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Abstract. Progress in better understanding and modeling Earth surface systems requires an ongoing integration of 

data and numerical models. Advances are currently hampered by technical barriers that inhibit finding, accessing, and 

executing modeling software with related datasets. We propose a design framework for ‘Data Components’: software 

packages that provide access to particular research datasets or types of data. Because they use a standard interface 15 

based on the Basic Model Interface (BMI), Data Components can function as plug-and-play components within 

modeling frameworks to facilitate seamless data-model integration. To illustrate the design and potential applications 

of Data Components and their advantages, we present several case studies in Earth surface processes analysis and 

modeling. The results demonstrate that the Data Component design provides a consistent and efficient way to access 

heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models. This design 20 

supports the creation of open data-model integration workflows that can be discovered, accessed, and reproduced 

through online data sharing platforms, which promotes data reuse and improves research transparency and 

reproducibility. 

1 Introduction 

As the global population increases and infrastructure expands, the need to understand and predict processes at and 25 

near the Earth’s surface, such as water cycling, landsliding, flooding, permafrost thaw, and coastal change becomes 

increasingly acute. Progress in understanding and predicting these systems requires an ongoing integration of data and 

numerical models. Also, given the growing importance of open computational science (Barton et al., 2022; Hall et al., 

2022; Lamprecht et al., 2019; Wilkinson et al., 2016), there is a need to overcome technical barriers that inhibit finding, 

accessing, and operating modeling software tools and related datasets. 30 
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To address these challenges, one research focus is the development of modeling frameworks and standards to support 

model coupling (Hoch et al., 2019; Hutton et al., 2020; Kralisch et al., 2005; Moore & Tindall, 2005; Peckham et al., 

2013). These modeling technologies make it easier to integrate diverse models that represent interrelated physical 

processes to simulate the complex Earth system that drives the movement of water and shapes the planet’s surface. 

For instance, the Earth System Modeling Framework (ESMF) is a flexible open-source software infrastructure for 35 

building and coupling Earth science applications (Hill et al., 2004). The ESMF defines an architecture for composing 

coupled modeling systems and includes data structures and utilities for developing individual models. Another 

example is the open World–Earth modeling framework copan:CORE, which is focused on Earth system models with 

endogenous human societies (Donges et al., 2020) to support the analysis of Earth system dynamics in the 

Anthropocene (Verburg et al., 2016).  40 

In the past decade, efforts were also made to design modeling frameworks and tools that improve the reproducibility 

of data-model integration workflows (Gan et al., 2020b; Hut et al., 2022). For example, the Community Surface 

Dynamic Modeling System (CSDMS) is an NSF-supported facility that supports and promotes a community of 

computational modelers of the Earth's surface – the dynamic interface between lithosphere, hydrosphere, cryosphere, 

and atmosphere. The CSDMS Workbench is a suite of free and open-source software tools and standards that provide 45 

a nimble, plug-and-play environment for model building, coupling, and exploration for Earth surface processes 

modeling (Tucker et al., 2022). These modeling technologies enable users to write code to create reproducible 

workflows for coupled model simulations and improve efficiency by reducing the time researchers spend wrestling 

with idiosyncratic programs and their interfaces. Another example is CyberWater (Chen et al., 2022), a modeling 

framework designed to support open data and open model integration for solving environmental and water problems. 50 

CyberWater supports direct access to online datasets without tedious work for data preparation, and it includes a 

generic model agent toolkit to help easily integrate models. This system enables users to create graphical workflows 

to support data provenance and reproducible computing. The Community Data Models for Earth Predictive Systems 

(CDEPS https://github.com/ESCOMP/CDEPS) were developed to perform the basic functions of reading external 

data files, modifying the datasets and sending the data for Earth system models that are coupled using ESMF. With 55 

the development of web technologies and cloud computing, sharing and integrating models across an open web 

environment also becomes possible. Chen et al. (2020) proposed a conceptual framework for open web-distributed 

integrated modeling and simulation, which is intended to enhance the use of existing resources and help people in 

different locations and from various research fields to perform comprehensive modeling tasks collaboratively.   

In addition, there are several organizations that provide the scientific community with online platforms for sharing 60 

research datasets, models, and tools to improve the findability, accessibility, interoperability, and reusability (the FAIR 

principles) of digital research objects (Lamprecht et al., 2019; Wilkinson et al., 2016; Chue Hong et al., 2021). For 

instance, CSDMS maintains an online Model Repository (Tucker et al., 2022) that catalogs over 400 open-source 

models and tools, ranging from individual subroutines to large and sophisticated integrated models. The Model 

Repository now includes about 20,000 references to literature describing these models and their applications, giving 65 

prospective model users efficient access to information about how various codes have evolved and are being used. 

Similarly, the Network for Computational Modeling in Social and Ecological Sciences (CoMSES Net) provides an 

https://github.com/ESCOMP/CDEPS
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extensive Model Library of codes used in social and ecological sciences, together with a curated database of over 

7,500 publications (Janssen et al., 2008). For water-related sciences, HydroShare (Gan et al., 2020a; Horsburgh et al., 

2015) provides a web-based hydrologic information system to share and publish data and models in various formats 70 

that are created by individual researchers and research groups. This platform enables researchers to collaborate and 

work in an online environment to enhance research and education and improve the reproducibility of the research 

results. Geoscience Cyberinfrastructure for Open Discovery in the Earth Sciences (GeoCODES 

https://www.earthcube.org/geocodes) is another effort aiming to improve the discovery and access of research datasets 

and tools. GeoCODES provides a data standard and a set of tools to expose, index, and query datasets across 75 

repositories.  

Although many modeling technologies and cyberinfrastructures are available to support open data and model 

integration, challenges still exist. For example, rapid advances in observational data using remote sensing and other 

technologies have brought about a data revolution, and with it the potential for substantial improvement in our ability 

to understand and predict a diverse array of Earth systems. However, the majority of model frameworks and systems 80 

lack an effective mechanism to easily access datasets from a variety of sources and couple them with the models. 

Although some model frameworks and systems can use web services to access various datasets and provide them as 

model inputs, the problem remains that the data access and preparation methods tend to be developed around specific 

models or model frameworks, and the corresponding details are either hidden behind a graphical user interface (GUI) 

or provided with scripts that offer only limited options for the users. It is challenging for researchers to understand or 85 

modify the data access or preparation methods for their research needs, which inhibits the research transparency and 

impedes flexibility. Moreover, it is often difficult to reuse data access methods for different modeling frameworks, 

which leads to redundant programming efforts.   

To address these challenges, we present the design and development of the CSDMS Data Components. This design is 

built on the model coupling technologies from the CSDMS Workbench to enable data access through plug-and-play 90 

components, and thereby integrate datasets with models. This design aims to provide a consistent way of using datasets 

across multiple sources to better facilitate the integration of heterogeneous datasets with models for Earth surface 

processes. This design also supports creating data-model integration workflows that can include detailed data access 

and preparation steps, and can be shared and executed on cloud platforms to enable the geoscience community to 

discover, access, and reproduce computational modeling research. In addition, the proposed design provides the 95 

flexibility to couple Data Components under different modeling frameworks with minimal coding effort.  

In this paper, Section 2 presents the background for the CSDMS model coupling technologies and the Data Component 

design. Section 3 presents case studies for Data Component implementation and their use cases for Earth surface 

processes modeling. Section 4 provides the summary and conclusions.   

 100 
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2 Methods  

2.1 CSDMS Workbench 

Since the Data Component design is based on the CSDMS Workbench, we will first introduce its underlying modeling 

technologies, including the Basic Model Interface (BMI), Babelizer, Python Modeling Toolkit (pymt), and Landlab.  

BMI is an interface specification that identifies a minimal set of functions necessary for dynamic coupling of data to 105 

models or models to other models. The BMI concept was first introduced as a foundational technology for the CSDMS 

model coupling framework (Peckham et al., 2013). The current version of BMI updated the original design with new 

functions for describing variables and for working with structured and unstructured grids (Hutton et al., 2020; Tucker 

et al., 2022). BMI is a language-neutral standard that is defined using the Scientific Interface Definition Language 

(SIDL) (Epperly et al., 2011). CSDMS has defined language-specific BMI specifications for Python, C, C++, Java, 110 

and Fortran, which are the most commonly used languages for Earth system models; other groups have created 

specifications for additional languages such as Julia and JavaScript. BMI is designed to be framework agnostic, and 

to be as easy as possible for a developer to implement. This means that a component that exposes a BMI can be 

incorporated into any framework and does not need to be modified to add any BMI-specific dependencies into the 

component. Several modeling frameworks that support model coupling (Hoch et al., 2019; Hut et al., 2022) have been 115 

built upon the BMI. Two such BMI-capable frameworks, pymt and Landlab, are described below. 

Babelizer is a command-line utility that creates a Python-importable package to present a BMI component as a Python 

class (Hutton et al., 2022). Language interoperability is critical to a model coupling framework that brings together 

models written in a range of programming languages. One of the approaches to tackle this challenge is to use a hub 

language, through which other languages will communicate, and to build bridges from each supported language to the 120 

hub language. CSMDS adopted this approach for the Babelizer and chose Python as the hub language. The Babelizer 

helps streamline the process of bringing a BMI component written in C, C++, or Fortran into Python and it is easily 

extensible to support other languages. 

pymt is a Python-based model coupling framework that provides a set of utilities for running and coupling BMI 

components (for both models and data) (Tucker et al., 2022). This model coupling framework consists of three major 125 

pieces. The first is a collection of legacy models that represent a diverse set of environmental systems. Models in the 

pymt collection are written in a variety of languages (e.g., C, C++, and Fortran), but are wrapped with a BMI as a 

common interface. The second piece is a wrapper for BMI components that augments them with additional 

capabilities, such as memory management, unit conversion utilities, and grid mappers. The third piece is a set of 

utilities for performing common model-coupling tasks, which includes the grid interpolation via the ESMF grid 130 

mapping engine (used when models or data operate on different grids) (ESMF Reference Manual for Fortran, 2023), 

time interpolation (used when models or data operate on different intervals), unit conversion through the UDUNITS 

package (https://www.unidata.ucar.edu/software/udunits/), and a coupling orchestrator that organizes the time 

stepping of a set of components.  

Landlab is a toolbox for building new components within a Python-based (BMI compatible) modeling framework 135 

(Hobley et al., 2017; Barnhart et al., 2020). Landlab includes three major elements that speed up model development 
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and analysis. The first is a gridding engine that allows model developers to create a grid in as little as a single line of 

code, and that provides users a choice of grid type (e.g., a structured rectilinear grid versus an unstructured mesh). 

The second piece is a growing collection of modularized components that model single physical processes (e.g., 

overland flow or hillslope process) or perform an analysis operation (e.g., calculate the down-slope direction at each 140 

grid cell in a digital elevation model). The third element is a library of utilities for common operations such as file 

input and output that includes standard formats such as NetCDF, ESRI ASCII, and Legacy VTK. The Landlab library 

provides components that can be brought into other frameworks and, additionally, be automatically wrapped with 

BMI, allowing them to operate within BMI-friendly systems such as pymt.  

  145 

2.2 Data Component Design  

A Data Component is a dataset that is wrapped with a BMI. When a model is equipped with a BMI, we refer to it as 

‘Model Component’. Model Components make models easier to learn and to couple with other models because of 

the similarity in control and query functions. Similarly, by wrapping datasets with BMI functions, we provide a 

consistent way to access various types of datasets without considering their specific file formats and making them 150 

easier to integrate with Model Components. Thus, the Data Component extends the application of BMI from models 

to datasets. With BMI, Model and Data Components use the same functions to initialize the component, control its 

execution (e.g., advance a model or dataset in time), and access variables, grid, and/or time information. Both 

applications use configuration files to specify the detailed information needed to initialize component instances. Table 

1 lists the example BMI functions for each category. (Note that not all BMI functions are necessarily relevant for 155 

every Data Component. For example, for a dataset that lacks time-stamped data, the time-related functions would not 

be needed, and would simply return null values.) 

The specifications for the Data Components are designed to meet the following requirements:  

• Access datasets from either a remote server or a local file system. Remote servers provide web services and/or 

a corresponding application programming interface (API) to support programmatic data access. 160 

• Use the same data structure to manage datasets stored in different file formats (e.g., CSV, GeoTIFF, or 

NetCDF) and grid types (e.g., 1D, 2D or 3D array) for time series, raster, or multidimensional space-time 

data.  

• Use open-source tools and standards for Data Component implementation and avoid dependencies on 

proprietary software. 165 

• Expose a BMI so that Data Components can be used within different modeling frameworks without the need 

to modify their implementation. 

The Data Component design is based on the CSDMS Workbench and includes two major elements (Fig. 1). The first 

element is the BMI component which can be implemented as a Python package to download the datasets and wrap 

them with BMI functions (Table 1). This package includes an API, which can be implemented as a Python class to 170 

access and retrieve the datasets from a remote server. The corresponding command line interface (CLI) can also be 

included, which allows users to download datasets through shell commands. The datasets can be cached locally and 
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loaded as an xarray object (Hoyer and Hamman, 2017) to satisfy the need for using the same data structure to manage 

datasets in various formats and grid types. The second element is a Babelized component, which is a Python package 

created by the Babelizer. This Babelized component converts the BMI component into a plug-and-play component 175 

for the modeling frameworks (e.g., pymt). It can also help import the BMI components that are implemented in other 

languages as a Python class, so that they can communicate with each other using the hub language (Python). For the 

second element, the developer only needs to provide metadata describing the BMI component through a toml-format 

file. The Babelizer will then use the metadata to construct a Python package, which is almost completely autogenerated 

(Hutton et al., 2022). This design minimizes the effort of using the Data Component within different modeling 180 

frameworks, because there is no need to change the BMI implementation and one only needs the Babelizer and the 

required metadata to create a component for any relevant modeling framework. Generally, the BMI component is the 

fundamental essence of the Data Component, while the Babelized component represents the Data Component for a 

specific modeling framework. 

 185 

Table 1 List of BMI functions shared by Model and Data Components. 

 

Function Category Function Name Description 

component control  initialize Perform startup tasks for the component. 

update Advance component state by one time step. 

finalize Perform post execution tasks for the component.  

component information  get_component_name Name of the component. 

get_output_names List of a component’s output variables. 

get_output_item_count Number of a component’s output variables. 

variable information get_var_grid Get the grid identifier for a variable. 

get_var_units Get the units of a variable. 

get_var_type Get the data type of a variable. 

get_var_location Get the grid element type of a variable. 

time information get_current_time Current time of the component. 

get_time_units Time units used in the component. 

get_time_step Time step used in the component. 

grid information get_grid_type Get the grid type as a string. 

get_grid_shape Get the dimensions of a computational grid 

get_grid_spacing Get the spacing between grid nodes. 

variable getter and setter get_value Get current values for a variable. 

set_value Set current values for a variable. 
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Figure 1: Relationship between datasets, models, and the CSDMS Workbench tools. 190 

 

To test the Data Component design, we conducted case studies by implementing several Data Components and 

creating use cases for Earth surface processes modeling and analysis. These datasets are from multiple data providers 

and in various file formats and grid types. The use cases are data-model integration workflows created as Jupyter 

Notebooks and shared in HydroShare. We also installed the CSDMS Workbench tools on the CUAHSI JupyterHub 195 

(https://help.hydroshare.org/apps/CUAHSI-JupyterHub/) and the CSDMS JupyterHub 

(https://csdms.colorado.edu/wiki/JupyterHub). This enables users to discover and access these use cases from 

HydroShare and use the CUAHSI or CSDMS JupyterHub to reproduce the modeling workflows without the need of 

software installation and data download on the local computers. Moreover, users can also use the environment files 

which are prepared for these use case Jupyter Notebooks to build local virtual environments and run them. Detailed 200 

results and discussion are presented in the next section.  
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3 Case Studies 

3.1 Data Components  

We implemented multiple Data Components to demonstrate the access to widely used datasets for Earth surface 205 

processes modeling. To illustrate the broad applicability of Data Components, these examples cover several domains: 

hydrology, topography, soil, meteorology, and oceanography. The data types span the categories of time series, 

geographic raster, and multidimensional space-time data. Here we provide an overview of each Data Component.  

The NWIS Data Component (Gan, 2023c) is implemented to access time series of hydrological data from the US 

Geological Survey’s National Water Information System (NWIS https://waterdata.usgs.gov/nwis). NWIS provides a 210 

RESTful (Representational State Transfer) web service to access current and historical water-resources datasets across 

the US, such as discharge, gage height, and water temperature. REST web services allow users to access data using a 

Uniform Resource Identifier (URI), which distinguishes one resource from another (e.g., links on the web). Our NWIS 

Data Component can download the time series for instantaneous and daily values from NWIS using the ‘dataretrieval’ 

Python package (Hodson et al., 2023), which is a Python client for the REST web services of NWIS. This Data 215 

Component needs a configuration file that specifies USGS site number, start and end time, USGS variable code, and 

output file name. Each Data Component supports storage of the dataset in a NetCDF file which can include time series 

for multiple variables at multiple USGS sites. The time values are stored in a format by following the Climate and 

Forecast (CF) metadata conventions (http://cfconventions.org/).   

The Topography Data Component (Piper, 2023) fetches global terrain elevation raster data from OpenTopography 220 

(https://opentopography.org/), an NSF-supported facility that provides access to many different types of topography 

data, alongside related tools and resources. OpenTopography provides REST web services to retrieve raster datasets 

such as NASA Shuttle Radar Topography Mission (SRTM) and JAXA Advanced Land Observing Satellite (ALOS) 

global data (Tadono et al., 2014; Farr et al., 2007). These REST web services were used to implement an API and a 

CLI in the Topography Data Component for downloading these datasets. Dataset type, latitude-longitude bounding 225 

box, and the desired output file format can be specified with arguments to this Data Component or through a 

configuration file. As of this writing, users are required to apply for an API key from OpenTopography to be authorized 

for data access, which helps OpenTopography monitor and understand the usage of the REST web services and to 

provide a more stable and secure user experience. For this data component, we implemented a utility function to help 

access the API key on local computers to simplify the process for data access authorization.  230 

The SoilGrids Data Component (Gan, 2023d) provides access to global gridded soil data from SoilGrids 

(https://www.isric.org/explore/soilgrids), a system for global digital soil mapping that uses machine learning methods 

to map the spatial distribution of soil properties (Poggio et al., 2021; Hengl et al., 2017). The SoilGrids system provides 

web coverage services (WCS) to help users obtain a subset of the soil maps as raster datasets for soil properties such 

as bulk density, clay content, and soil organic carbon content. The WCS were used to implement the API and CLI in 235 

the SoilGrids Data Component to download the desired soil datasets and store them in a local GeoTIFF file. This Data 

Component requires a configuration file that includes the information for the map service name, bounding box, 

coordinate system, grid resolution, and other parameters. Fig. 2 shows the example scripts that use the API and the 
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Babelized component (e.g., pymt component) to access and visualize the same soil property dataset from SoilGrids 

system.  240 

The ERA5 Data Component (Gan, 2023b) accesses the ERA5 climate dataset, which is available in the Copernicus 

Climate Data Store (CDS https://cds.climate.copernicus.eu/). ERA5 refers to European Centre for Medium-Range 

Weather Forecasts (ECMWF) reanalysis 5, which includes multidimensional space-time datasets produced using data 

assimilation and model forecasts for the global climate and weather for the period from the 1950s to near real time. 

The ERA5 Data Component downloads data using the ‘cdsapi’ Python package, which is the API for retrieving 245 

datasets from the CDS platform. This Data Component requires a configuration file that includes information for data 

variables, time period, latitude-longitude bounding box, grid resolution, and other parameters. Each ERA5 Data 

Component supports storing the datasets in a NetCDF file, which can contain multiple variables for a given bounding 

box area. Similar to the Topography Data Component, users are required to apply for API keys from the CDS platform 

to be authorized for data access. We implemented a utility function to help generate the API key files on the local 250 

computers for data access authorization. 

The WAVEWATCH III Data Component (Hutton, 2023) retrieves data from the global wave datasets 

(https://polar.ncep.noaa.gov/waves/product_table.shtml) that are generated with the WAVEWATCH III model (Booij 

et al., 1999). These model outputs are multidimensional space-time datasets for wave height, period, direction, and 

other attributes. The WAVEWATCH III Data Component includes an API and a CLI, which use web services to 255 

download the 30-year wave hindcast (Phase 1 and 2) and the production hindcast (single grid and multigrid) datasets 

and store them as GRIB-formatted files. This Data Component requires a configuration file that includes the 

information for time, grid type, and data source. 

The Data Components for the time-varying datasets such as NWIS and ERA5 retrieve the datasets once and save them 

in a file when the ‘initialize’ method is used. If a user runs the same Data Component with an identical configuration 260 

file multiple times on the same machine, the data will be downloaded only during the first instance to prevent 

redundant download processes. Aside from the Data Components presented here, we also implemented other Data 

Components. A full list of them can be found at https://csdms.colorado.edu/wiki/DataComponents.  

  

https://csdms.colorado.edu/wiki/DataComponents
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Figure 2: Example scripts that use the API (a) and the pymt component (b) of the SoilGrids Data Component 

to access and visualize the soil property dataset (c). 270 

 

3.2 Use Cases 

Here we present use cases that cover a variety of topics, including landslide susceptibility mapping, modeling of 

overland flow in a wildfire-impacted catchment, permafrost landscape processes, and wave power analysis (Gan, 

2023a). These use cases serve as illustrative examples for the application of Data Components across varied domains. 275 

We will focus on describing the modeling workflows and discussing multiple ways of using the Data Components 

presented in these use cases, rather than new research findings and analysis details. The data-model integration 

workflows for these use cases can be discovered, accessed, and reproduced on the HydroShare platform or the CSDMS 

web portal.  

3.2.1 Landsliding  280 

Landslides are a dominant source of sediments in mountain regions (Broeckx et al., 2020). Landslides cause thousands 

of casualties annually, together with expensive damage to infrastructure (Haque et al., 2016; Petley, 2012). Landslides 

are also point sources of sediment in riverine systems, altering stream geomorphology (Benda and Dunne, 1997), 

potentially creating landslide dams and subsequent failures (Costa and Schuster, 1988), altering ecosystem functioning 

(May et al., 2009), and increasing downstream flood risk (Fan et al., 2019). Our example use case focuses on Puerto 285 

Rico, where a combination of steep terrain and heavy rainfall from hurricanes makes landslides a common occurrence. 

For example, Hurricane Maria made its landfall on September 20th, 2017 and triggered more than 40,000 landslides 
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(Bessette-Kirton et al., 2019). In this use case, we chose a study area that had a high concentration of landslides during 

Hurricane Maria. We used several Data Components to generate landslide susceptibility maps in this region.  

We adopted the method of Strauch et al. (2018) to calculate landslide susceptibility using a factor-of-safety approach. 290 

This method requires data for soil depth, terrain slope, and subsurface flow depth. To prepare those inputs, we used 

the Topography and ERA5 Data Components to access terrain elevation, soil moisture content, and precipitation 

datasets. We also retrieved the soil depth-to-bedrock dataset from the SoilGrids system. Terrain slope was derived by 

combining the Topography Data Component with a Landlab RasterModelGrid object to calculate the slope angle. 

Subsurface flow depth was calculated by using the soil depth and soil moisture content datasets. The precipitation data 295 

is not used for input preparation but rather for visualization purposes to show the water input conditions in the study 

area. Since these datasets are in different grid resolutions, we performed data regridding to interpolate the soils and 

precipitation data to the same resolution as the SRTM terrain elevation data (~90 by 90 m per grid cell). Using these 

inputs, we looped through 48 one-hour time steps (for Sept 20-21, 2017, the time period over which Hurricane Maria 

made landfall) to generate hourly results. The hourly maps were used to create an animation that shows the changes 300 

in landslide susceptibility and subsurface flow depth over the two-day period. The time series of mean total 

precipitation and soil moisture content at four soil layers (layer 1: 0 – 7 cm, layer 2: 7 – 28 cm, layer 3: 28 – 100 cm, 

layer 4: 100 – 289 cm) for the study area are also shown in the results. Fig. 3 shows the input terrain elevation and 

slope maps, and Fig. 4 shows an example output. When the precipitation reached its peak, soil layers 1 and 2 responded 

quickly and reached high soil moisture content, while layer 3 responded with a time lag and layer 4 kept with a low 305 

value. The areas where the landslide susceptibility increased most correspond to the areas that have high slope angle 

and a greater increase in subsurface flow. Landslide susceptibility mapping is an important approach for evaluating 

the likelihood of a landslide occurring in an area, which provides critical support to reduce disaster loss. This use case 

highlights the value of Data Components for recreating near-real time landslide susceptibility maps in regions prone 

to the landslide hazards, or to do first-order exploratory simulations in response to a large landsliding event anywhere 310 

in the world. 
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Figure 3: The study area in Puerto Rico. Panel (a) shows the bounding box of the study area; (b) shows a field 

photo of a landslide in the study area after Hurricane Maria (source from NOAA weather service 315 

https://www.weather.gov/sju/maria2017); (c) shows the terrain elevation data; (d) shows the calculated slope 

angle using the Landlab RasterModelGrid component. 

 

 
Figure 4: Example result for the study area in Puerto Rico. The left panel shows the mean total precipitation 320 

and the mean volumetric soil water content at four soil layers; the right panel shows the difference of landslide 
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susceptibility and the subsurface flow depth between the first (2017-09-20 00:00) and the current (2017-09-21 

00:00) time step.  

3.2.2 Rainfall-runoff modeling in wildfire-affected watersheds 

Storm runoff occurs when saturated soil cannot absorb additional water (saturation-excess mechanism) or when the 325 

rate of water input on the land surface is higher than the infiltration rate (infiltration-excess mechanism). The 

generation of runoff is mainly impacted by the intensity of rainfall and the landscape surface characteristics such as 

vegetation density (surface roughness), antecedent moisture condition, and slope. In particular, after a destructive 

wildfire burns away plants and trees and affects the soil to alter the site characteristics (Shakesby and Doerr, 2006), 

heavy rain can cause substantial overland flow and potentially trigger debris flows (Malvar et al., 2011; Cannon et al., 330 

1998). In the western US, wildfires are already increasing in size and frequency, and the frequency and intensity of 

post-fire overland flow are likely to increase even further in the future (Beeson et al., 2001; Halofsky et al., 2020; 

Abatzoglou et al., 2021). Thus, it is important to simulate overland flow processes to study the hydrologic responses 

of burned watersheds. In this use case, we performed a rainfall-runoff simulation for the watershed of Geer Canyon 

in the Colorado Front Range (USA), northwest of the city of Boulder (Fig. 5a, 5b). This watershed was impacted by 335 

the CalWood Fire, which occurred in 2020 and burned more than 4,000 hectares.  

In this use case, we used the Topography Data Component to retrieve terrain elevation data for the study area (Fig. 

5c). We performed a watershed delineation (Fig. 5d) by coupling this Data Component with Landlab components, 

specifically FlowAccumulator and ChannelProfiler (Barnhart et al., 2020). Then we used the watershed terrain 

elevation as input for a model of rainfall and runoff using Landlab’s OverlandFlow component (Adams et al., 2017). 340 

The model run time is set as 200 minutes with the first 10 minutes assigned a constant rainfall intensity (59.2 mm/hr) 

based on the meteorological observations on June 25, 2021, the summer after the CalWood fire occurred. This 

simulation created a discharge time series plot at the watershed outlet and a map of the surface water depth over the 

watershed at each 30-second time step (Fig. 6). Finally, an animation was made to show the overland flow process 

during the simulation time. This use case demonstrates the ability to couple a Data Component with Landlab 345 

components for post-fire overland flow simulation and for exploring a watershed storm response after fire events. This 

modeling workflow can be applied to perform experiments by adjusting the model parameters and inputs (e.g., surface 

roughness, infiltration rate, rain intensity) to evaluate the impact of wildfire on hydrologic responses for watersheds 

more generally.  
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 350 
Figure 5: The watershed of Geer Canyon. Panel (a) shows the bounding box of the study area; (b) shows field 

photo of the burned study area in March 2021; (c) shows the terrain elevation data; (d) shows the watershed 

delineation result using the Landlab FlowAccumulator and ChannelProfiler components.  
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Figure 6: Example result of discharge and surface water depth from the Landlab OverlandFlow component 355 

for the watershed of Geer Canyon. This watershed is not gauged at its outlet but flows overbanked Geer Creek 

and spilled over the adjacent road in the June 25th rain event (personal comment Boulder Open Space). 

 

3.2.3 Permafrost thaw and hillslope diffusion 

Permafrost is defined as rock or soil that remains below 0°C for two or more consecutive years. Nearly a quarter of 360 

soils in the Northern Hemisphere are permafrost-affected (Zhang et al., 2008). Due to the ongoing impact of global 

warming, more permafrost is thawing as temperatures rise above freezing. This results in geologic hazards such as 

landslides, ground subsidence, erosion, and other severe surface distortions  (Lawrence and Slater, 2005; Nelson et 

al., 2001; Patton et al., 2019). Research for the future transformation of the permafrost in a changing climate becomes 

vital to reduce the negative impact of thawing permafrost on, for example, coastal erosion and infrastructure (e.g., 365 

roads and houses), and to assess the potential for the release of soil carbon to the atmosphere. In this use case, we 

applied the Kudryavtsev model (Anisimov et al., 1997; Kudryavtsev et al., 1977) for a study area in Alaska to evaluate 



17 

 

the impact of the warming climate on the thickness of the active layer of permafrost. Additionally, we applied the 

Kudryavtsev model output, the active layer thickness, as the input for a hillslope soil transport model to predict 

hillslope evolution in the Eight Mile Lake area, just south of Denali National Park.  370 

The Kudryavtsev model includes thermodynamic processes that provide a steady-state solution under the assumption 

of a sinusoidal air temperature forcing to predict the annual active layer thickness and snow surface temperature. This 

model has been implemented as a pymt Model Component, for which the major inputs include annual mean 

temperature, amplitude of annual temperature variation, and snow cover depth. We obtained monthly mean air 

temperature, snow density, and snow water equivalent data using the ERA5 Data Component, and further processed 375 

these quantities to provide model inputs. To evaluate the impact of a warming climate, we prepared two sets of 

inputs—for 1980-1989 and 2010-2019, respectively—to compare their corresponding model outputs. Fig. 7 shows 

the model input time series and Fig. 8 shows the model output of the annual active layer thickness. These plots show 

that the annual mean temperature tends to increase while the temperature amplitude and snow cover depth became 

lower in 2010-2019 than in 1980-1989. However, the warming and drying climate didn’t lead to a significant change 380 

in the active layer thickness. We conducted model experiments to find out the reason. We first calculated the 10-year 

average of annual mean temperature, amplitude of annual temperature variation, and snow cover depth for 1980-1989 

and 2010-2019. Then we used these inputs to conduct two model runs for those periods. The model result for 1980-

1989 will be taken as the ‘base’ experiment for comparison. We then conducted 3 model runs of which each 

experiment used two inputs from the 10-year average for 1980-1989 and one for 2010-2019. The results showed that 385 

it can lead to an increase of the active layer thickness by only increasing the annual temperature. But if the snow 

thickness decreases, its insulating capacity in mid and late winter will also decrease, and as a result the active layer 

will actually become thinner. Therefore, warming temperature and decreasing snow thickness can act in opposing 

directions and thereby minimize changes in active layer thickness. This phenomenon was also observed with field 

datasets and studied by several researchers at other study sites (Garnello et al., 2021; Zhang, 2005). 390 

To examine the potential impact of active layer thickening on soil transport, we implemented a simple model of 

hillslope evolution using the Landlab DepthDependentDiffuser component to simulate the modification of topography 

by thaw-enhanced soil creep. The Topography Data Component was used to prepare the terrain elevation input (Fig. 

9), and the active layer thickness for 2010-2019 was used as the soil depth input to the hillslope evolution model. We 

performed a model simulation representing 1,000 years of geomorphic evolution and made an animation to show the 395 

changes in terrain elevation. This use case provides an example of coupling Data Components with both pymt and 

Landlab Model Components, which shows the flexibility of integrating Data Components with multiple modeling 

frameworks to simulate interrelated landscape surface processes.  
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 400 
Figure 7: Temperature and snow inputs of the Kudryavtsev model for the Eight Mile Lake area. Panel (a) for 

1980-1989 and (b) for 2010-2019. 

 



19 

 

 

 405 
Figure 8: Active layer thickness results of the Kudryavtsev model for the Eight Mile Lake area. Panel (a) for 

1980-1989 and (b) for 2010-2019.  
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 410 
Figure 9: Hillslope evolution result of the Landlab DepthDependentDiffuser component for the Eight Mile Lake 

area. 

 

3.2.4 Wave Power 

Energetic waves cause shoreline erosion, change geomorphology, and generate renewable energy (Hansen and 415 

Barnard, 2010; Mwasilu and Jung, 2019; Vousdoukas et al., 2020). Globally, around 28,000 km2 of otherwise-

permanent coastal land was lost from 1984 to 2015, which is double the amount of land gained over this same period 

(Mentaschi et al., 2018). Wave power can be a useful predictor of shoreline change (e.g., beaches: Davidson et al., 

2013; marshes: Leonardi et al., 2016), with higher wave heights and longer wave periods leading to larger wave power. 

Wave power is also used to assess feasibility of renewable energy generation (Ozkan and Mayo, 2019; Thorpe, 1999). 420 

This use case therefore focuses on extracting and analyzing wave characteristics and calculating wave power for the 

Louisiana Shelf in the Northern Gulf of Mexico. 

The National Oceanic and Atmospheric Administration (NOAA) runs the WAVEWATCH III model (Booij et al., 

1999) on several different grids (EMC Operational Wave Product Table, 2023). The WAVEWATCH III Data 

Component increases the accessibility and useability of model estimates and is used here to facilitate wave power 425 

calculations. WAVEWATCH III variables, including significant wave height, peak wave period, peak wave direction, 

and east-west and north-south wind speeds were downloaded using this Data Component. For the analysis, data from 

the Gulf of Mexico and Northwest Atlantic grid were used because of the relatively high resolution of 4 arcminutes 

(~7400 m at the study site). Data for the summer of 2005 was interpolated to a specific location (28.8°N, 276.4°E) on 

the Louisiana Shelf and shown in Fig. 10. For this figure, wave direction is given in meteorological convention, with 430 
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0 degrees meaning that waves are coming from the north and 90 degrees meaning waves are coming from the east. 

Winds are also given in meteorological convention, meaning positive v values are coming from the north and positive 

u values are coming from the east. Wave power was then calculated using the WAVEWATCH III estimates of 

significant wave height and peak wave period for this location. The result was visualized using a time series and a 

rose diagram (Fig. 11 and Fig. 12). Results indicate that significant wave height and therefore wave power were larger 435 

in mid-March through mid-April, compared to later portions of Spring 2005. Waves were primarily traveling 

northwestward, including during the time periods with larger wave power. This use case demonstrates how the 

WAVEWATCH III Data Component can be used to analyze wave conditions that are important for coastal shoreline 

change and renewable energy generation.   

 440 
Figure 10: Time series of the wave characteristics from WAVEWATCH III interpolated to 

28.8°N, 276.4°E in the Gulf of Mexico.  

 

 

 445 
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Figure 11: Time series of wave power at 28.8°N, 276.4°E in the Gulf of Mexico. 

 
Figure 12: Rose diagram of wave power at 28.8°N, 276.4°E in the Gulf of Mexico. The length of each bar and 450 

the concentric circles indicate the percentage of datapoints with waves coming from that direction 

(meteorological convention). The color indicates the wave power. 
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3.3 Discussion  

The case studies demonstrated that the Data Component design can be applied to a variety of datasets to support data-455 

model integration for Earth surface processes research. These case studies also demonstrated multiple ways of using 

the Data Components. For example, the landsliding use case exemplifies how to use the Babelized component within 

the pymt modeling framework for data analysis. In Fig. 13, both the Topography and ERA5 Data Components are 

imported from the pymt module. Despite the different data sources and file formats for those Data Components, the 

methods to initialize an instance and to access variables and grid information remains the same.  460 
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Figure 13: Scripts from the landslide use case to demonstrate using the Topography Data Component (a) and 

the ERA5 Data Component (b) within pymt.  

 465 

The rainfall-runoff modeling use case demonstrates the ability to combine a Data Component (the Topography Data 

Component) with a Landlab grid object and a Landlab Model Component (the FlowAccumulator) (Fig. 14). The key 

aspect of this process involves defining an instance of the RasterModelGrid (‘model_grid’) based on the features of 

the Data Component (‘dem’). Subsequently, this model grid is passed as a parameter to create an instance of  a Model 

Component (‘fa’), which links the data and the computational aspects of the modeling process. 470 

 

 
Figure 14: Scripts from the rainfall-runoff modeling use case to demonstrate coupling the Topography Data 

Component with FlowAccumulator Component from Landlab. 

 475 

The permafrost thaw and hillslope diffusion use case demonstrates pre-processing datasets using a Data Component 

and feeding the resulting data as inputs to a pymt Model Component. The example demonstrates how a simple and 

compact code can retrieve time series data for a given study area from the Data Component (‘era5’ and ‘era5_2’) (Fig. 

15 (a)), and use this to set up and run the Kudryavtsev model using the prepared inputs (‘input_data’) (Fig. 15 (b)). 

Notably, within the pymt modeling framework, the methods to create an instance (‘initialize()’), to retrieve data values 480 

from the component (‘get_value()’), and to update the time step (‘update()’) remain consistent for both the Data and 

Model Components. 
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Figure 15: Scripts from the permafrost thaw and hillslope diffusion use case. Panel (a) shows retrieving time 485 

series data from ERA5 Data Component; (b) shows the Kudryavtsev model simulation.  

 

The wave power use case demonstrates the use of the API available within the BMI component for data access instead 

of using the Babelized component. This approach becomes advantageous particularly when there is no need to couple 

the Data and Model Components for analysis. In Fig. 16, the API (‘WaveWatch3’) for downloading the 490 

WAVEWATCH III datasets is imported from the BMI component (‘bmi_wavewtch3’). This API provides methods 

that extend beyond the standard BMI methods. For instance, the ‘inc’ method allows users to access additional months 

of data without needing to create new instances of the Data Component for each month, which simplifies the data 

retrieval process. 
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 495 
Figure 16: Scripts from the wave power use case to demonstrate using the API in the BMI component for data 

access. 

 

From the implementation and use cases of the Data Components, we found that our design provides benefits in the 

following aspects. 1) Usability: since the datasets are wrapped with BMI, the methods to get metadata and data values 500 

are the same regardless of their file formats or the grid types. This feature can be seen in the four use cases, where the 

code for retrieving the variable and grid information is the same across a wide range of data types and file formats. 

This simplifies the process of learning about new Data Components for users who are already familiar with the basic 

design. Additionally, because the Model Components also adopt the BMI methods, it becomes intuitive for users to 

know how to couple the data and model components together. 2) Reproducibility: Data Components are implemented 505 

as open-source Python packages, which enables users to document the data-model integration workflows in the Jupyter 

Notebooks for tracking and sharing computational analysis. Compared with the modeling frameworks that allow users 

to create modeling workflows via GUIs, the Data Component design helps to provide detailed information for data 

access and preparation behind the scenes. 3) Flexibility: the design provides a flexible way of using Data Components. 

Users can either use the API directly for data analysis when there is no need to couple data with models (as with the 510 

wave power use case) or use the Babelized component under the modeling framework (as exemplified by the  rainfall-

runoff modeling use case), which can make it easier to write efficient code for different situations. In addition, this 

design provides the flexibility to make the Data Components work within any modeling frameworks or tools that 
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support, or are compatible with, the BMI standard (e.g., Landlab) without making additional changes to the Data 

Components.  515 

While developing the use cases, we also identified the limitations of the existing BMI methods to represent the features 

of datasets. For instance, there is a need to add new methods to access the spatial reference information of the datasets, 

which can facilitate data reprojection and regridding to convert heterogeneous datasets to the same grid resolution and 

coordinate system. Moreover, the existing BMI methods mainly support wrapping datasets with spatial and time 

dimensions, and it becomes challenging to deal with datasets that include dimensions representing other variables. 520 

Take the ERA5 datasets as an example: there are ensemble model simulation results that include dimensions 

representing the ensemble number and/or the pressure levels. The existing BMI methods don’t support accessing the 

information for those types of dimensions, so the current implementation of the ERA5 Data Component mainly 

supports datasets that only include spatial and time dimensions. This highlights a need for extensions to the core BMI 

standard that can accommodate these needs and enhance the usability of the Data Components. 525 

Currently, new Data Component and use cases are also under development. One example is the ROMS Data 

Component designed to access the model outputs of the Regional Ocean Modeling System (ROMS) (Haidvogel et al., 

2008). The ROMS Data Component will be coupled with the Landlab and pymt Model Components to help explore 

the fate of particulate organic carbon in the Arctic, including its release via permafrost thaw, transport and oxidation 

in the fluvial and coastal systems, and its burial in offshore sediments. Data Components are designed to serve as open 530 

resources by and for the science community, and we highly encourage readers to develop and share their own Data 

Components. 

4 Conclusions  

The integration of data and numerical models plays a vital role in advancing the understanding of the complex 

processes of Earth systems. However, with the increasing number of datasets available on the internet and the growing 535 

trend of reproducible computational research, there is a need to provide a convenient and standardized way to access 

a variety of datasets and easily couple them with diverse models to improve the efficiency and reproducibility of the 

data-model integration workflows.  

This paper presents an approach that uses open-source software and standards from the CSDMS Workbench to create 

‘Data Components’ that support open data-model integration for Earth surface processes modeling. A Data 540 

Component is a dataset wrapped with BMI functions. To evaluate and illustrate our approach, we implemented several 

Data Components for datasets in various file formats and grid types, and then applied them in research demonstrations 

related to landsliding, overland flow, permafrost, and ocean waves. The results demonstrated that the Data Component 

design provides a consistent way to access and use online datasets from multiple sources and to easily couple data 

with models, which increases the accessibility and reusability of research datasets.  545 

Another advantage of the Data Component design is that it enables researchers to document the data-model integration 

workflow in a Jupyter Notebook or similar ‘literate programming’ format (Knuth, 1984), which helps other researchers 

to discover, access, operate, and reuse computational research through online platforms. This approach can help 
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improve research transparency and workflow reproducibility to encourage collaboration. Moreover, our use cases can 

be adapted and applied to other study sites so that researchers can rapidly set up modeling studies after or during a 550 

geophysical event to have a quick exploration or initial assessment of the associated hazards. Although our case studies 

are centered on Earth surface processes and natural hazard impacts, the core concepts of the Data Component design 

are extensible to datasets in other scientific domains.  

In the future, we will focus on developing new Data Components and extending BMI to support a wider range of 

datasets. We will also provide educational materials to encourage the geoscience community to apply existing, or 555 

implement new, Data Components to create reproducible data-model integration workflows.  
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