10

15

20

A flexible z-coordinate z —layers approach for the accurate
representation of free surface flows in a coastal ocean model
(SHYFEM v.7_5_71)

Luca Arpaia!, Christian Ferrarin', Marco Bajo', and Georg Umgiesser!?

nstitute of Marine Sciences, National Research Council, Castello 2737/F, 30122 Venice, Italy
2Klaipé:da University, Marine Research Institute, H.Manto 84, 92294 Klaipéda, Lituania

Correspondence: Luca Arpaia (luca.arpaia@ve.ismar.cnr.it)

Abstract. We propose a z-coordinate-algorithmfor-ocean-medels-discrete multilayer shallow water model based on z—layers

which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of
the vertical resolution. The algorithm is based on a classical two steps procedure used in numerical simulations with moving
boundaries (grid movement followed by a grid topology change, that is the insertion/removal of surface layers) which leads-to-a
stable-and-aceurate numerieal-diseretizationavoids the appearance of surface layers with very small or even negative thickness.
With ad-hoc treatment of advection terms at non-conformal edges that may appear due to insertion/removal operations, mass
conservation and tracer—eonstaneyare-preserved-the compatibility of the tracer equation with the continuity equation are
preserved at a discrete level. This algorithm, called z-surface-adaptivez —surface-adaptive, can be revertedreduced, as a particu-
lar case when all layers are moving, to etherz-surface-following-coordinates; such-asz-starorquasi-z—With-simple-analysis-the
z—star coordinate. With idealized and realistic numerical experiments, we compare the surface-adaptive-zcoordinate-agatnst
z-star-z —surface-adaptive against z—star and we show that it can be used to simulate effectively coastal flowswith-wetting-and

drying.

1 Introduction

The accuracy of ocean models in reproducing many dynamical processes is highly related to their vertical coordinate system.
In literature, many choices exist covering the spectrum of coordinate systems. There are four main types of vertical coordinates

which correspond to different vertical subdivisions of the fluid domain: 1) isopycnal eoerdinates-layers with the interfaces that
folow-the-materials-are material surfaces (Lagrangian framework); 2) z-coerdinates—z—layers with fixed interfaces parallel

to geo-potentials-geopotentials (Eulerian framework); 3) terrain/surface-following sigma-or-S-coordinates-g or s-layers with
interfaces adapted to the ocean surface and bottom boundaries; 4) adaptive coordinate with interfaces that dynamically adapt
to better capture different flow features (Lagrangian tendencies, stratification and shear). The last two eoordinates-types move
"arbitrarily" with respect to the flow, either to adapt to the free surface or any other features, and belong to the Arbitrary

Lagrangian Eulerian framework (ALE).
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Z-coordinates—z —layers were used in early ocean models -

z-coordinate-are-sti-and are nowadays implemented and used in some ocean models (HAMSOM, Backhaus, 1985), (TRIM-

3D, Cheng et al., 1993), (SHYFEM;-Umgiesser; 2022)-and-they (UNTRIM-3D, Casulli and Walters, 2000), (SHYFEM, Umgiesser, 2022

. They are attractive when simulating stratified-flows-as-in-Herdoiret-al(2615)strongly stratified flows (Hordoir et al., 2015)
and low frequency motions (Leclair and Madec, 2011). This occurs because the z-interfaces-isopycnals are well aligned to
isopyenals-and the z —interfaces or they slowly depart from them. At the same time, the truncation error of the internal pressure
gradient term doesnotsufferfrom-pressure-gradient-errorremains very weak.

A vertical discretization based on fixed interfaces is expected to have issues with the complex and moving boundaries

represented by the free surface and by the ocean bottom. In this manuscript, we focus on z—layers performances relative to
the treatment of the free surface boundary. To simplify the boundary condition at the free surface, z-coordinates-z—layers were

typically coded allowing the surface layer to vary in thickness (Griffies et al., 2001). However, in such models, the surface
layer cannot vanish, which implies that the free surface variation must be smaller than the surface layer thickness. For coastal
applications, this is a serious drawback, especially for the vertical resolution in shallow areas with high tidal elevations. In order
to overcome this problem, other z-type-z—type coordinates have been introduced over the years—Fhese-vertical-coordinates
use-the-AlE-transformation—_the are based on z—layers that move to accommodate the tidal oscillation, but the bottom is
not a coordinate surface (they are surface-following but not terrain-following). These coordinates are clearly of ALE-type

but in the ocean modelling literature they are classified as z—z because the deviation from the geo-petentials-geopotentials

is very small. They combine small diapycnal mixingand-smah-pressure-gradient-errors—The—z-star , specially for internal
tides computations, and small truncation error on the pressure gradient term, The 2—star of Adcroft and Campin (2004), the
guesi-z quasi—z of Mellor et al. (2002) and the Aybrid—=/s hybrid z /o of Burchard and Petersen (1997) all belong to such
surface-fottowingz—surface-following systems;see-Figure-2?. An alternative to deal with the moving surface is to keep the
vertical grid perfectly aligned to gee-potentialsgeopotentials, thus working in a truly Eulerian framework, but allowing the
surface layer(s) to be removed or inserted. We refer to this system as z-sutrface-adaptivez —surface-adaptive. Insertion/removal
of the top layer has been discussed in Casulli and Cheng (1992) and it is used for example in Burchard and Baumert (1998).
However "both the accuracy and stability are suspect; it is most likely difficult to make the transition of a vanishing layer
smooth enough to not generate numerical problems; conservation issues are a major concern and the likelihood of vanishing
layers become more frequent with increasing vertical resolution”" (Adcroft and Campin, 2004).

In this manuscript

valwe propose an algorithm for the z—surface adaptive
coordinate which goes beyond such limitations. We employ a classical grid adaptation strategy when the adaptation is driven

by a moving boundary (Guardone et al., 2011). It combines a first ALE grid movement step (surface interface displacement
stretched by the free surface displacement) and a second topology modification step (layer insertion, layer removal). All these

operations are easily performed on the one-dimensional vertical grid. If the water depth is positive, the thickness of the surface
layers remains positive, avoiding stability issues related to the appearance of small or even negative layers. We show that
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thisselution-generalizesz-coordinates-the mass is conserved. Also the discrete preservation of a constant tracer can be easil
accomplished, which guarantee a complete consistency at a discrete level of the tracer equation with the the continuity equation
as shown since the work of Lin and Rood (1996); Gross et al. (2002).

This solution generalizes z—layers in the sense that the same algorithm can be easily reverted—to—z-surface-follewing
eoordinatesreduced to z—star and can be added to a flexible vertical coordinate system. In fact, the grid adaptation has one

free parameter that controls the number of moving layers. Tuning such parameter, so that all the layers along the water column

are moving, we show the link of the proposed approach with the z-surface-foHowing-coordinates—

The algorithm is implemented in the SHYFEM finite-element ocean model of the CNR-ISMAR (Umgiesser et al. (2004),

https://github.com/SHYFEM-model/shyfem) which implements the multilayer shallow water equations with z and ¢ layers.

SHYFEM uses a popular choice for many coastal ocean models influenced by the work of Backhaus (1983), that is a semi-

implicit finite element discretization on unstructured B-type grids.

The manuscript is organized as follows: in Section 2 we introduce the vertical discretization -the-layerwise-Shallow—Water

ations;-and-we-discuss-the-spurious-mixing-effect-caused-by-a-barotropie-tideand the multilayer shallow water model. Three
different vertical discretizations are considered: the standard multilayer shallow water model based on o-layers, then the z—star

and the standard z-layers. In Section 3 we provide the semi-implicit finite element discretization of the multilayer equations.
In Section 4 we describe the z-surface-adaptive-z —surface-adaptive algorithm, in Section 3-5 we detail the issue of a spatially

variable number of surface layers caused by the insertion/removal operations. In Section 6 we provide numerical tests and in

Section 7 we conclude with a discussion.

2 FEayerwise-Shallow—-Water-Multilayer shallow water modelwith-z-ceordinate

We-consider-theJayerwise-We_start considering the multilayer (or layer integrated) shallow water model for stratified
flows diseussed-inBurchard-andPetersen- (1997 and-studied in Audusse-et-al{2044b)-Audusse et al. (2011a). Weuse-the
denotes the horizontal space variable. We consider the fluid domain €2
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where €)., is the projection of €2 onto the horizontal plane, ((x,%) is a function that represents the free-surface elevation and

right panel, the multilayer shallow water model is based on a discretization of the water-eotumn-domain {2} with a vertical grid
composed of N layers denoted by-greekletters-and-Q, with o = 1,.... N, ordered from the free surface {{z5¢)(a=-1rto the
bottombf{z)-{e—-), The layers are non-overlapping with © = (5, Qu. Each layer a-is-delimited-by-the-Q is delimited

laterally by the vertical domain boundary and in the vertical by the time dependent interfaces I’ t) defined by the set

of points of coordinates x.t). The free-surface T'S and the bottom interfaces I'° are described

respectively by the free-surface elevation z{,5o = ((«, ) and by the bathymetry function z = —zp(2x). In order to provide

the rules for such slicing of the domain, we define a reference domain which is constant in time, with space variables (z, s) € R?

such that:

Qoz{(w,s):weﬂm, —1§s§0}

and discretized by means of a vertical grid similarly composed of N layers, each denoted Q0. The reference layers are delimited
vertically by the fixed-in-time interfaces z@m.—”‘r“he%uffaeeﬂﬂé%eﬁeﬁrfo , which are placed at the vertical coordinate
iven by the function s . Such constants can be ordered:

S1/2 :0<82_1/2 <...<SN+1/2 =—1

Then the interface position can be obtained by mapping the reference interface I'° to the actual or physical interface

t). In general we assume that exists a function, forav =1, ...

A 1“3,1/2 —Tac1/2(t),  za—1/2=A(T,850-1/2,1) TEQy (D

To prescribe this function we use the generalized vertical coordinate transformation, see Mellor et al. (2002):

Za1f2 2@ F sac1p (C@) + 20(@)) @

which assures a surface and terrain-following grid that is limited by the interfaces arerespeetively 2 =—€and2yrro=—"b-

t) =T¢(t) and T =T'b. The reference and the
Figure 1. Using this transformation, the layer thickness can be deduced from the water depth, fora =1,..., N:

hysical domains with their vertical subdivisions are sketched in

ha@l) = Zaoyp(®) ~ Zar12(@0) ®
= Lazpsenp) H@h) =t @) @
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S1/28 1 > 212, ) P g
S141/2 : : z1+1/2($,t)§
Sa—1/2 ’—lf_rg—lﬂ_i_go za,l/z(z,t)g
Sa+1/2 @y E a za+1/2(z,t)i
[
I
SN—1/2 : i

where the coefficients [, = s,_1/9— S are prescribed after the creation of the reference grid. They are positive and the

iecewise constant approximation, on the vertical erid, of the

horizontal fluid velocity and of a generic tracer. Fora =1,..., N:
Za—1/2
1
. / u(x,z,t)dz %)

Za+1/2

= 1. The multilayer model is based on a

2

Za—1/2

hi / T(x,z,t)dz (6)
aza+1/2

2

The tracer for us will be the salinity. We assume that the fluid density depends on salinity through an equation of state of type

pa(@,t) = p(Ta(x,t)) @

We introduce the following notation for a generic function f(z):

— To express a function which is discontinuous at the interface, we use the same notation of Fernandez-Nieto et al. (2014

~

e = Uade e Joan= (o),

— if the function is continuous_

_ + — f- =
Lft/)i/—vlv/g = fa—1/2 “Ja—-1/2 f|Fa—1/2
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— the difference of the function between the upper and lower interface is

a—1/2
M wrp = JezyzZlany

Mass conservation reads:
N
8
= 4V- h =0 8
otV Bzzl pUs ®)

In this work we consider the multilayer shallow water model for stratified fluid with the Boussinesq assumption. Momentum
and tracer equations in the multilayer approach can be written foraa=1,...,N:

Ohauy B a—1/2 a—1/2
S50V (hatta ©Ua) = [uG] oy IV [K] B )
OhaT,

© 4V (haTaus) = [TG]

ot

TRh —

exchange between the layers, K .12 are the vertical viscous fluxes that model the shear stress between the layers, B models
the pressure force related to the buoyancy gradient. The system (8)(9) and (10) is implemented in the SHYFEM model, as well
as in many other ocean models (Burchard and Petersen, 1997; Klingbeil et al.. 2018). If IV is the number of vertical layers,
the equations are solved for 2V + 1 unknown variables, which are: the free surface elevation, the layer discharges ,u, and
the layer-integrated tracer hio T iate-d i inateti i

s Sam Red § S—d

aZthl/Q dza+1/2

Oa41/2 = o Wa41/2 = dt

The layer thickness is deduced from the water depth through equation (4). In the following we give the details of the SHYFEM
implementation of each term of the right-hand side.
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From the derivation of Fernandez-Nieto et al. (2014), the definition of the mass-transfer function is:

goiil/f (V'Zoc—l/2 ) ua) +0a-1/2— w$—1/2

2l

(vza—l/Q : uafl) tOa—1/2 =W, 19

with-e-with g1 /5 the velocity of the grid interfaceand-w-;

azafl/Q
Ta-1/2= 5

%the vertical fluid velocity at 2517 Fereachtayer-we-define-the tayer-thickness:

ha = Ra—1/2 — Ra+1/2

the interface. The vertical velocity is computed from the following relationships:

w;rq/z = Wayyjp—haV-ua and w, ,,= w271/2 +Vza_1/2- (o —Ua-1)

Y

(12)

(13)

Za—1/2

1
Uy = — udz
he
Za+1/2
which are evaluated starting from the bottom o = IV, ..., 1, where the no slip condition is imposed w =uyn-Vz. In

ractice and as it is standard in ocean models, the mass-transfer function is computed directly from the layer-integrated mass

equation

Ohg
Ga-172=Gay1/2+ o

" + V- (hauy)

+<Zhua> =0

Summing from N to « as:

Oh -
Ga- 1/2—GN+1/2+Z t"’+2v (hgug)
B=N B=N
Ohuy — Ohugug a=1/2 oC duia—1/2
= |uG — ghoa— + IPG, v
TR T i Lﬂ/z Ghag * + az}a+1/2

(14)

(15)
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which implies G'; /o = 0 or no mass loss at the free-surface. The vertical velocity at the interfaces w no more appears
in the system but it can be computed from the incompressibility condition (13) in a post-processing step. With a horizontal

velocity and tracer discontinuous at the interfaces, the vertical momentum flux in (9) is computed with a numerical flux. An
upwind flux is used in this study, for I',,_ 5 it reads:

185 Ga_l/gua_l/g = Gzil/Quoé + G;ﬁl/zuafl

The terms K ,_ and Kr ,_ are the vertical viscous and diffusive fluxes computed at the interface I',,_/5:
190 K, 1)2=va_1/2D:uq_1/2

KT,a—l/Q = VT,a—1/2DzTa—1/2

where v, _ /o is the vertical viscosity and vy o _ /o the vertical diffusivity. D, (-) is an approximation of the vertical derivative
in-the-diffusion—term—is—evaluated at the interface and resolved with finite differences. The definition-of-the-mass-transfer

195 Ga71/2: (02

Ua1/2> TO0a-1/2 = Wa-1/2
—1/2

vertical viscosity and diffusivity can be laminar or computed with a turbulent model. The bottom momentum flux is specified
with a quadratic formulation. Then, the viscous fluxes read:

Tw =0, a=1
K, 1= Va_l/Qﬁ, a=2,...,.N

Ty = —Crlunyluy, a=N+1

Ohy  Ohug

200 G 15 =G, S
1/2 +1/2 + ot + B

with Cr the bottom friction coefficient. Similarly the diffusive fluxes read:

0, a=1
KT,O(—I/QZ VT,&71/2%7 0422,...7N
0, a=N+1



205 Hhuga—=1A-—with no tracer fluxes through the free-surface and the bottom.

Oht,, Ohtuu@:{tG];lﬂ [ atu:|'al/2

b, o
ot Ox at+1/2 9z at1/2

Finally, the term B, represents the internal pressure gradient force. The layer-integrated pressure eradient term [~ ~Y/2 Vp(z) dz

210 instead of applying the Leibniz rule (Audusse et al., 2011a), it as been split into the external pressure gradient, related to the

free-surface slope, and the internal pressure gradient, related to the buoyancy gradient. The internal pressure gradient term is
written in the density Jacobian form of Song (1998):

B, =hob1V(+hg ZJ(55—1/2,25—1/2)h,3—1/2
p=1

where h is the distance between the layer centers, that is h

215 for § = 1. The summation over the layers corresponds to a vertical integration of the density Jacobian based on the piecewise

constant profile of the density with the quadrature points placed at the interfaces. The density Jacobian at the interface is:

If by = g2°—L% is the layer buoyancy, the buoyanc
=1vb, for S =1. The

220 approximation of the vertical derivative evaluated at the interface is resolved with finite differences. It is taken zero for the first
interface D, (bs_

a standard formula that can be found in Shchepetkin and McWilliams (2003) or in Klingbeil et al. (2018).

The tracer equation (10) admits a trivial solution which we want to inherit also at the discrete level, the so-called tracer

constancy condition—In-faetfor-constant-tracerty,——const: for a constant tracer, equation (10) reduces to the layerwise mass
225 equation (14). Fhis-is-alse-called-the-Geemetrie-Conservationaws{(G ondition-in-ALE compressible flow simulation

The importance of preserving this property at a discrete level has been discussed extensively in Gross et al. (2002).

For-a-standard-=-layer-model The system (8)(9) and (10) is similar to the one presented in Audusse et al. (2011a). They
differ for the more stringent Boussinesq assumption used here and for the expression of the pressure gradient term, written
with a pressure Jacobian form in the reference.

230 2.1 z—star

The multilayer model presented so far is based on vertical subdivision of the fluid domain through the surface/ terrain-followin
transformation (2) which leads to the coefficients [, given in (4). Other vertical subdivisions can be used leading to different
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Figure 2. Figure. One-dimensional sketch of the reference (left) and physical (right) domains for the multilayer shallow water model with
z-star layers.

coefficients that however, must verify both the positivity constraint and they have to sum to one. In the following we specify a
slicing of the domain with both these properties based on a vertical coordinate transformation called z—star (Adcroft and Campin, 2004)

235 . The reference domain, with vertical coordinate Z, is:

00 ={(x,2): w €, —2(x) < 2 <0}

This domain is discretized by means of a vertical grid composed of N layers, with interfaces ['° , which are aligned to the
eopotential. These interfaces can be described by constant functions:

21/2 =0< Z2_1/2 <. < ZN+1/2 = —maxzb(a:)

240 As shown in Figure 2, there is a substantial difference with the vertical subdivision of the terrain-following grid. The grid
interfaces could intersect the bathymetry and should be defined only in the fluid domain. We define the projection of the

interface I'° onto the horizontal plane as:
Qp.o= {w sk €y and — zp(x) < Za_l/g} (16)

If a layer is bounded laterally by the bathymetry interface we can denote this lateral land boundary of the layer as :
245 TV = {(w,Z) D Z=—z(@) and Zos1)y < Z < Doijo, TE Qm,a\Qm,aH}

Each layer Q0 results delimited on the upper and bottom side by I'° and laterally by the vertical domain boundary as
well as it could be delimited by I'® (see Figure 2, right panel). To map the reference interface I'V to the interfaces—do

J )

250 can use a generalized coordinate transformation, foravo =1,..., /V:

10



with S, _ /o a stretching function defined as:

7.
Sa71/2($) - 22

zp(x)

As in the previous Section, the layer thickness can be deduced from the total water depth. After some calculations we get:

255 M = za,l/g(m,t)—max(zaH/Q(w,t),—zb(:B))

= Goorpmmax(Zosyz —a@)) Hzt) Zla@H(@l), @€ 0% a8
If we define AZ,(x)=Z,,_1/0 —max (2 —zp(x)) we can rewrite the coefficients, for o« = 1, N
AZ,
la(gj):&’ mEQm,a
zp(x)

which is prescribed once the reference grid is created. The coefficient satisfy both the positivity constraint and locally they sum
260 toone.
An_important property of the z—star transformation is the that the horizontal domain €}, where the layer thickness
hy is defined, does not depend on time, as one can verify after computing the transformation (17) for Zo_1/2 = —z().
This is particularly helpful because the number of layers does not depend on time, and the coefficients too. Other z—layers
formulations based on similar mappings, such as the quasi—z layers (Mellor et al., 2002) or the hybrid z /¢ layers (Burchard and Petersen, 1
265 do not share this property. For these coordinates a special treatment of the bottom is necessary: either an ad hoc modification of
the bottom geometry or more interestingly these coordinates could be coupled with the porosity approach recently proposed by,
Debreu et al. (2020) where all the layers present in the computation. For z—star the bottom momentum and tracer fluxes must

be properly modified, replacing the maximum number of layers NV, with the local number of layers Ny(x) = {o : 7, <—zlx)< Z,_

270 2.2 z—layers

The z—layers are a particular case where the interfaces do not depend on time and space:
Za—1/2 = Za—1/2

This method is implemented in the ocean models by allowing the top layer to vary in thickness without vanishing (Griffies et al., 2001
. For the above transformation with fixed interfaces, the mass-transfer funetion-coineides-with-the-vertical-veloeity:

0
- =0, 0—(171/2:0 — Gufl/Q:*wafl/Q-, a=2,N+1

275 — =
ox a—1/2

function (eq. (14)) coincides with the vertical velocity:

Gao-1/2= Wy = _w;ll/z’ a=2,N+1

A-—elassical Eulertan-medel-in-the—vertical-is-obtained—Replacing the mass transfer function with the vertical velocity in the
multilayer model, we obtain the Eulerian model of Rambaud (2011).

11
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Figure 3. Grid and notation. Left: triangle /& with nodes and scaled normals. Middle: set D; with dual cell area C; and dual cell bounda;

0C;. The degrees of freedom are also shown: discharge M, tracer and free-surface with masked boxes in

brown, after the horizontal discretization.

2.3

3 Semi-implicit staggered finite element discretization

B i,

The discretization for both the z—star and the FVD-flux-readsheVeque, 2662y

|Ga71/2| Gafl/QAt
1—
2 A2’04—1/2

) (ta —ta—1)9

Ga71/2ta71/2 - G:_l/gtu + G;_l/gta—l +

zzlayers shallow water model can proceed in an equivalent fashion. We consider a discretization of the horizontal domain
Qg € R? composed by non-overlapping triangular elements. We denote the horizontal grid by 7" with K €7 the generic
triangle, | K| its area. The local reference element length is hx and it is computed as the minimum length of the triangle sides.
With 7 € T_we denote the nodes of the grid. When no confusion is generated, we will locally number as (j = 1,2,3 or j € K)
the nodes of the generic triangle. Given a node i in an element K, n/* denotes the inward vector normal to the edge of K
opposite to i, scaled by the length of the edge, see Figure 3, left panel. For every node of the triangulation, D; denotes the
subset of triangles containing i. The dual cell C; is obtained by joining the barycenters of the triangles in D; with the midpoints
of the edges meeting in i as illustrated in Figure 3, middle panel. Its area is

Cil =) @

KeD;

12
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delimited by the boundary 9C;. The edge of C; separating C; N K and C; N K has an exterior normal called nX | as illustrated

in Figure 3, left panel. As before it is scaled by the edge length. Moreover, due to the definition of the dual cell, we have:
K

K n;
>, nl=— (19)

JEK j#i

After the horizontal discretization, the domain results subdivided into prismatic boxes K X |z

zzlayers models apply a mask to non-existing land boxes that make the bathymetry stepped, as sketched in Figure 3, right
panel. The bottom layer for each element will be denoted as Nyc. For a staggered discretization it is helpful also to define a
nodal bottom layer IV; = maxep, Ny The projections of the interfaces onto the horizontal plane are still denoted as €0 o
and defined with (16), this time evaluated with the stepwise approximation of the bathymetry, Then a layer dual cell Cy; can
be defined by considering Dy, ; the subset of elements sharing node i and in (2. o Its area is

Cail = 32 B

KeD,;

On a B-staggered grid the free-surface elevation, the discharges and the tracers are described with basis functions of different
order and support. The discharge field and the tracer field belong to a finite dimensional space with basis composed by the
piecewise constant functions. For the discharges, the space has basis {15 } 7 composed by the characteristic functions on
the wiangle, while for the tracers we choose {¢; }ic7 composed by the characteristic functions on the dual cell. The discharge
fields g, = hauo and the tracers 7;, are approximated through (we use an abuse of notation employing the same symbol of

the continuous variable):

g, (@) = > tr(@)g, k(1) (20)
KeT

To(@,t) = Y i(x)Tailt) @1
€T

t), defined for o« = 1,.... Nk, being the elemental discharge values and with T, ;(¢), defined for a« = 1,.... N;, the

nodal tracer values. The free-surface belongs to a space of finite dimension with basis 1.7 which denotes the standard

13
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continuous piecewise linear Lagrange basis. The discrete free-surface is given by:

C(@,t) = pi(@)Gi(t) (22)

i€T

where he-untform-vertieal-erid-spacine—4-the-tidal-amplitude Q=2= 3 h
Unsurprisingly-—(;(t) are the nodal free-surface values. Note that the leading-order-term-is-a-discrete discharges and discrete
tracers are discontinuous respectively across the boundaries of the triangles and of the dual cells whereas the discrete free-surface
is globally continuous. On a B-grid the layers thickness is naturally computed at the grid nodes /i, where the free-surface is
available. The element values h, j are a conservative average of the nodal values. The element velocities are obtained from

Uy jg = AE

We obtain the weak formulation multiplying mass and momentum equations (8) and (9) by the test functions that belongs to

the same space of the solution and integrating it on the horizontal domain. The finite element discretization reduces to compute
the integrals accounting for the different terms. For the mass flux term, which is integrated by parts we need to compute with

a proper quadrature rule the following integral (only x—component shown):

-
i = vaz dx
K

The boundary term has been neglected since it cancels out except at the lateral domain boundary. Similarly, for the terms that

will be treated explicitly in the momentum equation namely the horizontal/vertical advection and the internal pressure gradient.
we have:

. /\ " a—1/2
i /qaua‘nds+/(Ba+ {UGLH/Q) da
K

o

0K

The horizontal advection term is resolved with a first-order upwind-diffusion—with-a—coefficient-that-depends—on-the-tidal

Ala th arm ero{h-== OF—-AVAR—O n d e a4

linear advection-veloeity, with a-coefficient that depends-onthe-upwind flux g, u, (Umgiesser et al., 2004). In order to write the
scheme in matrix form, exploiting the compactness of the staggered discretization, we introduce "vertical” vectors/matrix, that
pile-up all the layers for a single element &, and we denote them with bold capital letters. For example, the layer discharges
and the layers thickness are regrouped in the following vectors:

x Y
a K (il h1 k
Uk = Ao, Kk , Vi = 4o, K , Hg= ha,K
qNK,K qNK,K Nk, ,K
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and analogously the explicit terms:

I K ke
F‘f(: g,K 5 FZ;(: a,K
fK’K,K f}%K,K

The vertical viscous term is recast in matrix form via a ridiagonal matrix Aj € R, The bottom momentum flux has to
be integrated into this matrix. Note that all these vectors/matrix are restricted to non-masked boxes.

We build a semi-implicit time discretization, as it is standard for ocean models, by treating semi-implicitly the mass flux
and the free surface gradient in the momentum equation. The vertical viscous term can also cause a restrictive time-step and is
handled here implicitly without major computation issues but allowing to relax the CFEL condition. We define the variation of
aquantity in a time step as Au = u"*! —u”, then:

w0 = gu"t 4 (1 —0)u" = 0Au+u™
We consider different implicitness parameters for the mass fluxes (f.) and for the external pressure gradient (6,,). After

applying the previous definition into the semi-discrete equations, the semi-implicit momentum equations on an unstructured
B-grid read:

AUk = AUj—AMgAZ HG Y alibm Al (23)
JjeEK

AVg = AV —AtgA L Hy, Z a0 A (24)
JjEK

phyﬁea%diﬁuﬁeﬂ@;gﬂy%m@gﬁde endence of the external pressure gradient term from H x has been resolved by usin
the old value. Also the viscous matrix has been computed with frozen values at ¢t". In F'’ all the quantities are computed at
t", included the mass-transfer function. These choices avoid to solve a non-linear system at each time step. The magnitude

step with an explicit external pressure gradient:

AU = AtAg! (Ff(" +ALUY —gHYE Y a;”KC;-L) (25)
JjEK

AVi = AAR(FY+ A%V - gHR Y aly()) (26)
JjEK
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shoutd-be-discouraged—(23) and (24), are introduced into the discrete mass equation, we obtain a linear system with only the

>3 (mfg 4 0.0, At (afK1TA;<1H}; 0ty +al 1T A H agK)) A¢ =
KeD,; jeK

At Y (af AT (0.AU G + Ue) + aly 17 (0.AV e + Vi) (27)
KeD;

dx is the Galerkin mass matrix based on the piecewise linear Lagrange basis functions. The Galerkin

mass matrix, in SHYFEM, is lumped. The vector 1 € RV has all components being one.

4 £ Janti "

The hydrodynamic time step flow chart is thus the following: we first perform the Euler step (25) and (26). Then we resolve
the mass equation (27) and we complete momentum update with the semi-implicit step (23) and (24). Finally we compute
the layers thickness at the grid nodes. For a z—star we use the expression (18) at the grid nodes. For the z-layers, the layers
thickness does not change except for the first layer.

After the hydrodynamic update
of the previous paragraph, the discrete mass-transfer function is computed. We employ the same continuous piecewise linear
approximation used for the free-surface. The nodal values are computed from a finite-element mass-lumped discretization of

A P A alapmaan aqgonh h-lenoath—A

the eomputational-domain-{0;L-composed-by-a-sequence-of non-overlapping-intervals-o sFeach-w sth-Azr
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425

the-value-ofuattime+"-layerwise mass equation (14). As for the depth-integrated mass equation, the discharge is evaluated

semi-implicitly. Starting from the bottom with G%". . =0, fora = N;....,1:

Ahq, +6 +0
\Ca,iIGZﬂm = |Ca+1,i|GZi}/27i +|Coil A(Z’l - Z (afK Gore ~ +alal'y Z) (28)
KeEDau;

Note that the semi-implicit discretization ensures vertical mass-conservation. Summing up (28) for all the layers and using.
equation (27) with a lumped Galerkin mass-matrix to cancel the right-hand side, we get the impermeability condition at the
free-surface G-} = (. With standard z—la ers, the contribution related to the grid velocity is zero Ah
except for the first layer.

Sl ical] ] ned

3.2 Tracers

The semi-implicit update is completed with the time-stepping of the tracer. Vertical diffusion is treated implicitly and the
remaining advection terms are explicit. The spatial discretization of the the explicit terms implies the computation of the
following integrals which account for the horizontal and vertical advection terms:

_ a—1/2
fay = — / Taqa-nds—i-/ {TG} dx

a+1/2
9Ca,i Ca,i

where T, is an appropriate numerical tracer flux across the dual cell boundary. At the lateral boundary OS2 the tracer
flux is zero for land boundaries while it is determined by the set-ee={152;-N}-Foraz-grid-the number-of layers-varies-with

e o o adeepm—— A and-atelemen A p— A Mo donata ageoh lavar smtarfana
J—arrt S5 C1OCarry 2. d OGCSC7 s &y -1 Vyg ant—d S O — IETREEE v

%f%&&%ﬂx&&%hhyeﬁﬂﬁekmmﬁesﬁsﬂi%ﬂﬁ%eﬂﬁh&heﬂmﬂfhebounda conditions at the domain

boundary. In the discussion that follows we consider only nodes that do not lie on the domain boundary. On a triangular grid
the two terms read:

/T/aq\a-nds = > N TuganE= Y Y HuTuiTay) (29)

_ KeD, ; jeK j#i K€D, ; jEK j#i
9Cai

2

a—1/2
/ 76], % = 1CaslTari2Gaciyai = |CaralTustziCayisns (30)

/) being the numerical flux in the horizontal direction and 7, . the numerical flux in the vertical

direction, The SHYFEM model implements second-order consistent TVD fluxes in both directions.
Using the notation with bold capital letters denoting "verticalz-coordinate-diseretizations;" vectors, the domainis-subdivided

AR
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initial state grid movement layer collapse and final state
mov removal
\\ g O_top
Tlni ATH-H Tx
. o o,
: +1 n+
20 15 T35
1 N R 1
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® ® ®
initial state grid movement layer insertion final state
and expansion
> O,I,()[) \\
l\> T+l
1,i
e 7 =
o * nr
I I I
- y Y
A J A -
7

. The process is interpreted as four stages which bring from the pair (7"

Figure 4. Grid and tracer evolution during one time ste|

T+ n 1Y The vector T = Ti,T5} collects the layer values of the tracer. Dashed line means removed interface. Left: case of top layer
insertion. Right: case of top layer removal.

make-the-grid-stepped-—tracer values and the explicit term at the nodes are regrouped in the following:

T fi
Ti=| Toi |, Fi=| foui
TNq,,i fNi,iv

Vertical diffusion can also be assembled in matrix form through the discrete matrix A¢ € RN xNi Then, the discretization of
the layerwise tracer equation (10) read:

AT = Diag{|Colhl 3T} + AtF} (31)

the vertical tracer matrix. Although the advection terms are explicit, it should be

noted that the horizontal numerical flux are computed with the discharges evaluated at g3’ while the vertical numerical flux
the discrete tracer equation with the layerwise mass equation. In fact inserting a constant tracer in equation (31), yields exactly
the discrete layerwise mass equation (28). The proof is left in the Appendix.

To conclude, we summarize the whole time step flow chart: after the hydrodynamic update described in Section 3. we
compute the mass-transfer function (28) and, lastly, we update the tracers with (31).

4 z—surface-adaptive layers

In this section, we enhance the z—layers shallow water model by introducing a new algorithm that allows for the dynamic
insertion and removal of surface boxes or, with an abuse of language, of surface layers. To differentiate it from the standard
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450

455
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465

470

z—layers, we will refer to this enhanced version as z—surface-adaptive layers. The key idea is to interpret the area swept by the

layer interface in the time step At € [¢"™.t"T1) as the sum of two contributions: one due to the mesh movement driven by the

free surface oscillation (grid movement) and one due to the collapse/expansion of the layer (topology change). These topolo

changes in fact can be seen as a continuous deformation of the layer interfaces performed within the time step. With this in

mind, the final position of the interfaces at the grid nodes 2" +! Lt

. is the contribution of the

interface collapse/expansion, basically a correction term. Similarly, the grid velocity in the time step can be decomposed as:

sn+1

_ ZQ*1/2J B 22*1/2@ _ _mov top
Oa—1/2,i = At =0a-1/2,i T 0a_1/2,
n+1 _.n ~
mov _ Fa—1/2i  Fa—1/2,i top ALY,

Oa—1/2/i — Al v Oa-1/2 = At

In the solution of the multilayer shallow water equations we employ a splitting procedure, where the two aforementioned
contributions are treated in two steps. In a first step (grid movement) we solve the multilayer model on a vertical grid where the
surface layers adjust locally in order to maintain a positive thickness. In the subsequent step, we locally remove surface fluid
boxes with minimal thickness or split fluid boxes that are excessively thick. The evolution of the vertical grid and of the tracer
in one time step is shown in Figure 4. The top row shows the case of a layer removal and the bottom row the case of a layer
insertion. As a remark, we stress that the above interpretation of the interface displacement, reveals many beneficial aspects
with respect to a direct insertion and removal of a layer. Without the grid movement step, it would be more complicated to
time step the tracers on a grid with positive layer thickness, with all the related stability issues. In fact in the tracer update (24)
the layer thickness at " is needed. One may think to compute the tracer after the insertion/removal operations have been
performed (thus having positive layer thickness both at £ and ¢"*1), but then the configuration on which the discrete tracer
equation is solved is ambiguous and it seems hard to ensure the consistency with the continuity or to verify the tracer constancy.
property.

In the following we provide the technical details to realize such adaptation to the free-surface with the z-layers. First we
notice that, since the beginning of the simulation, the index of the surface layer may change spatially at the element boundaries.

0

Given the initial free-surface elevation x), we define a set of active indices and the surface layer index, by element, as:

. . 0 .
Agctive, K — {a Cax: Za+1/2 + €top < Hg}%( (SE)}7 Qtop, K = MM Agctive, K (32)
T

with o

. Due to the staggeering of the grid, it is convenient to define also at each node:

) 0 L
Agctive,i — {Oé S &7 Za+1/2 + €top < Cz }a Qtop,i = MIN Agetive,i (33)
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A\Oélwzwf =1 Quopit1 =2 1
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o = U 1—1/2 Thy
:
Q 2 uga—1y2 T Uzt
[ 2 —@,
i—1 ? 7 + 1 i+2

Qtopi—1/2 = 1 atop i+1/2 = 2

Figure 5. Gri - This one-dimensional

example shows the pﬁ%ﬁ%ﬁ%@)—%ﬁ%&%fy—{m—m}eeﬂea&m the ﬁyef%%ue&ef&geﬂeﬂc—}ayeﬁﬁsesea}af

vartable—Pashedtine-meansremoved-interfacez-surface-adaptive layers. Eeft-ease-of-top-Elemental surface layer insertion-Right-ease-of
top-indices are shown on the bottom, nodal surface layer remeovalindices are shown on the top.

A A A N N A A AN A A AN AN N A AN A A AN AN

. The parameter ¢,,,, is a small positive constant that fixes the minimum allowable depth for a top layer
to exist. Below this threshold the layer is removed. We have fixed it as €0 = 0.28Z4. It turns out that this parameter is quite
important since it avoids the presence of very small layers, for which the vertical diffusion matrix becomes ill-conditioned. In
Figure 5 we illustrate the spatial variation of the top layer index for a one-dimensional example.

4.1 Vertical grid movement

We restrieteitherto-explieit-orto-evolve the discrete multilayer shallow water equations with the semi-implicit &me«mafehmg

MMWM%WMMMWM
vectors/matrices are restricted to the layers with active index. Moreover, to account for the movement of the surface layerswith
the-followingsteps, the layer thickness is updated as follows:

— ldentifieation-of-the-layers—spanned-by-thefreesurface;-threugh-we identify the indices associated to the layers that

locally, undergo a deformation. They are defined as the layers of the reference grid whose top-interface finds above the
free-surface or by the set of indexes-indices:

A~~~

Ctmoni = {a€: 2 Z0 10+ emon > 171 (34)

€mov 15 @ small and positive constant that fixes-the-minimum-allowable-depth-for-atayer—we have added. Below this
threshold, the vertical grid movement is deployed. €r57—can-beused-to—control-the number-of-movinglayers—The
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As seen for €, it avoids the presence of ve
small layers that can be dangerous from a numerical point of view. The bottom-most layers-are-denoted-respeetively

490 rovTop T — movrlayer is denoted by NN, i = maxq ;- The depth of the

moving layers is:

bmou JiZmov,i — MaxX | Zq ,Bot, l+1/2ZNm0U i+1/25 7b Zb %

— Computation-of-thenew-depth-we compute the new layers thickness after a local grid deformation that absorbs the free

surface movement. We-To move the interfaces of the layers contained in the set, we use the generalized coordinates

495 whieh—-ata-diserete-Jeveltakes-transformation (1) which take the form:
1 1 1

Zn+ a+1/2ia+1/2,4 = an—i_ it Sa+1/2,ia+1/2,i (<i"+ it bmov,iw) (35)

SaFT72a= Z‘;:amp:i t5=Then, the nodal layer thickness reads:

hn+1ﬂa,i = la,i <Cin+1i + bmov,izmov,i> ) ac= Qtop,is ~~~7Nmov,i (36)
500 For the proportionality coefficients, we have u%eda—z-%t&ﬁdeﬁmﬁeﬂ—l——trled different definitions allowing a

bmov,i

smooth movement on the interfaces between the time steps, without experiencing any major impact on the results. For
simplicity we have thus implemented a z—star definition [, ; = 222 see Section (2).

eompleted:—Within-this-update-step; This is shown in Figure 4. first and second columns. The new layer thickness is used in

505 the update of the tracers, equation (31). We stress the fact that the vertical configuration is taken constantand-equat-to-erj5 e~
The-whole step-is-shown-in-Figure 4-topright-panel—, i.e. the number of layers at each element remain constant during the
timestepping of the the discharges and of the tracers.

4.2 Removal/Insertion of top layers

Then we perform the insertion/removal eftayers-operation based on:

510 — An ev

n+1 o n+1 o :
aactive,i — {Q/ Z{,(+1/2 + €top < C } Qtop,i = MIN Kgctive,i

and-atelements:-

n+1 o .0 : n+1/,. i .
&ctive, B — {CY . 4a+1/2 + €top < II%I)IUI‘ Ch (‘L)}v Utop, B = MIN Kgctive, E
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W&hweﬁawéWGQAﬂL ndex by re-evaluating (32) and (33) with the new free-surface elevation ntl We

n+1 +1

et the new top layer indices o and o) "

— Once we have identified the index that should be inserted/removed in the active set, we proceed with the collapse/expansion
of the surface boxes. A conservative remap step is necessary to pass the selution-obtained-in-the-grid-movement-step-on
agrid-with-tayers-eel ;7 -unknowns from the old vertical grid to the new grid-wi 241 —one.

activeIX

We use %ﬂthgvtivlggvfgjito distinguish a generic fayerwise-layer variable (the tracer in this case) remapped onto the
new grld from the solution time stepped on the old gnd u;"—%msemeﬂkeﬂml—epefaﬁefreaﬁbeﬂfﬁefpfefed-ﬁﬁ

T+, The remapped value is the solution of

the following advection equation in-a-pseade-time:-
0J U 7 00q

=0

or 0z

integrated on the layer thickness:
6haTa _ |:0-t°pj’v:| a—1/2

37
ot a+1/2 37)
with an upwind flux:
n+1 to n+1 to T mtl
Oa— 1/2Ta 1/2 = ( apl/Q) U +(O-ozf)1/2) o (33)

+1-We consider the discrete case;-. After integration on the dual cell and with a simple forward Euler time stepping (with initial

condition #2-=+"*1)and-upwind-flux-we-get: T2 1) we have:
~n+l Zn+1
Tn+l g4l _ n+l n+1 n+l a—1/2 o Fat1/2 a+1/2top n+1
h Qg;gTa,i =huh™ aa ZIa i +ATt ( 1/2 T Qat1/2:0-1/2,i" Oat1/2 = AT a+1/2,iTa+1/2,i
(39)
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In the case of an element removal (a%amw we identify the layer that should disappear and we
proceed with a collapse of the lower interface to the upper one. For the-existing-and-removedlayera = o), ,..... t1 equation
the discrete remap (39) with (38) reduces trivially to transfer the depth-integrated variable-tracer that belongs to the removed

layers to the upper active layer. In the case of an element insertion (a—é&— ntl <l ), we identify the layer that

top,E top,E
should appear and we expand the interface. Then th@mwwwreduces to distribute the depth-

integrated variable across the existing and inserted layers -

rrop - With-argp—with a weighted average. This is shown in Figure 4, third and fourth columns. All the unknowns must be
remapped. For the discharges, that are defined on the elements, (37) should be integrated on the element. This completes the
time step.

4.3 Connection to z-surface-followingeoordinatesz —star

The-vertical-coordinate-deseribed-sofaris—controHed-by—the-We have a small parameter ¢,,,, that-preseribes—the-number-of
movingsurfacelayersto fix. It is convenient to express this constant as a percentage of the z—layeﬁdepﬂa—&t—re%eww%

mov

z-surface-adaptive:—rmar<rrop<<treference layer thickness e = TmovAZ,. In order to obtain the z—surface-adaptive
rid we have chosen 7., < T't0p, I practice we have set r = 0.15. The grid deformation is localized to the free surface.
As long as elements-the surface fluid boxes are deformed, they are recognized as too small and immediately removed in the grid

topology step. This 1mp11es working, at the next time step, with &fm&z-gﬂd—%s&es&%heﬂﬂpeﬁ&ﬂeeef—ﬂﬁgﬂéﬁevemeﬂ{

and-it-seems-hard-to-verify-tracerconstaney-property—z —layers having all the interfaces aligned to the geopotentials.
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z-surf-adapt Z-star+z

Figure 6. The different vertical z-grids-grids outlined in Section 4.3.

Interestingly we can obtain other grids by increasing r . We define:

Cm.am - Z(y—1/2
75 R, = -t _“ocl/2 40
575 R Z. (40

with

= max((x,t) an estimate of the maximum free surface height during the simulation. We get:

s

mov IN

z—star if r > Ry and no insertion/removal. The whole water column is subjected to the grid
movement while the number of layers does not change. These are #-star-z—star coordinates, or any z-strface-foltowing
z—surface-following coordinates depending on which coefficients [, ; are plugged in equation (36).

ax(—2z° . . .
580 — Z-stary—star+z-ry—= - CAZ(?*] Zand-2 if 700 = Ry and no insertion/removal. The upper part of the water column,
at minimum <~/ layers, is subjected to the grid movement while the lower part is fixed. This-coerresponds-to-a-partially

Figure 6 shows a sketch of the different possibilities. Tuning properly 7,,,, we will compare the newly developed z—surface
adaptive layers against z—star.

585 5 Advection with spatially variable number of layers

We have used an approach where the grid topology does not change during the time step of the conserved variables, i.e. the
seheme-numerical scheme of Section 3 works on the deforming grid of Section 4.1, with a temporally constant number of layers
between t" and t"+!. However, in the previous time step, a layer insertion/removal may occur (to remove very thin surface
layers, or to split a thicker layer) on a certain element and not on its neighbors. This results in a grid-vertical discretization

590 with a spatially variable number of layers—H

the treatment of advection terms, see on this topic Bonaventura et al. (2018).

Consider the one dimensional example in Figure 7, where two contiguous elements with different top-layer index cvyop 511/2 >

Qitop,i—1/2 €Xist. In correspondence with node 7 a change of the element top layer index takes place. Borrowing the vocabula

24



Qpop,i = 1 Qpop,i =1 Qpop,i = 1

)

q1,i—-1/2 a=1 hii—1/2 a=1 w a=1

}
Q2,i-1/2 | 42,i+1/2 a=2 hyi-172 haiy1/2 a=2 T ; Toliyr a=2
i—1 i i+1 i—1 i i+1 i—1 i i+1
Qpopi1/2 =1 Quopivijz =2 Qopi-1/2 = 1 Quopiv1/2 =2 Qopi-1/2 = 1 Quopiv1/2 =2

Flgure 7. Freatment-ofnen-eonformal-Non-conformal box for the one-dimensional case. %Fep—leff—neﬂ-eeﬁfeFmaPNon conformal box —Tep

in grey.
sDischarges, layer thickness and tracers are

Qtop,i = 1
Qiop,i = 1

a=1

GQ—l/Q,i a=1
q2,i— B a=2

) e a=2

i—1 i i+1 i—1 i i+1
Qtop,i—1/2 = 1 Qtop,it1/2 =2 Qpop,i-1/2 = 1 Quopit1/2 =2

Figure 8. Treatment of non-conformal box for the one-dimensional case. Left: splitting with fictitious layers. Right: the mass-transfer function

G111/2,; at hanging point is represented by a red arrow.

595 from the literature on non conformal meshes, we have a non-conformal-vertical edge with twe-hanginglayers-which-slightly

FAAAARARRAARRARNAR AAAARAANRINAAARRAANANAARS A

sophisticate-the-treatment-of-advection—termsa hanging point. We call hanging layer, a layer for which at least one interface

ends with a hanging point. The boxes that have vertical edges across which the element top-layer index varies, deserve a special
treatment. In our case, with only insertion/removal of surface layers, we can easily flag boxes-that-deserve-a-special-treatment

such boxes by checking, for each element, that the nodal top layer index is different from the elemental one:-, The elements of

600 the grid with a non-conformal surface box are indicated by an asterisk:

if Qin, Emin, K < Qtop, Etop,K then EIS = Eil\{,\,

With Qpin. = Min e i 40y 5. Then the boxes called hereinafter for simplicity "non-conformal”

J op,J

can be 1dent1ﬁed by the pair of index—{ersp £ )—Sinee-horizontal-and-vertical-adveetion-termsfindices (ay, K*). Since

both mass and tracer fluxes need communication with the neighbors’ boxes, they have to be treated differently.
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605 Moreover, for the tracer discrete update, we have to take care of preserving the constancy property. The-key-ingredient

610

615

620

625

0p;
/ 7 htgndr = a; 41 /200 iv1)2

ox
A351’+1/2
i
Qi it+1/2 = or dx

A3%‘+1/2
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In case of a non-conformal box we proceed as follows. First;-we-We split the box vertically in evqp—¢amm—+Hfictitious

layers through planar interfaces passing through the hanging points of non-conformal edges and some fraction of the conformal

edge length, see Figure —top-right-panel—8, left panel. From this geometrical configuration we compute the element layers
thickness h} , for the fictitious layers. Then we distribute the momentum-discharge of the top layer among the fictitious

layers:, for o = au,y; e :
hua Eqa K — huatup E,E la EX = Qtop,Es -+ ¥min, Fa Kqﬂétop K, K (41)

. h* . . h,
% = o £ anlues are used to
complete both vertieal-and-herizontal-adveetion-mass and tracer fluxes for the missing layers of non-conformal boxes(see

Figure-22bottom-panels)—Withoutloss-of generality,we-. We consider the case of rede-+sharing-a non conformal right-bex

{2055 r72)-ashox (a .K) with node ¢ € K, as illustrated in one dimension in Figure 7. After the splitting (41),
the mass-flux term reads:-(only the x—component shown) reads, for & = oy i, ..., :

heyop 0B

X * _ Xk
/Axi+1/2lg%h/7¢a711 dﬁg]%glfl? =0k C a,iai,iJrl/Qh’U/atopJJrl/z,i+1/2@04top,i+1/2 Qatop, kK (42)
Amin, K
. Z l;f;’,K if a= Atop,i and Umin, K < Qltop,i
o =1 B=awop (43)
K otherwise (hanging layer)
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where the two cases account for the contribution of element i+1/2-to-beth-nedes—with-and-K to nodes with or without
655 hanging layers, respectively node 7 and 4 +1 in Figure 8. Such contribution from the non-conformal box is added to the

mass-flux term in the layerwise mass equation. It allows to compute the mass-transfer function at the hanging points G* 1

for o = @ i, ... as shown in Figure 8, right panel. One can check that this treatment is mass-conserving. Summing the

mass-transfer function for all the layers, even in presence of non-conformal boxes, still yields to the discrete mass equation
@7).

660 The horizontal advection scheme (29) on the non-conformal box can be applied straightforwardly to the fictitious layerswith

modified-coeffieientsfqr== ——5ka 577 Then, the adveetion—termnumerical flux in non-conformal boxes reads

a z+1/2 Qtop,i+1/250]"

AXmin,i+1/2

S 1 k tgx if 0 = op.; and Qi s < Qtopi
1/2Mtop iv1/2,t5 YB* .5 top,i min,i+1/2 top,i
fééz+1/2 B=atop,i J=i,i+1 Brit1/ v
(6%
* . .
> 7+1/2k:,mp i1y2rig ta* ) otherwise (hanging layer)

Jj=i,i+1

for o= yop iy eees Qop K-

Qmin, K

> i xHap (L0, Tpe 5) if & = avop,i And Qmin, kK < Qtop,i
665 H, = { (7owrs (44)
S K }AI%OPYK (T iy Tox ) otherwise (hanging layer)
Again we have separated the cases of a node with for without hanging layers. Note that the subscript {e* 5 ={max{aserep 57
m&mavmds selecting tracer values in removed layers Thesﬁlrﬁﬁﬂgﬂf—ﬁeﬁ-eeﬁfeﬁﬂal—bexes—&ﬁd—meeeﬂseqﬂeﬂ{

670 Appendix we show that, when a constant tracer is imposed, the horizontal tracer flux reduces to the mass-flax—term—alsofor

a-mass flux even in the case of a non-conformal bex-as:-

AXmin,i+1/2
Z lﬁi+1/2 Z 1kf¥top,1‘,+1/2,1] if @ = ap,; and Qmin,i+1/2 < Mtop,i
=1,1+

l*

o 7+1/2 Z 1]9%%#1/2,,,;]' otherwise
=i,i+

Through-the-definitions-andit-can-be-simplified-to+box. _

675 6 Numerical tests
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The tests have been run with implicitness parameters 6, = 6, = 0.5. We will check discrete mass-conservation at ¢"*1 b
computing the following relative volume error for the dual cell area, which results from the sum of (28) from N; to ayop it

n+1
i

*i+1/2 n+1 o 2 : ) Qtop,i n+1 n+l _ % ;
fa 7 z a zélj J=1,1+1 katng),i+l/27i.7 a=N; C |G € - (/a,ia’iaH”l/Qhuaz,(»p,rz,+1/23i+1/2max

a—1/2,4| ieT Qtop,i

T Y [Cail A,

Oé:Ni

which-is-the-diserete-mass-fluxfornon-conformal-bex—This-completes-To quantify the tracer constancy verificationerror, we

680 use the L' —norm:

Z'Ca ; hn+1 TnJrl —T0|

n+1 |Tn+1 | n+l _
Z|Ca i|h T

with 7} the initial tracer value.

7 Numerical tests

All the tests have been run with the ocean model SHYFEM which is based on the Finite Element procedure of Section ??applied

685

semi-imphieit-method-to-march-vartables-intime—, In the next paragraphs, we check the accuracy and conservation properties
of the z with insertion/removal and then we compare it against z—star for a realistic environment.

6.1 Impulsive Wave

690 As the first test, we check the accuracy of the z-surface-adaptive-coordinate—z—surface-adaptive layers with an increasing
vertical resolution. We use a closed basin {—5;5}{—5:5-[=5m, 5 m] x [-5m,5m] with constant depth &=-1z;, = 1m. The

basin is initially at rest and the free surface is perturbed by the following Gaussian hump:

((z,yz,t =0) = Aexp(—rz/r)

with A=1+/2,7=1/24=05m,7=0.5m? and r = \/W . A constant passive tracer is prescribed on the background

695 and such a constant state should be preserved along the simulation. The mesh has a uniform horizontal element size of
hr—=025hx = 0.25m. We compare different vertical resolutions with variable layer-thicknesseslayers thickness. The coars-
est grid has three layers: a first top layer with thickness of Azr=0-2AZ; = 0.2m, the second and the third layers have
thicknesses of Azy5==04AZy = AZ3 = 0.4m. The other vertical grids are obtained by halving each of these layers. The
finest grid has 24 layers with minimum layer thickness at the surface of A==0-025A7; = 0.025m.
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Without bottom/surface forcing, if the initial eurrents-are-constant-alongzvelocities are constant over the layers, they must
remain barotropic and equal to the depth-integrated eurrents-of-the-Shallew—Water-velocities of the shallow water equations

(1-layer case). Of course, this is not a property of the diseretez-coordinate-seheme-z —layers (but the scheme should converge
to a barotropic solution refining the resolution). It is however desirable that the results of 2d and 3d models are similar for
the typical resolution of an ocean simulation (Kleptsova et al., 2010). The 1-layer discrete solution is considered here as a
reference solution against which we compare our implementation of the z-layersz—layers. The coarse grid with 3-layer is
also used for comparison since the free surface is always-contained in the first layer and no insertion/removal is necessary.
For the 24-layer grid, up to six layers are progressively removed (and then re-inserted). In Figure ??, all resolutions show
a good agreement for both the water level and the barotropic eurrentvelocity. We can check some conservation properties
of the scheme. As usual for such an adaptation strategy, mass is conserved up to machine precision (SHYFEM is coded in

single-precision). This is what we check in Figure ??, left panel;-where-no-, With the exception of a small additional noise

associated to the insertion/removal operations, no significative source of mass error is present with respect to the 3-layer case.
i ' -ass 3 tOR-1S ' 3 ton-Tracer constancy, as expected, is also preserved up
to machine precision, Figure-see Figure ??, right panel.

6.2 1-d tidal flow in a sloping channel

Coastal applications include extensive intertidal flats. As with many ocean models, SHYFEM handles wetting and drying
processes in a simplified manner, applying ad-hoc treatments in dry cells. An extrapolation algorithm for the free surface is
used to track the shoreline and identify dry and wet regions. Then, the two regions are treated separately, see Umgiesser (2022)
for the details. The test that we propose, presented in Oey (2005), is a benchmark for wetting/drying algorithms used in ocean
models. The domain consists of a 1d sloping channel that ranges from #—=0km-z = 0 at the landward end to &=25km-2 = L
at the seaward boundary—Fhe-slope-of the-bathymetry-is-bla=10+/25%m}, with L = 25km. The bathymetry is represented

the following function z,(z) = —Hy/Lx and Hq = 10m. The horizontal mesh-size-is-element size is uniform and equal
to hg = 250m. A periodic water level is imposed at the seaward boundary ¢-=-+6{+—sin{+0wt}jas ((t) = A(1 —sin (271))

with amplitude A = 10m, period 7' = 1day and the time ¢ ranging from 0 to 0.5day. At the beginning of the simulation,
the channel is dry. Typically this test is run with 1-layer models (Warner et al., 2013). Here we use the 1-layer solution (1L)

as a reference and we test the 5-layer with surface-adaptation and the 5-layer with z-starz—star. In the SL z-surface-adaptive
z—surface-adaptive simulation, only one layer is present at the beginning of the simulation and then, as long as the free surface
is tilted by the boundary signal, more levels are inserted and then removed during the drying phase. Flooding is thus performed
with a 1-layer Shallow-Water-shallow water model with the classical wetting/drying algorithms that may be deployed in dry or
nearly dry areas (e.g. positivity limitation, momentam-discharge regularization, etc...). With z-star-z —star instead, such wetting
and drying algorithms are applied to all layers.

In Figure ?? we check the along-channel solution profiles. Despite the different manner of handling wetting/drying for
the SL z-surface-adaptive-z —surface-adaptive and SL z-star-z—star simulations, a quite good agreement is observed for the
free surface, while larger differences are found for the barotropic eurrent-velocity where both the 5-layers simulations appear
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noisier at the wet/dry interface. In Figure 2?2, left panel, we check volume conservation for this case which involves an uneven
735  bathymetry and wetting/drying. Although in correspondence of wet/dry nodes the relative volume error is much larger, we can
verify that the z—surface adaptive has the same level of relative error of z-star, which we accept to be within the round off

6.3 VenicelagoonPo delta idealized test

Here-we-We test the different z-coerdinates-z—layers in a realistic tageencoastal environment forced by the tidal oscillation-

740 he-Venice-LLagoon-is—characterized-by-a-complex-—systenmof shallow-areas-subjected-to-wet-dry-processes{the-average-basin

745 —: the Po delta. We study both the river plume

and the penetration of the salt water into the river branches. The numerical reproduction of such phenomena for numerical
models is a very delicate issue. Specifically, spurious numerical mixing related to the horizontal and vertical numerical fluxes,
the vertical grid and the time-stepping can destroy stratification and frontal characteristics, potentially modifying the plume
dynamics (Fofonova et al., 2021). In this discussion we solely focus on the impact of the vertical discretization: the resolution
750 at the surface and the comparison between the > —surface adaptive with fixed interfaces and z—star with moving interfaces.
The vertical eddy viscosity #7-and the vertical tracer eddy diffusivity #+-are computed with the turbulence module GOTM-Buchard-et-al
two more terms have been added to the multilayer shallow water model of Section 2: the Coriolis force which is timestepped
with an implicitness parameter of 0.5 and an horizontal diffusion term for the salinity equation, treated explicitly. The horizontal
755  viscosity is taken as the Smagorinsky eddy viscosity. The sea boundary is forced with a semi-diurnal tidal signal with ampli-
tude 0.4m and period 12 hours;sea-water-atF—=25>C-and-5—=-35P5U, The salinity at the sea boundary is constant and fixed
the Pontelagoscuro river boundary. The lagoon is initialized with eenstant-temperature7-=-25C-and-salinity-5=-30P5Ua
salinity equal to the boundary value of 38 PSU. The simulation lasts ten—¢aysone month, after which the salinity shows a
760  periodic behaviour modulated by the tidal cycle.

#The computational domain encompasses
the entire river network of the delta, stretching from Pontelagoscuro to the sea, including all delta lagoons, as well as a
portion of the adjacent shelf sea (Bellafiore et al., 2021). Horizontal resolution ranges from hy = 2km at the sea boundary,

765 o around hy = 100m in the inner shelf close to the lagoons and river branches, and to around hy = 50m in the inner delta

system. The horizontal grid, composed of 38884 nodes and 69364 elements, is in Figure ??. We consider two vertical res-
olutionssummerized-in-Table-22, one with NV = 24 layers and one with /N = 27 layers. The deeper part (from the bottom to
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—2mfrom-the-referencedevelZ = —1m) is equal for the two z-grids-grids and it is composed of 1+6-23 levels with vari-
able thicknesses ;—goingfrom-~Az=0-5from AZ = (0.5 near the surface up to Az=4m-at-40mAZy = 4m for the last
layer. The resolution of the upper part of the water column differs: the coarse grid has the-firstdayer-of-Azsr—=1m-followed
Mm%yewm—&fhideﬂes%ef—éﬂ—gﬁgggw%& This choice avoids the drying of the first layer.
InThe fine grid, in the upper part, thas 4 layers with
constant thickness, AZy = AZy, = AZ3z = AZ, = 0.25m. Three simulations have been performed: a coarse one with stan-
dard z-eoordinate (1922 —layers (24L z), a fine one with z-surface-adaptive-coordinate(24—z-surf-adaptz —surface-adaptive

layers (27L z—surf-adapt) and a fine one with z-star(24b-z-star)—z —star (27L z—star).
Given the fine vertical resolution and the tidal amplitude of 0.4 m, the 24Ez-surf-adapt27L z—surf-adapt simulation should

undergo extensive elementinsertion/removal of the surface fluid boxes. In the right picture of Figure 22-2? we have reported the

time evolution of the number of elements-boxes inserted and removed during two tidal periods. Mere-than150-surface-elements

Almost 4000 surface boxes happened to be inserted or removed in a single time step. As it is customary we have reported mass

conservation and tracer constancy error in Figure ??. These figures are referred to a shorter simulation that lasted 4 days with
a constant salinity obtained by imposing the river salinity equal to the interior one. }n%gufelw&ﬂw%he#ee%ufﬁac—e

Adways-To diagnose the river plume we look to the minimum surface salinity during the simulation. From Figure 22, it is
clear that both the fine grids simulations allow a stronger gravitational circulation with a more extended freshwater plume.
Also, the opposite bottom circulation penetrates more upstream, with stronger salinity recorded at the stations G2 and G8-we
MW@WM%H%%@%WJn Figure IL%h&%P&eerfeﬁ}eﬂSﬁmsﬂweH-ﬁﬂ*eek

extracted a section of the salinity field in the Pila branch when saltwater reaches the maximum extent, during a flood tide. This
gmmmmmmww&%mme %mwﬂmﬁhwwgmﬁwﬂ&y&weﬁemp%

surface-oseillation—is—small—differences between the z—surface adaptive and z—star grids are clearly visible. The z-surface
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adaptive simulation exhibits a stronger plume and and a more extended salt wedge as well as a more sharper surface structure.

A possible explanation could be related to the fact that, due to the strong internal motion, the vertical velocity is not in phase with the time
805

All the tests have been accomplished with a serial run. We report the CPU time of the three-serial simulations which have
been run on a modern workstation with a AMD EPYC 7643 Processor : 7099-s-(195-2);—12227-2073005 s (24L z-star);
13261z —star), 1998969 s (24L z-surf-adaptz—surf-adapt) showing an overhead of around 83.6% for the insertion/removal

operations. Although we have not covered parallel implementation aspects, we mention that the algorithm (grid movement,

810 insertion/removal) mainly operates on the vertical grid, and the parallel execution of these tasks should not encounter any
issues. The stencil of the numerical scheme is not enlarged with respect to the standard method. However some variables
have been introduced only for the insertion/removal operations. This is the case of the nodal top layer index which must be
exchanged between the domains.

7 Conclusions

815 In this work, we have reviewed-studied the performances of geo-potential-eoordinates multilayer shallow water models based on
z—layers for the simulation of free surface coastal flows. We have investigated a well-known issue of geo-potential-coordinates

z—layers when incorporating the free surface: the limitation on the resolution of the surface layer thickness. We have proposed

a flexible algorithm based on a vertical adaptation to the tidal oscillation called z-surface-adaptivez —surface-adaptive. With a

dynamic insertion and removal of surface layers, the grid (at least the internal interfaces) is atways-aligned-to-geo-potentiataligned
820 to geopotential, canceling the pressure gradient error. Thanks to a two-step procedure (vertical grid movement of surface layers

followed by the insertion/removal operations),

sehemewe have been able to evolve the multilayer model on a grid with a temporally constant number of layers in the time
step which allowed a simple implementation. Moreover this leads to a consistency, at a discrete level, of the tracer equation
with the continuity equation as well as to a simple verification of mass-conservation. As a particular case, the algorithm can be

825 S -such-as starreduced to the popular z—star.
Without the limitation on the surface resolution, we have been able to compare the z-coordinate-z —layers with insertion/re-

moval (surface-adaptive) against z-star-z —star for typical coastal applications of semi-enclosed shallow seas with a tidal signal

imposed at the openings and wetting/drying at intertidal flats. The comparison has been carried out with numerieal-experiments

idealized and realistic numerical experiments. We shows that z—surface-adaptive layers can be used to simulate wetting and
830 drying and without a significant loss of accuracy with respect to z-star. We found that z-layers and simple-analysis—Inparticutar;

differences when simulating large, low frequency internal motions combined with a barotropic tide, such as the gravitational
835 circulation in the Po Delta. These differences deserve further attention. We speculate that for such cases, keeping z-layers ma

33



840

845

850

855

860

be convenient to reduce truncation errors in the computation of both the internal pressure gradient term and of the vertical
advections terms.

We conclude mentioning that the overhead related to insertion/removal operation should be further assessed in realistic
applications. With the actual implementation of the z-surface adaptive layers, we have found-that; for micro-tidat ranges-and

experienced some stability issue in the computation of the tracers. This occurred for non-conformal boxes undergoin,
wetting/drying and it is under current investigation. We are trying a simpler treatment of the non-conformal surface boxes
as in Bonaventura et al. (2018).

Code and data availability. The SHYFEM hydrodynamic model is open source (GNU General Public License as published by the Free
Software Foundation) and freely available through GitHub at https:/github.com/SHYFEM-model. The current developments have been
implemented in a branch of the SHYFEM code that can be accessed from Zenodo (Arpaia, 2023, https://doi.org/10.5281/zenodo.8147444).

Configuration files and data used to run each test case are also available at the same Zenodo repository.

Appendix A: Numerieabmixing-induced-by-a-tidaHlowTracer constancy

Ju
ox

1

|| A
-

ot|~ H,

We start with the case without non-conformal boxes. We impose a constant tracer vector 7'; = 1 in the discrete tracer equation

(31). Each row reduces to:

‘Ca,i|h2,t1 = [Cuilhg; +Atfy,
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LTE, =0
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outs® 1 [ fex} a=1/2

a+1/2

n-+0

Using, first, the numerical flux consistenc H,(1,1)= = . nX and then the relationship between the element normals and

the dual cell ones (19);_

~ nK
Z Z H, (1,1) Z Z qZJer . Z qn+0 i

2

K€Da; jEK,j#i KeDai jEK,j#i K€Dai
o x z,n+0, y,n+0,
= = § (quaK +aquozK

KEDqu;

Sinee-In the last step we have used the fay

Owter a—1/2
T, = vt 1 {wtw}

0z ha at1/2

;, the horizontal

iecewise linear basis functions we have - . For each element in the subset D,

fact the for
tracer flux has been reduced to the mass flux. We can write the discrete tracer update:

Ahoc i
_ § T z,n+6, y,n+0. n+1
‘C& l| = ( ZanK +a’quocK ) +|C’11i|Ga71/21 |C°‘+1Z|Goc+1/2z

mass equation (28).
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In case of a non-conformal box, we have to show that the modified horizontal tracer fluxes still reduces to the mass-fluxes.
According to (44), the horizontal tracer fluxes in non-conformal boxes should be computed with:

|wo¢—1/2|

2 (ta_tafl)gbafl/Q

Wa—1/2la—1/2 = w:,1/2ta + w(zfl/gtafl +

Amin, K

{ z ZE,K ﬁampyK (TB*,i>TB*,j) ifa= Qltop.i and Umin, K < Qtop,i
7 _ B:atop,i
oK ﬁawp,x (Ta= i, Tax ) otherwise (hanging layer)
which, in case of a constant tracer, can be rewritten for & = v 5, ... Q¢ :
1 /|0u 0%t 1|0u| 0%t -
prum — — -7 b o) — b o _— — | —= h2 Ohd
wen =2 (|52 o+ ((”)¢>'))az2a 5|55 52| 2 +ou)

. _ bound-and-(b—)/Hy - 1we-set:

1—¢q 0%t 1 AQ 0%t
AQ — - —
2 (922 h+ 6 H() 822

Dnum < RE4+0(r*) O

[e3

[e3

ﬁa = Cz,iﬁamp,K (17 1)
and thus:

% Iy _ z xn+0, Yy yntb.
E Coilog, (L,1)= Cai (aiK Dorop. 1, K T i Qarop 1, K
JEK,j#i
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is enough to verify that with a constant solution it reduces to:

Tn+l __pn+l top top
ii%,\i/v;ba,i + At (Ua—l/Q,i - ch+1/2,i)

. e grtl gt .
which, thanks to the definition provided in Section 4.2 of grid velocity ¢ °P, . = —o=l/2i "o 1/2:i a5 Jayer thickness

_ Eﬂ+1 ] n+1

930 Nl = 20T s s 2 o i an identity.
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