
A flexible z-coordinate approach for the accurate representation of
free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Luca Arpaia1, Christian Ferrarin1, Marco Bajo1, and Georg Umgiesser1,2

1Institute of Marine Sciences, National Research Council, Castello 2737/F, 30122 Venice, Italy
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Abstract. We propose a z-coordinate algorithm for ocean models which, thanks to the insertion and removal of surface layers,

can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a classi-

cal two steps procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology

change, that is insertion/removal of surface layers) which leads to a stable and accurate numerical discretization. With ad-hoc

treatment of advection terms at non-conformal edges that may appear due to insertion/removal operations, mass conservation5

and tracer constancy are preserved. This algorithm, called z-surface-adaptive, can be reverted, as a particular case when all

layers are moving, to other z-surface-following coordinates, such as z-star or quasi-z. With simple analysis and realistic nu-

merical experiments, we compare the surface-adaptive-z coordinate against z-star and we show that it can be used to simulate

effectively coastal flows with wetting and drying.

1 Introduction10

The accuracy of ocean models in reproducing many dynamical processes is highly related to their vertical coordinate system. In

literature, many choices exist covering the spectrum of coordinate systems. There are four main types of vertical coordinates:

1) isopycnal coordinates with the interfaces that follow the materials (Lagrangian framework); 2) z-coordinates with fixed

interfaces parallel to geo-potentials (Eulerian framework); 3) terrain/surface-following sigma or S-coordinates with interfaces

adapted to the ocean surface and bottom boundaries; 4) adaptive coordinate with interfaces that dynamically adapt to better15

capture different flow features (Lagrangian tendencies, stratification and shear). The last two coordinates move "arbitrarily"

with respect to the flow, either to adapt to the free surface or any other features, and belong to the Arbitrary Lagrangian Eulerian

framework (ALE).

Z-coordinates were used in early ocean models. Such discretization based on fixed interfaces has issues with the complex

and moving boundaries represented by the free surface and by the ocean bottom. Despite this disadvantage, z-coordinate are20

still implemented and used in some ocean models (HAMSOM, Backhaus, 1985), (TRIM-3D, Cheng et al., 1993), (SHYFEM,

Umgiesser, 2022) and they are attractive when simulating stratified flows as in Hordoir et al. (2015). This occurs because the

z-interfaces are well aligned to isopycnals and the internal pressure gradient term does not suffer from pressure gradient error.
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To simplify the boundary condition at the free surface, z-coordinates were typically coded allowing the surface layer to vary

in thickness (Griffies et al., 2001). However, in such models, the surface layer cannot vanish, which implies that the free surface25

variation must be smaller than the surface layer thickness. For coastal applications, this is a serious drawback, especially for the

vertical resolution in shallow areas with high tidal elevations. In order to overcome this problem, other z-type coordinates have

been introduced over the years. These vertical coordinates use the ALE transformation to accommodate the tidal oscillation,

but the bottom is not a coordinate surface (they are surface-following but not terrain-following). These coordinates are clearly

of ALE-type but in the ocean modelling literature they are classified as z because the deviation from the geo-potentials is very30

small. They combine small diapycnal mixing and small pressure gradient errors. The z-star of Adcroft and Campin (2004),

the quasi-z of Mellor et al. (2002) and the hybrid z/s of Burchard and Petersen (1997) all belong to such z-surface-following

system, see Figure 1. An alternative to deal with the moving surface is to keep the grid perfectly aligned to geo-potentials, thus

working in a truly Eulerian framework, but allowing the surface layer(s) to be removed or inserted. We refer to this system as z-

surface-adaptive. Insertion/removal of the top layer has been discussed in Casulli and Cheng (1992) and it is used for example35

in Burchard and Baumert (1998). However "both the accuracy and stability are suspect; it is most likely difficult to make the

transition of a vanishing layer smooth enough to not generate numerical problems; conservation issues are a major concern and

the likelihood of vanishing layers become more frequent with increasing vertical resolution" (Adcroft and Campin, 2004).

In this manuscript, we review z-coordinate performances relative to the treatment of the free surface boundary. We propose a

solution to the stability and conservation issues for the insertion/removal. We employ a classical grid adaptation strategy when40

the adaptation is driven by a moving boundary (Guardone et al., 2011). It combines a first ALE grid movement step (surface

interface displacement stretched by the free surface displacement) and a second topology modification step (layer insertion,

layer removal). All these operations are easily performed on the one-dimensional vertical grid. We show that this solution

generalizes z-coordinates in the sense that the same algorithm can be easily reverted to z-surface-following coordinates and

can be added to a flexible vertical coordinate system. In fact, the grid adaptation has one free parameter that controls the number45

of moving layers. Tuning such parameter, so that all the layers along the water column are moving, we show the link of the

proposed approach with the z-surface-following coordinates.

Finally, we look at a second potential drawback of using fixed interfaces with a free surface. The large vertical veloc-

ity triggered by the free surface oscillation can cause strong numerical mixing with respect to the surface-following coordi-

nates (Klingbeil et al., 2018). We quantify such additional spurious mixing of z-coordinates theoretically and numerically and50

we highlight the dependencies from the external forcing (tidal characteristics, stratification profile) and the numerics (vertical

advection scheme, vertical grid size).

The algorithm is implemented in the SHYFEM finite-element ocean model of the CNR-ISMAR (Umgiesser et al. (2004),

https://github.com/SHYFEM-model/shyfem) which uses a popular choice for many coastal ocean models influenced by the

work of Backhaus (1983), that is a semi-implicit finite element discretization on unstructured B-type grids.55

The manuscript is organized as follows: in Section 2 we introduce the vertical discretization, the layerwise Shallow Water

equations, and we discuss the spurious mixing effect caused by a barotropic tide. In Section 3 we describe the z-surface-adaptive
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Figure 1. One dimensional sketch of different vertical z-grids existing in the literature. From left to right: standard z with fewer layers due

to the limitation for the surface layer thickness, z-star, quasi-z, hybrid z/sigma

algorithm, in Section 4 we detail the issue of a spatially variable number of surface layers caused by the insertion/removal

operations. In Section 5 we provide numerical tests and in Section 6 we conclude with a discussion.

2 Layerwise Shallow Water model with z-coordinate60

We consider the layerwise (or layer integrated) shallow water model for stratified flows discussed in Burchard and Petersen

(1997) and studied in Audusse et al. (2011b), Audusse et al. (2011a). We use the one-dimensional case to present the main

concepts. The layerwise shallow water model is based on a discretization of the water column with a vertical grid composed

of N layers denoted by greek letters and ordered from the free surface ζ(x,t) (α= 1) to the bottom b(x) (α=N ). Each

layer α is delimited by the interfaces zα±1/2. The surface and bottom interfaces are respectively z1/2 = ζ and zN+1/2 =−b.65

Standard z-coordinate models with fixed interfaces have been enhanced over time to deal with the oscillation of the free surface.

Typically a vertical moving grid is introduced, defined by a surface-following transformation from a reference fixed space with

coordinate s ∈ [0,−zb(x)] to the physical space with vertical coordinate z ∈ [ζ,−b(x)]:

z = z(x,s, t) = ζ(x,t) + f(x,s, t) (1)

with f(x,s, t) = S(s)(zb(x) + ζ(x,t)). Among the coordinates that have been proposed to enhance geo-potentials we mention:

– the z-star coordinate (Adcroft and Campin, 2004) zb = b(x)→ s= z∗ with stretching function S = z∗

b(x) ;70

– the quasi-z coordinate (Mellor et al., 2002) zb = maxb(x)→ s= zqz with stretching function S = zqz

maxb(x) ;

– the hybrid z/sigma (Burchard and Petersen, 1997): zb = b(x) since the transformation is linear in S, a blend between the

z-star and the sigma coordinate σ ∈ [0,−1] through a parameter θ is possible. The stretching function is S = z∗

b(x)θ+

σ(1− θ).

Standard z-coordinate is a particular case where coordinate lines do not depend on time and space. Of course, this is imple-75

mented by allowing the top layer to vary in thickness without vanishing (Griffies et al., 2001), see Figure 1 for an illustrative

example of these different z-grids. To account for the domain movement, the layerwise equations are written in a moving

frame and, hereinafter, all partial derivatives ∂a are not the standard Eulerian ones but they have to be intended in the moving
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frame (the so-called ALE derivatives (Hirt et al., 1974)): horizontal derivatives are taken along constant s-line ∂x = ∂x|s while

temporal derivatives are measured from an observer moving with the grid ∂t = ∂t|s. Please note the difference between the80

ALE time derivative and the Lagrangian time derivative of the position:

σα+1/2 =
∂zα+1/2

∂t
wα+1/2 =

dzα+1/2

dt

with σ the velocity of the grid interface and w the vertical fluid velocity at zα+1/2. For each layer we define the layer thickness:

hα = zα−1/2− zα+1/2

The layerwise model is based on a piecewise constant approximation of the horizontal velocity on the vertical grid. The layer

average is:

uα =
1
hα

zα−1/2∫

zα+1/2

udz (2)

Then the layerwise shallow water model reads:85

∂ζ

∂t
+

∂

∂x

(
1∑

α=N

huα

)
= 0 (3)

∂huα

∂t
+
∂huαuα

∂x
=
[
uG
]α−1/2

α+1/2
− ghα

∂ζ

∂x
+ IPGα +

[
νv
∂u

∂z

]α−1/2

α+1/2
(4)

As is customary, the mass equation is integrated over the whole water column. IPGα is the internal pressure gradient force

written in the density Jacobian form of Song (1998) and based on a piecewise constant approximation of the density ρα as in

(2). νv is the vertical viscosity and the vertical derivative in the diffusion term is resolved with finite differences. The definition

of the mass-transfer function Gα±1/2 responsible for the exchange between the layers is:90

Gα−1/2 =

(
∂z

∂x

∣∣∣∣
α−1/2

uα−1/2

)
+σα−1/2−wα−1/2 (5)

which is typically computed by summing the layerwise mass equation:

Gα−1/2 =Gα+1/2 +
∂hα

∂t
+
∂huα

∂x
(6)

from the bottom layer N to layer α with GN+1/2 that accounts for the bottom boundary condition and G1/2 = 0 that ensures

vertical mass conservation. At the end we solve for N+1 unknowns, namely the free surface level ζ and N momenta huα α=

1,N .

We assume that the fluid density depends on a given set of tracers through an equation of state of type ρ(T,S) where T (x,t)95

is the temperature and S(x,t) is the salinity. Each tracer is governed by an advection-diffusion equation:

∂htα
∂t

+
∂htαuα

∂x
=
[
tG
]α−1/2

α+1/2
+
[
νtv

∂tα
∂z

]α−1/2

α+1/2
(7)
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where νtv is the vertical tracer diffusivity. This advection diffusion equation admits a trivial solution which we want to inherit

also at the discrete level, the so-called tracer constancy condition. In fact, for constant tracer tα = const, equation (7) reduces

to layerwise mass equation (6). This is also called the Geometric Conservation Laws (GCL) condition in ALE compressible

flow simulations.100

For a standard z-layer model, the interfaces do not depend on location or time, except for the free surface interface. In (5),

or equivalently in (6) using a layerwise integration of the incompressibility [w]α−1/2
α+1/2 =−hα

∂uα

∂x , if the depth of layers does

not change in time, the mass-transfer function coincides with the vertical velocity:

∂z

∂x

∣∣∣∣
α−1/2

= 0, σα−1/2 = 0 → Gα−1/2 =−wα−1/2, α= 2,N + 1

To complete (4) and (7) we have to give the expressions for the prognostic variables at the top/bottom interfaces. Consistently

with the Finite Volume vertical discretization, the tracer and the horizontal velocity at the interface are computed with a105

numerical flux. The majority of ocean models, including SHYFEM, use a Total Variation Diminishing (TVD) flux. For the

tracer, the TVD flux reads (LeVeque, 2002):

Gα−1/2tα−1/2 =G+
α−1/2tα +G−α−1/2tα−1 +

|Gα−1/2|
2

(
1−

∣∣∣∣
Gα−1/2∆t
∆zα−1/2

∣∣∣∣
)

(tα− tα−1)ϕ (8)

with G+ = max(0,G), G− = min(0,G), ∆zα−1/2 = hα+hα−1
2 and ∆t the time step. Here we consider the Superbee flux

limiter ϕ which is close to one in smooth regions (second-order accurate Lax-Wendroff flux) while it is close to zero in

presence of large vertical gradients (first-order accurate upwind flux).110

With a local truncation error analysis, we can further analyze the error typically associated with the vertical z-coordinate

discretization when large vertical velocities induced by the tidal flow are present. Under the hypothesis of a passive tracer

advected by a linearized barotropic tidal flow, we have computed the following upper bound for the vertical numerical diffusion

induced by the oscillation of the water level:

Dnum
α ≤ 1−ϕα

2
AΩ

∂2t

∂z2

∣∣∣∣
α

h+
1
6
AΩ
H0

∂2t

∂z2

∣∣∣∣
α

h2 +O(h3) (9)

where h the uniform vertical grid-spacing, A the tidal amplitude, Ω = 2π/T , T the tidal period and H0 is the bottom depth.115

Unsurprisingly, the leading order term is a first-order upwind diffusion with a coefficient that depends on the tidal amplitude and

is tuned by the limiter. For a smooth, profile this term is zero (ϕ≈ 1) or even of anti-diffusive nature (ϕ > 1), while for a non-

smooth profile (ϕ≈ 0) this term dominates. Interestingly there is also a second-order term that comes from the linear advection

velocity, with a coefficient that depends on the non-linear parameter of the tidal wave A/H0. This can also be large for shallow

depths. The numerical diffusion should be always compared to the physical diffusion Dphy
α = νtv∂zzt. The magnitude of each120

contribution depends on the tracer vertical profile as well as on the tidal parameter and the bottom depth. In the Appendix, we

give the details of the formula (9) and we compute it for some idealized situations. We also confirm numerically the results.

Both the theoretical and numerical results suggest that, for micro-tidal applications and typical vertical resolution of coastal

models, the additional numerical error of z-coordinate is negligible while for higher tidal amplitude/coarser resolution the use

of z-coordinate should be discouraged.125
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initial state grid movement

layer insertion 
and expansion

final state

initial state grid movement

layer collapse layer removal
final state

Figure 2. Grid and solution evolution during one time step. The process is interpreted as four stages which bring from the pair (Un
h , ζn

h )

to (Ũn+1
h , ζn+1

h ). The vector U = {u1,u2} collects the layer values of a generic layerwise scalar variable. Dashed line means removed

interface. Left: case of top layer insertion. Right: case of top layer removal.

3 z-surface-adaptive coordinate

In this section, we detail the algorithm for the novel z-surface-adaptive coordinates. It is based on two steps: a first vertical grid

movement step (interface displacement) and a second topology modification step (layer insertion, layer removal). The solution

is interpolated across the grids: 1) for the grid movement, we have already written the layerwise equations in a moving frame,

thus we compute the solution directly onto the new deformed grid; 2) for the grid topology change, we use conservative remaps.130

Both operations are described in the following paragraphs.

We consider numerical schemes for the layerwise Shallow Water equations that work with a discretization of the com-

putational domain [0,L] composed by a sequence of non-overlapping intervals or elements E, each with length ∆xE . The

nodes of the horizontal grid are placed at xi =
∑i−1

E=1 ∆xE , i= 1,M + 1. The element sharing node i and i+ 1 is also de-

noted as E = i+ 1/2. For example, the median dual cell is obtained by joining the barycenters of the elements joining in i,135

Ci = 1
2

(
∆xi−1/2 + ∆xi+1/2

)
. On such horizontal grid, we denote the space discrete variables as uh(x)≈ u(x) and we iden-

tify approximation of variables at nodes as ui = uh(xi) and at elements as ui+1/2 = uh(xi+1/2). In a Finite Volume context

the pointwise notation stands for the averaged values. We suppose that the numerical scheme computes the variables at the

discrete time instants tn = t0 +n∆t with time step ∆t. We note by un
h(x) = uh(x,tn) the fully discrete variable, that is the

value of uh at time tn.140

On the vertical, layers are contained in the set α = {1,2, ...N}. For a z-grid the number of layers varies with x and it is

defined locally, e.g. at nodes αi = {1,2, ...Ni} and at elements αE = {1,2, ...NE}. We denote each layer interface at rest

as z0
α±1/2 and each layer thickness at rest as ∆z0

α. After both the horizontal and the vertical z-coordinate discretizations,

the domain is subdivided into quadrilateral boxes E× [zα+1/2,zα−1/2]. At the bottom, z-coordinate models apply a mask to

non-existing boxes that make the grid stepped.145
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3.1 Vertical grid movement

We restrict either to explicit or to semi-implicit time marching schemes that update the free surface from the discrete version

of (3). Once ζn+1
h is available (without loss of generality, we assume that the free surface is updated at nodes ζn+1

i ), we move

the surface layers with the following steps:

– Identification of the layers spanned by the free surface, through the set of indexes:150

αmov,i =
{
α : z0

α−1/2 + ϵmov > ζn+1
i

}
(10)

ϵmov is a small and positive constant that fixes the minimum allowable depth for a layer. Below this threshold, the vertical

grid movement is deployed. ϵmov can be used to control the number of moving layers. The number of layers contained in

the set is Nmov,i and the upper-most and bottom-most layers are denoted respectively by αmovTop,i = minαmov,i and

αmovBot,i = maxαmov,i. The depth of the moving layers is:

bmov,i = max
(
zαmovBot,i+1/2,−bi

)

– Computation of the new depth after a local grid deformation that absorbs the free surface movement. We use the gener-155

alized coordinates (1) which, at a discrete level, takes the form:

zn+1
α+1/2,i = ζn+1

i +Sα+1/2,i

(
ζn+1
i + bmov,i

)
(11)

this time with S-function Sα+1/2 such that Sα+1/2 = 0→ zα+1/2 = ζi and Sα+1/2 =−1→ zα+1/2 = bmov,i. With

Sα+1/2,i =−∑α
β=αtop,i

lβ,i, the nodal layer thickness reads:

hn+1
α,i = lα,i

(
ζn+1
i + bmov,i

)
, α ∈αmov,i (12)

For the proportionality coefficients, we have used a z-star definition lα,i = ∆z0
α

bmov,i
, see Section (2).

After the prognostic variables update on the moving grid, i.e. momentum hun
α,h → hun+1

α,h and tracers tnα,h → tn+1
α,h , this step is160

completed. Within this update step, the vertical configuration is taken constant and equal to αn
i ,α

n
E . The whole step is shown

in Figure 2, top right panel.

3.2 Removal/Insertion of top layers

Then we perform the insertion/removal of layers based on:

– An evaluation of the top layer indexes which become time-dependent. We call them the active ones αactive ⊂α and165

they have to be defined at nodes:

αn+1
active,i =

{
α : z0

α+1/2 + ϵtop < ζn+1
i

}
, αtop,i = minαactive,i (13)
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and at elements:

αn+1
active,E =

{
α : z0

α+1/2 + ϵtop <min
x∈E

ζn+1
h (x)

}
, αtop,E = minαactive,E (14)

ϵtop is a small and positive constant that fixes the minimum allowable depth for a top layer to exist. Below this threshold,

the layer is too thin and it is removed. It turns out that this parameter is quite important since it avoids the presence of

very thin layers, for which the vertical diffusion matrix becomes ill-conditioned. We have fixed it as ϵtop = 0.2∆z0
α.170

– A conservative remap step is necessary to pass the solution obtained in the grid movement step on a grid with layers

αn
active to the new grid with layers αn+1

active.

We use ũn+1
α to distinguish a generic layerwise variable remapped onto the new grid from the solution time stepped on

the old grid un+1
α . This insertion/removal operation can be interpreted, at a continuous level, as an expansion/collapse of the

layer in a pseudo time (see the bottom-left panel in Figure 2). After the expansion/collapse, the interface location moves to175

zn+1
α+1/2 → z̃n+1

α+1/2. Then, the remapped value is the solution of the following advection equation in a pseudo time:

∂Jũα

∂τ
− J ∂σũα

∂z
= 0

with J the Jacobian of the grid expansion/collapse and σ = ∂z
∂τ the velocity of the grid. After integration over a layer:

∂

∂τ

∫

h̃α(τ)

ũαdz =
[
σũα

]α−1/2

α+1/2
, σα+1/2 =

∂zα+1/2

∂τ

In the discrete case, with a simple forward Euler (with initial condition ũn
α = un+1

α ) and upwind flux, we get:

h̃u
n+1

α = hun+1
α + ∆τ

[
σun+1

α

]α−1/2

α+1/2
, σα+1/2 =

z̃n+1
α+1/2− zn+1

α+1/2

∆τ
(15)

We can apply such a remapping to the variables discretized on the horizontal grid uh and for element removal/insertion op-

erations. In the case of an element removal (αn+1
top,E > αn

top,E), we identify the layer that should disappear and we proceed180

with a collapse of the lower interface to the upper one. For the existing and removed layer, equation (15) reduces trivially to

transfer the depth-integrated variable that belongs to the removed layers to the upper active layer. In the case of an element

insertion (αn+1
top,E < αn

top,E), we identify the layer that should appear and we expand the interface. Then equation (15) reduces

to distribute the depth-integrated variable across the existing and inserted layers. The same arguments can be applied to nodal

variables, replacing αtop,E with αtop,i.185

3.3 Connection to z-surface-following coordinates

The vertical coordinate described so far is controlled by the parameter ϵmov that prescribes the number of moving surface

layers. It is convenient to express this constant as a percentage of the z-layer depth at rest ϵmov = rmov∆z0
α. Due to the

presence of the free surface (unknown at the beginning of the simulation) in (10), it is not easy, even for equispaced z-grid,

to find a simple formula that links rmov to the number of moving layers Nmov . However, we can compute an estimate of the190

maximum free surface height during the simulation, maxζ, and use the relation (10) rα =
maxζ−z0

α−1/2

∆z0
α

to state that:
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Figure 3. From top to bottom: different grids obtained in the vertical movement step with different rmov . In red is the highlighted the depth

of the moving layers bmov .

– 0< rmov ≪ 1 means that only the layers spanned by the free surface movement will undergo deformation. As we

increase rmov , the deformation becomes less local and more layers are progressively deformed.

– if we set rmov = rNmov
, we will move, at minimum, Nmov layers.

– if we increase the parameter beyond rmov > rN , then all layers are moving.195

In Figure 3 we have plotted different grids obtained in the vertical movement step with a varying grid parameter rmov and

different corresponding moving surface layers Nmov .

The z-surface-adaptive coordinate and the z-surface-following coordinate are then obtained with the following choices:

– z-surface-adaptive: rmov ≤ rtop ≪ 1. The grid deformation is localized to the free surface. As long as elements are

deformed, they are too small and immediately removed in the grid topology step. This implies working, at the next time200

step, with a true z-grid. We stress the importance of the grid movement step. Without such a step, it would be impossible

to timestep the variables on layers with positive depth, with all the related stability issues, included for the tracer equation

where you need layer thickness at tn and tn+1. One may think to compute the tracer after the insertion/removal operations

have been performed (thus having positive layer thickness both at tn and tn+1), but in this way the configuration on which

the discrete tracer equation is solved is ambiguous (it is the old one, the new one?) and it seems hard to verify tracer205

constancy property.

– z-star: rmov > rN and no insertion/removal. The whole water column is subjected to the grid movement while the

number of layers does not change. These are z-star coordinates, or any z-surface-following coordinates depending on

which coefficients lα,i are plugged in equation (12).

9
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Figure 4. The different vertical z-grids outlined in Section 3.3.

– z-star+z: rγ =
maxζ−z0

γ−1/2

∆z0
γ

and no insertion/removal. The upper part of the water column, at minimum γ layers, is210

subjected to the grid movement while the lower part is fixed. This corresponds to a partially z-star and partially z-system.

Figure 4 shows a sketch of the different possibilities.

4 Advection with spatially variable number of layers

We have used an approach where the grid topology does not change during the time step of the conserved variables, i.e.

the scheme works on the deforming grid of Section 3.1, with a temporally constant number of layers between tn and tn+1.215

However, in the previous time step, a layer insertion/removal may occur (to remove very thin surface layers, or to split a thicker

layer) on a certain element and not on its neighbors. This results in a grid with a spatially variable number of layers. Hanging

interfaces appear for the top layers, see the top left panel of Figure (5). Some modifications have to be implemented to deal

properly with such hanging interfaces, see on this topic Bonaventura et al. (2018).

Consider the example in Figure (5) where two contiguous elements with different top-layer index αtop,i+1/2 > αtop,i−1/2220

exist. In correspondence with node iwe have a non-conformal vertical edge with two hanging layers which slightly sophisticate

the treatment of advection terms. In our case, with only insertion/removal of surface layers, we can easily flag boxes that deserve

a special treatment by checking, for each element, that the nodal top layer index is different from the elemental one:

if αmin,E < αtop,E then E = E⋇

with αmin,E = minj∈E αtop,j . Then the boxes called hereinafter for simplicity "non-conformal" can be identified by the pair

of index (αtop,E ,E
⋇). Since horizontal and vertical advection terms/fluxes need communication with the neighbors’ boxes,225

they have to be treated differently.

Moreover, for the tracer discrete update, we have to take care of preserving the constancy property. The key ingredient

to verify tracer constancy for a hydrostatic numerical model is that the tracer discrete update, in case of a constant solution,

collapses to the discrete layerwise mass conservation. The last is always verified because it is used to compute the mass-transfer

function. Assuming that the time derivative and the vertical advection terms in (6) and (7) are treated equally, it is enough to230

verify that the horizontal advection term reduces to the mass-flux term, also for non-conformal boxes. However, the practical
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Figure 5. Treatment of non-conformal box. Top left: non-conformal box. Top right: splitting with fictitious layers. Bottom left: mass-transfer

function G1+1/2,i at hanging node is represented by a red arrow. Bottom right: horizontal advection terms f2,i,f2,i+1 and f1,i,f1,i+1

computed for each fictitious layer are represented by red arrows.

implementation depends on the specific numerical scheme. In the next paragraph, we show the case of a B-type staggered finite

element discretization as the one used in the SHYFEM model.

4.1 Case of staggered Finite-Element on a B-grid

We consider a discretization where the water levels and the momenta (transports) are described using form functions of different235

order and support. Momentum is approximated through:

huα,h(x,t) =
∑

E=1,M

ψE(x)huα,E(t) (16)

with ψE(x) ∈ E the constant piecewise functions and huα,E(t) the elemental momentum. The elemental currents are obtained

from uα,E = huα,E

hα,E
. For the free surface, given an approximation of nodal values ζi(t) = ζ(xi, t), we introduce a continuous

numerical approximation:

ζh(x,t) =
∑

i=1,M+1

φi(x)ζi(t) (17)

{φi}i=1,M+1 is the standard P 1 continuous piecewise linear Lagrange kernel. Tracers are approximated with the same formula240

(17), tα,h(x,t) =
∑

i=1,M+1φi(x)tα,i(t). A sketch of the vertical grid is reported in Figure (6).
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Figure 6. Sketch of the staggered grid with elemental velocities and nodal tracers values.

We obtain the weak formulation multiplying the governing equation by a test function that belongs to the same space of

the solution and integrating it in the computational domain. Then, the finite element discretization of the mass-flux term in the

layerwise mass equation (6) is computed, for each element, after integration by part:
∫

∆xi+1/2

∂φi

∂x
huα,h dx= ai,i+1/2huα,i+1/2

with the coefficient:245

ai,i+1/2 =
∫

∆xi+1/2

∂φi

∂x
dx

For the computation of horizontal advection we consider the tracer equation. The elemental contribution to the advection term

reads, after integration by parts:
∫

∆xi+1/2

∂φi

∂x
huα,h tα,h dx=

∑

j=i,i+1

kα,ijtαj = f
i+1/2
αi

with the coefficient:

kα,ij =
∫

∆xi+1/2

∂φi

∂x
φj dxhuα,i+1/2 (18)

We consider any P 1 stabilized method written in the form (neglecting the subscript α in the matrix entries):

f
i+1/2
αi =

∑

j=i,i+1

(kij + dij)tαj (19)

with dij a consistent discrete stabilization operator which has to be symmetric with zero row sum
∑

j=i,i+1 dij =−dii (Kuzmin250

and Turek, 2002). For instance, dij can be the discrete Laplacian, the streamline-diffusion operator or, as in SHYFEM model,
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a first-order upwind dissipation plus a second-order TVD correction tuned by a flux limiter, see always Kuzmin and Turek

(2002).

In case of a non-conformal box we proceed as follows. First, we split the box vertically in αtop,E −αmin,E + 1 fictitious

layers through planar interfaces passing through the hanging points of non-conformal edges and some fraction of the conformal255

edge length, see Figure (5), top right panel. Then we distribute the momentum of the top layer among the fictitious layers:

hu⋇
α,E = huαtop,E ,E l⋇α,E α= αtop,E , ...,αmin,E (20)

with l⋇α,E =
h⋇

α,E

hαtop,EE
and h⋇

α,E the fictitious layer thickness. Finally, these values are used to complete both vertical and

horizontal advection for the missing layers of non-conformal boxes (see Figure 5, bottom panels). Without loss of generality,

we consider the case of node i sharing a non conformal right box (i+1/2,αtop,i+1/2), as in Figure (5). After the splitting (20),

the mass-flux term reads:260
∫

∆xi+1/2

∂φi

∂x
hu⋇

α,h dx= c⋇
α,iai,i+1/2huαtop,i+1/2,i+1/2 α≤ αtop,i+1/2 (21)

with

c⋇
α,i =

{ αmin,i+1/2∑
β=αtop,i

l⋇β,i+1/2 if α= αtop,i and αmin,i+1/2 < αtop,i

l⋇α,i+1/2 otherwise (hanging layer)
(22)

where the two cases account for the contribution of element i+1/2 to both nodes with and without hanging layers, respectively

node i and i+1 in Figure (5). The horizontal advection scheme (19) on the non-conformal box can be applied straightforwardly

to the fictitious layers with modified coefficients kα,ij = l⋇α,i+1/2kαtop,i+1/2,ij . Then, the advection term in non-conformal

boxes reads (neglecting for simplicity the stabilization operator):265

f
⋇i+1/2
α,i =

{ αmin,i+1/2∑
β=αtop,i

∑
j=i,i+1

l⋇β,i+1/2kαtop,i+1/2,ij tβ⋇,j if α= αtop,i and αmin,i+1/2 < αtop,i

∑
j=i,i+1

l⋇α,i+1/2kαtop,i+1/2,ij tα⋇,j otherwise (hanging layer)
(23)

Again we have separated the cases of a node with/without hanging layers. Note that the subscript (α⋇, j) = (max(α,αtop,j), j)

avoids selecting tracer values in removed layers.

The splitting of non-conformal boxes and the consequent treatment of advection terms for such boxes allows simple verifi-

cation of the tracer constancy also in presence of a spatially variable number of layers. We have already mentioned that it is270

enough to verify that the horizontal advection term reduces to the mass-flux term, also for non-conformal boxes. We can verify

this property by element. For a constant tracer (tα = 1), we write the advection term for a non-conformal box (23) as:

f
⋇i+1/2
α,i =

{ αmin,i+1/2∑
β=αtop,i

l⋇βi+1/2

∑
j=i,i+1

kαtop,i+1/2,ij if α= αtop,i and αmin,i+1/2 < αtop,i

l⋇α,i+1/2

∑
j=i,i+1

kαtop,i+1/2,ij otherwise
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Through the definitions (22) and (18), it can be simplified to:

f
⋇i+1/2
α,i = c⋇

α,i

∑

j=i,i+1

kαtop,i+1/2,ij = c⋇
α,iai,i+1/2huαtop,i+1/2,i+1/2

which is the discrete mass-flux for non-conformal box (21). This completes the tracer constancy verification.

5 Numerical tests275

All the tests have been run with the ocean model SHYFEM which is based on the Finite Element procedure of Section 4.1

applied to unstructured triangular grids. The extension of the z-surface-adaptive algorithm to unstructured grids is straight-

forward. In particular, nodal definitions apply identically and elemental definitions apply to triangular elements K. SHYFEM

uses a semi-implicit method to march variables in time.

5.1 Impulsive Wave280

As the first test, we check the accuracy of the z-surface-adaptive coordinate with an increasing vertical resolution. We use a

closed basin [−5,5]× [−5,5] with constant depth b= 1. The basin is initially at rest and the free surface is perturbed by the

following Gaussian hump:

ζ(x,y, t= 0) =Aexp(−r2/τ)

with A= 1/2, τ = 1/2 and r =
√
x2 + y2. A constant passive tracer is prescribed on the background and such a constant state285

should be preserved along the simulation. The mesh has a horizontal element size of hK = 0.25. We compare different vertical

resolutions with variable layer thicknesses. The coarsest grid has three layers: a first top layer with thickness of ∆z1 = 0.2,

the second and the third layers have thicknesses of ∆z2,3 = 0.4. The other vertical grids are obtained by halving each of these

layers. The finest grid has 24 layers with minimum layer thickness at the surface of ∆z = 0.025.

Without bottom/surface forcing, if the initial currents are constant along z, they must remain barotropic and equal to the290

depth-integrated currents of the Shallow Water equations (1-layer case). Of course, this is not a property of the discrete z-

coordinate scheme (but the scheme should converge to a barotropic solution refining the resolution). It is however desirable

that the results of 2d and 3d models are similar for the typical resolution of an ocean simulation (Kleptsova et al., 2010).

The 1-layer discrete solution is considered here as a reference solution against which we compare our implementation of the

z-layers. The coarse grid with 3-layer is also used for comparison since the free surface is always contained in the first layer295

and no insertion/removal is necessary. For the 24-layer grid, up to six layers are progressively removed (and then re-inserted).

In Figure (7), all resolutions show a good agreement for both the water level and the barotropic current. We can check some

conservation properties of the scheme. As usual for such an adaptation strategy, mass is conserved up to machine precision

(SHYFEM is coded in single-precision). This is what we check in Figure (8), left panel, where no source of mass error is

present with respect to the 3-layer case. A direct consequence of mass conservation is tracer constancy preservation, up to300

machine precision, Figure (8), right panel.
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Figure 7. Impulsive Wave. Comparison of free surface and barotropic currents for different vertical grids. For each grid the z-interfaces are

traced with dashed lines.
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Figure 8. Impulsive Wave. Left: relative mass conservation error for a fluid box err =
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.

Right: relative tracer conservation error err = T −T0 at final time t = 3.
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5.2 1-d tidal flow in a sloping channel

Coastal applications include extensive intertidal flats. As with many ocean models, SHYFEM handles wetting and drying

processes in a simplified manner, applying ad-hoc treatments in dry cells. An extrapolation algorithm for the free surface is

used to track the shoreline and identify dry and wet regions. Then, the two regions are treated separately, see Umgiesser (2022)305

for the details. The test that we propose, presented in Oey (2005), is a benchmark for wetting/drying algorithms used in ocean

models. The domain consists of a 1d sloping channel that ranges from x= 0km at the landward end to x= 25km at the

seaward boundary. The slope of the bathymetry is b(x) = 10x/(25km). The horizontal mesh size is equal to hK = 250m.

A periodic water level is imposed at the seaward boundary ζ = 10(1− sin(10πt)). At the beginning of the simulation, the

channel is dry. Typically this test is run with 1-layer models (Warner et al., 2013). Here we use the 1-layer solution (1L) as a310

reference and we test the 5-layer with surface-adaptation and the 5-layer with z-star. In the 5L z-surface-adaptive simulation,

only one layer is present at the beginning of the simulation and then, as long as the free surface is tilted by the boundary signal,

more levels are inserted and then removed during the drying phase. Flooding is thus performed with a 1-layer Shallow Water

model with the classical wetting/drying algorithms that may be deployed in dry or nearly dry areas (e.g. positivity limitation,

momentum regularization, etc...). With z-star instead, such wetting and drying algorithms are applied to all layers.315

In Figure (9) we check the along-channel solution profiles. Despite the different manner of handling wetting/drying for

the 5L z-surface-adaptive and 5L z-star simulations, a quite good agreement is observed for the free surface, while larger

differences are found for the barotropic current where both the 5-layers simulations appear noisier at the wet/dry interface.

5.3 Venice Lagoon idealized test

Here we test the different z-coordinates in a realistic lagoon environment forced by the tidal oscillation. The Venice Lagoon320

is characterized by a complex system of shallow areas subjected to wet-dry processes (the average basin depth is of the order

of 1m) and deeper channels (maximum depth around 15m). We simulate a summer period when the strong diurnal heating

sums up river runoff and make the lagoon less dense than the sea-water entering from the inlets. The flow is mainly driven

by the tidal currents that transport water masses with different densities along the lagoon channels. The deeper channels can

experience surface stratification during summer.325

In this test, the lagoon is forced with analytical functions representative of a calm summer period characterized by strong

solar radiation. The vertical eddy viscosity µv and the vertical tracer eddy diffusivity µtv are computed with the turbulence

module GOTM (Buchard et al.). At the inlets, the lagoon is forced with a semi-diurnal tidal signal with amplitude 0.4m and

period 12 hours, sea-water at T = 25◦C and S = 35PSU. The lagoon is initialized with constant temperature T = 25◦C and

salinity S = 30PSU. The simulation lasts ten days.330

A coarse horizontal grid made out of 7842 triangular elements and 4359 nodes is used. This grid however is capable of

representing the main channels and islands where smaller elements are placed (Figure 10). We consider two vertical resolutions

summerized in Table 11. The deeper part (from the bottom to −2m from the reference level) is equal for the two z-grids and

it is composed of 16 levels with variable thicknesses, going from ∆z = 0.5 near the surface up to ∆z = 4m at 40m. The
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Figure 9. 1d tidal channel flow. Comparison between the 1-layer and 5-layers z-grids. Left: of free surface. Right: barotropic currents. Dashed

blue lines represent the interfaces of the 5 layer z-grid.

resolution of the upper part of the water column differs: the coarse grid has the first layer of ∆z1 = 1m followed by two layers335

with a thickness of ∆z = 0.5m. This choice avoids the drying of the first layer. In the upper part, the fine grid has 8 layers

with a constant thickness of ∆z = 0.25m. Three simulations have been performed: a coarse one with standard z-coordinate

(19L z), a fine one with z-surface-adaptive coordinate (24L z-surf-adapt) and a fine one with z-star (24L z-star). Given the

fine vertical resolution and the tidal amplitude of 0.4m, the 24L z-surf-adapt simulation should undergo extensive element

insertion/removal. In the right picture of Figure 11 we have reported the time evolution of the number of elements inserted and340

removed during two tidal periods. More than 150 surface elements happened to be inserted or removed in a single time step.

In Figure 12, we show the free surface and the barotropic velocity recorded at two stations, at "Punta della Salute" in Venice,

quite close to the northern inlet and at "Canale dei Petroli" placed in the deep tanker ship channel, (named respectively G2 and

G8 in Figure 10). The signals of the three simulations are almost overlapping with small differences in the velocities.

Always at the stations G2 and G8 we show the velocity and tracer profiles. At the station G2, in Figure 13, the tracer profile345

is mostly well-mixed. At station G8, in Figure 14, we observe that the ebb phase is followed by a stratification of the water

column which is then erased after the flood phase. First, we note that the vertical resolution seems to strongly affect the tracer
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Figure 10. Venice lagoon. Horizontal grid and tidal stations.
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Figure 13. Venice lagoon. Current, temperature and salinty profiles at station G2. Left: 19L z. Middle: 24L z-surf-adapt. Right: 24L z-star.

19

https://doi.org/10.5194/gmd-2023-13
Preprint. Discussion started: 9 February 2023
c© Author(s) 2023. CC BY 4.0 License.

gcapodaglio
Highlight

gcapodaglio
Sticky Note
please add spacing to these axes and move the legend so it does not overlap with the plots.



Figure 14. Venice lagoon. Current, temperature and salinity profiles at station G8. Left: 19L z. Middle: 24L z-surf-adapt. Right: 24L z-star.

evolution. Although the coarse and fine simulations show similar periodic profiles, the 19L z simulation shows significantly

lower temperatures. For the temperature, we believe this is due to the different mechanisms of heating and cooling. Heating

is mainly associated with the incoming short-wave solar radiation which acts as a body force for the upper water column. On350

the contrary heat loss through latent and sensitive heat flux occurs via a boundary condition (in a layerwise model, a source

term for the first layer only). Thus the first layer thickness strongly impacts the temperature evolution, in particular in our case

a thinner layer causes a more rapid cooling during the night, which leads the lagoon to a colder state. Second, comparing the

two fine simulations (24L z-surf-adapt and 24L z-star), we found that they are in close agreement which seems to confirm the

analysis of Section 2 (see also the Appendix): for micro-tidal applications and fine vertical resolutions, the mixing related to355

the free surface oscillation is small.

We report the CPU time of the three serial simulations which have been run on a modern workstation with a AMD EPYC

7643 Processor : 7099 s (19L z), 12227 s (24L z-star), 13261 s (24L z-surf-adapt) showing an overhead of around 8% for the

insertion/removal operations.

6 Conclusions360

In this work, we have reviewed the performances of geo-potential coordinates for the simulation of free surface coastal flows.

We have investigated a well-known issue of geo-potential coordinates when incorporating the free surface: the limitation on
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the resolution of the surface layer thickness. We have proposed a flexible algorithm based on a vertical adaptation to the tidal

oscillation called z-surface-adaptive. With a dynamic insertion and removal of surface layers, the grid (at least the internal

interfaces) is always aligned to geo-potential, canceling the pressure gradient error. Thanks to a two-step procedure (vertical365

grid movement of surface layers followed by the insertion/removal operations), this algorithm preserves the stability and

conservation property of the numerical scheme. As a particular case, the algorithm can be reverted to z-surface-following

coordinates, such as the popular z-star.

Without the limitation on the surface resolution, we have been able to compare the z-coordinate with insertion/removal

(surface-adaptive) against z-star for typical coastal applications of semi-enclosed shallow seas with a tidal signal imposed at370

the openings and wetting/drying at intertidal flats. The comparison has been carried out with numerical experiments and simple

analysis. In particular, using a local truncation error analysis we have investigated the additional numerical mixing associated

with z-coordinates with the free surface. The analysis shows that, for high tidal ranges, the z-coordinate may suffer from

spurious mixing or even from over-compressive effects, depending on the resolution and the flux limiter. However, as to be

expected intuitively, we have found that, for micro-tidal ranges and typical vertical resolutions of coastal models, these errors375

are small. In such conditions, with a simulation of the Venice Lagoon circulation, we shows that surface-adaptive-z coordinates

can be used without a significant loss of accuracy.

Code and data availability. The SHYFEM hydrodynamic model is open source (GNU General Public License as published by the Free

Software Foundation) and freely available through GitHub at https://github.com/SHYFEM-model. The current developments have been

implemented in a branch of SHYFEM v. 7_5_71 that can be accessed from Zenodo (Arpaia, 2023, https://doi.org/10.5281/zenodo.7528681).380

Configuration files and data used to run each test case are also available at the same Zenodo repository.

Appendix A: Numerical mixing induced by a tidal flow

We derive a closed-form expression for the numerical mixing of z-coordinate layerwise models when large vertical velocities

associated with tidal flows are present (Klingbeil et al., 2018). To simplify the analysis we assume the case of a passive tracer

advected by a barotropic linearized flow with water depth H(x,t) and barotropic velocity u(x,t). We note that, for surface-385

following coordinates, the mass-transfer function (6) is zero (because of hα = lαH). The layers are thus aligned along the

materials and the tracer is just advected along a layer without any discretization error arising from the vertical approximation.

For this reason, hereinafter in the section, we take the z-star coordinate as the reference solution. On the contrary for z-

coordinate models, the mass-transfer is the vertical velocity, a linear function of depth:

Gα−1/2 =−wα−1/2 =
∂u

∂x

α∑

β=N

hβ (A1)
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Then, the vertical advection fluxes will trigger some numerical noise (diffusion or dispersion). For a linearized barotropic flow,390

we can use the mass equation ∂tζ +H0∂xu= 0 to replace:
∣∣∣∣
∂u

∂x

∣∣∣∣=
1
H0

∣∣∣∣
∂ζ

∂t

∣∣∣∣≤
AΩ
H0

(A2)

with A the tidal amplitude, Ω = 2π/T , T the tidal period and H0 the bottom depth.

The exact solution satisfies the layer-averaged continuous conservation law:

∂tex
α

∂t

∣∣∣∣
s

+
∂utex

α

∂x
+
∂wtex

∂z
= 0

where tex
α = tex and the average operator is (·) = h−1

α

∫ zα−1/2

zα+1/2
(·)dz. The local truncation error (LTE) measures the error

introduced by the numerical method, in our case the vertical discretization only. We define it after applying the true solution to395

the layerwise conservation for the tracer (7) restricted to the grid points zα (the diffusion term is not considered):

∂tex
α

∂t

∣∣∣∣
s

+
∂utex

α

∂x
+

1
hα

[
wtex

]α−1/2

α+1/2
+LTEα = 0 (A3)

Since we have used the layer-integrated form of the conservation law, we have divided it by the layer depth, which is constant

for internal z-layers. After canceling common terms:

LTEα =
∂wtex

∂z
− 1
hα

[
wtex

]α−1/2

α+1/2
(A4)

where the numerical fluxes at the interfaces are computed with the TVD scheme (8). In our time-continuous analysis ∆t→ 0,

(8) corresponds to combine an upwind flux formula with a second-order centered flux:400

wα−1/2tα−1/2 = w+
α−1/2tα +w−α−1/2tα−1 +

|wα−1/2|
2

(tα− tα−1)ϕα−1/2

We recall that ϕα−1/2 = ϕ(rα−1/2) is the Superbee limiter and r is a measure of the smoothness of the tracer profile. Typically

the solution is expanded in a Taylor series about zα:

tex(z) = tα +
∂t

∂z

∣∣∣∣
α

(z− zα) +
1
2
∂2t

∂z2

∣∣∣∣
α

(z− zα)2 +
1
6
∂3t

∂z3

∣∣∣∣
α

(z− zα)3 +O((z− zα)4)

We consider a z-grid with uniform vertical grid spacing h. Note that, for a z-grid, the first layer cannot have the same thickness

as other layers but this makes the analysis more complex, so we restrict to equispaced internal layers. We replace the expanded

expression of the true solution into the definition (A4), see e.g. Nishikawa (2020). After some algebra, we get (only leading405

order diffusive terms shown):

LTEα =
1
2

((|wα| − (|w|ϕ)α))
∂2t

∂z2

∣∣∣∣
α

h+
1
6
|[w]| ∂

2t

∂z2

∣∣∣∣
α

h+O(h3)

where wα is the vertical velocity at the layer mid-point and [w]α−1/2
α+1/2 is the difference over the layer. We collect the diffusive

terms and replace the expression for the vertical velocity (A1):

Dnum
α =

1
2

(∣∣∣∣
∂u

∂x

∣∣∣∣((b+ zα)− ((b+ z)ϕ)α)
)
∂2t

∂z2

∣∣∣∣
α

h+
1
6

∣∣∣∣
∂u

∂x

∣∣∣∣
∂2t

∂z2

∣∣∣∣
α

h2 +O(h3)
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Finally using the upper bound (A2) and (b+ ζ)/H0 ≈ 1 we get:

Dnum
α ≤ 1−ϕα

2
AΩ

∂2t

∂z2

∣∣∣∣
α

h+
1
6
AΩ
H0

∂2t

∂z2

∣∣∣∣
α

h2 +O(h3) □

We perform here a simple experiment in a coastal environment (depth H0 = 50m and Ω = 2π
12.41hours ) with two smooth410

tracer profiles, an exponential one t(z) = t0 exp{−z/Λ} with small vertical derivatives (Λ = 100) and a hyperbolic tangent

t(z) = t0 +αtanh{(z+ z0)/Λ} which exhibits larger vertical derivatives at the surface (Λ = 2). We consider a constant tracer

diffusivity νtv = 5e− 5. In Figure A1 we compare the L2-norm of the two contributions, ||Dphy
α || and ||Dnum

α ||, the latter

divided in a diffusive and anti-diffusive contribution. Different tidal amplitudes and vertical resolutions are investigated. To

confirm the theoretical results we compute also the solution numerically with SHYFEM using the same vertical data and415

numerics of the analytical case. The numerical experiment has been carried out in a one-dimensional basin 21km long with

a mesh size of 50m and a time step of 120s. The numerical tracer profile is evaluated after 5 tidal periods. In Figure A1 the

z-coordinate numerical profiles are compared against the reference z-star numerical profiles.

For the exponential profile, in the top panel of Figure A1, both the theoretical and the experimental numerical mixing are

very small compared to the physical mixing. Only at large resolution and for large tidal amplitude does the numerical diffusion420

reaches the same order as the physical one and the profile starts to be slightly smeared out at the surface. Since the limiter is,

at all depths, close to one such a diffusive effect could be attributed, from our analysis, to the second-order term. The situation

changes for the hyperbolic tangent profile in the bottom panel of Figure A1. The limiter is active at the surface and introduces

first-order diffusion which, at low resolution, overtakes the physical diffusion making the profile very smeared out. At finer

resolutions the numerical mixing reduces and it becomes negligible for all tidal amplitude with h≤ 2.5m. At such resolutions425

the profile follows well the reference solution, although, for large tidal amplitudes, the anti-diffusive term is large and a small

overcompression of the profile can be observed at the surface.
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Figure A1. Smooth stratification experiment. Top: numerical mixing (normalized by physical mixing) for different tidal amplitudes. Bottom:

Numerical tracer profiles computed with SHYFEM for different tidal amplitude. From left to right: increasing vertical resolution, h = 5m,

h = 2.5m, h = 1m

24

https://doi.org/10.5194/gmd-2023-13
Preprint. Discussion started: 9 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Author contributions. L. Arpaia: Conceptualization, Methodology, Software, Validation, Writing, Formal analysis. C. Ferrarin: Conceptual-

ization, Methodology, Funding acquisition, Writing, Resources, Validation. M. Bajo: Methodology, Writing. G. Umgiesser: Conceptualiza-

tion, Methodology, Writing, Software.430

Competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgements. This work was partially supported by the project AdriaClim (Climate change information, monitoring and management

tools for adaptation strategies in Adriatic coastal areas; project ID 10252001) funded by the European Union under the V-A Interreg Italy-

Croatia CBC programme. All the developments presented have been implemented in the Finite Element Model for Coastal Seas SHYFEM435

(https://github.com/SHYFEM-model/shyfem) developed at the CNR-ISMAR. The corresponding author is very grateful to Debora Bellafiore

for its availability all along the implementation of the present work and to William McKiver for carefully reading the manuscript.

25

https://doi.org/10.5194/gmd-2023-13
Preprint. Discussion started: 9 February 2023
c© Author(s) 2023. CC BY 4.0 License.



References

Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models,

Ocean Modelling, 7, 269–284, 2004.440

Audusse, E., Bristeau, M.-O., Pelanti, M., and Sainte-Marie, J.: Approximation of the hydrostatic Navier-Stokes system for density stratified

flows by a multilayer model: Kinetic interpretation and numerical solution, J. Comput. Phys., 230, 3453–3478, 2011a.

Audusse, E., Bristeau, M.-O., Perthame, B., and Sainte-Marie, J.: A multilayer Saint-Venant system with mass exchanges for shallow water

flows. Derivation and numerical validation, ESAIM: Mathematical Modelling and Numerical Analysis, 45, 169–200, 2011b.

Backhaus, J. O.: A semi-implicit scheme for the shallow water equations for application to shelf sea modelling, Continental Shelf Research,445

2, 243–254, 1983.

Backhaus, J. O.: A three-dimensional model for the simulation of shelf sea dynamics., Dt. Hydrogr. Z., 38, 165–187, 1985.

Bonaventura, L., Fernandez-Nieto, E. D., Garres-Diaz, J., and Narbona-Reina, G.: Multilayer shallow water models with locally variable

number of layers and semi-implicit time discretization, J. Comput. Phys., 364, 209–234, 2018.

Buchard, H., Bolding, K., and Villareal, M. R.: GOTM, a General Ocean Turbulence Model. Theory, implementation and test cases, Tech.450

rep.

Burchard, H. and Baumert, H.: The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process

study, J. Phys. Oceanogr., 28, 309–321, 1998.

Burchard, H. and Petersen, O.: Hybridization between sigma- and z-coordinates for improving the internal pressure gradient calculation in

marine models with steep bottom slopes, Int. J. Numer Meth. Fl., 25, 1003–1023, 1997.455

Casulli, V. and Cheng, R.: Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Meth. Fluids, 15,

629–648, 1992.

Cheng, R., Casulli, V., and Gartner, J. W.: Tidal, Residual, Intertidal Mudflat (TRIM) model and its applications to San Francisco Bay,

California., Estuar., Coast. Shelf S., 36, 235–280, 1993.

Griffies, S., Pacanowski, R., Schmidt, M., and Balaji, V.: Tracer conservation with an explicit free-surface method for z-coordinate ocean460

models, Mon. Wea. Rev., 129, 1081–1098, 2001.

Guardone, A., Isola, D., and Quaranta, G.: Arbitrary lagrangian eulerian formulation for two-dimensional flows using dynamic meshes with

edge swapping, J. Comput. Phys., 230, 7706–7722, 2011.

Hirt, C., Amsden, A. A., and Cook, J. L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14,

227–253, 1974.465

Hordoir, R., Axell, L., Loptien, U., Dietze, H., and Kuznetsov, I.: Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea.,

Journal of Geophysical Research: Oceans, 120, 6653–6668, 2015.

Kleptsova, O., Stelling, G., and Pietrzak, D.: An accurate momentum advection scheme for a z-level coordinate models, Ocean Dynamics,

60, 1447–1461, 2010.

Klingbeil, K., Lemarié, F., Debreu, L., and Burchard, H.: The numerics of hydrostatic structured-grid coastal ocean models: state of the art470

and future perspectives, Ocean Model., 125, 80–105, 2018.

Kuzmin, D. and Turek, S.: Flux correction tools for finite elements, J. Comput. Phys., 175, 525–558, 2002.

LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.

26

https://doi.org/10.5194/gmd-2023-13
Preprint. Discussion started: 9 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Mellor, G., Hakkinen, S., Ezer, T., and Patchen, R.: A generalization of a sigma coordinate ocean model and an intercomparison of model

vertical grids, in: Ocean Forecasting: Conceptual Basis and Applications, edited by Pinardi, N. and Woods, J., pp. 55–72, Springer, New475

York, 2002.

Nishikawa, H.: A truncation error analysis of third-order MUSCL scheme for nonlinear conservation laws, Int J Numer Meth Fluids, 93,

1031–1052, 2020.

Oey, L.-Y.: A wetting and drying scheme for POM, Ocean Model., 2, 133–150, 2005.

Song, Y. T.: A general pressure gradient formulation for ocean models: scheme design and diagnostic analysis, Mon. Weather Rev., 126,480

3213–3230, 1998.

Umgiesser, G.: SHYFEM Finite Element Model for Coastal Seas - User Manual, Tech. rep., Oceanography, ISMAR-CNR Arsenale Tesa

104, Castello 2737/F 30122 Venezia, Italy, 2022.

Umgiesser, G., Canu, D. M., Cucco, A., and Solidoro, C.: A finite element model for the Venice Lagoon. Development, set up, calibration

and validation, Journal of Marine Systems, 51, 123–145, 2004.485

Warner, J., Defne, Z., Haas, K., and Arango, H.: A wetting and drying scheme for ROMS, Computers and Geosciences, 58, 54–61, 2013.

27

https://doi.org/10.5194/gmd-2023-13
Preprint. Discussion started: 9 February 2023
c© Author(s) 2023. CC BY 4.0 License.




