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2Klaipėda University, Marine Research Institute, H.Manto 84, 92294 Klaipėda, Lituania
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Abstract. We propose a z-coordinate algorithm for ocean models
::::::
discrete

:::::::::
multilayer

:::::::
shallow

:::::
water

:::::
model

:::::
based

:::
on

::::::::
z−layers

which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of

the vertical resolution. The algorithm is based on a classical two steps procedure used in numerical simulations with moving

boundaries (grid movement followed by a grid topology change, that is
::
the insertion/removal of surface layers) which leads to a

stable and accurate numerical discretization
:::::
avoids

:::
the

:::::::::
appearance

:::
of

::::::
surface

:::::
layers

::::
with

::::
very

:::::
small

::
or

::::
even

:::::::
negative

::::::::
thickness.5

With ad-hoc treatment of advection terms at non-conformal edges that may appear due to insertion/removal operations, mass

conservation and tracer constancy are preserved
::
the

::::::::::::
compatibility

::
of

:::
the

::::::
tracer

:::::::
equation

:::::
with

:::
the

:::::::::
continuity

:::::::
equation

::::
are

::::::::
preserved

::
at

:
a
:::::::
discrete

::::
level. This algorithm, called z-surface-adaptive

::::::::::::::::
z−surface-adaptive, can be reverted

::::::
reduced, as a particu-

lar case when all layers are moving, to other z-surface-following coordinates, such as z-star or quasi-z. With simple analysis
:::
the

:::::
z−star

::::::::::
coordinate.

::::
With

::::::::
idealized

:
and realistic numerical experiments, we compare the surface-adaptive-z coordinate against10

z-star
::::::::::::::::
z−surface-adaptive

::::::
against

::::::
z−star and we show that it can be used to simulate effectively coastal flowswith wetting and

drying.

1 Introduction

The accuracy of ocean models in reproducing many dynamical processes is highly related to their vertical coordinate system.

In literature, many choices exist covering the spectrum of coordinate systems. There are four main types of vertical coordinates15

:::::
which

:::::::::
correspond

::
to

::::::::
different

::::::
vertical

:::::::::::
subdivisions

::
of

:::
the

::::
fluid

::::::
domain: 1) isopycnal coordinates

:::::
layers

:
with the interfaces that

follow the materials
::
are

::::::::
material

:::::::
surfaces

:
(Lagrangian framework); 2) z-coordinates

::::::::
z−layers with fixed interfaces parallel

to geo-potentials
:::::::::::
geopotentials (Eulerian framework); 3) terrain/surface-following sigma or S-coordinates

:
σ
:::
or

:::::::
s-layers with

interfaces adapted to the ocean surface and bottom boundaries; 4) adaptive coordinate with interfaces that dynamically adapt

to better capture different flow features (Lagrangian tendencies, stratification and shear). The last two coordinates
::::
types move20

"arbitrarily" with respect to the flow, either to adapt to the free surface or any other features, and belong to the Arbitrary

Lagrangian Eulerian framework (ALE).
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Z-coordinates
:::::::
z−layers

:
were used in early ocean models . Such discretization based on fixed interfaces has issues with

the complex and moving boundaries represented by the free surface and by the ocean bottom. Despite this disadvantage,

z-coordinate are still
:::
and

:::
are

::::::::
nowadays

:
implemented and used in some ocean models (HAMSOM, Backhaus, 1985), (TRIM-25

3D, Cheng et al., 1993), (SHYFEM, Umgiesser, 2022) and they
::::::::::::::::::::::::::::::::::
(UNTRIM-3D, Casulli and Walters, 2000),

:::::::::::::::::::::::::
(SHYFEM, Umgiesser, 2022)

:
.
::::
They

:
are attractive when simulating stratified flows as in Hordoir et al. (2015)

::::::
strongly

::::::::
stratified

:::::
flows

::::::::::::::::::
(Hordoir et al., 2015)

:::
and

::::
low

::::::::
frequency

:::::::
motions

::::::::::::::::::::::
(Leclair and Madec, 2011). This occurs because the z-interfaces

:::::::::
isopycnals are well aligned to

isopycnals and
:::
the

::::::::::
z−interfaces

:::
or

:::
they

::::::
slowly

::::::
depart

::::
from

:::::
them.

::
At

:::
the

:::::
same

::::
time,

:::
the

:::::::::
truncation

::::
error

::
of

:
the internal pressure

gradient term does not suffer from pressure gradient error
::::::
remains

::::
very

:::::
weak.30

:
A
:::::::

vertical
::::::::::::
discretization

:::::
based

:::
on

:::::
fixed

::::::::
interfaces

::
is
::::::::

expected
::
to
:::::

have
:::::
issues

:::::
with

:::
the

::::::::
complex

:::
and

:::::::
moving

::::::::::
boundaries

:::::::::
represented

:::
by

:::
the

::::
free

::::::
surface

:::
and

:::
by

:::
the

:::::
ocean

:::::::
bottom.

:::
In

:::
this

::::::::::
manuscript,

:::
we

:::::
focus

:::
on

::::::::
z−layers

:::::::::::
performances

:::::::
relative

::
to

::
the

::::::::
treatment

:::
of

::
the

::::
free

::::::
surface

:::::::::
boundary. To simplify the boundary condition at the free surface, z-coordinates

:::::::
z−layers

:
were

typically coded allowing the surface layer to vary in thickness (Griffies et al., 2001). However, in such models, the surface

layer cannot vanish, which implies that the free surface variation must be smaller than the surface layer thickness. For coastal35

applications, this is a serious drawback, especially for the vertical resolution in shallow areas with high tidal elevations. In order

to overcome this problem, other z-type
::::::
z−type

:
coordinates have been introduced over the years. These vertical coordinates

use the ALE transformation :
:::
the

:::
are

::::::
based

::
on

::::::::
z−layers

::::
that

:::::
move

:
to accommodate the tidal oscillation, but the bottom is

not a coordinate surface (they are surface-following but not terrain-following). These coordinates are clearly of ALE-type

but in the ocean modelling literature they are classified as z
:
z
:
because the deviation from the geo-potentials

:::::::::::
geopotentials40

is very small. They combine small diapycnal mixingand small pressure gradient errors. The z-star
:
,
::::::::
specially

:::
for

:::::::
internal

::::
tides

::::::::::::
computations,

:::
and

:::::
small

:::::::::
truncation

::::
error

:::
on

:::
the

:::::::
pressure

:::::::
gradient

:::::
term.

::::
The

::::::
z−star of Adcroft and Campin (2004), the

quasi-z
:::::::
quasi−z

:
of Mellor et al. (2002) and the hybrid z/s

:::::
hybrid

::::
z/σ of Burchard and Petersen (1997) all belong to such

z-surface-following
::::::::::::::::
z−surface-following system, see Figure ??. An alternative to deal with the moving surface is to keep the

::::::
vertical

:
grid perfectly aligned to geo-potentials

::::::::::
geopotentials, thus working in a truly Eulerian framework, but allowing the45

surface layer(s) to be removed or inserted. We refer to this system as z-surface-adaptive
::::::::::::::::
z−surface-adaptive. Insertion/removal

of the top layer has been discussed in Casulli and Cheng (1992) and it is used for example in Burchard and Baumert (1998).

However "both the accuracy and stability are suspect; it is most likely difficult to make the transition of a vanishing layer

smooth enough to not generate numerical problems; conservation issues are a major concern and the likelihood of vanishing

layers become more frequent with increasing vertical resolution" (Adcroft and Campin, 2004).50

In this manuscript , we review z-coordinate performances relative to the treatment of the free surface boundary. We propose

a solution to the stability and conservation issues for the insertion/removal
:::
we

::::::
propose

:::
an

::::::::
algorithm

:::
for

:::
the

:::::::::
z−surface

:::::::
adaptive

::::::::
coordinate

::::::
which

::::
goes

:::::::
beyond

::::
such

:::::::::
limitations. We employ a classical grid adaptation strategy when the adaptation is driven

by a moving boundary (Guardone et al., 2011). It combines a first ALE grid movement step (surface interface displacement

stretched by the free surface displacement) and a second topology modification step (layer insertion, layer removal). All these55

operations are easily performed on the one-dimensional vertical grid.
:
If

:::
the

:::::
water

:::::
depth

:
is
::::::::
positive,

:::
the

:::::::
thickness

:::
of

::
the

:::::::
surface

:::::
layers

:::::::
remains

:::::::
positive,

::::::::
avoiding

:::::::
stability

::::::
issues

::::::
related

::
to

:::
the

::::::::::
appearance

::
of

::::::
small

::
or

::::
even

::::::::
negative

::::::
layers. We show that
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this solution generalizes z-coordinates
:::
the

::::
mass

::
is
:::::::::
conserved.

:::::
Also

:::
the

::::::
discrete

:::::::::::
preservation

::
of

:
a
::::::::
constant

:::::
tracer

:::
can

:::
be

:::::
easily

:::::::::::
accomplished,

::::::
which

::::::::
guarantee

:
a
::::::::
complete

::::::::::
consistency

::
at

:
a
:::::::
discrete

::::
level

::
of

:::
the

:::::
tracer

:::::::
equation

::::
with

:::
the

:::
the

::::::::
continuity

::::::::
equation

::
as

:::::
shown

:::::
since

:::
the

::::
work

:::
of

:::::::::::::::::::::::::::::::::
Lin and Rood (1996); Gross et al. (2002).

:
60

::::
This

:::::::
solution

::::::::::
generalizes

::::::::
z−layers

:
in the sense that the same algorithm can be easily reverted to z-surface-following

coordinates
::::::
reduced

::
to

::::::
z−star

:
and can be added to a flexible vertical coordinate system. In fact, the grid adaptation has one

free parameter that controls the number of moving layers. Tuning such parameter, so that all the layers along the water column

are moving, we show the link of the proposed approach with the z-surface-following coordinates.

Finally, we look at a second potential drawback of using fixed interfaces with a free surface. The large vertical velocity65

triggered by the free surface oscillation can cause strong numerical mixing with respect to the surface-following coordinates (Klingbeil et al., 2018)

. We quantify such additional spurious mixing of z-coordinates theoretically and numerically and we highlight the dependencies

from the external forcing (tidal characteristics, stratification profile) and the numerics (vertical advection scheme, vertical grid

size).
::::::
z−star.

The algorithm is implemented in the SHYFEM finite-element ocean model of the CNR-ISMAR (Umgiesser et al. (2004),70

https://github.com/SHYFEM-model/shyfem) which
:::::::::
implements

::::
the

::::::::
multilayer

:::::::
shallow

:::::
water

:::::::::
equations

::::
with

:
z
::::

and
::
σ

::::::
layers.

::::::::
SHYFEM

:
uses a popular choice for many coastal ocean models influenced by the work of Backhaus (1983), that is a semi-

implicit finite element discretization on unstructured B-type grids.

The manuscript is organized as follows: in Section 2 we introduce the vertical discretization , the layerwise Shallow Water

equations, and we discuss the spurious mixing effect caused by a barotropic tide
:::
and

::
the

:::::::::
multilayer

:::::::
shallow

:::::
water

::::::
model.

:::::
Three75

:::::::
different

::::::
vertical

::::::::::::
discretizations

:::
are

::::::::::
considered:

:::
the

:::::::
standard

::::::::
multilayer

:::::::
shallow

:::::
water

:::::
model

:::::
based

:::
on

:::::::
σ-layers,

::::
then

:::
the

::::::
z−star

:::
and

:::
the

:::::::
standard

::::::::
z-layers.

::
In

:::::::
Section

:
3
:::
we

:::::::
provide

:::
the

:::::::::::
semi-implicit

:::::
finite

:::::::
element

:::::::::::
discretization

::
of

:::
the

:::::::::
multilayer

::::::::
equations.

In Section 4 we describe the z-surface-adaptive
::::::::::::::::
z−surface-adaptive

:
algorithm, in Section 3

:
5 we detail the issue of a spatially

variable number of surface layers caused by the insertion/removal operations. In Section 6 we provide numerical tests and in

Section 7 we conclude with a discussion.80

2 Layerwise Shallow Water
:::::::::
Multilayer

:::::::
shallow

::::::
water modelwith z-coordinate

One dimensional sketch of different vertical z-grids existing in the literature. From left to right: standard z with fewer layers

due to the limitation for the surface layer thickness, z-star, quasi-z, hybrid z/sigma

We consider the layerwise
::
We

:::::
start

::::::::::
considering

:::
the

:::::::::
multilayer

:
(or layer integrated) shallow water model for stratified

flows discussed in Burchard and Petersen (1997) and studied in Audusse et al. (2011b), Audusse et al. (2011a). We use the85

one-dimensional case to present the main concepts. The layerwise
:::
The

:::::
space

:::::::
variable

::
is

::::::::::
(x,z) ∈ R3

::::
with

:::::::::::::
x= (x,y) ∈ R2

::::
that

::::::
denotes

:::
the

:::::::::
horizontal

:::::
space

:::::::
variable.

:::
We

:::::::
consider

:::
the

:::::
fluid

::::::
domain

:::
Ω:

Ω=
{
(x,z) : x ∈ Ωx, −zb(x)≤ z ≤ ζ(x, t)

}
:::::::::::::::::::::::::::::::::::::
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:::::
where

:::
Ωx::

is
:::
the

:::::::::
projection

::
of

::
Ω

::::
onto

:::
the

:::::::::
horizontal

:::::
plane,

::::::
ζ(x, t)

::
is
::
a
:::::::
function

::::
that

::::::::
represents

:::
the

::::::::::
free-surface

::::::::
elevation

::::
and

:::::
zb(x) :

is
:::

the
::::::::::

bathymetry
::::
that

::::
does

:::
not

::::::
depend

:::
on

::::
time.

::::
The

:::::
water

:::::
depth

::
is

::::::::::::::::::::::
H(x, t) = ζ(x, t)+ zb(x).:::

As
:::::::
depicted

::
in

::::::
Figure

::
1,90

::::
right

:::::
panel,

:::
the

:::::::::
multilayer shallow water model is based on a discretization of the water column

::::::
domain

::
Ω

:
with a vertical grid

composed of N layers denoted by greek letters and
::
Ωα::::

with
:::::::::::
α= 1, ...,N ,

:
ordered from the free surface ζ(x,t) (α= 1) to the

bottomb(x) (α=N ).
::::
The

:::::
layers

::::
are

:::::::::::::
non-overlapping

:::::
with

::::::::::::
Ω=

⋃N
α=1Ωα. Each layer α is delimited by the

:::
Ωα ::

is
::::::::
delimited

:::::::
laterally

::
by

:::
the

:::::::
vertical

:::::::
domain

::::::::
boundary

:::
and

:::
in

:::
the

::::::
vertical

:::
by

:::
the

::::
time

:::::::::
dependent

:::::::::
interfaces

:::::::::
Γα±1/2(t) ::::::

defined
:::
by

:::
the

:::
set

::
of

:::::
points

:::
of

::::::::::
coordinates

:::::
(x,z)

::::
such

::::
that

:::::::::::::::
z = zα±1/2(x, t).::::

The
::::::::::
free-surface

:::
Γζ

:::
and

::::
the

::::::
bottom

::::::::
interfaces

:::
Γb

:::
are

:::::::::
described95

::::::::::
respectively

::
by

:::
the

::::::::::
free-surface

::::::::
elevation

:::::::::::
z1/2 = ζ(x, t)

::::
and

::
by

:::
the

::::::::::
bathymetry

:::::::
function

:::::::::::::::
zN+1/2 =−zb(x).:::

In
::::
order

::
to

:::::::
provide

::
the

:::::
rules

::
for

::::
such

::::::
slicing

::
of

:::
the

:::::::
domain,

:::
we

:::::
define

:
a
::::::::
reference

::::::
domain

::::::
which

:
is
:::::::
constant

::
in
:::::
time,

::::
with

:::::
space

:::::::
variables

::::::::::
(x,s) ∈ R3

::::
such

::::
that:

Ω0 =
{
(x,s) : x ∈ Ωx, −1≤ s≤ 0

}
::::::::::::::::::::::::::::::

:::
and

:::::::::
discretized

::
by

::::::
means

::
of

:
a
:::::::
vertical

:::
grid

::::::::
similarly

::::::::
composed

::
of

::
N

::::::
layers,

::::
each

:::::::
denoted

:::
Ω0

α.
::::
The

::::::::
reference

:::::
layers

:::
are

::::::::
delimited100

::::::::
vertically

::
by

:::
the

:::::::::::
fixed-in-time

:
interfaces zα±1/2. The surface and bottom

:::::::
Γ0
α±1/2,

:::::
which

:::
are

::::::
placed

::
at

:::
the

:::::::
vertical

:::::::::
coordinate

::::
given

:::
by

:::
the

:::::::
function

:::::::
sα±1/2.

::::
Such

::::::::
constants

:::
can

:::
be

:::::::
ordered:

s1/2 = 0< s2−1/2 < ... < sN+1/2 =−1
::::::::::::::::::::::::::::::::

::::
Then

:::
the

::::::::
interface

:::::::
position

::::
can

::
be

::::::::
obtained

:::
by

:::::::
mapping

::::
the

::::::::
reference

:::::::
interface

:::::::
Γ0
α−1/2:::

to
:::
the

:::::
actual

:::
or

:::::::
physical

::::::::
interface

:::::::::
Γα−1/2(t).::

In
::::::
general

:::
we

:::::::
assume

:::
that

:::::
exists

::
a

:::::::
function,

:::
for

:::::::::::
α= 1, ...,N :105

A : Γ0
α−1/2 → Γα−1/2(t), zα−1/2 =A(x,sα−1/2, t) x ∈ Ωx

:::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

::
To

::::::::
prescribe

:::
this

:::::::
function

:::
we

:::
use

:::
the

::::::::::
generalized

:::::::
vertical

:::::::::
coordinate

::::::::::::
transformation,

:::
see

:::::::::::::::::
Mellor et al. (2002):

:

zα−1/2 = ζ(x, t)+ sα−1/2 (ζ(x, t)+ zb(x))
:::::::::::::::::::::::::::::::::::

(2)

:::::
which

::::::
assures

::
a

::::::
surface

:::
and

::::::::::::::
terrain-following

::::
grid

:::
that

::
is
::::::
limited

:::
by

:::
the interfaces are respectively z1/2 = ζ and zN+1/2 =−b.

Standard z-coordinate models with fixed interfaces have been enhanced over time to deal with the oscillation of the free surface.110

Typically a vertical moving grid is introduced, defined by a surface-following transformation from a reference fixed space with

coordinate s ∈ [0,−zb(x)] to the physical space with vertical coordinate z ∈ [ζ,−b(x)]:

z = z(x,s, t) = ζ(x,t)+ f(x,s, t)

:::::::::::::
Γ1/2(t) = Γζ(t)

:::
and

:::::::::::::
ΓN+1/2 = Γb.

:::
The

::::::::
reference

::::
and

:::
the

:::::::
physical

::::::::
domains

::::
with

::::
their

:::::::
vertical

:::::::::::
subdivisions

:::
are

:::::::
sketched

:::
in

:::::
Figure

::
1.

::::::
Using

::::
this

:::::::::::::
transformation,

:::
the

:::::
layer

::::::::
thickness

:::
can

::
be

:::::::
deduced

:::::
from

:::
the

:::::
water

:::::
depth,

:::
for

:::::::::::
α= 1, ...,N :115

hα(x, t)
::::::

=
:

zα−1/2(x, t)− zα+1/2(x, t)
::::::::::::::::::::::

(3)

=
:

(
sα−1/2 − sα+1/2

)
H(x, t) = lαH(x, t)

::::::::::::::::::::::::::::::::
(4)
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::::::

Figure 1.
:::::::::::::
One-dimensional

:::::
sketch

::
of

::
the

:::::::
reference

:::::
(left)

:::
and

::::::
physical

:::::
(right)

:::::::
domains

::
for

:::
the

::::::::
multilayer

::::::
shallow

::::
water

::::::
model.

with f(x,s, t) = S(s)(zb(x)+ ζ(x,t)). Among the coordinates that have been proposed to enhance geo-potentials we mention:

:::::
where

:::
the

::::::::::
coefficients

::::::::::::::::::
lα = sα−1/2 − sα+1/2:::

are
:::::::::
prescribed

::::
after

:::
the

:::::::
creation

::
of

:::
the

::::::::
reference

::::
grid.

:::::
They

:::
are

::::::
positive

::::
and

::::
they

:::
sum

:::
to

:::
one

::::::::::::

∑N
α=1 lα = 1.

::::
The

::::::::
multilayer

::::::
model

::
is

:::::
based

:::
on

:
a
:::::::::
piecewise

:::::::
constant

:::::::::::::
approximation,

::
on

:::
the

:::::::
vertical

::::
grid,

:::
of

:::
the120

::::::::
horizontal

::::
fluid

:::::::
velocity

::::
and

::
of

:
a
:::::::
generic

:::::
tracer.

:::
For

:::::::::::
α= 1, ...,N :

:

uα(x, t)
::::::

=
:

1

hα

zα−1/2∫
zα+1/2

u(x,z, t)dz

:::::::::::::::::

(5)

Tα(x, t)
::::::

=
:

1

hα

zα−1/2∫
zα+1/2

T (x,z, t)dz

::::::::::::::::::

(6)

:::
The

:::::
tracer

:::
for

::
us

::::
will

::
be

:::
the

:::::::
salinity.

:::
We

:::::::
assume

:::
that

:::
the

::::
fluid

:::::::
density

:::::::
depends

::
on

:::::::
salinity

::::::
through

:::
an

:::::::
equation

::
of

:::::
state

::
of

::::
type

::::::::
ρ= ρ(T ).

::::
The

::::::
density

::::::
vertical

::::::::::::
discretization

::::::
derives

::::
from

:::
the

:::::
tracer

::::
one,

:::
for

:::::::::::
α= 1, ...,N :125

ρα(x, t)
::::::

=
:

ρ(Tα(x, t))
:::::::::

(7)

:::
We

::::::::
introduce

:::
the

::::::::
following

:::::::
notation

:::
for

:
a
:::::::
generic

:::::::
function

::::
f(z):

:

–
::
To

:::::::
express

:
a
:::::::
function

:::::
which

::
is
::::::::::::
discontinuous

::
at

:::
the

::::::::
interface,

:::
we

:::
use

:::
the

::::
same

:::::::
notation

:::
of

::::::::::::::::::::::::
Fernández-Nieto et al. (2014)

:
:

f+α−1/2
:::::

=
:

(
f |Ωα

)
Γα−1/2

, f−α−1/2 =
(
f |Ωα−1

)
Γα−1/2

::::::::::::::::::::::::::::::::::::

130

–
:
if
:::
the

:::::::
function

::
is
:::::::::
continuous

:

fα−1/2
:::::

=
:

f+α−1/2 = f−α−1/2 = f |Γα−1/2
:::::::::::::::::::::::

5



–
::
the

:::::::::
difference

::
of

:::
the

:::::::
function

:::::::
between

:::
the

:::::
upper

::::
and

:::::
lower

:::::::
interface

::
is
:[

f
]α−1/2

α+1/2
:::::::

=
:

fα−1/2 − fα+1/2
:::::::::::::

::::
Mass

:::::::::::
conservation

:::::
reads:

:
135

∂ζ

∂t
+∇ ·

 N∑
β=1

hβuβ

= 0

::::::::::::::::::::::

(8)

::
In

:::
this

:::::
work

:::
we

:::::::
consider

:::
the

:::::::::
multilayer

:::::::
shallow

:::::
water

:::::
model

:::
for

::::::::
stratified

::::
fluid

::::
with

:::
the

::::::::::
Boussinesq

::::::::::
assumption.

::::::::::
Momentum

:::
and

:::::
tracer

::::::::
equations

::
in

:::
the

:::::::::
multilayer

::::::::
approach

:::
can

::
be

::::::
written

:::
for

:::::::::::
α= 1, ...,N :

:

∂hαuα

∂t
+∇ · (hαuα ⊗uα) =

[
uG
]α−1/2

α+1/2
− ghα∇ζ +

[
K
]α−1/2

α+1/2
+Bα

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(9)

∂hαTα
∂t

+∇ · (hαTαuα) =
[
TG
]α−1/2

α+1/2
+
[
KT

]α−1/2

α+1/2
::::::::::::::::::::::::::::::::::::::::::::

(10)140

:::::
where

:::::::
Gα±1/2 ::

is the z-star coordinate (Adcroft and Campin, 2004) zb = b(x)→ s= z∗ with stretching function S = z∗

b(x) ; the

quasi-z coordinate (Mellor et al., 2002) zb =maxb(x)→ s= zqz with stretching function S = zqz

maxb(x) ; the hybrid z/sigma (Burchard and Petersen, 1997)

: zb = b(x) since the transformation is linear in S, a blend between the z-star and the sigma coordinate σ ∈ [0,−1] through a

parameter θ is possible. The stretching function is S = z∗

b(x)θ+σ(1− θ)
:::::::::::
mass-transfer

:::::::
function

:::::::::
responsible

:::
for

:::
the

::::::
vertical

:::::
mass

::::::::
exchange

:::::::
between

::
the

::::::
layers,

:::::::
Kα±1/2:::

are
:::
the

:::::::
vertical

::::::
viscous

:::::
fluxes

::::
that

:::::
model

:::
the

:::::
shear

::::
stress

::::::::
between

::
the

::::::
layers,

::::
Bα ::::::

models145

::
the

::::::::
pressure

::::
force

::::::
related

::
to

:::
the

::::::::
buoyancy

::::::::
gradient.

:::
The

::::::
system

:
(8)(9)

:::
and (10)

:
is
:::::::::::
implemented

::
in

:::
the

:::::::::
SHYFEM

::::::
model,

::
as

::::
well

::
as

::
in

:::::
many

:::::
other

:::::
ocean

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::
(Burchard and Petersen, 1997; Klingbeil et al., 2018).

::
If
:::
N

::
is

:::
the

:::::::
number

::
of

:::::::
vertical

::::::
layers,

::
the

:::::::::
equations

:::
are

:::::
solved

:::
for

:::::::
2N +1

::::::::
unknown

::::::::
variables,

::::::
which

:::
are:

:::
the

::::
free

::::::
surface

::::::::
elevation,

:::
the

:::::
layer

:::::::::
discharges

:::::
hαuα::::

and

::
the

::::::::::::::
layer-integrated

:::::
tracer

:::::
hαTα. Standard z-coordinate is a particular case where coordinate lines do not depend on time and

space. Of course, this is implemented by allowing the top layer to vary in thickness without vanishing (Griffies et al., 2001), see150

Figure ?? for an illustrative example of these different z-grids. To account for the domain movement, the layerwise equations

are written in a moving frame and, hereinafter, all partial derivatives ∂a arenot the standard Eulerian ones but they have to be

intended in the moving frame (the so-called ALE derivatives (Hirt et al., 1974)): horizontal derivatives are taken along constant

s-line ∂x = ∂x|s while temporal derivatives are measured from an observer moving with the grid ∂t = ∂t|s. Please note the

difference between the ALE time derivative and the Lagrangian time derivative of the position:155

σα+1/2 =
∂zα+1/2

∂t
wα+1/2 =

dzα+1/2

dt

:::
The

:::::
layer

:::::::
thickness

::
is
:::::::
deduced

:::::
from

:::
the

:::::
water

::::
depth

:::::::
through

:::::::
equation

:
(4)

:
.
::
In

:::
the

::::::::
following

:::
we

::::
give

::
the

::::::
details

::
of

:::
the

:::::::::
SHYFEM

:::::::::::::
implementation

::
of

::::
each

::::
term

::
of

:::
the

:::::::::
right-hand

::::
side.

:

6



::::
From

:::
the

:::::::::
derivation

::
of

::::::::::::::::::::::::
Fernández-Nieto et al. (2014)

:
,
:::
the

::::::::
definition

::
of

:::
the

:::::::::::
mass-transfer

:::::::
function

:::
is:

Gα−1/2
::::::

=
:

(
∇zα−1/2 ·uα

)
+σα−1/2 −w+

α−1/2
:::::::::::::::::::::::::::::

160

=
:

(
∇zα−1/2 ·uα−1

)
+σα−1/2 −w−

α−1/2
:::::::::::::::::::::::::::::::

(11)

with σ
:::
with

:::::::
σα−1/2 the velocity of the grid interfaceand w

:
:

σα−1/2 =
∂zα−1/2

∂t
:::::::::::::::

(12)

:::
and

:::::::
w±

α−1/2 the vertical fluid velocity at zα+1/2. For each layer we define the layer thickness:

hα = zα−1/2 − zα+1/2165

::
the

::::::::
interface.

::::
The

::::::
vertical

:::::::
velocity

::
is
:::::::::
computed

::::
from

:::
the

::::::::
following

:::::::::::
relationships:

:

w+
α−1/2 =−w−

α+1/2 −hα∇ ·uα and w−
α−1/2 = w+

α−1/2 +∇zα−1/2 · (uα −uα−1)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(13)

The layerwise model is based on a piecewise constant approximation of the horizontal velocity on the vertical grid. The layer

average is :

uα =
1

hα

zα−1/2∫
zα+1/2

udz170

:::::
which

:::
are

::::::::
evaluated

:::::::
starting

:::::
from

:::
the

::::::
bottom

:::::::::::
α=N,...,1,

:::::
where

::::
the

::
no

::::
slip

::::::::
condition

::
is
::::::::
imposed

:::::::::::::::::
w−

N+1/2 = uN · ∇zb.
:::

In

::::::
practice

::::
and

::
as

::
it

::
is

:::::::
standard

::
in

:::::
ocean

:::::::
models,

:::
the

:::::::::::
mass-transfer

::::::::
function

:
is
:::::::::

computed
:::::::
directly

::::
from

:::
the

:::::::::::::
layer-integrated

:::::
mass

:::::::
equation

Gα−1/2 =Gα+1/2 +
∂hα
∂t

+∇ · (hαuα)
::::::::::::::::::::::::::::::::

(14)

Then the layerwise shallow water model reads:175

∂ζ

∂t
+

∂

∂x

(
1∑

α=N

huα

)
= 0

::::::::
Summing

::::
from

::
N

:::
to

:
α
:::
as:

:

Gα−1/2 =GN+1/2 +

α∑
β=N

∂hβ
∂t

+

α∑
β=N

∇ · (hβuβ)

::::::::::::::::::::::::::::::::::::::::

(15)

∂huα
∂t

+
∂huαuα
∂x

=
[
uG
]α−1/2

α+1/2
− ghα

∂ζ

∂x
+ IPGα +

[
νv
∂u

∂z

]α−1/2

α+1/2
180
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:::::
which

::::::
implies

:::::::::
G1/2 = 0

::
or

:::
no

::::
mass

::::
loss

::
at

:::
the

:::::::::::
free-surface.

:::
The

:::::::
vertical

:::::::
velocity

::
at

:::
the

:::::::::
interfaces

:::::::
w±

α−1/2 ::
no

:::::
more

:::::::
appears

::
in

:::
the

::::::
system

:::
but

::
it

:::
can

:::
be

::::::::
computed

:::::
from

:::
the

::::::::::::::
incompressibility

:::::::::
condition (13)

::
in

:
a
::::::::::::::
post-processing

::::
step.

::::
With

::
a
:::::::::
horizontal

::::::
velocity

::::
and

:::::
tracer

::::::::::::
discontinuous

::
at

:::
the

:::::::::
interfaces,

:::
the

::::::
vertical

::::::::::
momentum

::::
flux

::
in (9)

::
is

::::::::
computed

::::
with

::
a
::::::::
numerical

:::::
flux.

:::
An

::::::
upwind

::::
flux

:
is
:::::
used

::
in

:::
this

:::::
study,

:::
for

:::::::
Γα−1/2 :

it
::::::
reads:

Gα−1/2uα−1/2 =G+
α−1/2uα +G−

α−1/2uα−1
:::::::::::::::::::::::::::::::::::::

185

As is customary, the mass equation is integrated over the whole water column. IPGα is the internal pressure gradient force

written in the density Jacobian form of Song (1998) and based on a piecewise constant approximation of the density ρα as in .

νv::::
with

:::::::::::::::::::::::
G+

α−1/2 =max(0,Gα−1/2):::
and

:::::::::::::::::::::::
G−

α−1/2 =min(0,Gα−1/2).:::
For

:::
the

:::::
tracer

:
a
:::::
TVD

::::
flux

:
is
:::::::::
employed

::::::::::::::
(LeVeque, 2002).

:

:::
The

:::::
terms

:::::::
Kα−1/2::::

and
::::::::
KT,α−1/2:::

are
:::
the

:::::::
vertical

::::::
viscous

::::
and

:::::::
diffusive

:::::
fluxes

:::::::::
computed

::
at

:::
the

:::::::
interface

:::::::
Γα−1/2:

:

Kα−1/2 = να−1/2Dzuα−1/2
:::::::::::::::::::::::

190

KT,α−1/2 = νT,α−1/2DzTα−1/2
::::::::::::::::::::::::::

:::::
where

::::::
να−1/2:

is the vertical viscosity and
:::::::
νT,α−1/2:::

the
::::::
vertical

:::::::::
diffusivity.

::::::
Dz(·) :

is
:::
an

::::::::::::
approximation

::
of

:
the vertical derivative

in the diffusion term is
::::::::
evaluated

::
at

:::
the

::::::::
interface

:::
and

:
resolved with finite differences. The definition of the mass-transfer

function Gα±1/2 responsible for the exchange between the layers is:

Gα−1/2 =

(
∂z

∂x

∣∣∣∣
α−1/2

uα−1/2

)
+σα−1/2 −wα−1/2195

::::::
vertical

::::::::
viscosity

:::
and

:::::::::
diffusivity

:::
can

:::
be

::::::
laminar

::
or

:::::::::
computed

::::
with

:
a
::::::::
turbulent

::::::
model.

::::
The

::::::
bottom

::::::::::
momentum

:::
flux

::
is

::::::::
specified

::::
with

:
a
::::::::
quadratic

::::::::::
formulation.

:::::
Then,

:::
the

:::::::
viscous

:::::
fluxes

:::::
read:

Kα−1/2 =


τw = 0, α= 1

να−1/2
uα−1−uα

(hα−1+hα)/2 , α= 2, ...,N

τ b =−CF |uN |uN , α=N +1
:::::::::::::::::::::::::::::::::::::::

which is typically computed by summing the layerwise mass equation:

Gα−1/2 =Gα+1/2 +
∂hα
∂t

+
∂huα
∂x

200

::::
with

:::
CF :::

the
::::::
bottom

::::::
friction

::::::::::
coefficient.

::::::::
Similarly

:::
the

:::::::
diffusive

:::::
fluxes

:::::
read:

KT,α−1/2 =


0, α= 1

νT,α−1/2
Tα−1−Tα

(hα−1+hα)/2 , α= 2, ...,N

0, α=N +1
::::::::::::::::::::::::::::::::::::::::::
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from the bottom layer N to layer α with GN+1/2 that accounts for the bottom boundary condition and G1/2 = 0 that ensures

vertical mass conservation. At the end we solve for N +1 unknowns, namely the free surface level ζ and N momenta

huα α= 1,N .
::::
with

::
no

:::::
tracer

::::::
fluxes

::::::
through

:::
the

::::::::::
free-surface

::::
and

:::
the

::::::
bottom.

:
205

We assume that the fluid density depends on a given set of tracers through an equation of state oftype ρ(T,S) where T (x,t)

is the temperature and S(x,t) is the salinity. Each tracer isgoverned by an advection-diffusion equation:

∂htα
∂t

+
∂htαuα
∂x

=
[
tG
]α−1/2

α+1/2
+
[
νtv

∂tα
∂z

]α−1/2

α+1/2

::::::
Finally,

:::
the

::::
term

:::
Bα:::::::::

represents
:::
the

::::::
internal

:::::::
pressure

:::::::
gradient

:::::
force.

::::
The

::::::::::::
layer-integrated

::::::::
pressure

::::::
gradient

:::::
term

:::::::::::::::

∫ zα−1/2

zα+1/2
∇p(z)dz,

::::::
instead

::
of

::::::::
applying

:::
the

::::::
Leibniz

::::
rule

:::::::::::::::::::
(Audusse et al., 2011a)

:
,
:
it
::
as
:::::

been
::::
split

::::
into

:::
the

:::::::
external

:::::::
pressure

::::::::
gradient,

::::::
related

::
to

:::
the210

::::::::::
free-surface

:::::
slope,

:::
and

:::
the

:::::::
internal

:::::::
pressure

::::::::
gradient,

::::::
related

::
to

:::
the

::::::::
buoyancy

::::::::
gradient.

::::
The

::::::
internal

:::::::
pressure

::::::::
gradient

::::
term

::
is

::::::
written

::
in

:::
the

::::::
density

:::::::
Jacobian

:::::
form

::
of

::::::::::
Song (1998)

:
:

Bα = hαb1∇ζ +hα

α∑
β=1

J(bβ−1/2,zβ−1/2)hβ−1/2

:::::::::::::::::::::::::::::::::::::::::

:::::
where

::::::
hβ−1/2::

is
:::
the

:::::::
distance

:::::::
between

:::
the

:::::
layer

:::::::
centers,

:::
that

::
is

:::::::::::::::::::::
hβ−1/2 = (hβ−1 +hβ)/2:::

for
::::::::::
β = 2, ...,N

::::
and

:::::::::::::
hβ−1/2 = h1/2

::
for

::::::
β = 1.

::::
The

:::::::::
summation

::::
over

:::
the

:::::
layers

:::::::::::
corresponds

::
to

:
a
:::::::
vertical

:::::::::
integration

::
of

:::
the

::::::
density

::::::::
Jacobian

:::::
based

::
on

:::
the

:::::::::
piecewise215

:::::::
constant

:::::
profile

:::
of

::
the

:::::::
density

::::
with

:::
the

:::::::::
quadrature

:::::
points

::::::
placed

::
at

:::
the

:::::::::
interfaces.

:::
The

::::::
density

::::::::
Jacobian

::
at

:::
the

:::::::
interface

:::
is:

J(bβ−1/2,zβ−1/2) =∇bβ−1/2 −Dz(bβ−1/2)∇zβ−1/2
::::::::::::::::::::::::::::::::::::::::::::

where νtv is the vertical tracer diffusivity. This advection diffusion equation
:
If
:::::::::::
bβ = g

ρ0−ρβ

ρ0 ::
is

:::
the

::::
layer

:::::::::
buoyancy,

:::
the

::::::::
buoyancy

:
at
::::

the
:::::::
interface

::
is

:::::::::
computed

::::
with

::
an

:::::::
average

:::::::::::::::::::::::
bβ−1/2 =

1
2 (∇bβ−1 +∇bβ):::

for
:::::::::
β = 2, ..N

::::
and

:::::::::::::
bβ−1/2 =

1
2∇b1:::

for
::::::
β = 1.

::::
The

::::::::::::
approximation

::
of

:::
the

::::::
vertical

::::::::
derivative

::::::::
evaluated

::
at
:::
the

::::::::
interface

::
is

:::::::
resolved

::::
with

::::
finite

::::::::::
differences.

::
It

::
is

:::::
taken

:::
zero

:::
for

:::
the

::::
first220

:::::::
interface

::::::::::::::
Dz(bβ−1/2) = 0

::
for

::::::
β = 1

:::
and

:::::::::::::::::::::::::::::
Dz(bβ−1/2) = (bβ−1 − bβ)/hβ−1/2:::

for
:::::::::::
β = 2, ...,N .

:::::
These

:::::::
choices

:::::
allows

::
to

:::::::
recover

:
a
:::::::
standard

:::::::
formula

:::
that

::::
can

::
be

:::::
found

::
in
:::::::::::::::::::::::::::::::
Shchepetkin and McWilliams (2003)

::
or

::
in

::::::::::::::::::
Klingbeil et al. (2018).

:

:::
The

:::::
tracer

::::::::
equation

:
(10) admits a trivial solution which we want to inherit also at the discrete level, the so-called tracer

constancy condition. In fact, for constant tracer tα = const
:
:
:::
for

:
a
:::::::
constant

::::::
tracer, equation (10) reduces to

::
the

:
layerwise mass

equation (14). This is also called the Geometric Conservation Laws (GCL) condition in ALE compressible flow simulations.225

:::
The

::::::::::
importance

::
of

:::::::::
preserving

:::
this

:::::::
property

::
at
::
a
::::::
discrete

:::::
level

:::
has

::::
been

::::::::
discussed

::::::::::
extensively

::
in

:::::::::::::::
Gross et al. (2002)

:
.

For a standard z-layer model,
:::
The

::::::
system

:
(8)(9)

:::
and

:
(10)

:
is
::::::
similar

:::
to

:::
the

:::
one

:::::::::
presented

::
in

::::::::::::::::::
Audusse et al. (2011a)

:
.
:::::
They

::::
differ

:::
for

:::
the

:::::
more

::::::::
stringent

::::::::::
Boussinesq

:::::::::
assumption

:::::
used

::::
here

:::
and

:::
for

:::
the

::::::::::
expression

::
of

:::
the

:::::::
pressure

::::::::
gradient

::::
term,

:::::::
written

::::
with

:
a
:::::::
pressure

::::::::
Jacobian

::::
form

::
in

:::
the

::::::::
reference.

:

2.1
::::::
z−star230

:::
The

:::::::::
multilayer

:::::
model

::::::::
presented

::
so

:::
far

::
is

:::::
based

::
on

:::::::
vertical

:::::::::
subdivision

::
of

:::
the

::::
fluid

::::::
domain

:::::::
through

:::
the

:::::::
surface/

::::::::::::::
terrain-following

::::::::::::
transformation (2)

:::::
which

:::::
leads

::
to

:::
the

::::::::::
coefficients

::
lα:::::

given
::
in

:
(4).

::::::
Other

::::::
vertical

:::::::::::
subdivisions

:::
can

::
be

:::::
used

::::::
leading

::
to

::::::::
different

9



::::::

Figure 2.
::::::
Figure.

:::::::::::::
One-dimensional

:::::
sketch

::
of

::
the

::::::::
reference

::::
(left)

:::
and

::::::
physical

:::::
(right)

:::::::
domains

:::
for

::
the

::::::::
multilayer

::::::
shallow

:::::
water

:::::
model

::::
with

::::
z-star

:::::
layers.

:::::::::
coefficients

::::
that

:::::::
however,

:::::
must

:::::
verify

::::
both

:::
the

::::::::
positivity

::::::::
constraint

::::
and

::::
they

::::
have

::
to

::::
sum

::
to

::::
one.

::
In

:::
the

::::::::
following

:::
we

::::::
specify

::
a

:::::
slicing

::
of

:::
the

:::::::
domain

::::
with

:::
both

:::::
these

::::::::
properties

:::::
based

:::
on

:
a
::::::
vertical

:::::::::
coordinate

::::::::::::
transformation

:::::
called

::::::
z−star

:::::::::::::::::::::::
(Adcroft and Campin, 2004)

:
.
:::
The

::::::::
reference

:::::::
domain,

::::
with

:::::::
vertical

:::::::::
coordinate

::
Z,

::
is:

:
235

Ω0 =
{
(x,Z) : x ∈ Ωx, −zb(x)≤ Z ≤ 0

}
:::::::::::::::::::::::::::::::::::

::::
This

::::::
domain

::
is

:::::::::
discretized

:::
by

:::::
means

::
of

::
a

::::::
vertical

::::
grid

::::::::
composed

:::
of

::
N

::::::
layers,

::::
with

::::::::
interfaces

:::::::
Γ0
α−1/2,

:::::
which

:::
are

:::::::
aligned

::
to

:::
the

::::::::::
geopotential.

::::::
These

::::::::
interfaces

:::
can

:::
be

::::::::
described

::
by

:::::::
constant

:::::::::
functions:

Z1/2 = 0< Z2−1/2 < ... < ZN+1/2 =−maxzb(x)
:::::::::::::::::::::::::::::::::::::::::

::
As

::::::
shown

::
in

::::::
Figure

::
2,
:::::

there
::
is
::
a
:::::::::
substantial

:::::::::
difference

::::
with

:::
the

:::::::
vertical

::::::::::
subdivision

::
of

:::
the

:::::::::::::::
terrain-following

::::
grid.

::::
The

::::
grid240

::::::::
interfaces

:::::
could

:::::::
intersect

::::
the

::::::::::
bathymetry

:::
and

::::::
should

:::
be

:::::::
defined

::::
only

::
in

:::
the

:::::
fluid

:::::::
domain.

:::
We

::::::
define

:::
the

:::::::::
projection

:::
of

:::
the

:::::::
interface

:::::::
Γ0
α−1/2 ::::

onto
:::
the

::::::::
horizontal

:::::
plane

:::
as:

Ωx,α =
{
x : x ∈ Ωx and − zb(x)≤ Zα−1/2

}
:::::::::::::::::::::::::::::::::::::

(16)

:
If
::
a
::::
layer

::
is

:::::::
bounded

:::::::
laterally

:::
by

:::
the

::::::::::
bathymetry

:::::::
interface

:::
we

:::
can

::::::
denote

:::
this

::::::
lateral

::::
land

::::::::
boundary

::
of

:::
the

::::
layer

:::
as

:
:

Γb
α

::
=
:

{
(x,Z) : Z =−zb(x) and Zα+1/2 ≤ Z ≤ Zα−1/2, x ∈ Ωx,α\Ωx,α+1

}
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

245

::::
Each

:::::
layer

:::
Ω0

α::::::
results

::::::::
delimited

:::
on

:::
the

:::::
upper

::::
and

::::::
bottom

::::
side

:::
by

::::::
Γ0
α∓1/2::::

and
:::::::
laterally

:::
by

:::
the

::::::
vertical

:::::::
domain

::::::::
boundary

:::
as

:::
well

:::
as

::
it

:::::
could

::
be

::::::::
delimited

:::
by

:::
Γb
α::::

(see
::::::
Figure

::
2,

:::::
right

::::::
panel).

:::
To

::::
map

:::
the

::::::::
reference

::::::::
interface

::::::
Γ0
α−1/2:::

to the interfaces do

not depend on location or time, except for the free surfaceinterface. In , or equivalently in using a layerwise integration of the

incompressibility [w]
α−1/2
α+1/2 =−hα ∂uα

∂x , if the depth of layers does not change in time,
:::::::
physical

:::::::
interface

:::::::
Γα−1/2,

::::::
again,

:::
we

:::
can

:::
use

:
a
::::::::::
generalized

:::::::::
coordinate

:::::::::::::
transformation,

:::
for

::::::::::
α= 1, ...,N :250

zα−1/2 = ζ(x, t)+Sα−1/2(x)(ζ(x, t)+ zb(x)) , x ∈ Ωx,α
:::::::::::::::::::::::::::::::::::::::::::::::::::

(17)
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::::
with

::::::
Sα−1/2:

a
:::::::::
stretching

:::::::
function

::::::
defined

:::
as:

:

Sα−1/2(x) =
Zα−1/2

zb(x)
:::::::::::::::::

::
As

::
in

:::
the

::::::::
previous

:::::::
Section,

:::
the

::::
layer

::::::::
thickness

:::
can

:::
be

:::::::
deduced

::::
from

:::
the

::::
total

:::::
water

::::::
depth.

::::
After

:::::
some

::::::::::
calculations

:::
we

:::
get:

:

hα(x, t)
::::::

=
:

zα−1/2(x, t)−max
(
zα+1/2(x, t),−zb(x)

)
:::::::::::::::::::::::::::::::::::

255

=
:

(
Zα−1/2 −max

(
Zα+1/2,−zb(x)

))
H(x, t) = lα(x)H(x, t), x ∈ Ωx,α

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(18)

:
If
:::
we

::::::
define

:::::::::::::::::::::::::::::::::::::
∆Zα(x) = Zα−1/2 −max

(
Zα+1/2,−zb(x)

)
:::
we

:::
can

::::::
rewrite

:::
the

::::::::::
coefficients,

:::
for

::::::::
α= 1,N :

:

lα(x) =
∆Zα(x)

zb(x)
, x ∈ Ωx,α

::::::::::::::::::::::::::

:::::
which

::
is

::::::::
prescribed

:::::
once

:::
the

:::::::
reference

::::
grid

::
is

:::::::
created.

:::
The

:::::::::
coefficient

::::::
satisfy

::::
both

:::
the

::::::::
positivity

::::::::
constraint

:::
and

::::::
locally

::::
they

::::
sum

::
to

:::
one.

:
260

::
An

:::::::::
important

::::::::
property

::
of

:::
the

:::::::
z−star

::::::::::::
transformation

:::
is

:::
the

::::
that

:::
the

:::::::::
horizontal

:::::::
domain

:::::
Ωx,α :::::

where
::::

the
::::
layer

:::::::::
thickness

::
hα::

is
:::::::

defined,
:::::

does
:::
not

:::::::
depend

::
on

:::::
time,

:::
as

:::
one

::::
can

:::::
verify

:::::
after

:::::::::
computing

:::
the

:::::::::::::
transformation (17)

:::
for

::::::::::::::::
Zα−1/2 =−zb(x).

::::
This

::
is

:::::::::
particularly

:::::::
helpful

:::::::
because

:::
the

::::::
number

:::
of

:::::
layers

:::::
does

:::
not

::::::
depend

:::
on

::::
time,

::::
and

:::
the

::::::::::
coefficients

::::
too.

:::::
Other

::::::::
z−layers

::::::::::
formulations

:::::
based

:::
on

:::::
similar

:::::::::
mappings,

::::
such

::
as

:::
the

:::::::
quasi−z

:::::
layers

:::::::::::::::::
(Mellor et al., 2002)

::
or

:::
the

::::::
hybrid

:::
z/σ

:::::
layers

::::::::::::::::::::::::::
(Burchard and Petersen, 1997)

::
do

:::
not

:::::
share

:::
this

::::::::
property.

:::
For

::::
these

::::::::::
coordinates

:
a
::::::
special

::::::::
treatment

::
of

:::
the

::::::
bottom

::
is
:::::::::
necessary:

:::::
either

::
an

:::
ad

:::
hoc

::::::::::
modification

::
of265

::
the

:::::::
bottom

::::::::
geometry

::
or

::::
more

:::::::::::
interestingly

::::
these

::::::::::
coordinates

:::::
could

::
be

:::::::
coupled

::::
with

:::
the

:::::::
porosity

::::::::
approach

::::::
recently

::::::::
proposed

:::
by

:::::::::::::::::
Debreu et al. (2020)

::::
where

:::
all

:::
the

:::::
layers

:::::::
present

::
in

:::
the

:::::::::::
computation.

:::
For

::::::
z−star

:::
the

::::::
bottom

::::::::::
momentum

:::
and

:::::
tracer

:::::
fluxes

:::::
must

::
be

:::::::
properly

::::::::
modified,

::::::::
replacing

:::
the

::::::::
maximum

:::::::
number

::
of

:::::
layers

:::
N ,

::::
with

::
the

:::::
local

::::::
number

::
of

:::::
layers

:::::::::::::::::::::::::::::::::::::
Nb(x) = {α : Zα+1/2 <−zb(x)≤ Zα−1/2}.

2.2
::::::::
z−layers270

:::
The

::::::::
z−layers

:::
are

:
a
::::::::
particular

::::
case

::::::
where

:::
the

::::::::
interfaces

::
do

::::
not

::::::
depend

::
on

::::
time

::::
and

:::::
space:

:

zα−1/2 = Zα−1/2
::::::::::::::

::::
This

::::::
method

::
is

::::::::::
implemented

::
in
:::
the

:::::
ocean

::::::
models

:::
by

:::::::
allowing

:::
the

:::
top

::::
layer

::
to

::::
vary

::
in

::::::::
thickness

::::::
without

::::::::
vanishing

::::::::::::::::::
(Griffies et al., 2001)

:
.
:::
For

:::
the

:::::
above

::::::::::::
transformation

::::
with

:::::
fixed

::::::::
interfaces,

:
the mass-transfer function coincides with the vertical velocity:

∂z

∂x

∣∣∣∣
α−1/2

= 0, σα−1/2 = 0 → Gα−1/2 =−wα−1/2, α= 2,N +1275

:::::::
function

:::
(eq.

:
(14)

:
)
::::::::
coincides

::::
with

:::
the

::::::
vertical

::::::::
velocity:

Gα−1/2 =−w−
α−1/2 =−w+

α−1/2, α= 2,N +1
::::::::::::::::::::::::::::::::::::::::

A classical Eulerian model in the vertical is obtained.
::::::::
Replacing

:::
the

::::
mass

:::::::
transfer

:::::::
function

:::::
with

:::
the

::::::
vertical

:::::::
velocity

:::
in

:::
the

::::::::
multilayer

::::::
model,

:::
we

::::::
obtain

::
the

::::::::
Eulerian

:::::
model

::
of

::::::::::::::
Rambaud (2011)

:
.
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::::: ::::::

Figure 3.
::::
Grid

:::
and

:::::::
notation.

::::
Left:

::::::
triangle

::
K

::::
with

::::
nodes

:::
and

:::::
scaled

:::::::
normals.

::::::
Middle:

:::
set

::
Di::::

with
::::
dual

:::
cell

:::
area

:::
Ci :::

and
:::
dual

:::
cell

::::::::
boundary

:::
∂Ci.::::

The
::::::
degrees

::
of

:::::::
freedom

:::
are

:::
also

::::::
shown:

:::::::
discharge

:::
,
::::
tracer

::::
and

:::::::::
free-surface

::
O

:
.
:::::
Right:

::::::
stepped

:::::::::
bathymetry

::::
with

::::::
masked

:::::
boxes

::
in

:::::
brown,

::::
after

::
the

::::::::
horizontal

:::::::::::
discretization.

2.3 Numerical mixing induced by the free surface280

3
:::::::::::
Semi-implicit

:::::::::
staggered

:::::
finite

:::::::
element

::::::::::::
discretization

To complete and we have to give the expressions for the prognostic variables at the top/bottom interfaces. Consistently with

the Finite Volume vertical discretization, the tracer and the horizontal velocity at the interface are computed with a numerical

flux. The majority of ocean models, including SHYFEM, use a Total Variation Diminishing (TVD) flux. For the tracer,

:::
The

:::::::::::
discretization

:::
for

::::
both

:::
the

::::::
z−star

::::
and the TVD flux reads (LeVeque, 2002):285

Gα−1/2tα−1/2 =G+
α−1/2tα +G−

α−1/2tα−1 +
|Gα−1/2|

2

(
1−

∣∣∣∣Gα−1/2∆t

∆zα−1/2

∣∣∣∣)(tα − tα−1)ϕ

:::::::
z−layers

:::::::
shallow

:::::
water

::::::
model

:::
can

:::::::
proceed

:::
in

::
an

:::::::::
equivalent

:::::::
fashion.

:::
We

::::::::
consider

:
a
::::::::::::

discretization
::
of

:::
the

:::::::::
horizontal

:::::::
domain

:::::::
Ωx ∈ R2

:::::::::
composed

:::
by

::::::::::::::
non-overlapping

::::::::
triangular

:::::::::
elements.

:::
We

::::::
denote

:::
the

:::::::::
horizontal

::::
grid

:::
by

::
T

::::
with

:::::::
K ∈ T

:::
the

:::::::
generic

:::::::
triangle,

:::
|K|

::
its

:::::
area.

:::
The

:::::
local

::::::::
reference

:::::::
element

:::::
length

::
is

:::
hK:::

and
::
it
::
is

::::::::
computed

::
as

:::
the

:::::::::
minimum

:::::
length

::
of

:::
the

:::::::
triangle

:::::
sides.

::::
With

:::::
i ∈ T

:::
we

::::::
denote

:::
the

:::::
nodes

::
of

:::
the

::::
grid.

:::::
When

:::
no

::::::::
confusion

::
is
:::::::::
generated,

:::
we

:::
will

::::::
locally

:::::::
number

::
as

:::::::::
(j = 1,2,3

:::
or

::::::
j ∈K)290

::
the

::::::
nodes

::
of

:::
the

:::::::
generic

:::::::
triangle.

:::::
Given

::
a
:::::
node

:
i
::
in

:::
an

:::::::
element

:::
K,

:::
nK

i :::::::
denotes

:::
the

::::::
inward

::::::
vector

::::::
normal

::
to
:::

the
:::::

edge
::
of

:::
K

:::::::
opposite

::
to

::
i,

:::::
scaled

:::
by

:::
the

::::::
length

::
of

:::
the

:::::
edge,

:::
see

::::::
Figure

::
3,
::::

left
:::::
panel.

::::
For

:::::
every

::::
node

:::
of

:::
the

:::::::::::
triangulation,

:::
Di:::::::

denotes
:::
the

:::::
subset

::
of

:::::::
triangles

:::::::::
containing

::
i.

:::
The

::::
dual

::::
cell

::
Ci::

is
:::::::
obtained

:::
by

::::::
joining

:::
the

:::::::::
barycenters

:::
of

::
the

::::::::
triangles

::
in

::
Di::::

with
:::
the

:::::::::
midpoints

::
of

:::
the

:::::
edges

:::::::
meeting

::
in

:
i
::
as

:::::::::
illustrated

::
in

:::::
Figure

::
3,

::::::
middle

::::::
panel.

::
Its

::::
area

::
is

|Ci|=
∑

K∈Di

|K|
3

:::::::::::::

295
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::::::::
delimited

::
by

:::
the

::::::::
boundary

::::
∂Ci.:::

The
:::::
edge

::
of

:::
∂Ci:::::::::

separating
::::::
Ci ∩K::::

and
::::::
Cj ∩K:::

has
:::
an

::::::
exterior

::::::
normal

:::::
called

::::
nK

ij ,
::
as

:::::::::
illustrated

::
in

:::::
Figure

::
3,

:::
left

::::::
panel.

::
As

::::::
before

::
it

::
is

:::::
scaled

:::
by

::
the

:::::
edge

::::::
length.

:::::::::
Moreover,

:::
due

::
to

:::
the

::::::::
definition

::
of

:::
the

::::
dual

::::
cell,

:::
we

:::::
have:∑

j∈K,j ̸=i

nK
ij =−nK

i

2
::::::::::::::::

(19)

::::
After

:::
the

:::::::::
horizontal

::::::::::::
discretization,

:::
the

:::::::
domain

:::::
results

::::::::::
subdivided

:::
into

:::::::::
prismatic

:::::
boxes

::::::::::::::::::
K × [zα+1/2,zα−1/2].:::

At
:::
the

:::::::
bottom,

:::::::
z−layers

:::::::
models

:::::
apply

:
a
:::::

mask
::
to
:::::::::::

non-existing
::::
land

:::::
boxes

::::
that

:::::
make

:::
the

::::::::::
bathymetry

:::::::
stepped,

::
as

::::::::
sketched

::
in

::::::
Figure

::
3,

:::::
right300

:::::
panel.

::::
The

::::::
bottom

::::
layer

:::
for

:::::
each

:::::::
element

:::
will

:::
be

:::::::
denoted

::
as

::::
NK .

::::
For

:
a
::::::::
staggered

::::::::::::
discretization

::
it

:
is
:::::::

helpful
::::
also

::
to

:::::
define

::
a

::::
nodal

:::::::
bottom

::::
layer

::::::::::::::::::
Ni =maxK∈Di

NK .
:::
The

::::::::::
projections

::
of

:::
the

::::::::
interfaces

:::::
onto

:::
the

::::::::
horizontal

:::::
plane

:::
are

::::
still

:::::::
denoted

::
as

:::::
Ωx,α

:::
and

::::::
defined

::::
with

:
(16)

:
,
:::
this

::::
time

::::::::
evaluated

::::
with

:::
the

::::::::
stepwise

::::::::::::
approximation

::
of

:::
the

::::::::::
bathymetry.

:::::
Then

:
a
:::::
layer

::::
dual

:::
cell

::::
Cα,i::::

can

::
be

::::::
defined

:::
by

::::::::::
considering

::::
Dα,i:::

the
:::::
subset

::
of

::::::::
elements

::::::
sharing

:::::
node

:
i
:::
and

::
in
::::::
Ωx,α.

::
Its

::::
area

::
is

|Cα,i|=
∑

K∈Dαi

|K|
3

::::::::::::::::
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with G+ =max(0,G), G− =min(0,G), ∆zα−1/2 =
hα+hα−1

2 and ∆t the time step. Here we consider the Superbee flux

limiter ϕ which is close to one in smooth regions (second-order accurate Lax-Wendroff flux) while it is close to zero in

presence of large vertical gradients (first-order accurate upwind flux) .

With a local truncation error analysis, we can further analyze the error typically associated with the vertical z-coordinate

discretization when large vertical velocities induced by the tidal flow are present. Under the hypothesis of a passive tracer310

advected by a linearized barotropic tidal flow, we have computed the following upper bound for the vertical numerical diffusion

induced by the oscillation of the water level:

Dnum
α ≤ 1−ϕα

2
AΩ

∂2t

∂z2

∣∣∣∣
α

h+
1

6

AΩ

H0

∂2t

∂z2

∣∣∣∣
α

h2 +O(h3)

::
On

::
a
::::::::::
B-staggered

::::
grid

:::
the

::::::::::
free-surface

::::::::
elevation,

:::
the

:::::::::
discharges

::::
and

::
the

::::::
tracers

:::
are

:::::::::
described

::::
with

::::
basis

::::::::
functions

::
of

::::::::
different

::::
order

::::
and

:::::::
support.

::::
The

::::::::
discharge

::::
field

::::
and

:::
the

:::::
tracer

::::
field

::::::
belong

:::
to

:
a
:::::
finite

::::::::::
dimensional

:::::
space

:::::
with

::::
basis

:::::::::
composed

:::
by

:::
the315

::::::::
piecewise

:::::::
constant

:::::::::
functions.

:::
For

:::
the

:::::::::
discharges,

:::
the

:::::
space

::::
has

::::
basis

::::::::::
{ψK}K∈T ::::::::

composed
:::
by

:::
the

:::::::::::
characteristic

::::::::
functions

:::
on

::
the

::::::::
triangle,

:::::
while

::
for

:::
the

::::::
tracers

:::
we

::::::
choose

:::::::
{ϕi}i∈T:::::::::

composed
:::
by

:::
the

:::::::::::
characteristic

::::::::
functions

::
on

:::
the

::::
dual

::::
cell.

::::
The

::::::::
discharge

::::
fields

::::::::::
qα = hαuα::::

and
:::
the

::::::
tracers

:::
Tα:::

are
:::::::::::
approximated

:::::::
through

::::
(we

:::
use

:::
an

:::::
abuse

::
of

:::::::
notation

:::::::::
employing

:::
the

:::::
same

::::::
symbol

:::
of

::
the

::::::::::
continuous

::::::::
variable):

qα(x, t)
::::::

=
:

∑
K∈T

ψK(x)qα,K(t)

::::::::::::::::

(20)320

Tα(x, t)
::::::

=
:

∑
i∈T

ϕi(x)Tα,i(t)

:::::::::::::

(21)

::::
with

:::::::
qα,K(t),

:::::::
defined

::
for

:::::::::::::
α= 1, ...,NK ,

:::::
being

:::
the

::::::::
elemental

::::::::
discharge

::::::
values

:::
and

::::
with

:::::::
Tα,i(t),:::::::

defined
::
for

::::::::::::
α= 1, ...,Ni, :::

the

::::
nodal

::::::
tracer

::::::
values.

::::
The

::::::::::
free-surface

:::::::
belongs

::
to

:
a
:::::
space

:::
of

::::
finite

:::::::::
dimension

:::::
with

::::
basis

::::::::
{φi}i∈T :::::

which
:::::::

denotes
:::
the

::::::::
standard
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:::::::::
continuous

::::::::
piecewise

:::::
linear

::::::::
Lagrange

:::::
basis.

::::
The

:::::::
discrete

::::::::::
free-surface

:
is
:::::
given

:::
by:

:

ζ(x, t) =
∑
i∈T

φi(x)ζi(t)

:::::::::::::::::::

(22)325

where h the uniform vertical grid-spacing, A the tidal amplitude, Ω= 2π/T , T the tidal period and H0 is the bottom depth.

Unsurprisingly,
::::
ζi(t):::

are
:::
the

:::::
nodal

::::::::::
free-surface

::::::
values.

:::::
Note

:::
that

:
the leading order term is a

::::::
discrete

:::::::::
discharges

::::
and

:::::::
discrete

:::::
tracers

:::
are

::::::::::::
discontinuous

::::::::::
respectively

:::::
across

:::
the

:::::::::
boundaries

::
of

:::
the

:::::::
triangles

:::
and

::
of

:::
the

::::
dual

::::
cells

:::::::
whereas

:::
the

::::::
discrete

::::::::::
free-surface

:
is
:::::::
globally

::::::::::
continuous.

:::
On

::
a

:::::
B-grid

:::
the

::::::
layers

:::::::
thickness

::
is
::::::::
naturally

::::::::
computed

::
at
:::
the

::::
grid

:::::
nodes

::::
hα,i,::::::

where
:::
the

::::::::::
free-surface

::
is

::::::::
available.

:::
The

:::::::
element

::::::
values

:::::
hα,K :::

are
:
a
:::::::::::
conservative

::::::
average

:::
of

:::
the

:::::
nodal

::::::
values.

::::
The

:::::::
element

::::::::
velocities

:::
are

:::::::
obtained

:::::
from330

:::::::::::
uα,K =

qα,K

hα,K
.
:

:::
We

:::::
obtain

:::
the

:::::
weak

::::::::::
formulation

:::::::::
multiplying

:::::
mass

:::
and

::::::::::
momentum

::::::::
equations (8)

:::
and

:
(9)

::
by

:::
the

::::
test

::::::::
functions

:::
that

:::::::
belongs

::
to

::
the

:::::
same

:::::
space

::
of

:::
the

:::::::
solution

:::
and

:::::::::
integrating

::
it

::
on

:::
the

:::::::::
horizontal

:::::::
domain.

:::
The

:::::
finite

:::::::
element

:::::::::::
discretization

::::::
reduces

::
to
::::::::
compute

::
the

::::::::
integrals

:::::::::
accounting

:::
for

:::
the

:::::::
different

::::::
terms.

:::
For

:::
the

:::::
mass

:::
flux

:::::
term,

::::::
which

:
is
:::::::::
integrated

::
by

:::::
parts

:::
we

::::
need

::
to

::::::::
compute

::::
with

:
a
::::::
proper

:::::::::
quadrature

:::
rule

:::
the

::::::::
following

:::::::
integral

:::::
(only

::::::::::::
x−component

:::::::
shown):335

axiK =

∫
K

∂φi

∂x
dx

::::::::::::::

:::
The

::::::::
boundary

::::
term

::::
has

::::
been

::::::::
neglected

:::::
since

:
it
:::::::
cancels

:::
out

::::::
except

::
at

:::
the

:::::
lateral

:::::::
domain

::::::::
boundary.

::::::::
Similarly,

:::
for

:::
the

:::::
terms

::::
that

:::
will

::
be

::::::
treated

::::::::
explicitly

::
in

:::
the

::::::::::
momentum

:::::::
equation

::::::
namely

:::
the

:::::::::::::::
horizontal/vertical

::::::::
advection

::::
and

:::
the

::::::
internal

:::::::
pressure

::::::::
gradient,

::
we

:::::
have:

:

fxα,K
::::

=
:

−
∫
∂K

q̂αuα ·nds+
∫
K

(
Bx

α +
[
uG
]α−1/2

α+1/2

)
dx

::::::::::::::::::::::::::::::::::::::

340

:::
The

:::::::::
horizontal

:::::::::
advection

::::
term

::
is

::::::::
resolved

::::
with

::
a first-order upwind diffusion with a coefficient that depends on the tidal

amplitude and is tuned by the limiter. For a smooth, profile this term is zero (ϕ≈ 1) or even of anti-diffusive nature (ϕ > 1),

while for a non-smooth profile (ϕ≈ 0) this term dominates. Interestingly there is also a second-order term that comes from the

linear advection velocity, with a coefficient that depends on the
::::::
upwind

::::
flux

:::::
q̂αuα :::::::::::::::::::

(Umgiesser et al., 2004)
:
.
::
In

::::
order

::
to

:::::
write

:::
the

::::::
scheme

::
in

::::::
matrix

:::::
form,

::::::::
exploiting

:::
the

:::::::::::
compactness

::
of

:::
the

::::::::
staggered

::::::::::::
discretization,

:::
we

::::::::
introduce

::::::::
"vertical"

::::::::::::
vectors/matrix,

::::
that345

::::::
pile-up

::
all

:::
the

::::::
layers

::
for

::
a
:::::
single

:::::::
element

:::
K,

::::
and

::
we

::::::
denote

:::::
them

::::
with

::::
bold

::::::
capital

::::::
letters.

:::
For

::::::::
example,

:::
the

:::::
layer

:::::::::
discharges

:::
and

:::
the

:::::
layers

::::::::
thickness

:::
are

:::::::::
regrouped

::
in

:::
the

::::::::
following

:::::::
vectors:

UK =


qx1,K
...
qxα,K
...

qxNK ,K

 , V K =


qy1,K
...
qyα,K
...

qyNK ,K

 , HK =


h1,K
...
hα,K
...

hNK ,K


::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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:::
and

::::::::::
analogously

:::
the

::::::
explicit

::::::
terms:

F x
K =


fx1,K
...
fxα,K
...

fxNK ,K

 , F y
K =


fy1,K
...
fyα,K
...

fyNK ,K


::::::::::::::::::::::::::::::::::::

350

:::
The

:::::::
vertical

::::::
viscous

::::
term

::
is

:::::
recast

::
in

::::::
matrix

::::
form

:::
via

:
a
::::::::::
tridiagonal

:::::
matrix

:::::::::::::::
Ad

K ∈ RNK×NK .
:::
The

::::::
bottom

::::::::::
momentum

::::
flux

:::
has

::
to

::
be

::::::::
integrated

::::
into

:::
this

:::::::
matrix.

::::
Note

:::
that

:::
all

:::::
these

::::::::::::
vectors/matrix

:::
are

:::::::
restricted

:::
to

::::::::::
non-masked

:::::
boxes.

:

:::
We

::::
build

::
a
:::::::::::
semi-implicit

::::
time

::::::::::::
discretization,

:::
as

:
it
::

is
::::::::
standard

:::
for

:::::
ocean

:::::::
models,

:::
by

::::::
treating

:::::::::::::
semi-implicitly

:::
the

:::::
mass

::::
flux

:::
and

:::
the

:::
free

:::::::
surface

:::::::
gradient

::
in

:::
the

:::::::::
momentum

::::::::
equation.

::::
The

::::::
vertical

:::::::
viscous

::::
term

:::
can

::::
also

:::::
cause

:
a
:::::::::
restrictive

::::::::
time-step

:::
and

::
is

::::::
handled

::::
here

:::::::::
implicitly

::::::
without

:::::
major

:::::::::::
computation

:::::
issues

:::
but

::::::::
allowing

::
to

:::::
relax

:::
the

::::
CFL

::::::::
condition.

:::
We

::::::
define

:::
the

::::::::
variation

::
of355

:
a
:::::::
quantity

::
in

:
a
::::
time

::::
step

::
as

:::::::::::::::
∆u= un+1 −un,

:::::
then:

un+θ = θun+1 +(1− θ)un = θ∆u+un
::::::::::::::::::::::::::::::::

:::
We

:::::::
consider

::::::::
different

::::::::::
implicitness

::::::::::
parameters

:::
for

:::
the

:::::
mass

::::::
fluxes

::::
(θz)

:::
and

:::
for

::::
the

:::::::
external

:::::::
pressure

::::::::
gradient

:::::
(θm).

:::::
After

:::::::
applying

:::
the

::::::::
previous

::::::::
definition

::::
into

:::
the

:::::::::::
semi-discrete

:::::::::
equations,

:::
the

:::::::::::
semi-implicit

::::::::::
momentum

::::::::
equations

:::
on

::
an

:::::::::::
unstructured

:::::
B-grid

:::::
read:360

∆UK
:::::

=
:

∆U∗
K −∆tgA−1

K Hn
K

∑
j∈K

axjKθm∆ζj

:::::::::::::::::::::::::::::::

(23)

∆V K
:::::

=
:

∆V ∗
K −∆tgA−1

K Hn
K

∑
j∈K

ayjKθm∆ζj

:::::::::::::::::::::::::::::::

(24)

::::
with

::::::::::::::::::::
AK =

(
I|K| −∆tAd

K

)
::

a
::::::::::
tridiagonal,

:::::::
positive

:::::::
definite

:::
and

:::::::::
diagonally

:::::::::
dominant

::::::
matrix.

::::
The non-linear parameter of

the tidal wave A/H0. This can also be large for shallow depths. The numerical diffusion should be always compared to the

physical diffusion Dphy
α = νtv∂zzt. ::::::::::

dependence
::
of

:::
the

:::::::
external

:::::::
pressure

:::::::
gradient

::::
term

:::::
from

::::
HK:::

has
:::::

been
:::::::
resolved

:::
by

:::::
using365

::
the

::::
old

:::::
value.

::::
Also

:::
the

:::::::
viscous

::::::
matrix

:::
has

::::
been

:::::::::
computed

::::
with

::::::
frozen

:::::
values

::
at
:::
tn.

::
In

::::
F n

K:::
all

:::
the

::::::::
quantities

:::
are

:::::::::
computed

::
at

::
tn,

::::::::
included

:::
the

:::::::::::
mass-transfer

::::::::
function.

::::::
These

::::::
choices

:::::
avoid

::
to
:::::

solve
::
a
:::::::::
non-linear

::::::
system

::
at

::::
each

:::::
time

::::
step.

:
The magnitude

of each contribution depends on the tracer vertical profile as well as on the tidal parameter and the bottom depth. In
:::::::
variation

::::::::::::::::
∆(·)∗ = (·)∗ − (·)n

::
is the Appendix, we give the details of the formula and we compute it for some idealized situations. We

also confirm numerically the results. Both the theoretical and numerical results suggest that
::::::
solution

::
of

:::
the

:::::::::
following

:::::
Euler370

:::
step

::::
with

:::
an

::::::
explicit

:::::::
external

:::::::
pressure

::::::::
gradient:

∆U∗
K

:::::
=
:

∆tA−1
K

(
F x,n

K +Ad
KUn

K − gHn
K

∑
j∈K

axjKζ
n
j

)
::::::::::::::::::::::::::::::::::::::

(25)

∆V ∗
K

:::::
=
:

∆tA−1
K

(
F y,n

K +Ad
KV n

K − gHn
K

∑
j∈K

ayjKζ
n
j

)
:::::::::::::::::::::::::::::::::::::

(26)
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:
If
::::

the
::::::::::
expressions

:::
for

:::::
∆UK::::

and
::::::
∆V K , for micro-tidal applications and typical vertical resolution of coastal models, the

additional numerical error of z-coordinate is negligible while for higher tidal amplitude/coarser resolution the use of z-coordinate375

should be discouraged. (23)
:::
and (24),

:::
are

:::::::::
introduced

::::
into

:::
the

:::::::
discrete

::::
mass

::::::::
equation,

:::
we

::::::
obtain

:
a
:::::
linear

::::::
system

:::::
with

::::
only

:::
the

::::::::::
free-surface

:::::::::
coefficients

::
as

::::::::::
unknowns:∑

K∈Di

∑
j∈K

(
mK

ij + gθzθm∆t2
(
axiK1TA−1

K Hn
K a

x
jK + ayiK1TA−1

K Hn
K a

y
jK

))
∆ζj =

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

∆t
∑

K∈Di

(
axiK1T (θz∆U∗

K +Un
K)+ ayiK1T (θz∆V ∗

K +V n
K)
)

:::::::::::::::::::::::::::::::::::::::::::::::::::

(27)

:::::
where

::::::::::::::::
mK

ij =
∫
K
φiφj dx ::

is
:::
the

:::::::
Galerkin

:::::
mass

::::::
matrix

:::::
based

::
on

:::
the

:::::::::
piecewise

:::::
linear

::::::::
Lagrange

:::::
basis

::::::::
functions.

::::
The

::::::::
Galerkin380

::::
mass

::::::
matrix,

::
in

:::::::::
SHYFEM,

::
is
:::::::
lumped.

::::
The

:::::
vector

::::::::
1 ∈ RNK

:::
has

:::
all

::::::::::
components

:::::
being

::::
one.

4 z-surface-adaptive coordinate

:::
The

::::::::::::
hydrodynamic

::::
time

::::
step

::::
flow

:::::
chart

::
is

::::
thus

:::
the

:::::::::
following:

:::
we

:::
first

:::::::
perform

:::
the

:::::
Euler

::::
step

:
(25)

:::
and

:
(26)

:
.
::::
Then

:::
we

:::::::
resolve

::
the

:::::
mass

::::::::
equation (27)

:::
and

:::
we

::::::::
complete

::::::::::
momentum

::::::
update

::::
with

:::
the

::::::::::::
semi-implicit

::::
step (23)

:::
and

:
(24)

:
.
::::::
Finally

:::
we

::::::::
compute

::
the

::::::
layers

::::::::
thickness

::
at

:::
the

::::
grid

::::::
nodes.

:::
For

:
a
::::::
z−star

:::
we

::::
use

:::
the

:::::::::
expression (18)

::
at

:::
the

::::
grid

:::::
nodes.

::::
For

:::
the

:::::::
z-layers,

:::
the

::::::
layers385

:::::::
thickness

:::::
does

:::
not

::::::
change

::::::
except

::
for

:::
the

::::
first

:::::
layer.

In this section, we detail the algorithm for the novel z-surface-adaptive coordinates. It is based on two steps: a first vertical

grid movement step (interface displacement) and a second topology modification step(layer insertion, layer removal). The

solution is interpolated across the grids: 1) for the grid movement, we have already written the layerwise equations in a moving

frame, thus we compute the solution directly onto the new deformed grid; 2) for the grid topology change, we use conservative390

remaps. Both operations are described in the following paragraphs.

3.1
:::::::::::

Mass-transfer
::::::::
function

We consider numerical schemes for the layerwise Shallow Water equations that work with a
:::::
After

:::
the

::::::::::::
hydrodynamic

::::::
update

::
of

:::
the

:::::::
previous

:::::::::
paragraph,

:::
the

:::::::
discrete

:::::::::::
mass-transfer

::::::::
function

:
is
:::::::::

computed.
::::
We

::::::
employ

:::
the

:::::
same

:::::::::
continuous

:::::::::
piecewise

:::::
linear

::::::::::::
approximation

::::
used

:::
for

:::
the

::::::::::
free-surface.

::::
The

:::::
nodal

::::::
values

:::
are

::::::::
computed

:::::
from

:
a
::::::::::::
finite-element

:::::::::::
mass-lumped

:
discretization of395

the computational domain [0,L] composed by a sequence of non-overlapping intervals or elements E, each with length ∆xE .

The nodes of the horizontal grid are placed at xi =
∑i−1

E=1∆xE , i= 1,M +1. The element sharing node i and i+1 is also

denoted as E = i+1/2. For example, the median dual cell is obtained by joining the barycenters of the elements joining

in i, Ci =
1
2

(
∆xi−1/2 +∆xi+1/2

)
. On such horizontal grid , we denote the space discrete variables as uh(x)≈ u(x) and

we identify approximation of variables at nodes as ui = uh(xi) and at elements as ui+1/2 = uh(xi+1/2). In a Finite Volume400

context the pointwise notation stands for the averaged values. We suppose that the numerical scheme computes the variables

at the discrete time instants tn = t0 +n∆t with time step ∆t. We note by unh(x) = uh(x,t
n) the fully discrete variable, that is
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the value of uh at time tn.
::::::::
layerwise

:::::
mass

:::::::
equation (14).

:::
As

:::
for

:::
the

:::::::::::::
depth-integrated

:::::
mass

::::::::
equation,

:::
the

::::::::
discharge

::
is

::::::::
evaluated

:::::::::::::
semi-implicitly.

::::::
Starting

:::::
from

:::
the

::::::
bottom

::::
with

:::::::::::::
Gn+1

Ni+1/2,i = 0,
:::
for

:::::::::::
α=Ni, ...,1:

|Cα,i|Gn+1
α−1/2,i = |Cα+1,i|Gn+1

α+1/2,i + |Cα,i|
∆hα,i
∆t

−
∑

K∈Dαi

(
axiK q

x,n+θz
α,K + ayiK q

y,n+θz
α,K

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(28)405

::::
Note

::::
that

:::
the

:::::::::::
semi-implicit

:::::::::::
discretization

:::::::
ensures

:::::::
vertical

::::::::::::::::
mass-conservation.

::::::::
Summing

:::
up

:
(28)

::
for

:::
all

:::
the

:::::
layers

::::
and

:::::
using

:::::::
equation

:
(27)

::::
with

::
a

::::::
lumped

::::::::
Galerkin

::::::::::
mass-matrix

::
to
::::::

cancel
:::
the

:::::::::
right-hand

:::::
side,

::
we

::::
get

:::
the

::::::::::::
impermeability

:::::::::
condition

::
at

:::
the

::::::::::
free-surface

:::::::::
Gn+1

1/2,i = 0.
::::
With

::::::::
standard

::::::::
z−layers,

:::
the

::::::::::
contribution

::::::
related

::
to

:::
the

:::
grid

:::::::
velocity

::
is

::::
zero

::::::::::::::::::::::
∆hα,i =∆t[σi]

α−1/2
α+1/2 = 0,

:::::
except

:::
for

:::
the

::::
first

::::
layer.

:

On the vertical, layers are contained in410

3.2
::::::

Tracers

:::
The

::::::::::::
semi-implicit

::::::
update

::
is

:::::::::
completed

::::
with

:::
the

::::::::::::
time-stepping

::
of

::::
the

:::::
tracer.

:::::::
Vertical

::::::::
diffusion

::
is
::::::
treated

:::::::::
implicitly

::::
and

:::
the

::::::::
remaining

:::::::::
advection

:::::
terms

:::
are

:::::::
explicit.

::::
The

::::::
spatial

::::::::::::
discretization

::
of

:::
the

::::
the

::::::
explicit

:::::
terms

:::::::
implies

:::
the

:::::::::::
computation

:::
of

:::
the

::::::::
following

:::::::
integrals

:::::
which

:::::::
account

:::
for

:::
the

:::::::::
horizontal

:::
and

::::::
vertical

:::::::::
advection

:::::
terms:

:

fα,i
:::

=
:

−
∫

∂Cα,i

T̂αqα ·nds+
∫

Cα,i

[
TG
]α−1/2

α+1/2
dx

:::::::::::::::::::::::::::::::::

415

:::::
where

:::::̂
Tαqα::

is
:::
an

:::::::::
appropriate

:::::::::
numerical

:::::
tracer

::::
flux

:::::
across

::::
the

::::
dual

:::
cell

:::::::::
boundary.

::
At

:::
the

::::::
lateral

::::::::
boundary

::::::
∂Ωx,α,

::::
the

:::::
tracer

:::
flux

::
is

::::
zero

:::
for

::::
land

:::::::::
boundaries

:::::
while

:
it
::
is
::::::::::
determined

::
by

:
the set α= {1,2, ...N}. For a z-grid the number of layers varies with

x and it is defined locally, e.g. at nodes αi = {1,2, ...Ni} and at elements αE = {1,2, ...NE}. We denote each layer interface

at rest as z0α±1/2 and each layer thickness at rest as ∆z0α. After both the horizontal and the
:::::::
boundary

:::::::::
conditions

::
at
:::
the

:::::::
domain

::::::::
boundary.

::
In

:::
the

:::::::::
discussion

::::
that

::::::
follows

:::
we

:::::::
consider

::::
only

::::::
nodes

:::
that

:::
do

:::
not

:::
lie

::
on

:::
the

:::::::
domain

::::::::
boundary.

:::
On

::
a

::::::::
triangular

::::
grid420

::
the

::::
two

:::::
terms

::::
read:

:∫
∂Cα,i

T̂αqα ·nds

:::::::::::::

=
:

∑
K∈Dα,i

∑
j∈K,j ̸=i

T̂αqα ·nK
ij =

∑
K∈Dα,i

∑
j∈K,j ̸=i

Ĥα(Tα,i,Tα,j)

::::::::::::::::::::::::::::::::::::::::::::::::

(29)

∫
Cα,i

[
TG
]α−1/2

α+1/2
dx

:::::::::::::::

=
:

|Cα,i|Tα−1/2,iGα−1/2,i − |Cα+1,i|Tα+1/2,iGα+1/2,i
::::::::::::::::::::::::::::::::::::::::::

(30)

::::
with

::::::::::::
Ĥα(Tα,i,Tα,j):::::

being
:::
the

::::::::
numerical

::::
flux

::
in

:::
the

::::::::
horizontal

::::::::
direction

:::
and

:::::::::::::::
Tα+1/2,iGα+1/2,i :::

the
::::::::
numerical

:::
flux

::
in
:::
the

:::::::
vertical

::::::::
direction.

:::
The

:::::::::
SHYFEM

:::::
model

::::::::::
implements

:::::::::::
second-order

:::::::::
consistent

::::
TVD

:::::
fluxes

:::
in

::::
both

::::::::
directions.

:
425

:::::
Using

:::
the

:::::::
notation

::::
with

::::
bold

:::::
capital

::::::
letters

:::::::
denoting

:
"verticalz-coordinate discretizations,

:
"
:::::::
vectors, the domain is subdivided

into quadrilateral boxes E× [zα+1/2,zα−1/2]. At the bottom, z-coordinate models apply a mask to non-existing boxes that
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

initial state grid movement layer collapse and 
removal

final state

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

initial state grid movement layer insertion 
and expansion

final state

Figure 4.
:::
Grid

:::
and

:::::
tracer

:::::::
evolution

:::::
during

:::
one

::::
time

::::
step.

:::
The

::::::
process

::
is
:::::::::
interpreted

::
as

:::
four

:::::
stages

:::::
which

:::::
bring

::::
from

::
the

::::
pair

:::::::
(Tn, ζnh )::

to

:::::::::::
(T̃n+1, ζn+1).

:::
The

:::::
vector

::::::::::
T = {T1,T2}::::::

collects
:::
the

::::
layer

:::::
values

::
of

:::
the

::::
tracer.

::::::
Dashed

:::
line

::::::
means

::::::
removed

:::::::
interface.

::::
Left:

::::
case

::
of

:::
top

::::
layer

:::::::
insertion.

:::::
Right:

:::
case

::
of

:::
top

::::
layer

:::::::
removal.

make the grid stepped.
::::
tracer

::::::
values

:::
and

:::
the

:::::::
explicit

::::
term

::
at

:::
the

:::::
nodes

:::
are

::::::::
regrouped

::
in

:::
the

:::::::::
following:

:

T i =


T1,i
...
Tα,i
...
TNi,i

 , F i =


f1,i
...
fα,i
...

fNi,i,


::::::::::::::::::::::::::::::::

::::::
Vertical

::::::::
diffusion

:::
can

::::
also

::
be

:::::::::
assembled

::
in

::::::
matrix

::::
form

:::::::
through

:::
the

:::::::
discrete

::::::
matrix

::::::::::::
Ad

i ∈ RNi×Ni .
:::::
Then,

:::
the

::::::::::::
discretization

::
of430

::
the

:::::::::
layerwise

:::::
tracer

:::::::
equation

:
(10)

::::
read:

:

AiT
n+1
i

:::::::
=
:

Diag{|Cα,i|hnα,i}T
n
i +∆tF n

i
::::::::::::::::::::::::

(31)

::::
with

::::::::::::::::::::::::::::::
Ai =

(
Diag{|Cα,i|hn+1

α,i }−∆tAd
i

)
:::

the
:::::::

vertical
:::::
tracer

:::::::
matrix.

::::::::
Although

:::
the

::::::::
advection

:::::
terms

:::
are

:::::::
explicit,

::
it
::::::
should

:::
be

::::
noted

::::
that

:::
the

::::::::
horizontal

:::::::::
numerical

::::
flux

::
are

:::::::::
computed

::::
with

:::
the

:::::::::
discharges

::::::::
evaluated

::
at

:::::
qn+θz
α :::::

while
:::
the

:::::::
vertical

::::::::
numerical

::::
flux

:::
uses

:::
the

::::
last

:::::::
available

::::::::::::
mass-transfer

:::::::
function

:::::::
Gn+1

α±1/2 ::::
from

:
(28).

:::::
This

:::::
choice

::
is
::::::::
important

:::
in

::::
order

::
to

:::::::
mantain

::
a
::::::::::
consistency

::
of435

::
the

:::::::
discrete

:::::
tracer

::::::::
equation

::::
with

::
the

:::::::::
layerwise

::::
mass

::::::::
equation.

::
In

::::
fact

:::::::
inserting

:
a
::::::::
constant

:::::
tracer

::
in

:::::::
equation (31),

::::::
yields

::::::
exactly

::
the

:::::::
discrete

::::::::
layerwise

:::::
mass

:::::::
equation

:
(28)

:
.
:::
The

:::::
proof

::
is

:::
left

::
in

:::
the

:::::::::
Appendix.

::
To

:::::::::
conclude,

:::
we

:::::::::
summarize

:::
the

::::::
whole

::::
time

::::
step

:::::
flow

:::::
chart:

::::
after

:::
the

:::::::::::::
hydrodynamic

::::::
update

::::::::
described

:::
in

::::::
Section

:::
3,

:::
we

:::::::
compute

:::
the

:::::::::::
mass-transfer

:::::::
function

:
(28)

:::
and,

:::::
lastly,

:::
we

::::::
update

:::
the

::::::
tracers

::::
with (31).

:

4
:::::::::::::::::
z−surface-adaptive

::::::
layers440

::
In

:::
this

:::::::
section,

:::
we

:::::::
enhance

:::
the

::::::::
z−layers

:::::::
shallow

:::::
water

::::::
model

:::
by

::::::::::
introducing

:
a
::::
new

:::::::::
algorithm

:::
that

::::::
allows

:::
for

:::
the

::::::::
dynamic

:::::::
insertion

:::
and

::::::::
removal

::
of

::::::
surface

:::::
boxes

:::
or,

::::
with

:::
an

:::::
abuse

::
of

:::::::::
language,

::
of

::::::
surface

::::::
layers.

:::
To

::::::::::
differentiate

::
it

::::
from

:::
the

::::::::
standard
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::::::::
z−layers,

:::
we

:::
will

::::
refer

::
to
::::
this

::::::::
enhanced

::::::
version

::
as

::::::::::::::::
z−surface-adaptive

::::::
layers.

::::
The

:::
key

::::
idea

:
is
::
to
::::::::
interpret

:::
the

:::
area

:::::
swept

:::
by

:::
the

::::
layer

::::::::
interface

::
in

:::
the

::::
time

:::
step

::::::::::::::
∆t ∈

[
tn, tn+1

)
::
as

:::
the

::::
sum

::
of

:::
two

::::::::::::
contributions:

::::
one

:::
due

::
to

:::
the

:::::
mesh

:::::::::
movement

:::::
driven

:::
by

:::
the

:::
free

::::::
surface

:::::::::
oscillation

:::::
(grid

:::::::::
movement)

:::
and

::::
one

:::
due

::
to

:::
the

::::::::::::::::
collapse/expansion

::
of

:::
the

::::
layer

:::::::::
(topology

:::::::
change).

:::::
These

::::::::
topology445

::::::
changes

:::
in

:::
fact

::::
can

::
be

::::
seen

:::
as

:
a
:::::::::
continuous

:::::::::::
deformation

::
of

:::
the

:::::
layer

::::::::
interfaces

:::::::::
performed

::::::
within

:::
the

::::
time

::::
step.

:::::
With

::::
this

::
in

:::::
mind,

:::
the

::::
final

:::::::
position

::
of

:::
the

::::::::
interfaces

::
at

:::
the

::::
grid

:::::
nodes

:::::::::::::::::::::::
z̃n+1
α−1/2,i = z̃α−1/2(xi, t

n+1)
:::
is:

z̃n+1
α−1/2,i = zn+1

α−1/2,i +∆z̃α−1/2,i
::::::::::::::::::::::::::

:::::
where

::::::::::::::::::::::::
zn+1
α−1/2,i = zα−1/2(xi, t

n+1)
:
is
:::
the

::::::::
interface

:::::::
position

::::
after

:::
the

::::
grid

:::::::::
movement

:::
and

:::::::::
∆z̃α−1/2,i::

is
:::
the

:::::::::::
contribution

::
of

:::
the

:::::::
interface

::::::::::::::::
collapse/expansion,

::::::::
basically

:
a
:::::::::
correction

::::
term.

:::::::::
Similarly,

:::
the

:::
grid

:::::::
velocity

::
in
:::
the

::::
time

::::
step

:::
can

:::
be

::::::::::
decomposed

:::
as:450

σα−1/2,i =
z̃n+1
α−1/2,i − znα−1/2,i

∆t
= σmov

α−1/2,i +σtop
α−1/2,i

::::::::::::::::::::::::::::::::::::::::::::

::::
with:

:

σmov
α−1/2,i =

zn+1
α−1/2,i − znα−1/2,i

∆t
, σtop

α−1/2,i =
∆z̃α−1/2,i

∆t
::::::::::::::::::::::::::::::::::::::::::::::

::
In

:::
the

:::::::
solution

::
of

::::
the

:::::::::
multilayer

::::::
shallow

::::::
water

::::::::
equations

:::
we

:::::::
employ

:
a
::::::::

splitting
:::::::::
procedure,

::::::
where

:::
the

:::
two

::::::::::::::
aforementioned

:::::::::::
contributions

::
are

::::::
treated

::
in

::::
two

:::::
steps.

::
In

:
a
::::
first

:::
step

:::::
(grid

:::::::::
movement)

:::
we

:::::
solve

:::
the

::::::::
multilayer

::::::
model

::
on

:
a
:::::::
vertical

:::
grid

::::::
where

:::
the455

::::::
surface

:::::
layers

:::::
adjust

::::::
locally

:::
in

::::
order

::
to
::::::::

maintain
:
a
:::::::

positive
:::::::::
thickness.

::
In

:::
the

:::::::::
subsequent

:::::
step,

:::
we

::::::
locally

::::::
remove

::::::
surface

:::::
fluid

:::::
boxes

::::
with

:::::::
minimal

::::::::
thickness

::
or

::::
split

::::
fluid

:::::
boxes

::::
that

:::
are

:::::::::
excessively

:::::
thick.

::::
The

::::::::
evolution

::
of

:::
the

::::::
vertical

::::
grid

::::
and

::
of

:::
the

:::::
tracer

::
in

:::
one

::::
time

::::
step

::
is

::::::
shown

::
in

::::::
Figure

::
4.

:::
The

:::
top

::::
row

::::::
shows

:::
the

::::
case

::
of

:
a
:::::
layer

:::::::
removal

:::
and

::::
the

::::::
bottom

:::
row

:::
the

::::
case

:::
of

:
a
:::::
layer

:::::::
insertion.

:::
As

::
a
:::::::
remark,

:::
we

:::::
stress

:::
that

:::
the

::::::
above

:::::::::::
interpretation

::
of

:::
the

::::::::
interface

::::::::::::
displacement,

::::::
reveals

:::::
many

::::::::
beneficial

:::::::
aspects

::::
with

::::::
respect

::
to

::
a

:::::
direct

:::::::
insertion

::::
and

:::::::
removal

::
of

::
a
:::::
layer.

:::::::
Without

:::
the

::::
grid

:::::::::
movement

::::
step,

::
it
::::::
would

::
be

:::::
more

:::::::::::
complicated

::
to460

::::
time

:::
step

:::
the

::::::
tracers

:::
on

:
a
::::
grid

::::
with

::::::
positive

:::::
layer

::::::::
thickness,

::::
with

:::
all

:::
the

::::::
related

:::::::
stability

:::::
issues.

:::
In

:::
fact

::
in

:::
the

:::::
tracer

::::::
update (24)

::
the

:::::
layer

::::::::
thickness

::
at

:::::
tn+1

::
is

::::::
needed.

::::
One

::::
may

:::::
think

::
to

::::::::
compute

:::
the

:::::
tracer

::::
after

:::
the

:::::::::::::::
insertion/removal

:::::::::
operations

::::
have

:::::
been

::::::::
performed

:::::
(thus

::::::
having

:::::::
positive

::::
layer

::::::::
thickness

:::::
both

::
at

::
tn

::::
and

:::::
tn+1),

:::
but

::::
then

:::
the

::::::::::::
configuration

::
on

::::::
which

:::
the

:::::::
discrete

:::::
tracer

:::::::
equation

::
is

:::::
solved

::
is

:::::::::
ambiguous

::::
and

:
it
:::::
seems

::::
hard

::
to
::::::
ensure

:::
the

::::::::::
consistency

::::
with

:::
the

::::::::
continuity

::
or

::
to

:::::
verify

:::
the

:::::
tracer

:::::::::
constancy

:::::::
property.

:
465

::
In

:::
the

::::::::
following

:::
we

:::::::
provide

:::
the

::::::::
technical

::::::
details

::
to

::::::
realize

::::
such

:::::::::
adaptation

::
to

:::
the

:::::::::::
free-surface

::::
with

:::
the

:::::::
z-layers.

:::::
First

:::
we

:::::
notice

::::
that,

::::
since

:::
the

:::::::::
beginning

::
of

:::
the

:::::::::
simulation,

:::
the

:::::
index

::
of

:::
the

::::::
surface

::::
layer

::::
may

::::::
change

:::::::
spatially

::
at
:::
the

:::::::
element

::::::::::
boundaries.

:::::
Given

:::
the

:::::
initial

::::::::::
free-surface

::::::::
elevation

:::::
ζ0(x),

:::
we

::::::
define

:
a
:::
set

::
of

:::::
active

::::::
indices

::::
and

:::
the

::::::
surface

::::
layer

::::::
index,

::
by

::::::::
element,

::
as:

:

αactive,K =
{
α ∈αK : Zα+1/2 + ϵtop < min

x∈K
ζ0(x)

}
, αtop,K =minαactive,K

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(32)

::::
with

:::::::::::::::::
αK =

{
1, ...,Nb,K

}
.
::::
Due

::
to

:::
the

:::::::::
staggering

::
of

:::
the

::::
grid,

::
it

::
is

:::::::::
convenient

::
to

:::::
define

::::
also

::
at

::::
each

:::::
node:470

αactive,i =
{
α ∈αi : Zα+1/2 + ϵtop < ζ0i

}
, αtop,i =minαactive,i

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(33)

19



Figure 5. Grid and solution evolution during one time step. The process is interpreted as four stages which bring from
:::
This

:::::::::::::
one-dimensional

::::::
example

:::::
shows the pair (Un

h , ζ
n
h ) to (Ũn+1

h , ζn+1
h ). The vector U = {u1,u2} collects

:::
grid

:::
for the layer values of a generic layerwise scalar

variable. Dashed line means removed interface
:::::::::::::
z-surface-adaptive

:::::
layers. Left: case of top

:::::::
Elemental

::::::
surface layer insertion. Right: case of

top
:::::
indices

::
are

::::::
shown

::
on

:::
the

::::::
bottom,

::::
nodal

::::::
surface layer removal

:::::
indices

:::
are

:::::
shown

::
on

:::
the

::
top.

::::
with

::::::::::::::::
αi =

{
1, ...,Nb,i

}
.
:::
The

:::::::::
parameter

:::
ϵtop::

is
:
a
:::::
small

:::::::
positive

:::::::
constant

::::
that

::::
fixes

:::
the

::::::::
minimum

::::::::
allowable

:::::
depth

:::
for

:
a
:::
top

:::::
layer

::
to

::::
exist.

::::::
Below

:::
this

::::::::
threshold

:::
the

:::::
layer

::
is

::::::::
removed.

:::
We

::::
have

::::
fixed

::
it
::
as

::::::::::::::
ϵtop = 0.2∆Zα.

:
It
:::::
turns

:::
out

:::
that

::::
this

::::::::
parameter

::
is
:::::
quite

::::::::
important

::::
since

::
it
::::::
avoids

:::
the

:::::::
presence

::
of

::::
very

:::::
small

::::::
layers,

:::
for

:::::
which

:::
the

:::::::
vertical

:::::::
diffusion

::::::
matrix

::::::::
becomes

:::::::::::::
ill-conditioned.

::
In

:::::
Figure

::
5

:::
we

:::::::
illustrate

:::
the

::::::
spatial

:::::::
variation

::
of

:::
the

:::
top

:::::
layer

:::::
index

:::
for

:
a
::::::::::::::
one-dimensional

::::::::
example.475

4.1 Vertical grid movement

We restrict either to explicit or to
:::::
evolve

:::
the

:::::::
discrete

:::::::::
multilayer

::::::
shallow

:::::
water

::::::::
equations

::::
with

:::
the

:
semi-implicit time marching

schemes that update the free surface from the discrete version of . Once ζn+1
h is available (without loss of generality, we

assume that the free surface is updated at nodes ζn+1
i ), we move

::::
finite

:::::::
element

:::::::
method

:::::::
detailed

::
in
:::::::

Section
::
3.

::::
The

:::::::
vertical

:::::::::::::
vectors/matrices

:::
are

::::::::
restricted

::
to

:::
the

:::::
layers

::::
with

:::::
active

::::::
index.

::::::::
Moreover,

::
to
:::::::
account

:::
for

:::
the

:::::::::
movement

::
of the surface layerswith480

the following steps
:
,
:::
the

::::
layer

::::::::
thickness

::
is

:::::::
updated

::
as

::::::
follows:

– Identification of the layers spanned by the free surface, through
::
we

:::::::
identify

:::
the

:::::::
indices

:::::::::
associated

::
to

:::
the

::::::
layers

::::
that,

::::::
locally,

:::::::
undergo

:
a
:::::::::::
deformation.

:::::
They

:::
are

::::::
defined

::
as

:::
the

::::::
layers

::
of

:::
the

::::::::
reference

::::
grid

:::::
whose

:::::::::::
top-interface

::::
finds

::::::
above

:::
the

::::::::::
free-surface

::
or

::
by

:
the set of indexes:

::::::
indices:

αmov,i =
{
α∈

:
αi : z

0Z
:α−1/2 + ϵmov > ζn+1

i
n+1
:::

}
(34)485

ϵmov is a small and positive constant that fixes the minimum allowable depth for a layer.
::
we

::::
have

::::::
added.

:
Below this

threshold, the vertical grid movement is deployed. ϵmov can be used to control the number of moving layers . The
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number of layers contained in the set is Nmov,i and the upper-most and
::
As

::::
seen

:::
for

:::::
ϵtop,

:
it
::::::
avoids

:::
the

:::::::
presence

:::
of

::::
very

::::
small

::::::
layers

:::
that

::::
can

::
be

:::::::::
dangerous

:::::
from

::
a

::::::::
numerical

:::::
point

::
of

:::::
view.

::::
The

:
bottom-most layers are denoted respectively

by αmovTop,i =minαmov,i and αmovBot,i =maxαmov,i::::
layer

::
is

:::::::
denoted

:::
by

::::::::::::::::::
Nmov,i =maxαmov,i. The depth of the490

moving layers is:

bmov,izmov,i
:::::

=max

(
zαmovBot,i+1/2ZNmov,i+1/2

::::::::::

,−bi−zb,i
::::

)

– Computation of the new depth
::
we

::::::::
compute

:::
the

::::
new

:::::
layers

::::::::
thickness after a local grid deformation that absorbs the free

surface movement. We
::
To

:::::
move

::::
the

::::::::
interfaces

::
of

::::
the

:::::
layers

:::::::::
contained

::
in

:::
the

:::
set,

:::
we

:
use the generalized coordinates

which , at a discrete level, takes
::::::::::::
transformation (1)

:::::
which

::::
take the form:495

zn+1
α+1/2,iα+1/2,i

:::::
= ζi

n+1
i +Sα+1/2,iα+1/2,i

:::::

(
ζi

n+1
i + bmov,izmov,i

:::::

)
(35)

this time with S-function Sα+1/2 such that Sα+1/2 = 0→ zα+1/2 = ζi and Sα+1/2 =−1→ zα+1/2 = bmov,i. With

Sα+1/2,i =−
∑α

β=αtop,i
lβ,i ::::

Then, the nodal layer thickness reads:

hn+1
α,iα,i

::
= lα,i

(
ζi

n+1
i + bmov,izmov,i

:::::

)
, α∈= αtop,i, ...,N

:::::::::::
mov,i (36)

For the proportionality coefficients, we have used a z-star definition lα,i =
∆z0

α

bmov,i::::
tried

:::::::
different

::::::::::
definitions

:::::::
allowing

::
a500

::::::
smooth

:::::::::
movement

::
on

:::
the

:::::::::
interfaces

:::::::
between

:::
the

::::
time

:::::
steps,

:::::::
without

:::::::::::
experiencing

:::
any

:::::
major

:::::::
impact

::
on

:::
the

::::::
results.

::::
For

::::::::
simplicity

:::
we

::::
have

::::
thus

:::::::::::
implemented

:
a
::::::
z−star

::::::::
definition

:::::::::::
lα,i =

∆Zα

zmov,i
, see Section (2).

After the prognostic variables update on the moving grid, i.e. momentum hunα,h → hun+1
α,h and tracerstnα,h → tn+1

α,h , this step is

completed. Within this update step,
::::
This

::
is

::::::
shown

::
in

::::::
Figure

::
4,

:::
first

::::
and

::::::
second

::::::::
columns.

::::
The

::::
new

::::
layer

::::::::
thickness

::
is
:::::
used

::
in

::
the

::::::
update

::
of

:::
the

:::::::
tracers,

:::::::
equation

:
(31).

::::
We

::::
stress

:::
the

::::
fact

:::
that

:
the vertical configuration is taken constantand equal to αn

i ,α
n
E .505

The whole step is shown in Figure 4, top right panel.
:
,
:::
i.e.

:::
the

::::::
number

:::
of

:::::
layers

::
at

::::
each

:::::::
element

:::::::
remain

:::::::
constant

::::::
during

:::
the

::::::::::
timestepping

::
of
:::
the

:::
the

:::::::::
discharges

::::
and

::
of

:::
the

::::::
tracers.

:

4.2 Removal/Insertion of top layers

Then we perform the insertion/removal of layers
::::::::
operation based on:

– An evaluation of the top layer indexes which become time-dependent. We call them the active ones αactive ⊂α and510

they have to be defined at nodes:

αn+1
active,i =

{
α : z0α+1/2 + ϵtop < ζn+1

i

}
, αtop,i =minαactive,i

and at elements:

αn+1
active,E =

{
α : z0α+1/2 + ϵtop <min

x∈E
ζn+1
h (x)

}
, αtop,E =minαactive,E

21



ϵtop is a small and positive constant that fixes the minimum allowable depth for a top layer to exist. Below this threshold,515

the
:::::
update

:::
of

:::
the

:::::
active

:::::
layers

::::
and

::
of

:::
the

:::
top

:
layer is too thin and it is removed. It turns out that this parameter is quite

important since it avoids the presence of very thin layers, for which the vertical diffusion matrix becomes ill-conditioned.

We have fixed it as ϵtop = 0.2∆z0α.
::::
index

:::
by

:::::::::::
re-evaluating

:
(32)

::
and

:
(33)

:::
with

:::
the

::::
new

::::::::::
free-surface

::::::::
elevation

::::::
ζn+1.

:::
We

::
get

:::
the

::::
new

:::
top

:::::
layer

::::::
indices

::::::
αn+1
top,K:::

and
:::::
αn+1
top,i:

–
::::
Once

:::
we

::::
have

::::::::
identified

:::
the

:::::
index

:::
that

::::::
should

::
be

::::::::::::::
inserted/removed

::
in

:::
the

:::::
active

:::
set,

:::
we

::::::
proceed

::::
with

:::
the

::::::::::::::::
collapse/expansion520

::
of

:::
the

::::::
surface

::::::
boxes. A conservative remap step is necessary to pass the solution obtained in the grid movement step on

a grid with layers αn
active ::::::::

unknowns
::::
from

:::
the

:::
old

:::::::
vertical

::::
grid to the new grid with layers αn+1

active:::
one.

We use ũn+1
α ::

the
::::
tilde

:::::
T̃n+1
α :

to distinguish a generic layerwise
::::
layer

:
variable

:::
(the

:::::
tracer

:::
in

:::
this

:::::
case)

:
remapped onto the

new grid from the solution time stepped on the old grid un+1
α . This insertion/removal operation can be interpreted, at a

continuous level, as an expansion/collapse of the layer in a pseudo time (see the bottom-left panel in Figure 4). After the525

expansion/collapse, the interface location moves to zn+1
α+1/2 → z̃n+1

α+1/2. Then, the
:::::
Tn+1
α .

::::
The remapped value is the solution of

the following advection equation in a pseudo time:

∂Jũα
∂τ

− J
∂σũα
∂z

= 0

::::::::
integrated

::
on

:::
the

:::::
layer

::::::::
thickness:

:

∂h̃αT̃α
∂t

=
[
σtopT̃

]α−1/2

α+1/2
::::::::::::::::::::

(37)530

with J the Jacobian of the grid expansion/collapse and σ = ∂z
∂τ the velocity of the grid. After integration over a layer:

∂

∂τ

∫
h̃α(τ)

ũαdz =
[
σũα

]α−1/2

α+1/2
, σα+1/2 =

∂zα+1/2

∂τ

::::
with

::
an

::::::
upwind

:::::
flux:

σtop
α−1/2T

n+1
α−1/2 =

(
σtop
α−1/2

)+
Tn+1
α +

(
σtop
α−1/2

)−
Tn+1
α−1

:::::::::::::::::::::::::::::::::::::::::::::

(38)

In
:::
We

:::::::
consider the discrete case,

:
.
:::::
After

:::::::::
integration

::
on

:::
the

::::
dual

:::
cell

::::
and with a simple forward Euler

::::
time

:::::::
stepping (with initial535

condition ũnα = un+1
α ) and upwind flux, we get:

:::::
Tn+1
α )

:::
we

:::::
have:

h̃n+1
αα,i

::
T̃n+1

α,i
:::

= huh
:

n+1
αα,i

::
T
:

n+1
α,i
:::

+∆τt

(
σutopα−1/2,iT

:::::::

n+1
α
α−1/2
α+1/2,α−1/2,i−

:::::::
σα+1/2 =

z̃n+1
α+1/2 − zn+1

α+1/2

∆τ
top
α+1/2,iT

n+1
α+1/2,i

::::::::::::

)
(39)

We can apply such a remapping to the variables discretized on the horizontal grid uh and for element removal/insertion

operations.
::::
with

:::
the

::::
new

:::::
nodal

::::
layer

:::::::::
thickness:

h̃n+1
α,i = z̃n+1

α−1/2,i − z̃n+1
α+1/2,i

::::::::::::::::::::::

540
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In the case of an element removal (αn+1
top,E > αn

top,E::::::::::::
αn+1
top,i > αn

top,i), we identify the layer that should disappear and we

proceed with a collapse of the lower interface to the upper one. For the existing and removed layer
::::::::::::::::
α= αn

top,i, ...,α
n+1
top,i, equation

::
the

:::::::
discrete

::::::
remap (39)

::::
with (38) reduces trivially to transfer the depth-integrated variable

:::::
tracer that belongs to the removed

layers to the upper active layer. In the case of an element insertion (αn+1
top,E < αn

top,E::::::::::::
αn+1
top,i < αn

top,i), we identify the layer that

should appear and we expand the interface. Then equation
::
the

::::::
remap

::
for

:::::::::::::::::
α= αn+1

top,i, ...,α
n
top,i:

reduces to distribute the depth-545

integrated variable across the existing and inserted layers . The same arguments can be applied to nodal variables, replacing

αtop,E with αtop,i. :::
with

::
a
::::::::
weighted

:::::::
average.

::::
This

::
is

::::::
shown

::
in

::::::
Figure

::
4,

::::
third

::::
and

:::::
fourth

::::::::
columns.

:::
All

:::
the

:::::::::
unknowns

::::
must

:::
be

::::::::
remapped.

::::
For

:::
the

:::::::::
discharges,

::::
that

:::
are

::::::
defined

:::
on

:::
the

::::::::
elements,

:
(37)

:::::
should

::
be

:::::::::
integrated

::
on

:::
the

::::::::
element.

::::
This

:::::::::
completes

:::
the

::::
time

::::
step.

4.3 Connection to z-surface-following coordinates
::::::
z−star550

The vertical coordinate described so far is controlled by the
:::
We

::::
have

::
a
:::::
small

:
parameter ϵmov that prescribes the number of

moving surface layers
::
to

::
fix. It is convenient to express this constant as a percentage of the z-layer depth at rest ϵmov = rmov∆z

0
α.

Due to the presence of the free surface (unknown at the beginning of the simulation) in , it is not easy, even for equispaced

z-grid, to find a simple formula that links rmov to the number of moving layers Nmov . However, we can compute an estimate

of the maximum free surface height during the simulation, maxζ, and use the relation rα =
maxζ−z0

α−1/2

∆z0
α

to state that:555

– 0< rmov ≪ 1 means that only the layers spanned by the free surface movement will undergo deformation. As we

increase rmov , the deformation becomes less local and more layers are progressively deformed.

– if we set rmov = rNmov
, we will move, at minimum, Nmov layers.

– if we increase the parameter beyond rmov > rN , then all layers are moving.

In Figure ?? we have plotted different grids obtained in the vertical movement step with a varying grid parameter rmov and560

different corresponding moving surface layers Nmov .

From top to bottom: different grids obtained in the vertical movement step with different rmov . In red is the highlighted the

depth of the moving layers bmov .

The z-surface-adaptive coordinate and the z-surface-following coordinate are then obtained with the following choices:

z-surface-adaptive: rmov ≤ rtop ≪ 1
:::::::
reference

:::::
layer

::::::::
thickness

::::::::::::::::
ϵmov = rmov∆Zα.

::
In

:::::
order

::
to
::::::

obtain
:::
the

:::::::::::::::::
z−surface-adaptive565

:::
grid

:::
we

::::
have

:::::::
chosen

::::::::::
rmov ≤ rtop,

::
in
:::::::

practice
:::
we

:::::
have

::
set

:::::::::::
rmov = 0.15. The grid deformation is localized to the free surface.

As long as elements
:::
the

::::::
surface

::::
fluid

:::::
boxes are deformed, they are

::::::::
recognized

::
as

:
too small and immediately removed in the grid

topology step. This implies working, at the next time step, with a true z-grid. We stress the importance of the grid movement

step. Without such a step, it would be impossible to timestep the variables on layers with positive depth, with all the related

stability issues, included for the tracer equation where you need layer thickness at tn and tn+1. One may think to compute the570

tracer after the insertion/removal operations have been performed (thus having positive layer thickness both at tn and tn+1),

but in this way the configuration on which the discrete tracer equation is solved is ambiguous (it is the old one, the new one?)

and it seems hard to verify tracer constancy property.
:::::::
z−layers

::::::
having

:::
all

:::
the

::::::::
interfaces

::::::
aligned

::
to

:::
the

::::::::::::
geopotentials.
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Figure 6. The different vertical z-grids
::::
grids outlined in Section 4.3.

::::::::::
Interestingly

:::
we

:::
can

::::::
obtain

::::
other

:::::
grids

::
by

:::::::::
increasing

:::::
rmov .

:::
We

::::::
define:

:

Rα =
ζmax −Zα−1/2

∆Zα
::::::::::::::::::

(40)575

::::
with

::::::::::::::::
ζmax =max

x,t
ζ(x, t)

::
an

::::::::
estimate

::
of

:::
the

::::::::
maximum

::::
free

::::::
surface

::::::
height

:::::
during

:::
the

::::::::::
simulation.

:::
We

:::
get:

:

– z-star: rmov > rN ::::::
z−star

::
if

::::::::::
rmov ≥RN:

and no insertion/removal. The whole water column is subjected to the grid

movement while the number of layers does not change. These are z-star
::::::
z−star coordinates, or any z-surface-following

:::::::::::::::::
z−surface-following coordinates depending on which coefficients lα,i are plugged in equation (36).

– z-star
::::::
z−star+z: rγ =

maxζ−z0
γ−1/2

∆z0
γ

and
:
z
::
if

::::::::::
rmov =RM:::

and
:

no insertion/removal. The upper part of the water column,580

at minimum γ
::
M

:
layers, is subjected to the grid movement while the lower part is fixed. This corresponds to a partially

z-star and partially z-system.

Figure
:
6 shows a sketch of the different possibilities.

::::::
Tuning

:::::::
properly

:::::
rmov :::

we
:::
will

::::::::
compare

:::
the

:::::
newly

:::::::::
developed

:::::::::
z−surface

:::::::
adaptive

:::::
layers

::::::
against

::::::
z−star.

:

5 Advection with spatially variable number of layers585

We have used an approach where the grid topology does not change during the time step of the conserved variables, i.e. the

scheme
::::::::
numerical

:::::::
scheme

::
of

::::::
Section

::
3 works on the deforming grid of Section 4.1, with a temporally constant number of layers

between tn and tn+1. However, in the previous time step, a layer insertion/removal may occur (to remove very thin surface

layers, or to split a thicker layer) on a certain element and not on its neighbors. This results in a grid
::::::
vertical

::::::::::::
discretization

with a spatially variable number of layers. Hanging interfaces appear for the top layers, see the top left panel of Figure . Some590

modifications have to be implemented to deal properly with such hanging interfaces,
:::
see

::::::
Figure

::
7,
::::::
which

::::::
slightly

::::::::::
complicate

::
the

::::::::
treatment

:::
of

::::::::
advection

:::::
terms, see on this topic Bonaventura et al. (2018).

Consider the
:::
one

::::::::::
dimensional

:
example in Figure

:
7, where two contiguous elements with different top-layer indexαtop,i+1/2 >

αtop,i−1/2 exist. In correspondence with node i
:
a
::::::
change

::
of
:::
the

:::::::
element

:::
top

:::::
layer

:::::
index

::::
takes

:::::
place.

::::::::::
Borrowing

::
the

::::::::::
vocabulary
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Figure 7. Treatment of non-conformal
:::::::::::
Non-conformal

:
box

::
for

:::
the

::::::::::::
one-dimensional

::::
case. Top left: non-conformal

:::::::::::
Non-conformal

:
box . Top

right: splitting with fictitious layers. Bottom left: mass-transfer function G1+1/2,i at hanging node is represented by a red arrow
:
in
::::

grey.

Bottom right: horizontal advection terms f2,i,f2,i+1 and f1,i,f1,i+1 computed for each fictitious
:::::::::
Discharges, layer

:::::::
thickness

:::
and

:::::
tracers

:
are

represented by red arrows
::::
shown.

Figure 8.
:::::::
Treatment

::
of

:::::::::::
non-conformal

:::
box

:::
for

::
the

:::::::::::::
one-dimensional

::::
case.

:::
Left:

:::::::
splitting

:::
with

:::::::
fictitious

:::::
layers.

:::::
Right:

::
the

::::::::::
mass-transfer

:::::::
function

:::::::
G1+1/2,i :

at
:::::::
hanging

::::
point

:
is
:::::::::
represented

::
by

::
a
::
red

:::::
arrow.

:

::::
from

:::
the

::::::::
literature

::
on

::::
non

:::::::::
conformal

:::::::
meshes, we have a non-conformal vertical edge with two hanging layers which slightly595

sophisticate the treatment of advection terms
:
a
:::::::
hanging

::::::
point.

:::
We

:::
call

::::::::
hanging

:::::
layer,

:
a
:::::
layer

:::
for

:::::
which

::
at
:::::
least

:::
one

::::::::
interface

::::
ends

::::
with

:
a
:::::::
hanging

:::::
point.

:::
The

:::::
boxes

::::
that

::::
have

::::::
vertical

:::::
edges

::::::
across

:::::
which

:::
the

:::::::
element

:::::::
top-layer

:::::
index

::::::
varies,

::::::
deserve

::
a
::::::
special

::::::::
treatment. In our case, with only insertion/removal of surface layers, we can easily flag boxes that deserve a special treatment

::::
such

:::::
boxes by checking, for each element, that the nodal top layer index is different from the elemental one: .

::::
The

::::::::
elements

::
of

::
the

::::
grid

::::
with

::
a

::::::::::::
non-conformal

::::::
surface

::::
box

:::
are

::::::::
indicated

::
by

::
an

::::::::
asterisk:600

if αmin,Emin,K
::::

< αtop,Etop,K
::::

then EK
:
= E⋇K∗

::

with αmin,E =minj∈E αtop,j::::
with

::::::::::::::::::::
αmin,K =minj∈K αtop,j . Then the boxes called hereinafter for simplicity "non-conformal"

can be identified by the pair of index (αtop,E ,E
⋇). Since horizontal and vertical advection terms/

::::::
indices

::::::::::::
(αtop,K ,K

∗).
:::::
Since

::::
both

::::
mass

:::
and

:::::
tracer

:
fluxes need communication with the neighbors’ boxes, they have to be treated differently.
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Moreover, for the tracer discrete update, we have to take care of preserving the constancy property. The key ingredient605

to verify tracer constancy for a hydrostatic numerical model is that the tracer discrete update, in case of a constant solution,

collapses to the discrete layerwise mass conservation. The last is always verified because it is used to compute the mass-transfer

function. Assuming that the time derivative and the vertical advection terms in and are treated equally, it is enough to

verify that the horizontal advection term reduces to the mass-flux term, also for non-conformal boxes. However, the practical

implementation depends on the specific numerical scheme. In the next paragraph, we show the case of a B-type staggered finite610

element discretization as the one used in the SHYFEM model.

5.1 Case of staggered Finite-Element on a B-grid

We consider a discretization where the water levels and the momenta (transports) are described using form functions of different

order and support. Momentum is approximated through:

huα,h(x,t) =
∑

E=1,M

ψE(x)huα,E(t)615

with ψE(x) ∈ E the constant piecewise functions and huα,E(t) the elemental momentum. The elemental currents are obtained

from uα,E =
huα,E

hα,E
. For the free surface, given an approximation of nodal values ζi(t) = ζ(xi, t), we introduce a continuous

numerical approximation:

ζh(x,t) =
∑

i=1,M+1

φi(x)ζi(t)

{φi}i=1,M+1 is the standard P 1 continuous piecewise linear Lagrange kernel. Tracers are approximated with the same formula620

, tα,h(x,t) =
∑

i=1,M+1φi(x)tα,i(t). A sketch of the vertical grid is reported in Figure .

Sketch of the staggered grid with elemental velocities and nodal tracers values.

We obtain the weak formulation multiplying the governing equation by a test function that belongs to the same space of

the solution and integrating it in the computational domain. Then, the finite element discretization of the mass-flux term in the

layerwise mass equation is computed, for each element, after integration by part:625 ∫
∆xi+1/2

∂φi

∂x
huα,h dx= ai,i+1/2huα,i+1/2

with the coefficient:

ai,i+1/2 =

∫
∆xi+1/2

∂φi

∂x
dx
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For the computation of horizontal advection we consider the tracer equation. The elemental contribution to the advection term

reads, after integration by parts:630 ∫
∆xi+1/2

∂φi

∂x
huα,h tα,h dx=

∑
j=i,i+1

kα,ijtαj = f
i+1/2
αi

with the coefficient:

kα,ij =

∫
∆xi+1/2

∂φi

∂x
φj dxhuα,i+1/2

We consider any P 1 stabilized method written in the form (neglecting the subscript α in the matrix entries):

f
i+1/2
αi =

∑
j=i,i+1

(kij + dij)tαj635

with dij a consistent discrete stabilization operator which has to be symmetric with zero row sum
∑

j=i,i+1 dij =−dii
(Kuzmin and Turek, 2002). For instance, dij can be the discrete Laplacian, the streamline-diffusion operator or, as in SHYFEM

model, a first-order upwind dissipation plus a second-order TVD correction tuned by a flux limiter, see always Kuzmin and Turek (2002)

.

In case of a non-conformal box we proceed as follows. First, we
:::
We split the box vertically in αtop,E −αmin,E +1 fictitious640

layers through planar interfaces passing through the hanging points of non-conformal edges and some fraction of the conformal

edge length, see Figure , top right panel.
::
8,

:::
left

::::::
panel.

:::::
From

:::
this

::::::::::
geometrical

::::::::::::
configuration

:::
we

:::::::
compute

:::
the

:::::::
element

::::::
layers

:::::::
thickness

:::::
h∗α,K:::

for
::::

the
:::::::
fictitious

::::::
layers.

:
Then we distribute the momentum

::::::::
discharge

:
of the top layer among the fictitious

layers: ,
:::
for

::::::::::::::::::::
α= αmin,K , ...,αtop,K :

hu⋇α,Eq
∗
α,K
:::

= huαtop,E ,E l
⋇
α,Eα= αtop,E , ...,αmin,E

∗
α,K
:::

qαtop,K ,K
::::::

(41)645

with l⋇α,E =
h⋇
α,E

hαtop,EE
and h⋇α,E the fictitious layer thickness. Finally, these

:::
with

:::::::::::::::
l∗α,K =

h∗
α,K

hαtop,KK
.
:::::
These

:
values are used to

complete both vertical and horizontal advection
::::
mass

::::
and

:::::
tracer

:::::
fluxes

:
for the missing layers of non-conformal boxes(see

Figure ??, bottom panels). Without loss of generality, we .
:::
We

:
consider the case of node i sharing a non conformal right box

(i+1/2,αtop,i+1/2), as
:::
box

::::::::::
(αtop,K ,K)

::::
with

::::
node

::::::
i ∈K,

::
as

:::::::::
illustrated

::
in

:::
one

:::::::::
dimension in Figure

:
7. After the splitting (41),

the mass-flux term reads:
::::
(only

:::
the

::::::::::::
x−component

::::::
shown)

:::::
reads,

:::
for

::::::::::::::::::
α= αtop,i, ...,αtop,K :

:
650 ∫

∆xi+1/2K:

∂φi

∂x
hu⋇α,h dxq

∗
α d

:::
x= aiK

:::
c⋇∗

α,iai,i+1/2huαtop,i+1/2,i+1/2ααtop,i+1/2 qαtop,K ,K
:::::::

(42)

with
::::
with:

c⋇∗
α,i =

{ αmin,K∑
β=αtop,i

l∗β,K if α= αtop,i and αmin,K < αtop,i

l∗α,K otherwise (hanging layer)
(43)
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where the two cases account for the contribution of element i+1/2 to both nodes with and
:
K

:::
to

:::::
nodes

::::
with

:::
or

:
without

hanging layers, respectively node i and i+1 in Figure .
::
8.

::::
Such

:::::::::::
contribution

::::
from

:::
the

:::::::::::::
non-conformal

::::
box

::
is

:::::
added

:::
to

:::
the655

::::::::
mass-flux

::::
term

::
in

:::
the

::::::::
layerwise

:::::
mass

:::::::
equation.

::
It
::::::
allows

::
to

:::::::
compute

:::
the

:::::::::::
mass-transfer

::::::::
function

::
at

::
the

:::::::
hanging

::::::
points

::::::::
Gn+1

α−1/2,i

::
for

:::::::::::::::::
α= αtop,i, ...αtop,K::

as
::::::
shown

::
in

::::::
Figure

::
8,

::::
right

:::::
panel.

::::
One

:::
can

:::::
check

::::
that

:::
this

::::::::
treatment

::
is

:::::::::::::::
mass-conserving.

::::::::
Summing

:::
the

:::::::::::
mass-transfer

:::::::
function

:::
for

:::
all

:::
the

::::::
layers,

::::
even

::
in

::::::::
presence

::
of

:::::::::::::
non-conformal

:::::
boxes,

::::
still

:::::
yields

:::
to

:::
the

:::::::
discrete

::::
mass

::::::::
equation

(27)
:
.

The horizontal advection scheme (29) on the non-conformal box can be applied straightforwardly to the fictitious layerswith660

modified coefficients kα,ij = l⋇α,i+1/2kαtop,i+1/2,ij . Then, the advection term
::::::::
numerical

:::
flux

:
in non-conformal boxes reads

(neglecting for simplicity the stabilization operator):

f
⋇i+1/2
α,i =

{ αmin,i+1/2∑
β=αtop,i

∑
j=i,i+1

l⋇β,i+1/2kαtop,i+1/2,ij tβ⋇,j if α= αtop,i and αmin,i+1/2 < αtop,i∑
j=i,i+1

l⋇α,i+1/2kαtop,i+1/2,ij tα⋇,j otherwise (hanging layer)

::
for

::::::::::::::::::
α= αtop,i, ...,αtop,K :

:

Ĥα
::

=
:

{ αmin,K∑
β=αtop,i

l∗β,K Ĥαtop,K
(Tβ∗,i,Tβ∗,j) if α= αtop,i and αmin,K < αtop,i

l∗α,K Ĥαtop,K
(Tα∗,i,Tα∗,j) otherwise (hanging layer)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(44)665

Again we have separated the cases of a node with /
::
or

:
without hanging layers. Note that the subscript (α⋇, j) = (max(α,αtop,j), j)

:::::::::::::::::
α∗ =max(α,αtop,j) avoids selecting tracer values in removed layers. The splitting of non-conformal boxes and the consequent

treatment of advection terms for such boxes allows simple verification of the tracer constancy also in presence of a spatially

variable number of layers. We have already mentioned thatit is enough to verify that the horizontal advection term
::
In

:::
the

::::::::
Appendix

:::
we

:::::
show

::::
that,

:::::
when

:
a
:::::::
constant

::::::
tracer

:
is
::::::::

imposed,
:::
the

:::::::::
horizontal

:::::
tracer

::::
flux

:
reduces to the mass-flux term, also for670

non-conformal boxes. We can verify this property by element. For a constant tracer (tα = 1), we write the advection term for

a
::::
mass

::::
flux

::::
even

::
in

:::
the

::::
case

::
of

::
a non-conformal box as:

f
⋇i+1/2
α,i =

{ αmin,i+1/2∑
β=αtop,i

l⋇βi+1/2

∑
j=i,i+1

kαtop,i+1/2,ij if α= αtop,i and αmin,i+1/2 < αtop,i

l⋇α,i+1/2

∑
j=i,i+1

kαtop,i+1/2,ij otherwise

Through the definitions and , it can be simplified to :
:::
box.

:

6
:::::::::
Numerical

::::
tests675
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:::
The

::::
tests

:::::
have

::::
been

::::
run

::::
with

::::::::::
implicitness

::::::::::
parameters

:::::::::::::
θz = θm = 0.5.

:::
We

::::
will

:::::
check

:::::::
discrete

:::::::::::::::
mass-conservation

:::
at

::::
tn+1

:::
by

:::::::::
computing

::
the

:::::::::
following

::::::
relative

:::::::
volume

::::
error

:::
for

:::
the

::::
dual

:::
cell

::::
area,

::::::
which

::::::
results

::::
from

:::
the

::::
sum

::
of (28)

::::
from

:::
Ni::

to
::::::
αtop,i:

f
⋇i+1/2
α,i en+1

i
::::

= c⋇α,i∆t::

∣∣∣∣∣∑ j=i,i+1kαtop,i+1/2,ij
αtop,i

α=Ni
|Cα,i|Gn+1

α−1/2,i
::::::::::::::::

∣∣∣∣∣ , en+1
::::

= c⋇α,iai,i+1/2huαtop,i+1/2,i+1/2max
i∈T
:::


en+1
i

αtop,i∑
α=Ni

|Cα,i|∆hα,i
::::::::::::::


which is the discrete mass-flux for non-conformal box . This completes

::
To

:::::::
quantify

:
the tracer constancy verification

::::
error,

:::
we

:::
use

:::
the

:::::::::
L1−norm:680

en+1
α,i = |Tn+1

α,i −T0|, en+1 =

∑
α,i

|Cα,i|hn+1
α,i |Tn+1

α,i −T0|∑
α,i

|Cα,i|hn+1
α,i T0

::::::::::::::::::::::::::::::::::::::::::::::::::

::::
with

::
T0:::

the
:::::
initial

:::::
tracer

:::::
value.

7 Numerical tests

All the tests have been run with the ocean model SHYFEM which is based on the Finite Element procedure of Section ??applied

to unstructured triangular grids. The extension of the z-surface-adaptive algorithm to unstructured grids is straightforward.685

In particular, nodal definitions apply identically and elemental definitions apply to triangular elements K. SHYFEM uses a

semi-implicit method to march variables in time. .
:::
In

:::
the

:::
next

::::::::::
paragraphs,

:::
we

:::::
check

:::
the

::::::::
accuracy

:::
and

:::::::::::
conservation

:::::::::
properties

::
of

:::
the

:
z
::::
with

:::::::::::::::
insertion/removal

:::
and

::::
then

:::
we

:::::::
compare

::
it

::::::
against

::::::
z−star

:::
for

:
a
:::::::
realistic

:::::::::::
environment.

6.1 Impulsive Wave

As the first test, we check the accuracy of the z-surface-adaptive coordinate
:::::::::::::::
z−surface-adaptive

::::::
layers

:
with an increasing690

vertical resolution. We use a closed basin [−5,5]× [−5,5]
::::::::::::::::::::
[−5m,5m]× [−5m,5m]

:
with constant depth b= 1

::::::::
zb = 1m. The

basin is initially at rest and the free surface is perturbed by the following Gaussian hump:

ζ(x,yx, t= 0) =Aexp(−r2/τ)

with A= 1/2, τ = 1/2
:::::::::
A= 0.5m,

::::::::::
τ = 0.5m2 and r =

√
x2 + y2. A constant passive tracer is prescribed on the background

and such a constant state should be preserved along the simulation. The mesh has a
::::::
uniform

:
horizontal element size of695

hK = 0.25
::::::::::
hK = 0.25m. We compare different vertical resolutions with variable layer thicknesses

:::::
layers

::::::::
thickness. The coars-

est grid has three layers: a first top layer with thickness of ∆z1 = 0.2
:::::::::::
∆Z1 = 0.2m, the second and the third layers have

thicknesses of ∆z2,3 = 0.4
:::::::::::::::::
∆Z2 =∆Z3 = 0.4m. The other vertical grids are obtained by halving each of these layers. The

finest grid has 24 layers with minimum layer thickness at the surface of ∆z = 0.025
:::::::::::::
∆Z1 = 0.025m.
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Without bottom/surface forcing, if the initial currents are constant along z
:::::::
velocities

:::
are

:::::::
constant

::::
over

:::
the

::::::
layers, they must700

remain barotropic and equal to the depth-integrated currents of the Shallow Water
:::::::
velocities

::
of

::::
the

::::::
shallow

:::::
water

:
equations

(1-layer case). Of course, this is not a property of the discrete z-coordinate scheme
:::::::
z−layers

:
(but the scheme should converge

to a barotropic solution refining the resolution). It is however desirable that the results of 2d and 3d models are similar for

the typical resolution of an ocean simulation (Kleptsova et al., 2010). The 1-layer discrete solution is considered here as a

reference solution against which we compare our implementation of the z-layers
:::::::
z−layers. The coarse grid with 3-layer is705

also used for comparison since the free surface is always contained in the first layer and no insertion/removal is necessary.

For the 24-layer grid, up to six layers are progressively removed (and then re-inserted). In Figure
::
??, all resolutions show

a good agreement for both the water level and the barotropic current
::::::
velocity. We can check some conservation properties

of the scheme. As usual for such an adaptation strategy, mass is conserved up to machine precision (SHYFEM is coded in

single-precision). This is what we check in Figure
::
??, left panel, where no .

:::::
With

:::
the

::::::::
exception

:::
of

:
a
:::::
small

:::::::::
additional

:::::
noise710

::::::::
associated

::
to

:::
the

:::::::::::::::
insertion/removal

:::::::::
operations,

:::
no

::::::::::
significative source of mass error is present with respect to the 3-layer case.

A direct consequence of mass conservation is tracer constancypreservation,
::::::
Tracer

::::::::
constancy,

:::
as

::::::::
expected,

:
is
::::
also

::::::::
preserved

:
up

to machine precision, Figure
:::
see

::::::
Figure

::
??, right panel.

6.2 1-d tidal flow in a sloping channel

Coastal applications include extensive intertidal flats. As with many ocean models, SHYFEM handles wetting and drying715

processes in a simplified manner, applying ad-hoc treatments in dry cells. An extrapolation algorithm for the free surface is

used to track the shoreline and identify dry and wet regions. Then, the two regions are treated separately, see Umgiesser (2022)

for the details. The test that we propose, presented in Oey (2005), is a benchmark for wetting/drying algorithms used in ocean

models. The domain consists of a 1d sloping channel that ranges from x= 0km
::::
x= 0

:
at the landward end to x= 25km

:::::
x= L

at the seaward boundary. The slope of the bathymetry is b(x) = 10x/(25km),
::::
with

::::::::::
L= 25km.

::::
The

:::::::::
bathymetry

::
is

::::::::::
represented720

::
by

:::
the

::::::::
following

::::::::
function

:::::::::::::::
zb(x) =−H0/Lx::::

and
:::::::::
H0 = 10m. The horizontal mesh size is

:::::::
element

:::
size

::
is
:::::::
uniform

::::
and equal

to hK = 250m. A periodic water level is imposed at the seaward boundary ζ = 10(1− sin(10πt))
::
as

::::::::::::::::::::
ζ(t) =A(1− sin

(
2πt
T

)
)

::::
with

::::::::
amplitude

:::::::::
A= 10m,

::::::
period

:::::::::
T = 1day

::::
and

:::
the

::::
time

::
t

::::::
ranging

:::::
from

::
0

::
to

:::::::
0.5day. At the beginning of the simulation,

the channel is dry. Typically this test is run with 1-layer models (Warner et al., 2013). Here we use the 1-layer solution (1L)

as a reference and we test the 5-layer with surface-adaptation and the 5-layer with z-star
::::::
z−star. In the 5L z-surface-adaptive725

::::::::::::::::
z−surface-adaptive simulation, only one layer is present at the beginning of the simulation and then, as long as the free surface

is tilted by the boundary signal, more levels are inserted and then removed during the drying phase. Flooding is thus performed

with a 1-layer Shallow Water
::::::
shallow

:::::
water model with the classical wetting/drying algorithms that may be deployed in dry or

nearly dry areas (e.g. positivity limitation, momentum
::::::::
discharge regularization, etc...). With z-star

::::::
z−star instead, such wetting

and drying algorithms are applied to all layers.730

In Figure
::
??

:
we check the along-channel solution profiles. Despite the different manner of handling wetting/drying for

the 5L z-surface-adaptive
::::::::::::::::
z−surface-adaptive

:
and 5L z-star

::::::
z−star simulations, a quite good agreement is observed for the

free surface, while larger differences are found for the barotropic current
:::::::
velocity where both the 5-layers simulations appear
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noisier at the wet/dry interface.
::
In

::::::
Figure

:::
??,

:::
left

:::::
panel,

:::
we

:::::
check

:::::::
volume

::::::::::
conservation

:::
for

::::
this

::::
case

:::::
which

:::::::
involves

:::
an

::::::
uneven

:::::::::
bathymetry

:::
and

:::::::::::::
wetting/drying.

::::::::
Although

::
in

:::::::::::::
correspondence

::
of
:::::::
wet/dry

:::::
nodes

:::
the

:::::::
relative

::::::
volume

::::
error

::
is
:::::
much

::::::
larger,

::
we

::::
can735

:::::
verify

:::
that

:::
the

:::::::::
z−surface

::::::::
adaptive

:::
has

:::
the

:::::
same

::::
level

:::
of

::::::
relative

:::::
error

::
of

::::::
z-star,

:::::
which

:::
we

::::::
accept

::
to

:::
be

:::::
within

:::
the

::::::
round

:::
off

:::::
errors.

::::
The

::::
same

::::::::
argument

:::::::
applies

::
to

:::
the

::::
error

:::
for

:::
the

:::::
tracer

:::::::::
constancy.

6.3 Venice Lagoon
::
Po

::::
delta

:
idealized test

Here we
:::
We test the different z-coordinates

:::::::
z−layers in a realistic lagoon

:::::
coastal

:
environment forced by the tidal oscillation.

The Venice Lagoon is characterized by a complex system of shallow areas subjected to wet-dry processes (the average basin740

depth is of the order of 1m) and deeper channels (maximum depth around 15m). We simulate a summer period when the

strong diurnal heating sums up river runoff and make the lagoon less dense than the sea-water entering from the inlets. The

flow is mainly driven by the tidal currents that transport water masses with different densities along the lagoon channels. The

deeper channels can experience surface stratification during summer. In this test, the lagoon is forced with analytical functions

representative of a calm summer period characterized by strong solar radiation.
:
:
:::
the

:::
Po

:::::
delta.

:::
We

:::::
study

::::
both

:::
the

::::
river

::::::
plume745

:::
and

:::
the

::::::::::
penetration

::
of

:::
the

::::
salt

:::::
water

:::
into

::::
the

::::
river

::::::::
branches.

::::
The

:::::::::
numerical

:::::::::::
reproduction

::
of

::::
such

::::::::::
phenomena

:::
for

:::::::::
numerical

::::::
models

::
is

:
a
::::
very

:::::::
delicate

:::::
issue.

::::::::::
Specifically,

:::::::
spurious

:::::::::
numerical

::::::
mixing

::::::
related

::
to

:::
the

:::::::::
horizontal

:::
and

::::::
vertical

:::::::::
numerical

::::::
fluxes,

::
the

:::::::
vertical

::::
grid

:::
and

::::
the

:::::::::::
time-stepping

::::
can

::::::
destroy

:::::::::::
stratification

:::
and

::::::
frontal

:::::::::::::
characteristics,

:::::::::
potentially

:::::::::
modifying

:::
the

::::::
plume

::::::::
dynamics

::::::::::::::::::
(Fofonova et al., 2021)

:
.
::
In

::::
this

::::::::
discussion

:::
we

::::::
solely

::::
focus

:::
on

:::
the

::::::
impact

::
of

:::
the

::::::
vertical

::::::::::::
discretization:

:::
the

:::::::::
resolution

:
at
:::
the

:::::::
surface

:::
and

:::
the

::::::::::
comparison

:::::::
between

:::
the

:::::::::
z−surface

:::::::
adaptive

::::
with

::::
fixed

:::::::::
interfaces

:::
and

::::::
z−star

::::
with

:::::::
moving

::::::::
interfaces.

:
750

The vertical eddy viscosity µv and the vertical tracer eddy diffusivity µtv are computed with the turbulence module GOTM (Buchard et al.)

. At the inlets, the lagoon .
::::
The

::::::
bottom

::::::
friction

::
is

::::
fixed

::
to

:::::::::::
CF = 0.002.

:::::::
Because

::
of

::::
their

:::::::::::
fundamental

:::
role

::
in

:::
the

:::::
plume

:::::::::
dynamics,

:::
two

:::::
more

:::::
terms

::::
have

::::
been

::::::
added

::
to

:::
the

::::::::
multilayer

:::::::
shallow

:::::
water

::::::
model

::
of

::::::
Section

:::
2:

:::
the

:::::::
Coriolis

::::
force

::::::
which

::
is

::::::::::
timestepped

::::
with

::
an

::::::::::
implicitness

::::::::
parameter

::
of

:::
0.5

::::
and

::
an

::::::::
horizontal

::::::::
diffusion

::::
term

:::
for

:::
the

::::::
salinity

::::::::
equation,

:::::
treated

:::::::::
explicitly.

:::
The

:::::::::
horizontal

:::::::
viscosity

::
is

:::::
taken

::
as

:::
the

:::::::::::
Smagorinsky

:::::
eddy

::::::::
viscosity.

:::
The

:::
sea

:::::::::
boundary is forced with a semi-diurnal tidal signal with ampli-755

tude 0.4m and period 12 hours, sea-water at T = 25◦C and S = 35PSU.
::::
The

::::::
salinity

::
at

:::
the

:::
sea

::::::::
boundary

::
is

:::::::
constant

:::
and

:::::
fixed

::
to

:::::::
38PSU.

::
A

:::::
weak

:::::::::
freshwater

::::
flow

::::
with

:
a
:::::::::

discharge
::
of

:::::::
500m3,

:::::
which

::
is
:::::::::::
characteristic

:::
of

:::
the

:::::::
summer

::::::
season,

::
is

::::::::
enforced

::
at

::
the

:::::::::::::
Pontelagoscuro

:::::
river

::::::::
boundary. The lagoon is initialized with constant temperature T = 25◦C and salinity S = 30PSU

:
a

::::::
salinity

:::::
equal

::
to

:::
the

:::::::::
boundary

:::::
value

::
of

:::::::
38PSU. The simulation lasts ten days

:::
one

:::::::
month,

::::
after

::::::
which

:::
the

::::::
salinity

::::::
shows

::
a

:::::::
periodic

::::::::
behaviour

:::::::::
modulated

::
by

:::
the

::::
tidal

:::::
cycle.760

A coarse horizontal grid made out of 7842 triangular elements and 4359 nodes is used. This gridhowever is capable of

representing the main channels and islands where smaller elementsare placed (Figure ??)
:::
The

::::::::::::
computational

::::::
domain

:::::::::::
encompasses

::
the

::::::
entire

::::
river

::::::::
network

::
of

:::
the

::::::
delta,

::::::::
stretching

:::::
from

:::::::::::::
Pontelagoscuro

::
to
::::

the
:::
sea,

:::::::::
including

:::
all

::::
delta

::::::::
lagoons,

::
as

:::::
well

::
as

::
a

::::::
portion

::
of

:::
the

:::::::
adjacent

:::::
shelf

:::
sea

:::::::::::::::::::
(Bellafiore et al., 2021)

:
.
:::::::::
Horizontal

:::::::::
resolution

::::::
ranges

::::
from

::::::::::
hK = 2km

::
at

:::
the

:::
sea

:::::::::
boundary,

::
to

::::::
around

::::::::::
hK = 100m

::
in
:::
the

:::::
inner

:::::
shelf

::::
close

::
to
:::
the

:::::::
lagoons

::::
and

::::
river

::::::::
branches,

::::
and

::
to

::::::
around

:::::::::
hK = 50m

:::
in

:::
the

::::
inner

:::::
delta765

::::::
system.

::::
The

:::::::::
horizontal

::::
grid,

:::::::::
composed

::
of

::::::
38884

:::::
nodes

::::
and

:::::
69364

:::::::::
elements,

::
is

::
in

::::::
Figure

:::
??. We consider two vertical res-

olutionssummerized in Table ??
:
,
:::
one

::::
with

:::::::
N = 24

::::::
layers

:::
and

::::
one

::::
with

:::::::
N = 27

:::::
layers. The deeper part (from the bottom to
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−2m from the reference level
::::::::
Z =−1m) is equal for the two z-grids

::::
grids

:
and it is composed of 16

::
23 levels with vari-

able thicknesses , going from ∆z = 0.5
:::
from

:::::::::
∆Z = 0.5

:
near the surface up to ∆z = 4m at 40m

::::::::::
∆ZN = 4m

:::
for

:::
the

::::
last

::::
layer. The resolution of the upper part of the water column differs: the coarse grid has the first layer of ∆z1 = 1m followed770

by two layers with a thickness of ∆z = 0.5m
:::
one

:::::
layer

::::
with

::::::::::
∆Z1 = 1m. This choice avoids the drying of the first layer.

In
::::
The

:::
fine

:::::
grid,

::
in

:
the upper part, the fine grid has 8 layers with a constant thicknessof ∆z = 0.25m

:::
has

::
4

:::::
layers

:::::
with

:::::::
constant

::::::::
thickness,

::::::::::::::::::::::::::::::::
∆Z1 =∆Z2 =∆Z3 =∆Z4 = 0.25m. Three simulations have been performed: a coarse one with stan-

dard z-coordinate (19L z
:::::::
z−layers

::::
(24L

::
z), a fine one with z-surface-adaptive coordinate (24L z-surf-adapt

::::::::::::::::
z−surface-adaptive

:::::
layers

::::
(27L

:::::::::::
z−surf-adapt) and a fine one with z-star (24L z-star).

:::::
z−star

:::::
(27L

:::::::
z−star).775

Given the fine vertical resolution and the tidal amplitude of 0.4m, the 24L z-surf-adapt
:::
27L

:::::::::::
z−surf-adapt simulation should

undergo extensive element insertion/removal
::
of

::
the

:::::::
surface

::::
fluid

:::::
boxes. In the right picture of Figure ??

::
?? we have reported the

time evolution of the number of elements
:::::
boxes inserted and removed during two tidal periods. More than 150 surface elements

::::::
Almost

::::
4000

:::::::
surface

:::::
boxes happened to be inserted or removed in a single time step.

::
As

::
it

:
is
:::::::::
customary

:::
we

::::
have

:::::::
reported

:::::
mass

::::::::::
conservation

::::
and

:::::
tracer

::::::::
constancy

:::::
error

::
in

:::::
Figure

:::
??.

::::::
These

::::::
figures

:::
are

:::::::
referred

::
to

:
a
::::::
shorter

:::::::::
simulation

::::
that

:::::
lasted

:
4
:::::
days

::::
with780

:
a
:::::::
constant

:::::::
salinity

:::::::
obtained

:::
by

::::::::
imposing

:::
the

:::::
river

::::::
salinity

:::::
equal

::
to
::::

the
::::::
interior

::::
one.

:
In Figure ??, we show the free surface

and the barotropic velocity recorded at two stations, at "Punta della Salute" in Venice, quite close to the northern inlet and at

"Canale dei Petroli" placed in the deep tanker ship channel, (named respectively G2 and G8 in Figure ??). The signals of the

three simulations are almost overlapping with small differences in the velocities.

Always
::
To

:::::::
diagnose

:::
the

:::::
river

:::::
plume

:::
we

::::
look

:::
to

:::
the

::::::::
minimum

::::::
surface

:::::::
salinity

::::::
during

:::
the

:::::::::
simulation.

:::::
From

::::::
Figure

:::
??,

::
it

::
is785

::::
clear

::::
that

::::
both

:::
the

::::
fine

::::
grids

::::::::::
simulations

:::::
allow

::
a
:::::::
stronger

:::::::::::
gravitational

:::::::::
circulation

::::
with

::
a
:::::
more

:::::::
extended

::::::::::
freshwater

::::::
plume.

::::
Also,

:::
the

::::::::
opposite

::::::
bottom

:::::::::
circulation

:::::::::
penetrates

::::
more

:::::::::
upstream,

::::
with

:::::::
stronger

::::::
salinity

::::::::
recorded at the stations G2 and G8 we

show the velocity and tracer profiles. At the station G2,
:::
G5,

::
as

::::::
shown

:
in Figure ??, the tracer profile is mostly well-mixed.

At station G8, in Figure ??, we observe that the ebb phase is followed by a stratification of the water column which is then

erased after the flood phase. First, we note that the vertical resolution seems to strongly affect the tracer evolution. Although790

the coarse and fine simulations show similar periodic profiles,
:::
??.

:::
To

::::::
inspect

:::
the

::::::::
extension

::
of

:::
the

::::::::
saltwater

::::::::
intrusion

::
we

:::::
have

:::::::
extracted

::
a

::::::
section

::
of

:::
the

::::::
salinity

::::
field

::
in

:::
the

::::
Pila

::::::
branch

:::::
when

:::::::
saltwater

:::::::
reaches

:::
the

::::::::
maximum

::::::
extent,

::::::
during

:
a
:::::
flood

::::
tide.

::::
This

:
is
::::::
shown

::
in

::::::
Figure

:::
??.

::::
The

::::::
higher

::::::::
resolution

:::
at

:::
the

::::::
surface

::::::
allows

::
to

:::::::
capture

:::
also

:::::
some

:::::
small

:::::
scale

:::::::
internal

:::::::
structure

::::::
which

::
are

:::::::
present

:::::
under

:::
the

:::::::
surface.

:::::::::
Differently

::::
from

:::
the

::::::::
previous

:::
test,

:
the 19L z simulation shows significantly lower temperatures.

For the temperature, we believe this is due to the different mechanisms of heating and cooling. Heating is mainly associated795

with the incoming short-wave solar radiation which acts as a body force for the upper water column. On the contrary heat

loss through latent and sensitive heat flux occurs via a boundary condition (in a layerwise model, a source term for the

first layer only). Thus the first layer thickness strongly impacts the temperature evolution, in particular in our case a thinner

layer causes a more rapid cooling during the night, which leads the lagoon to a colder state. Second, comparing the two fine

simulations (24L z-surf-adapt and 24L z-star), we found that they are in close agreement which seems to confirm the analysis800

of Section 2 (see also the Appendix): for micro-tidal applications and fine vertical resolutions, the mixing related to the free

surface oscillation is small.
:::::::::
differences

:::::::
between

:::
the

:::::::::
z−surface

::::::::
adaptive

:::
and

::::::
z−star

:::::
grids

:::
are

::::::
clearly

:::::::
visible.

::::
The

::::::::
z-surface
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:::::::
adaptive

:::::::::
simulation

::::::
exhibits

::
a
:::::::
stronger

:::::
plume

::::
and

:::
and

::
a

::::
more

::::::::
extended

:::
salt

::::::
wedge

::
as

::::
well

::
as

:
a
:::::
more

::::::
sharper

:::::::
surface

::::::::
structure.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
A possible explanation could be related to the fact that, due to the strong internal motion, the vertical velocity is not in phase with the time derivative of the free surface and it may happen that it has opposite sign with respect to the grid velocity. For z-star, the mass-transfer function (11) is larger then the vertical velocity. In turn, this can be related to a larger truncation error associated with the vertical advection scheme.

805

:::
All

:::
the

::::
tests

::::
have

::::
been

::::::::::::
accomplished

::::
with

::
a

::::
serial

::::
run.

:
We report the CPU time of the three serial simulations which have

been run on a modern workstation with a AMD EPYC 7643 Processor : 7099 s (19L z), 12227
:::::::
2073005

:
s (24L z-star),

13261
::::::
z−star),

::::::::
1998969

:
s (24L z-surf-adapt

:::::::::::
z−surf-adapt) showing an overhead of around 8

::
3.6% for the insertion/removal

operations.
::::::::
Although

:::
we

::::
have

::::
not

:::::::
covered

::::::
parallel

:::::::::::::
implementation

:::::::
aspects,

:::
we

:::::::
mention

::::
that

:::
the

:::::::::
algorithm

::::
(grid

::::::::::
movement,

:::::::::::::::
insertion/removal)

::::::
mainly

:::::::
operates

:::
on

:::
the

:::::::
vertical

::::
grid,

::::
and

:::
the

:::::::
parallel

::::::::
execution

:::
of

::::
these

:::::
tasks

::::::
should

::::
not

::::::::
encounter

::::
any810

:::::
issues.

::::
The

::::::
stencil

::
of
::::

the
::::::::
numerical

:::::::
scheme

::
is
:::
not

::::::::
enlarged

::::
with

:::::::
respect

::
to

:::
the

::::::::
standard

:::::::
method.

::::::::
However

:::::
some

::::::::
variables

::::
have

::::
been

:::::::::
introduced

::::
only

:::
for

::::
the

::::::::::::::
insertion/removal

::::::::::
operations.

::::
This

::
is

:::
the

::::
case

::
of

:::
the

:::::
nodal

::::
top

::::
layer

:::::
index

::::::
which

::::
must

:::
be

:::::::::
exchanged

:::::::
between

:::
the

:::::::
domains.

:

7 Conclusions

In this work, we have reviewed
::::::
studied the performances of geo-potential coordinates

::::::::
multilayer

::::::
shallow

:::::
water

::::::
models

:::::
based

:::
on815

:::::::
z−layers

:
for the simulation of free surface coastal flows. We have investigated a well-known issue of geo-potential coordinates

:::::::
z−layers

:
when incorporating the free surface: the limitation on the resolution of the surface layer thickness. We have proposed

a flexible algorithm based on a vertical adaptation to the tidal oscillation called z-surface-adaptive
::::::::::::::::
z−surface-adaptive. With a

dynamic insertion and removal of surface layers, the grid (at least the internal interfaces) is always aligned to geo-potential
::::::
aligned

::
to

::::::::::
geopotential, canceling the pressure gradient error. Thanks to a two-step procedure (vertical grid movement of surface layers820

followed by the insertion/removal operations), this algorithm preserves the stability and conservation property of the numerical

scheme
::
we

:::::
have

::::
been

::::
able

::
to

::::::
evolve

:::
the

:::::::::
multilayer

::::::
model

::
on

::
a
::::
grid

::::
with

:
a
::::::::::
temporally

:::::::
constant

:::::::
number

::
of

:::::
layers

::
in
::::

the
::::
time

:::
step

::::::
which

:::::::
allowed

:
a
::::::
simple

::::::::::::::
implementation.

::::::::
Moreover

::::
this

::::
leads

:::
to

:
a
::::::::::
consistency,

::
at
::

a
:::::::
discrete

:::::
level,

::
of

:::
the

:::::
tracer

::::::::
equation

::::
with

::
the

:::::::::
continuity

:::::::
equation

:::
as

:::
well

:::
as

::
to

:
a
::::::
simple

:::::::::
verification

:::
of

:::::::::::::::
mass-conservation. As a particular case, the algorithm can be

reverted to z-surface-following coordinates, such as the popular z-star
::::::
reduced

::
to

:::
the

:::::::
popular

::::::
z−star.825

Without the limitation on the surface resolution, we have been able to compare the z-coordinate
:::::::
z−layers

:
with insertion/re-

moval (surface-adaptive) against z-star
::::::
z−star for typical coastal applications of semi-enclosed shallow seas with a tidal signal

imposed at the openings and wetting/drying at intertidal flats. The comparison has been carried out with numerical experiments

:::::::
idealized

::::
and

:::::::
realistic

::::::::
numerical

:::::::::::
experiments.

:::
We

::::::
shows

:::
that

:::::::::::::::::
z−surface-adaptive

:::::
layers

:::
can

:::
be

::::
used

::
to

::::::::
simulate

::::::
wetting

::::
and

:::::
drying

::::
and

::::::
without

:
a
:::::::::
significant

::::
loss

::
of

:::::::
accuracy

::::
with

::::::
respect

::
to

:::::
z-star.

:::
We

::::::
found

:::
that

:::::::
z-layers and simple analysis. In particular,830

using a local truncation error analysis we have investigated the additional numerical mixing associated with z-coordinates with

the free surface. The analysis shows that , for high tidal ranges, the z-coordinate may suffer from spurious mixing or even from

over-compressive effects, depending on the resolution and the flux limiter. However, as to be expected intuitively
::::::
z−star

::::::
exhibit

:::::::::
differences

:::::
when

:::::::::
simulating

:::::
large,

:::
low

:::::::::
frequency

:::::::
internal

:::::::
motions

::::::::
combined

::::
with

::
a

::::::::
barotropic

:::::
tide,

::::
such

::
as

:::
the

:::::::::::
gravitational

:::::::::
circulation

::
in

:::
the

::
Po

:::::
Delta.

::::::
These

:::::::::
differences

:::::::
deserve

:::::
further

::::::::
attention.

::::
We

:::::::
speculate

::::
that

:::
for

::::
such

:::::
cases,

:::::::
keeping

:::::::
z-layers

::::
may835
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::
be

:::::::::
convenient

::
to
::::::

reduce
:::::::::

truncation
::::::
errors

::
in

:::
the

:::::::::::
computation

::
of

::::
both

:::
the

:::::::
internal

:::::::
pressure

::::::::
gradient

::::
term

::::
and

::
of

:::
the

:::::::
vertical

:::::::::
advections

:::::
terms.

:::
We

::::::::
conclude

:::::::::
mentioning

::::
that

:::
the

::::::::
overhead

:::::::
related

::
to

:::::::::::::::
insertion/removal

::::::::
operation

::::::
should

:::
be

::::::
further

:::::::
assessed

:::
in

:::::::
realistic

::::::::::
applications.

:::::
With

:::
the

:::::
actual

:::::::::::::
implementation

::
of

:::
the

::::::::
z-surface

::::::::
adaptive

:::::
layers, we have found that, for micro-tidal ranges and

typical vertical resolutions of coastal models, these errors are small. In such conditions, with a simulation of the Venice Lagoon840

circulation, we shows that surface-adaptive-z coordinates can be used without a significant loss of accuracy.

::::::::::
experienced

:::::
some

:::::::
stability

:::::
issue

::
in

:::
the

:::::::::::
computation

:::
of

:::
the

::::::
tracers.

:::::
This

::::::::
occurred

:::
for

::::::::::::
non-conformal

::::::
boxes

::::::::::
undergoing

::::::::::::
wetting/drying

:::
and

::
it
::
is
:::::
under

:::::::
current

:::::::::::
investigation.

::::
We

:::
are

:::::
trying

::
a
:::::::
simpler

::::::::
treatment

::
of

:::
the

:::::::::::::
non-conformal

::::::
surface

::::::
boxes

::
as

::
in

:::::::::::::::::::::
Bonaventura et al. (2018).

:

Code and data availability. The SHYFEM hydrodynamic model is open source (GNU General Public License as published by the Free845

Software Foundation) and freely available through GitHub at https://github.com/SHYFEM-model. The current developments have been

implemented in a branch of the SHYFEM code that can be accessed from Zenodo (Arpaia, 2023, https://doi.org/10.5281/zenodo.8147444).

Configuration files and data used to run each test case are also available at the same Zenodo repository.

Appendix A: Numerical mixing induced by a tidal flow
::::::
Tracer

:::::::::
constancy

We derive a closed-form expression for the numerical mixing of z-coordinate layerwise models when large vertical velocities850

associated with tidal flows are present (Klingbeil et al., 2018). To simplify the analysis we assume the case of a passive

tracer advected by a barotropic linearized flow with water depth H(x,t) and barotropic velocity u(x,t). We note that, for

surface-following coordinates, the mass-transfer function is zero (because of hα = lαH). The layers are thus aligned along the

materials and the tracer is just advected along a layer without any discretization error arising from the vertical approximation.

For this reason, hereinafter in the section, we take the z-star coordinate as the reference solution. On the contrary for z-coordinate855

models, the mass-transfer is the vertical velocity, a linear function of depth:

Gα−1/2 =−wα−1/2 =
∂u

∂x

α∑
β=N

hβ

Then, the vertical advection fluxes will trigger some numerical noise (diffusion or dispersion). For a linearized barotropic flow,

we can use the mass equation ∂tζ +H0∂xu= 0 toreplace:∣∣∣∣∂u∂x
∣∣∣∣= 1

H0

∣∣∣∣∂ζ∂t
∣∣∣∣≤ AΩ

H0
860

:::
We

::::
start

::::
with

::
the

::::
case

:::::::
without

::::::::::::
non-conformal

::::::
boxes.

:::
We

::::::
impose

::
a
:::::::
constant

:::::
tracer

:::::
vector

:::::::
T i = 1

::
in

:::
the

::::::
discrete

:::::
tracer

::::::::
equation

(31)
:
.
::::
Each

::::
row

::::::
reduces

:::
to:

:

|Cα,i|hn+1
α,i

::::::::

=
:

|Cα,i|hnα,i +∆tfnα,i
::::::::::::::::
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with A the tidal amplitude, Ω= 2π/T , T the tidal period and H0 the bottom depth.

The exact solution satisfies the layer-averaged continuous conservation law:865

∂texα
∂t

∣∣∣∣
s

+
∂utexα
∂x

+
∂wtex

∂z
= 0

::::
with

fnα,i =−
∑

K∈Dαi

∑
j∈K,j ̸=i

Ĥα (1,1)+
(
|Cα,i|Gn+1

α−1/2,i − |Cα+1,i|Gn+1
α+1/2,i

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

where texα = tex and the average operator is (·) = h−1
α

∫ zα−1/2

zα+1/2
(·)dz. The local truncation error (LTE) measures the error

introduced by the numerical method, in our case the vertical discretization only. We define it after applying the true solution to870

the layerwise conservation for the tracer restricted to the grid points zα (the diffusion term is not considered):

∂texα
∂t

∣∣∣∣
s

+
∂utexα
∂x

+
1

hα

[
wtex

]α−1/2

α+1/2
+LTEα = 0

:::::
Using,

::::
first,

:::
the

:::::::::
numerical

:::
flux

::::::::::
consistency

::::::::::::::::::::
Ĥα (1,1) = qn+θz

α ·nK
ij :::

and
::::
then

:::
the

::::::::::
relationship

:::::::
between

:::
the

::::::
element

:::::::
normals

::::
and

::
the

::::
dual

::::
cell

::::
ones (19):

:∑
K∈Dαi

∑
j∈K,j ̸=i

Ĥα (1,1)

:::::::::::::::::::

=
:

∑
K∈Dαi

∑
j∈K,j ̸=i

qn+θz
α ·nK

ij =−
∑

K∈Dαi

qn+θz
α · n

K
i

2
::::::::::::::::::::::::::::::::::::::::

875

=
:

−
∑

K∈Dαi

(
axiK q

x,n+θz
α,K + ayiK q

y,n+θz
α,K

)
:::::::::::::::::::::::::::::::

Since
::
In

:::
the

:::
last

::::
step

:
we have used the layer-integrated form of the conservation law, we have divided it by the layer depth,

which is constant for internal z-layers. After canceling common terms:

LTEα =
∂wtex

∂z
− 1

hα

[
wtex

]α−1/2

α+1/2

:::
fact

:::
the

:::
for

:::::::::
piecewise

:::::
linear

::::
basis

::::::::
functions

:::
we

:::::
have

:::::::::::::::

nK
i

2 = |K| ∇φi|K .
::::

For
::::
each

:::::::
element

::
in

:::
the

::::::
subset

:::::
Dα,i,:::

the
:::::::::
horizontal880

:::::
tracer

:::
flux

:::
has

:::::
been

::::::
reduced

::
to
:::
the

:::::
mass

::::
flux.

:::
We

:::
can

:::::
write

:::
the

:::::::
discrete

:::::
tracer

::::::
update:

:

|Cα,i|
∆hα,i
∆t

::::::::::

=
:

∑
K∈Dαi

(
axiK q

x,n+θz
α,K + ayiK q

y,n+θz
α,K

)
+ |Cα,i|Gn+1

α−1/2,i − |Cα+1,i|Gn+1
α+1/2,i

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

where the numerical fluxes at the interfaces are computed with the TVD scheme . In our time-continuous analysis ∆t→ 0,

corresponds to combine an upwind flux formula with a second-order centered flux
:::::
which

::::::::::
corresponds

::
to

:::
the

:::::::
discrete

::::::::
layerwise

::::
mass

:::::::
equation

:
(28)

:
.885
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::
In

::::
case

::
of

:
a
:::::::::::::
non-conformal

::::
box,

:::
we

::::
have

::
to

:::::
show

:::
that

:::
the

::::::::
modified

:::::::::
horizontal

:::::
tracer

:::::
fluxes

::::
still

::::::
reduces

::
to

:::
the

:::::::::::
mass-fluxes.

::::::::
According

::
to
:
(44)

:
,
:::
the

::::::::
horizontal

:::::
tracer

::::::
fluxes

::
in

::::::::::::
non-conformal

:::::
boxes

::::::
should

::
be

:::::::::
computed

::::
with:

wα−1/2tα−1/2 = w+
α−1/2tα +w−

α−1/2tα−1 +
|wα−1/2|

2
(tα − tα−1)ϕα−1/2

We recall that ϕα−1/2 = ϕ(rα−1/2) is the Superbee limiter and r is a measure of the smoothness of the tracer profile. Typically

the solution is expanded in a Taylor series about zα:890

tex(z) = tα +
∂t

∂z

∣∣∣∣
α

(z− zα)+
1

2

∂2t

∂z2

∣∣∣∣
α

(z− zα)
2
+

1

6

∂3t

∂z3

∣∣∣∣
α

(z− zα)
3
+O((z− zα)

4)

We consider a z-grid with uniform vertical grid spacing h. Note that, for a z-grid, the first layer cannot have the same thickness

as other layers but this makes the analysis more complex, so we restrict to equispaced internal layers. We replace the expanded

expression of the true solution into the definition , see e.g. Nishikawa (2020). After some algebra, we get (only leading order

diffusive terms shown):895

LTEα =
1

2
((|wα| − (|w|ϕ)α))

∂2t

∂z2

∣∣∣∣
α

h+
1

6
|[w]| ∂

2t

∂z2

∣∣∣∣
α

h+O(h3)

where wα is the vertical velocity at the layer mid-point and [w]
α−1/2
α+1/2 is the difference over the layer. We collect the diffusive

terms and replace the expression for the vertical velocity

Ĥα
::

=
:

{ αmin,K∑
β=αtop,i

l∗β,K Ĥαtop,K
(Tβ∗,i,Tβ∗,j) if α= αtop,i and αmin,K < αtop,i

l∗α,K Ĥαtop,K
(Tα∗,i,Tα∗,j) otherwise (hanging layer)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::
which,

::
in
::::
case

:::
of

:
a
:::::::
constant

::::::
tracer,

:::
can

::
be

::::::::
rewritten

:::
for

:::::::::::::::::
α= αtop,i, ...αtop,K :900

Dnum
α =

1

2

(∣∣∣∣∂u∂x
∣∣∣∣((b+ zα)− ((b+ z)ϕ)α)

)
∂2t

∂z2

∣∣∣∣
α

h+
1

6

∣∣∣∣∂u∂x
∣∣∣∣ ∂2t∂z2

∣∣∣∣
α

h2 +O(h3)

Finally using the upper bound and (b+ ζ)/H0 ≈ 1 we get:

Dnum
α ≤ 1−ϕα

2
AΩ

∂2t

∂z2

∣∣∣∣
α

h+
1

6

AΩ

H0

∂2t

∂z2

∣∣∣∣
α

h2 +O(h3) □

Ĥα = c∗α,iĤαtop,K
(1,1)

:::::::::::::::::::

905

:::
and

::::
thus:

:∑
j∈K,j ̸=i

c∗α,iĤαtop,K
(1,1) = c∗α,i

(
axiK q

x,n+θz
αtop,K ,K + ayiK q

y,n+θz
αtop,K ,K

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
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We perform here a simple experiment in a coastal environment (depth H0 = 50m and Ω= 2π
12.41hours ) with two smooth

tracer profiles, an exponential one t(z) = t0 exp{−z/Λ} withsmall vertical derivatives (Λ = 100) and a hyperbolic tangent

t(z) = t0 +αtanh{(z+ z0)/Λ} whichexhibits larger vertical derivatives at the surface (Λ = 2). We consider a constant tracer910

diffusivity νtv = 5e− 5. In Figure ?? we compare the L2-norm of the two contributions, ||Dphy
α || and ||Dnum

α ||, the latter

divided in a diffusive and anti-diffusive contribution. Different tidal amplitudes and vertical resolutions are investigated. To

confirm the theoretical results we compute also the solution numerically with SHYFEM using the same vertical data and

numerics of the analytical case . The numerical experiment has been carried out in a one-dimensional basin 21km long with

a mesh size of 50m and a time step of 120s. The numerical tracerprofile is evaluated after 5 tidal periods. In Figure ?? the915

z-coordinate numerical profiles are compared against the reference z-star numerical profiles.
::::
This

:::::
gives

::::::
exactly

:::
the

::::::::::
contribution

::::
from

::::::::::::
non-conformal

:::::
boxes

::
to
:::
the

::::::::::::
mass-transfer (42).

:

For the exponential profile, in the top panel of Figure ??, both the theoretical and the experimental numerical mixing are

very small compared to the physical mixing. Only at large resolution and for large tidal amplitude does the numerical diffusion

reaches the same order as the physical one and the profile starts to be slightly smeared out at the surface. Since the limiter is ,920

at all depths, close to one such a diffusive effect could be attributed, from our analysis, to the second-order term. The situation

changes for the hyperbolic tangent profile in the bottom panel of Figure ??. The limiter is active at the surface and introduces

first-order diffusion which, at low resolution, overtakes the physical diffusion making the profile very smeared out. At finer

resolutions the numerical mixing reduces and it becomes negligible for all tidal amplitude with h≤ 2.5m. At such resolutions

the profile follows well the reference solution, although, for large tidal amplitudes, the anti-diffusive term is large and a small925

overcompression of the profile can be observed at the surface
::::::
Finally,

:::
the

:::::
tracer

:::::
remap

:
(39)

:::::::
preserves

:::
the

::::::::
constancy

::::::::
property.

::
It

:
is
:::::::
enough

::
to

:::::
verify

::::
that

::::
with

:
a
:::::::
constant

:::::::
solution

::
it

::::::
reduces

:::
to:

h̃n+1
α,i =

::::::

h
:

n+1
α,i +∆t

(
σtop
α−1/2,i −σtop

α+1/2,i

)
::::::::::::::::::::::::::

:::::
which,

::::::
thanks

:::
to

:::
the

:::::::::
definition

::::::::
provided

::
in

:::::::
Section

:::
4.2

:::
of

::::
grid

:::::::
velocity

::::::::::::::::::::::::
σtop
α−1/2,i =

z̃n+1
α−1/2,i

−zn+1
α−1/2,i

∆t ::::
and

::::
layer

:::::::::
thickness

:::::::::::::::::::::::
h̃n+1
α,i = z̃n+1

α−1/2,i − zn+1
α+1/2,i,::

is
::
an

:::::::
identity.930

Smooth stratification experiment. Top: numerical mixing (normalized by physical mixing) for different tidal amplitudes.

Bottom: Numerical tracer profiles computed with SHYFEM for different tidal amplitude. From left to right: increasing vertical

resolution, h= 5m, h= 2.5m, h= 1m
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