-surface or by the set of indices:

αmov,i =
{
α ∈αi : Zα−1/2 + ϵmov > ζn+1

i

}
(34)

ϵmov is a small and positive constant that we have added. Below this threshold, the vertical grid movement is deployed.

As seen for ϵtop, it avoids the presence of very small layers that can be dangerous from a numerical point of view. The
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Figure 5. This one-dimensional example shows the grid for the z-surface-adaptive layers. Elemental surface layer indices are shown on the

bottom, nodal surface layer indices are shown on the top.

bottom-most layer is denoted by Nmov,i =maxαmov,i. The depth of the moving layers is:375

zmov,i =max
(
ZNmov,i+1/2 ,−zb,i

)
– we compute the new layers thickness after a local grid deformation that absorbs the free surface movement. To move the

interfaces of the layers contained in the set, we use the generalized coordinates transformation (1) which take the form:

zn+1
α+1/2,i = ζn+1

i +Sα+1/2,i

(
ζn+1
i + zmov,i

)
(35)

Then, the nodal layer thickness reads:380

hn+1
α,i = lα,i

(
ζn+1
i + zmov,i

)
, α= αtop,i, ...,Nmov,i (36)

For the proportionality coefficients, we have tried different definitions allowing a smooth movement on the interfaces

between the time steps, without experiencing any major impact on the results. For simplicity we have thus implemented

a z−star definition lα,i = ∆Zα

zmov,i
, see Section (2).

This is shown in Figure 4, first and second columns. The new layer thickness is used in the update of the tracers, equation (31).385

We stress the fact that the vertical configuration is taken constant, i.e. the number of layers at each element remain constant

during the timestepping of the the discharges and of the tracers.

4.2 Removal/Insertion of surface layers

Then we perform the insertion/removal operation based on:
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– An update of the active layers and of the top layer index by re-evaluating (32) and (33) with the new free-surface elevation390

ζn+1. We get the new top layer indices αn+1
top,K and αn+1

top,i

– Once we have identified the index that should be inserted/removed in the active set, we proceed with the collapse/expan-

sion of the surface boxes. A conservative remap step is necessary to pass the unknowns from the old vertical grid to the

new one.

We use the tilde T̃n+1
α to distinguish a generic layer variable (the tracer in this case) remapped onto the new grid from the395

solution time stepped on the old grid Tn+1
α . The remapped value is the solution of the following advection equation integrated

on the layer thickness:

∂h̃αT̃α
∂t

=
[
σtopT̃

]α−1/2

α+1/2
(37)

with an upwind flux:

σtop
α−1/2T

n+1
α−1/2 =

(
σtop
α−1/2

)+

Tn+1
α +

(
σtop
α−1/2

)−
Tn+1
α−1 (38)400

We consider the discrete case. After integration on the dual cell and with a simple forward Euler time stepping (with initial

condition Tn+1
α ) we have:

h̃n+1
α,i T̃n+1

α,i = hn+1
α,i Tn+1

α,i +∆t
(
σtop
α−1/2,iT

n+1
α−1/2,i −σtop

α+1/2,iT
n+1
α+1/2,i

)
(39)

with the new nodal layer thickness:

h̃n+1
α,i = z̃n+1

α−1/2,i − z̃n+1
α+1/2,i405

In the case of an element removal (αn+1
top,i > αn

top,i), we identify the layer that should disappear and we proceed with a collapse

of the lower interface to the upper one. For α= αn
top,i, ...,α

n+1
top,i, the discrete remap (39) with (38) reduces trivially to transfer

the depth-integrated tracer that belongs to the removed layers to the upper active layer. In the case of an element insertion

(αn+1
top,i < αn

top,i), we identify the layer that should appear and we expand the interface. Then the remap for α= αn+1
top,i, ...,α

n
top,i

reduces to distribute the depth-integrated variable across the existing and inserted layers with a weighted average. This is410

shown in Figure 4, third and fourth columns. All the unknowns must be remapped. For the discharges, that are defined on the

elements, (37) should be integrated on the element. This completes the time step.

4.3 Connection to z−star

We have a small parameter ϵmov to fix. It is convenient to express this constant as a percentage of the reference layer thickness

ϵmov = rmov∆Zα. In order to obtain the z−surface-adaptive grid we have chosen rmov ≤ rtop, in practice we have set rmov =415

0.15. The grid deformation is localized to the free surface. As long as the surface fluid boxes are deformed, they are recognized

as too small and immediately removed in the grid topology step. This implies working, at the next time step, with z−layers

having all the interfaces aligned to the geopotentials.
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Figure 6. The different vertical grids outlined in Section 4.3.

Interestingly we can obtain other grids by increasing rmov . We define:

Rα =
ζmax −Zα−1/2

∆Zα
(40)420

with ζmax =max
x,t

ζ(x, t) an estimate of the maximum free surface height during the simulation. We get:

– z−star if rmov ≥RN and no insertion/removal. The whole water column is subjected to the grid movement while the

number of layers does not change. These are z−star coordinates, or any z−surface-following coordinates depending on

which coefficients lα,i are plugged in equation (36).

– z−star+z if rmov =RM and no insertion/removal. The upper part of the water column, at minimum M layers, is sub-425

jected to the grid movement while the lower part is fixed.

Figure 6 shows a sketch of the different possibilities. Tuning properly rmov we will compare the newly developed z−surface

adaptive layers against z−star.

5 Advection with spatially variable number of layers

We have used an approach where the grid topology does not change during the time step of the conserved variables, i.e. the430

numerical scheme of Section 3 works on the deforming grid of Section 4.1, with a temporally constant number of layers

between tn and tn+1. However, in the previous time step, a layer insertion/removal may occur (to remove very thin surface

layers, or to split a thicker layer) on a certain element and not on its neighbors. This results in a vertical discretization with

a spatially variable number of layers, see Figure 7, which slightly complicate the treatment of advection terms, see on this

topic Bonaventura et al. (2018).435

Consider the one dimensional example in Figure 7, where two contiguous elements with different top-layer indexαtop,i+1/2 >

αtop,i−1/2 exist. In correspondence with node i a change of the element top layer index takes place. Borrowing the vocabulary

from the literature on non conformal meshes, we have a vertical edge with a hanging point. We call hanging layer, a layer for

which at least one interface ends with a hanging point. The boxes that have vertical edges across which the element top-layer

index varies, deserve a special treatment. In our case, with only insertion/removal of surface layers, we can easily flag such440
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Figure 7. Non-conformal box for the one-dimensional case. Non-conformal box is in grey. Discharges, layer thickness and tracers are shown.

Figure 8. Treatment of non-conformal box for the one-dimensional case. Left: splitting with fictitious layers. Right: the mass-transfer function

G1+1/2,i at hanging point is represented by a red arrow.

boxes by checking, for each element, that the nodal top layer index is different from the elemental one. The elements of the

grid with a non-conformal surface box are indicated by an asterisk:

if αmin,K < αtop,K then K =K∗

with αmin,K =minj∈K αtop,j . Then the boxes called hereinafter for simplicity "non-conformal" can be identified by the pair

of indices (αtop,K ,K
∗). Since both mass and tracer fluxes need communication with the neighbors’ boxes, they have to be445

treated differently. Moreover, for the tracer discrete update, we have to take care of preserving the constancy property.

In case of a non-conformal box we proceed as follows. We split the box vertically in fictitious layers through planar interfaces

passing through the hanging points of non-conformal edges and some fraction of the conformal edge length, see Figure 8, left

panel. From this geometrical configuration we compute the element layers thickness h∗α,K for the fictitious layers. Then we

distribute the discharge of the top layer among the fictitious layers, for α= αmin,K , ...,αtop,K :450

q∗
α,K = l∗α,K qαtop,K ,K (41)

with l∗α,K =
h∗
α,K

hαtop,KK
. These values are used to complete both mass and tracer fluxes for the missing layers of non-conformal

boxes. We consider the case of a non conformal box (αtop,K ,K) with node i ∈K, as illustrated in one dimension in Figure 7.
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After the splitting (41), the mass-flux term (only the x−component shown) reads, for α= αtop,i, ...,αtop,K :∫
K

∂φi

∂x
q∗α dx= aiK c

∗
α,i qαtop,K ,K (42)455

with:

c∗α,i =

{ αmin,K∑
β=αtop,i

l∗β,K if α= αtop,i and αmin,K < αtop,i

l∗α,K otherwise (hanging layer)
(43)

where the two cases account for the contribution of elementK to nodes with or without hanging layers, respectively node i and

i+1 in Figure 8. Such contribution from the non-conformal box is added to the mass-flux term in the layerwise mass equation.

It allows to compute the mass-transfer function at the hanging points Gn+1
α−1/2,i for α= αtop,i, ...αtop,K as shown in Figure 8,460

right panel. One can check that this treatment is mass-conserving. Summing the mass-transfer function for all the layers, even

in presence of non-conformal boxes, still yields to the discrete mass equation (27).

The horizontal advection scheme (29) on the non-conformal box can be applied straightforwardly to the fictitious layers.

Then, the numerical flux in non-conformal boxes reads for α= αtop,i, ...,αtop,K :

Ĥα =

{ αmin,K∑
β=αtop,i

l∗β,K Ĥαtop,K
(Tβ∗,i,Tβ∗,j) if α= αtop,i and αmin,K < αtop,i

l∗α,K Ĥαtop,K
(Tα∗,i,Tα∗,j) otherwise (hanging layer)

(44)465

Again we have separated the cases of a node with or without hanging layers. Note that the subscript α∗ =max(α,αtop,j) avoids

selecting tracer values in removed layers. In the Appendix we show that, when a constant tracer is imposed, the horizontal tracer

flux reduces to the mass flux even in the case of a non-conformal box.

6 Numerical tests

The tests have been run with implicitness parameters θz = θm = 0.5. We will check discrete mass-conservation at tn+1 by470

computing the following relative volume error for the dual cell area, which results from the sum of (28) from Ni to αtop,i:

en+1
i =∆t

∣∣∣∣∣
αtop,i∑
α=Ni

|Cα,i|Gn+1
α−1/2,i

∣∣∣∣∣ , en+1 =max
i∈T


en+1
i

αtop,i∑
α=Ni

|Cα,i|∆hα,i


To quantify the tracer constancy error, we use the L1−norm:

en+1 =

∑
α,i

|Cα,i|hn+1
α,i |Tn+1

α,i −T0|∑
α,i

|Cα,i|hn+1
α,i T0

with T0 the initial tracer value.475
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6.1 Impulsive Wave

As the first test, we check the accuracy of the z−surface-adaptive layers with an increasing vertical resolution. We use a closed

basin [−5m,5m]× [−5m,5m] with constant depth zb = 1m. The basin is initially at rest and the free surface is perturbed by

the following Gaussian hump:

ζ(x, t= 0) =Aexp(−r2/τ)480

with A= 0.5m, τ = 0.5m2 and r =
√
x2 + y2. A constant passive tracer is prescribed on the background and such a constant

state should be preserved along the simulation. The mesh has a uniform horizontal element size of hK = 0.25m. We compare

different vertical resolutions with variable layers thickness. The coarsest grid has three layers: a first surface layer with thickness

of ∆Z1 = 0.2m, the second and the third layers have thicknesses of ∆Z2 =∆Z3 = 0.4m. The other vertical grids are obtained

by halving each of these layers. The finest grid has 24 layers with minimum layer thickness at the surface of ∆Z1 = 0.025m.485

Without bottom/surface forcing, if the initial velocities are constant over the layers, they must remain barotropic and equal

to the depth-integrated velocities of the shallow water equations (1-layer case). Of course, this is not a property of the z−layers

(but the scheme should converge to a barotropic solution refining the resolution). It is however desirable that the results of

2d and 3d models are similar for the typical resolution of an ocean simulation (Kleptsova et al., 2010). The 1-layer discrete

solution is considered here as a reference solution against which we compare our implementation of the z−layers. The coarse490

grid with 3-layer is also used for comparison since the free surface is contained in the first layer and no insertion/removal is

necessary. For the 24-layer grid, up to six layers are progressively removed (and then re-inserted). In Figure 9, all resolutions

show a good agreement for both the water level and the barotropic velocity. We can check some conservation properties of the

scheme. As usual for such an adaptation strategy, mass is conserved up to machine precision (SHYFEM is coded in single-

precision). This is what we check in Figure 10, left panel. With the exception of a small additional noise associated to the495

insertion/removal operations, no significative source of mass error is present with respect to the 3-layer case. Tracer constancy,

as expected, is also preserved up to machine precision, see Figure 10, right panel.

6.2 1-d tidal flow in a sloping channel

Coastal applications include extensive intertidal flats. As with many ocean models, SHYFEM handles wetting and drying

processes in a simplified manner, applying ad-hoc treatments in dry cells. An extrapolation algorithm for the free surface is500

used to track the shoreline and identify dry and wet regions. Then, the two regions are treated separately, see Umgiesser (2022)

for the details. The test that we propose, presented in Oey (2005), is a benchmark for wetting/drying algorithms used in ocean

models. The domain consists of a 1d sloping channel that ranges from x= 0 at the landward end to x= L at the seaward

boundary, with L= 25km. The bathymetry is represented by the following function zb(x) =−H0/Lx and H0 = 10m. The

horizontal element size is uniform and equal to hK = 250m. A periodic water level is imposed at the seaward boundary as505

ζ(t) =A(1−sin
(
2πt
T

)
) with amplitudeA= 10m, period T = 1day and the time t ranging from 0 to 0.5day. At the beginning

of the simulation, the channel is dry. Typically this test is run with 1-layer models (Warner et al., 2013). Here we use the 1-layer
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Figure 9. Impulsive Wave. Comparison of the free surface elevation and barotropic velocity at different time instants. Vertical grids with

different resolutions are compared. For each grid the reference interfaces Zα+1/2 are traced with dashed lines. In the regions where the

free-surface crosses the interface Zα+1/2 it means that the layer α locally has been removed from the computation.
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solution (1L) as a reference and we test the 5-layer with surface-adaptation and the 5-layer with z−star. In the 5L z−surface-

adaptive simulation, only one layer is present at the beginning of the simulation and then, as long as the free surface is tilted

by the boundary signal, more levels are inserted and then removed during the drying phase. Flooding is thus performed with a510

1-layer shallow water model with the classical wetting/drying algorithms that may be deployed in dry or nearly dry areas (e.g.

positivity limitation, discharge regularization, etc...). With z−star instead, such wetting and drying algorithms are applied to

all layers.

In Figure 11 we check the along-channel solution profiles. Despite the different manner of handling wetting/drying for the 5L

z−surface-adaptive and 5L z−star simulations, a quite good agreement is observed for the free surface, while larger differences515

are found for the barotropic velocity where both the 5-layers simulations appear noisier at the wet/dry interface. In Figure 12,

left panel, we check volume conservation for this case which involves an uneven bathymetry and wetting/drying. Although in

correspondence of wet/dry nodes the relative volume error is much larger, we can verify that the z−surface adaptive has the

same level of relative error of z-star, which we accept to be within the round off errors. The same argument applies to the error

for the tracer constancy.520

6.3 Po delta idealized test

We test the different z−layers in a realistic coastal environment forced by the tidal oscillation: the Po delta. We study both the

river plume and the penetration of the salt water into the river branches. The numerical reproduction of such phenomena for

numerical models is a very delicate issue. Specifically, spurious numerical mixing related to the horizontal and vertical numer-

ical fluxes, the vertical grid and the time-stepping can destroy stratification and frontal characteristics, potentially modifying525

the plume dynamics (Fofonova et al., 2021). In this discussion we solely focus on the impact of the vertical discretization: the

resolution at the surface and the comparison between the z−surface adaptive with fixed interfaces and z−star with moving

interfaces.

The vertical eddy viscosity and the vertical tracer eddy diffusivity are computed with the turbulence module GOTM. The

bottom friction is fixed to CF = 0.002. Because of their fundamental role in the plume dynamics, two more terms have been530

added to the multilayer shallow water model of Section 2: the Coriolis force which is timestepped with an implicitness param-

eter of 0.5 and an horizontal diffusion term for the salinity equation, treated explicitly. The horizontal viscosity is taken as the

Smagorinsky eddy viscosity. The sea boundary is forced with a semi-diurnal tidal signal with amplitude 0.4m and period 12

hours. The salinity at the sea boundary is constant and fixed to 38PSU. A weak freshwater flow with a discharge of 500m3,

which is characteristic of the summer season, is enforced at the Pontelagoscuro river boundary. The lagoon is initialized with535

a salinity equal to the boundary value of 38PSU. The simulation lasts one month, after which the salinity shows a periodic

behaviour modulated by the tidal cycle.

The computational domain encompasses the entire river network of the delta, stretching from Pontelagoscuro to the sea,

including all delta lagoons, as well as a portion of the adjacent shelf sea (Bellafiore et al., 2021). Horizontal resolution ranges

from hK = 2km at the sea boundary, to around hK = 100m in the inner shelf close to the lagoons and river branches, and540

to around hK = 50m in the inner delta system. The horizontal grid, composed of 38884 nodes and 69364 elements, is in
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Figure 11. 1d tidal channel flow. Comparison between the 1-layer and 5-layers runs. Left: free surface elevation. Right: barotropic velocity.

Dashed grey lines represent the reference interfaces Zα+1/2. In the regions where the free-surface crosses the interface Zα+1/2 it means that

the layer α locally has been removed from the computation.
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Figure 13. Po river. Left: horizontal grid. Right: zoom of the horizontal grid with tidal stations and the transect in the Pila branch.

Figure 13. We consider two vertical resolutions, one with N = 24 layers and one with N = 27 layers. The deeper part (from

the bottom to Z =−1m) is equal for the two grids and it is composed of 23 levels with variable thicknesses from ∆Z = 0.5

near the surface up to ∆ZN = 4m for the last layer. The resolution of the upper part of the water column differs: the coarse

grid has one layer with ∆Z1 = 1m. This choice avoids the drying of the first layer. The fine grid, in the upper part, has 4545

layers with constant thickness, ∆Z1 =∆Z2 =∆Z3 =∆Z4 = 0.25m. Three simulations have been performed: a coarse one

with standard z−layers (24L z), a fine one with z−surface-adaptive layers (27L z−surf-adapt) and a fine one with z−star (27L

z−star).

Given the fine vertical resolution and the tidal amplitude of 0.4m, the 27L z−surf-adapt simulation should undergo extensive

insertion/removal of the surface fluid boxes. In the right picture of Figure 14 we have reported the time evolution of the number550

of boxes inserted and removed during two tidal periods. Almost 4000 surface boxes happened to be inserted or removed in a

single time step. As it is customary we have reported mass conservation and tracer constancy error in Figure 14. These figures

are referred to a shorter simulation that lasted 4 days with a constant salinity obtained by imposing the river salinity equal to

the interior one.

To diagnose the river plume we look to the minimum surface salinity during the simulation. From Figure 15, it is clear that555

both the fine grids simulations allow a stronger gravitational circulation with a more extended freshwater plume. Also, the

opposite bottom circulation penetrates more upstream, with stronger salinity recorded at the stations G2 and G5, as shown

in Figure 16. To inspect the extension of the saltwater intrusion we have extracted a section of the salinity field in the Pila

branch when saltwater reaches the maximum extent, during a flood tide. This is shown in Figure 17. The higher resolution

at the surface allows to capture also some small scale internal structure which are present under the surface. Differently from560

the previous test, the differences between the z−surface adaptive and z−star grids are clearly visible. The z-surface adaptive

simulation exhibits a stronger plume and and a more extended salt wedge as well as a more sharper surface structure. A possible
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Figure 14. Po river. Top left: time evolution of total number of layer inserted and removed per time step for the 24L z−surf-adapt simulation.

Bottom left: relative mass conservation error for the dual cell. Right: relative tracer constancy error after 4 days.

explanation could be related to the fact that, due to the strong internal motion, the vertical velocity is not in phase with the

time derivative of the free surface and it may happen that it has opposite sign with respect to the grid velocity. For z-star, the

mass-transfer function (11) is larger then the vertical velocity. In turn, this can be related to a larger truncation error associated565

with the vertical advection scheme.

All the tests have been accomplished with a serial run. We report the CPU time of the serial simulations which have been run

on a modern workstation with a AMD EPYC 7643 Processor : 2073005 s (24L z−star), 1998969 s (24L z−surf-adapt) showing

an overhead of around 3.6% for the insertion/removal operations. Although we have not covered parallel implementation

aspects, we mention that the algorithm (grid movement, insertion/removal) mainly operates on the vertical grid, and the parallel570

execution of these tasks should not encounter any issues. The stencil of the numerical scheme is not enlarged with respect to

the standard method. However some variables have been introduced only for the insertion/removal operations. This is the case

of the nodal top layer index which must be exchanged between the domains.

7 Conclusions

In this work, we have studied the performances of multilayer shallow water models based on z−layers for the simulation of free575

surface coastal flows. We have investigated a well-known issue of z−layers when incorporating the free surface: the limitation

on the resolution of the surface layer thickness. We have proposed a flexible algorithm based on a vertical adaptation to the tidal
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Figure 15. Po river. Minimum of the surface salinity (for the coarse grid the minimum is computed at the first layer, for the fine grid at the

second layer). Left: 24L z. Middle: 27L z−surf-adapt. Right: 27L z−star.

Figure 16. Po river. Salinity profile at G2 (top) and G5 (bottom). Left: 24L z. Middle: 27L z−surf-adapt. Right: 27L z−star.

Figure 17. Salinity section along the Pila branch during the flood tide of day 29 16:00. Left: 24L z. Middle: 27L z−surf-adapt. Right: 27L

z−star.
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oscillation called z−surface-adaptive. With a dynamic insertion and removal of surface layers, the grid (at least the internal

interfaces) is aligned to geopotential, canceling the pressure gradient error. Thanks to a two-step procedure (vertical grid

movement of surface layers followed by the insertion/removal operations), we have been able to evolve the multilayer model580

on a grid with a temporally constant number of layers in the time step which allowed a simple implementation. Moreover this

leads to a consistency, at a discrete level, of the tracer equation with the continuity equation as well as to a simple verification

of mass-conservation. As a particular case, the algorithm can be reduced to the popular z−star.

Without the limitation on the surface resolution, we have been able to compare the z−layers with insertion/removal (surface-

adaptive) against z−star for typical coastal applications of semi-enclosed shallow seas with a tidal signal imposed at the585

openings and wetting/drying at intertidal flats. The comparison has been carried out with idealized and realistic numerical

experiments. We shows that z−surface-adaptive layers can be used to simulate wetting and drying and without a significant loss

of accuracy with respect to z-star. We found that z-layers and z−star exhibit differences when simulating large, low frequency

internal motions combined with a barotropic tide, such as the gravitational circulation in the Po Delta. These differences

deserve further attention. We speculate that for such cases, keeping z-layers may be convenient to reduce truncation errors in590

the computation of both the internal pressure gradient term and of the vertical advections terms.

We conclude mentioning that the overhead related to insertion/removal operation should be further assessed in realistic

applications. With the actual implementation of the z-surface adaptive layers, we have experienced some stability issue in

the computation of the tracers. This occurred for non-conformal boxes undergoing wetting/drying and it is under current

investigation. We are trying a simpler treatment of the non-conformal surface boxes as in Bonaventura et al. (2018).595

Code and data availability. The SHYFEM hydrodynamic model is open source (GNU General Public License as published by the Free

Software Foundation) and freely available through GitHub at https://github.com/SHYFEM-model. The current developments have been

implemented in a branch of the SHYFEM code that can be accessed from Zenodo (Arpaia, 2023, https://doi.org/10.5281/zenodo.8147444).

Configuration files and data used to run each test case are also available at the same Zenodo repository.

Appendix A: Tracer constancy600

We start with the case without non-conformal boxes. We impose a constant tracer vector T i = 1 in the discrete tracer equation

(31). Each row reduces to:

|Cα,i|hn+1
α,i = |Cα,i|hnα,i +∆tfnα,i

with

fnα,i =−
∑

K∈Dαi

∑
j∈K,j ̸=i

Ĥα (1,1)+
(
|Cα,i|Gn+1

α−1/2,i − |Cα+1,i|Gn+1
α+1/2,i

)
605
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Using, first, the numerical flux consistency Ĥα (1,1) = qn+θz
α ·nK

ij and then the relationship between the element normals and

the dual cell ones (19):∑
K∈Dαi

∑
j∈K,j ̸=i

Ĥα (1,1) =
∑

K∈Dαi

∑
j∈K,j ̸=i

qn+θz
α ·nK

ij =−
∑

K∈Dαi

qn+θz
α · n

K
i

2

= −
∑

K∈Dαi

(
axiK q

x,n+θz
α,K + ayiK q

y,n+θz
α,K

)
In the last step we have used the fact the for piecewise linear basis functions we have nK

i

2 = |K| ∇φi|K . For each element in610

the subset Dα,i, the horizontal tracer flux has been reduced to the mass flux. We can write the discrete tracer update:

|Cα,i|
∆hα,i
∆t

=
∑

K∈Dαi

(
axiK q

x,n+θz
α,K + ayiK q

y,n+θz
α,K

)
+ |Cα,i|Gn+1

α−1/2,i − |Cα+1,i|Gn+1
α+1/2,i

which corresponds to the discrete layerwise mass equation (28).

In case of a non-conformal box, we have to show that the modified horizontal tracer fluxes still reduces to the mass-fluxes.

According to (44), the horizontal tracer fluxes in non-conformal boxes should be computed with:615

Ĥα =

{ αmin,K∑
β=αtop,i

l∗β,K Ĥαtop,K
(Tβ∗,i,Tβ∗,j) if α= αtop,i and αmin,K < αtop,i

l∗α,K Ĥαtop,K
(Tα∗,i,Tα∗,j) otherwise (hanging layer)

which, in case of a constant tracer, can be rewritten for α= αtop,i, ...αtop,K :

Ĥα = c∗α,iĤαtop,K
(1,1)

and thus:∑
j∈K,j ̸=i

c∗α,iĤαtop,K
(1,1) = c∗α,i

(
axiK q

x,n+θz
αtop,K ,K + ayiK q

y,n+θz
αtop,K ,K

)
620

This gives exactly the contribution from non-conformal boxes to the mass-transfer (42).

Finally, the tracer remap (39) preserves the constancy property. It is enough to verify that with a constant solution it reduces

to:

h̃n+1
α,i = hn+1

α,i +∆t
(
σtop
α−1/2,i −σtop

α+1/2,i

)
which, thanks to the definition provided in Section 4.2 of grid velocity σtop

α−1/2,i =
z̃n+1
α−1/2,i

−zn+1
α−1/2,i

∆t and layer thickness h̃n+1
α,i =625

z̃n+1
α−1/2,i − zn+1

α+1/2,i, is an identity.
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