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 2 

Abstract. A new weakly coupled land data assimilation (WCLDA) system based on the four-dimensional 15 

ensemble variational (4DEnVar) method is developed and applied to the fully coupled Energy Exascale 16 

Earth System Model version 2 (E3SMv2). The dimension-reduced projection four-dimensional 17 

variational (DRP-4DVar) method is employed to implement 4DVar using the ensemble technique instead 18 

of the adjoint technique. With an interest in providing initial conditions for decadal climate predictions, 19 

monthly mean anomalies of soil moisture and temperature from the Global Land Data Assimilation 20 

System (GLDAS) reanalysis from 1980 to 2016 are assimilated into the land component of E3SMv2 21 

within the coupled modeling framework with a one-month assimilation window. The coupled 22 

assimilation experiment is evaluated using multiple metrics, including the cost function, assimilation 23 

efficiency index, correlation, root mean square error (RMSE) and bias, and compared with a control 24 

simulation without land data assimilation. The WCLDA system yields improved simulation of soil 25 

moisture and temperature compared with the control simulation, with improvements found throughout 26 

the soil layers and in many regions of the global land. In terms of both soil moisture and temperature, the 27 

assimilation experiment outperforms the control simulation with reduced RMSE and higher temporal 28 

correlation in many regions, especially in South America, Central Africa, Australia, and large parts of 29 

Eurasia. Furthermore, significant improvements are also found in reproducing the time evolution of the 30 

2012 U.S. Midwest drought, highlighting the crucial role of land surface in drought lifecycle. The 31 

WCLDA system is intended to be a foundational resource for research to investigate land-derived climate 32 

predictability.  33 
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1 Introduction 35 

The intrinsic chaos of the atmosphere limits traditional weather forecasting to roughly two weeks 36 

(Simmons and Hollingsworth, 2002). The feasibility of atmospheric predictability beyond two weeks lies 37 

with the interactions of the atmosphere with slowly varying components of the Earth system such as the 38 

ocean or land surface, or from predictable external forcings (Guo et al., 2012). Climate prediction can 39 

therefore be conceptually divided into both an initial value and a forced boundary value problem (Collins 40 

and Allen, 2002; Conil et al., 2007). One of the biggest technical challenges for improving the quality of 41 

climate predictions is the initialization of coupled models from observations (Taylor et al., 2012). 42 

Much work has been devoted to initializing climate system models for practicable decadal climate 43 

predictions (DCPs). These models couple various components, such as models of the atmosphere, ocean, 44 

sea ice, land and river. Due to their complexity, coupled models are often more susceptible to initial 45 

conditions (ICs) than their individual model components, underscoring the importance of data 46 

assimilation (DA) (Sakaguchi et al., 2012). The application of DA methods is essential to incorporate 47 

reanalysis data into the components of coupled model and produce the optimal ICs to improve DCPs. 48 

The initialization for DCPs uses both uncoupled DA and coupled data assimilation (CDA) methods. 49 

Uncoupled DA performs DA under the framework of an individual component model (e.g., standalone 50 

land surface model forced by atmospheric observations or reanalysis data rather than coupled with an 51 

atmospheric model), and then the uncoupled DA analyses from different individual components are 52 

combined to form the ICs of a coupled model (Zhang et al., 2020). For example, most existing reanalysis 53 

data were produced using uncoupled DA approaches, and these reanalysis datasets are then directly used 54 

to initialize DCPs in some studies (Du et al., 2012; Bellucci et al., 2013). However, such uncoupled DA 55 

often exhibits poor consistency among the ICs of different component models, and eventually produces 56 

low prediction skills (Balmaseda et al., 2009; Boer et al., 2016; Ardilouze et al., 2017). 57 

To obtain balanced multi-component ICs in coupled models, recent studies focus on the 58 

development of CDA methods under the coupled modeling framework (Penny and Hamill, 2017; He et 59 

al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all components within the 60 

climate system by incorporating reanalysis information from one or more components in the coupled 61 

model, providing great potential for improving seamless climate predictions (Dee et al., 2014). Some 62 
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studies underscore the superior advantages of CDA over traditional uncoupled DA methods (Lea et al., 70 

2015; Zhang et al., 2005). CDA methods are categorized into two main types: weakly coupled data 71 

assimilation (WCDA) and strongly coupled data assimilation (SCDA). WCDA assimilates the 72 

observations or existing reanalysis into the respective component of the coupled model and then transfers 73 

reanalysis information to the other components through the coupled model integration (He et al., 2020b; 74 

Zhang et al., 2020). Considering that sequential DA encompasses both the analysis and the forecast steps, 75 

WCDA allows no direct influence of reanalysis information from a single component to other 76 

components in the analysis step as the cross-component background error covariances are not used, but 77 

coupling in the forecast step allows interactions across different components during the model integration 78 

(Browne et al., 2019) and propagates reanalysis information to other components. In contrast, SCDA 79 

utilizes cross-component background error covariances to directly assimilate reanalysis information from 80 

one component into all components, treating the entire Earth system model as one unified system (Penny 81 

et al., 2019). Furthermore, similar to WCDA, SCDA also allows coupling in the forecast step to propagate 82 

reanalysis information from one component to the other components (Yoshida and Kalnay, 2018). 83 

Several studies indicate that SCDA typically exhibits more pronounced improvements in assimilation 84 

performance relative to WCDA (Smith et al., 2015; Sluka et al., 2016). However, the application of 85 

SCDA poses substantial technical challenges, particularly in the establishment of effective cross-86 

component background error covariances. Consequently, the majority of contemporary CDA systems 87 

still utilize the WCDA framework. 88 

Recent research efforts have started to implement the CDA system to initialize DCPs, using a 89 

diverse range of DA techniques from simple to complex. The simplest method is nudging which adjusts 90 

the model states towards the observations or existing reanalysis (Hoke and Anthes, 1976; Zhang et al., 91 

2020). Although the nudging method is time-saving and easy to implement, its application in CDA is 92 

restricted primarily due to the limited types of observations and the required interpolation of observations 93 

at every time step of model integration (He et al., 2017). Previous studies have developed advanced CDA 94 

systems using variational and filtering approaches, such as the three-dimensional variational data 95 

assimilation (3DVar) (Fujii et al., 2009; Yao et al., 2021), and ensemble-based techniques like the 96 

ensemble Kalman filter (EnKF) (Zhang et al., 2007). The former generally utilizes the stationary 97 
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background error covariance and assimilates observations sequentially (Lin et al., 2017). In contrast, the 106 

latter uses the flow-dependent forecast error covariance and recursively integrates observations into the 107 

model (Lei and Hacker, 2015). Several studies also show encouraging progress in constructing CDA 108 

systems using four-dimensional variational data assimilation (4DVar) method (Smith et al., 2015; Fowler 109 

and Lawless, 2016). The objective of 4DVar is to optimize four-dimensional model states and provide a 110 

compatible temporal trajectory that matches observational records across each assimilation window 111 

(Mochizuki et al., 2016). The 4DVar method is an advanced assimilation technique that exhibits 112 

superiority over other assimilation techniques like nudging and 3DVar in multiple aspects. Initial shocks 113 

that influence prediction skills can be significantly minimized by the 4DVar approach due to the 114 

dynamical consistency between the model and ICs (Sugiura et al., 2008). However, it is difficult to apply 115 

the 4DVar method for CDA systems in the fully coupled model because of the challenge in adjoint 116 

integration of the coupled model and its high computational cost in the analysis step. Finally, to capitalize 117 

on the strengths of both ensemble and variational techniques, recent studies focus on developing new 118 

hybrid data assimilation methods (Wang et al., 2010; Buehner et al., 2018). The hybrid approach utilizes 119 

an ensemble forecast to generate flow-dependent forecast error covariances and presents a way to 120 

perform 4DVar optimization without the need for tangent linear and adjoint models (Lorenc et al., 2015). 121 

However, most studies on CDA have focused on assimilating observations or reanalysis data of ocean, 122 

atmosphere and even sea ice (He et al., 2017; Li et al., 2021; Kimmritz et al., 2018). There have been 123 

relatively few instances of CDA studies assimilating land observations or land reanalysis data. 124 

In this study, we introduce the development of the 4DEnVar-based weakly coupled land data 125 

assimilation (WCLDA) system for the Energy Exascale Earth System Model version 2 (E3SMv2) (Golaz 126 

et al., 2022). The 4DEnVar method in this WCLDA system is the dimension-reduced projection 4DVar 127 

(DRP-4DVar; Wang et al., 2010) which utilizes the ensemble technique as an alternative to the adjoint 128 

technique for implementing 4DVar. In this WCLDA system, monthly mean anomalies of soil moisture 129 

and temperature from a global land reanalysis product are assimilated into the land component of a 130 

coupled climate model in the analysis step, and subsequently during the forecast step, the land reanalysis 131 

information incorporated into the ICs of the land component is propagated to the other components (e.g., 132 

atmosphere and ocean) through the fully coupled model integration and influences the ICs of all 133 
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components for the next assimilation window. The primary goal of the WCLDA system is intended to be 134 

a foundational resource for exploring predictability of the Earth system by the E3SM community, 135 

specifically focusing on understanding the sources of predictability provided by land versus ocean, with 136 

an initial focus on DCPs. This WCLDA system also provides the groundwork for future actionable 137 

predictions of Earth system variability using E3SM. 138 

The objective of this paper is to introduce the implementation of the 4DEnVar-based WCLDA 139 

system for the land component of E3SMv2. In Section 2, we provide an overview of the E3SMv2 model, 140 

describe the 4DEnVar methodology in detail and outline the framework of the 4DEnVar-based WCLDA 141 

system. Preliminary evaluation of the WCLDA system is presented in Section 3. Finally, conclusions are 142 

discussed in Section 4. 143 

 144 

2 Methods 145 

2.1 Model Description 146 

The model used in this study is a relatively new state-of-the-art Earth system model known as 147 

Energy Exascale Earth System Model version 2 (E3SMv2), supported by the U.S. Department of Energy 148 

(DOE) to improve actionable Earth system predictions and projections (Leung et al., 2020). The 149 

atmospheric component is the E3SM Atmosphere Model version 2 (EAMv2), which is built on the 150 

spectral-element atmospheric dynamical core with 72 vertical levels (Dennis et al., 2012; Taylor et al., 151 

2020). At the standard resolution, EAMv2 is applied on a cubed sphere with a grid spacing of ~100 km 152 

for the dynamics. The ocean component is the Model for Prediction Across Scales-Ocean (MPAS-O), 153 

which applies the underlying spatial discretization to the primitive equations with 60 layers using a z-154 

star vertical coordinate (Petersen et al., 2018; Reckinger et al., 2015). The sea ice component is MPAS-155 

SI, which shares the same Voronoi mesh with MPAS-O, with mesh spacing varying between 60km in the 156 

mid-latitudes and 30 km at the equator and poles (Golaz et al., 2022). The land component is the E3SM 157 

Land Model version 2 (ELMv2), which is based on the Community Land Model version 4.5 (CLM4.5) 158 

(Oleson et al. 2013). Simulations are run in a satellite phenology mode with prescribed leaf area index, 159 

and the prescribed vegetation distribution has been updated for better consistency between land use and 160 

changes in plant functional types described by Golaz et al. (2022). The river transport component is the 161 
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Model for Scale Adaptive River Transport version 2 (MOSARTv2), which provides detailed 163 

representation of riverine hydrologic variables (Li et al., 2013). These five components exchange fluxes 164 

through the top-level coupling driver version 7 (CPL7) (Craig et al., 2012). Further details on the 165 

E3SMv2 model are described in Golaz et al. (2022). 166 

 167 

2.2 Datasets 168 

Monthly mean soil moisture and soil temperature data in a total of ten soil layers are produced by 169 

the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004). The GLDAS product generates 170 

optimal fields of land surface states and fluxes in near-real time by forcing multiple offline land surface 171 

models with observation-based data fields. These reliable and high-resolution global land surface datasets 172 

from GLDAS are extensively utilized in weather and climate studies, hydrometeorological investigations 173 

and water cycle research (Chen et al., 2021; Zhang et al., 2018). The GLDAS datasets have been available 174 

globally at high spatial resolution since January 1979 and can be accessed through the Goddard Earth 175 

Science Data and Information Service Center. For more consistency with ELMv2, we utilize GLDAS 176 

data produced by CLM. In contrast to decadal timescales, data signals with temporal resolutions shorter 177 

than one month can potentially introduce undesirable noise, which can adversely affect DCPs when high 178 

temporal resolution data are assimilated into the ICs. Moreover, it is very computationally demanding to 179 

assimilate complex actual observations in the initialization for DCPs that requires long-term DA cycles. 180 

Therefore, similar to most existing initialization approaches for DCPs that assimilate reanalysis data, this 181 

study describes the implementation of a data assimilation approach for initializing DCPs by assimilating 182 

monthly mean GLDAS data within the one-month assimilation window. 183 

Monthly mean surface soil moisture data from the Advanced Microwave Scanning Radiometer 184 

(AMSR) and land surface temperature data from the Moderate Resolution Imaging Spectrometer 185 

(MODIS) are utilized for validation. (1) The AMSR data provides surface soil moisture estimations by 186 

measuring the microwave emission from the Earth's surface (Njoku et al., 2003). The soil moisture data 187 

from AMSR are widely used in scientific research to study surface water cycles, drought conditions and 188 

hydrologic modeling (Du et al., 2019; McCabe et al., 2008). (2) MODIS is an essential instrument 189 

onboard the Terra and Aqua satellite platforms (Remer et al., 2005). The MODIS datasets provide 190 
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comprehensive global observations describing atmospheric, terrestrial and oceanic conditions, including 191 

land surface temperature, vegetation indices and cloud properties (Justice et al., 2002). The MODIS 192 

products are extensively utilized for monitoring environmental changes and supporting climate change 193 

research (Gao et al., 2015; Mertes et al., 2015). 194 

Current initialization techniques are broadly classified into two categories: full-field assimilation 195 

with reanalysis values, and anomaly assimilation with reanalysis anomalies (Hu et al., 2020; Polkova et 196 

al., 2019). The full-field assimilation is commonly performed to reduce the influence of systematic model 197 

biases by replacing the initial model state with the optimal available estimate of the reanalysis state (Volpi 198 

et al., 2017). However, the model trajectory tends to drift away from the observations and revert to the 199 

model's inherent preferred state because of model deficiencies (Smith et al., 2013). This problem is 200 

partially addressed with the anomaly assimilation by assimilating the reanalysis anomalies added to the 201 

model climatology (Carrassi et al., 2014). In this study, we conduct the anomaly assimilation for the 202 

WCLDA system with bias correction applied to GLDAS data before assimilation. For bias correction, 203 

the difference between GLDAS data and its long-term average is calculated as anomalies and then added 204 

to the simulated model climatology. 205 

 206 

2.3 Data Assimilation Scheme 207 

The 4DEnVar algorithm in this study is based on the DRP-4DVar technique, which is an efficient 208 

pathway for applying 4DVar through using the ensemble method rather than the adjoint technique (Wang 209 

et al., 2010). The DRP-4DVar method generates the optimal estimation in the sample space through 210 

aligning the observations with ensemble samples along the coupled model trajectory (Liu et al., 2011). 211 

DRP-4DVar is an economical approach that minimizes the cost function of the standard 4DVar by 212 

using the ensemble technique instead of the adjoint technique (Wang et al., 2010). The background error 213 

covariance matrix 𝐵 is estimated using the pure ensemble covariance. The ensemble members originate 214 

from historical or ensemble forecasts. Considering the high computational cost of ensemble forecasts for 215 

the coupled model in our study, we utilize outputs from the pre-industrial control (PI-CTRL) experiment 216 

of E3SMv2 to generate ensemble members. The instantaneous state at the beginning of each month and 217 

the corresponding monthly mean state of this month from the 100-year balanced PI-CTRL simulation 218 
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are used as the samples of initial condition (𝑥!)	and forecast samples (𝑦!). The corresponding perturbation 223 

samples are calculated as 𝑥!" = 𝑥! − 𝑥̅  and 𝑦!" = 𝑦! − 𝑦) , where 𝑥̅  and 𝑦)  are the 100-year average 224 

values of 𝑥!  and 𝑦!  at the same month, respectively. Then, 𝑚  pairs of perturbation samples 225 

(𝑥#" , 𝑥$" , 𝑥%" , ⋯ , 𝑥&" ) and (𝑦#" , 𝑦$" , 𝑦%" , ⋯ , 𝑦&" ) are selected at each DA analysis step according to the 226 

correlations between 𝑦!"  and the observational innovation 𝑦'()" = 𝑦'() − 𝑦( , ensuring that each 𝑦" 227 

sample is selected independently of the other samples in the ensemble. In this study, 𝑚 = 30. Then the 228 

estimation of the background error covariance matrix 𝐵 is represented by the formula in Eq. (1), utilizing 229 

the selected 𝑥" samples. We implement both horizontal and vertical localization to reduce sampling 230 

errors due to the finite ensemble size and to alleviate the spurious remote influence from distant grid 231 

points. Our approach to horizontal localization is to apply a distance-dependent weighting function to 232 

the background error covariance. The vertical localization is employed to limit the influence of reanalysis 233 

information on specific soil layers. Please refer to Wang et al. (2018) for more detailed descriptions of 234 

the localization methodology in our study. 235 

																																													

⎩
⎪
⎨

⎪
⎧

𝐵 = 𝑏𝑏*

𝑏 =
1

√𝑚 − 1
× (𝑥#" − 𝑥̅", 𝑥$" − 𝑥̅", 𝑥%" − 𝑥̅", ⋯ , 𝑥&" − 𝑥̅")		

𝑥̅" =
1
𝑚 (𝑥#" + 𝑥$" + 𝑥%" +⋯+ 𝑥&" )

																																	(1) 236 

According to Wang et al. (2010), DRP-4DVar produces the analysis increment (𝑥+" ) by minimizing 237 

the 4DVar cost function in the incremental form (Courtier et al., 1994): 238 

																																							9

𝐽(𝑥+" ) = min
,!

𝐽(𝑥")

𝐽(𝑥") = #
$
(𝑥")*𝐵-#𝑥" + #

$
(𝑦> " − 𝑦>'()" )*(𝑦>" − 𝑦>'()" )

																																																		(2) 239 

Here 𝑥" = 𝑥 − 𝑥(  represents the increment of model variables relative to the background; 𝑦>'()" =240 

𝑟-#𝑦'()" = 𝑟-#(𝑦'() − 𝑦() denotes the weighted observational innovation for monthly mean anomalies 241 

of soil moisture and temperature, and 𝑅 = 𝑟𝑟*  is the observational error covariance matrix that is 242 

usually diagonal; 𝑦> " = 𝑟-#𝑦" = 𝑟-#(𝑦 − 𝑦() is the weighted projection of the increment (𝑥") onto the 243 

observation space; the superscript 𝑇 represents the transpose. 244 

    To simplify the calculation of the minimization, the increment of model state variables 𝑥" and the 245 

corresponding weighted observation increment 𝑦> "  are projected onto the dimension-reduced sample 246 

space through the following projection transformations: 247 
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																																																																C
𝑥" = 𝑃,𝛼
𝑦> " = 𝑃.𝛼

																																																																																											(3)252 

where 𝛼 is the 𝑚-dimension column vector containing the weight coefficients (𝛼#, 𝛼$, 𝛼%, ⋯ , 𝛼&); 𝑃, 253 

and 𝑃.  denote the projection matrices that incorporate the initial condition perturbations and the 254 

corresponding monthly mean samples as follows: 255 

																																																																	C
𝑃, = (𝑥#" , 𝑥$" , 𝑥%" , ⋯ , 𝑥&" )
𝑃. 	= 	 (𝑦>#" , 𝑦>$" , 𝑦>%" , ⋯ , 𝑦>&" )

																																																																						(4)256 

where 𝑦>!" = 𝑟-#𝑦!"  ( 𝑖 = 1, 2,⋯ ,𝑚 ). Then the original 4DVar cost function defined in Eq. (2) is 257 

transformed into the following new cost function and the analysis can be computed in the sample space 258 

by minimizing this new cost function: 259 

																																																	

⎩
⎪
⎨

⎪
⎧

𝐽H(𝛼+) = min
/
𝐽H(𝛼)

𝐽H(𝛼) =
1
2𝛼

*𝐵/-#𝛼 +
1
2 (𝑃.𝛼 − 𝑦>'()

" )*(𝑃.𝛼 − 𝑦>'()" )

𝑥+ = 𝑥( + 𝑥+" = 𝑥( + 𝑃,𝛼+

																																			(5) 260 

    The solution to this minimization problem is formulated as: 261 

																																																															𝛼+ = (𝐵/-# + 𝑃.*𝑃.)-#𝑃.*𝑦>'()" 																																																														(6) 262 

In this study, the DRP-4DVar-based WCLDA system is used to incorporate the land reanalysis data only. 263 

The optimal analysis for the land state variables (𝑥+012) is obtained by adding the analysis increment 264 

(𝑥"+
012) to the background of land ICs (𝑥(012), as expressed in Eq. (7): 265 

																																					𝑥+012 = 𝑥(012 + 𝑥"+
012 = 𝑥(012 + 𝑃,K𝐵/-# + 𝑃.*𝑃.L

-#𝑃.*𝑦>'()" 																																			(7) 266 

    In the analysis step, only the land state variables are updated to the optimal analysis (𝑥+012 ). 267 

Subsequently, we proceed with a one-month freely coupled integration of the E3SMv2 model during the 268 

forecast step. This integration is initialized from the optimal land ICs (𝑥+012) along with the background 269 

fields as the ICs of other components (e.g., atmosphere and ocean). Throughout this one-month free 270 

integration, the interactions among the model components indirectly enhance the background states of 271 

these components (e.g., atmosphere and ocean) for the next assimilation window due to the more realistic 272 

land state variables. Moreover, this coupled integration also contributes to the balance between the ICs 273 

of different components. 274 

 275 

2.4 4DEnVar-based WCLDA System 276 

The 4DEnVar-based WCLDA system is developed to assimilate the monthly mean soil moisture and 277 



 11 

temperature data from the GLDAS analysis dataset into the land component of E3SMv2 using the DRP-278 

4DVar method. Two sets of numerical experiments are conducted to evaluate the performance of land 279 

data assimilation in the WCLDA system. The control simulation (CTRL) is a 37-year freely coupled 280 

integration driven by observed external forcings (e.g., solar radiation, greenhouse gas and aerosol 281 

concentrations) from 1980 to 2016. In the freely coupled simulation, the various components of the Earth 282 

system model, namely the atmosphere, land, river, ocean, and sea ice, interact dynamically without any 283 

constraints. The observed external forcing mainly acts on the atmospheric component and then influences 284 

other components (e.g., land surface, ocean, and sea ice) through their coupling with the atmosphere. 285 

CTRL provides the benchmark for assessing the performance of the WCLDA system. The assimilation 286 

experiment (Assim) is conducted from 1980 to 2016 based on the WCLDA system in which the GLDAS 287 

data are assimilated into the land state variables from the first to the tenth layer with a one-month 288 

assimilation window under the coupled modeling framework. The effectiveness of the WCLDA system 289 

is evaluated through the comparison between Assim and CTRL. In both Assim and CTRL, the transient-290 

historical external forcings are prescribed following the CMIP6 protocol (Eyring et al., 2016).  291 

The flowchart of the 4DEnVar-based WCLDA system is illustrated in Figure 1. The DRP-4DVar 292 

method incorporates three inputs: model background, observational innovation and 30 perturbation 293 

samples. First, the E3SMv2 model is executed for one month, during which state variables such as model 294 

background (𝑥(), observational operator (𝐻) and observational background (𝑦() are stored. The model 295 

background (𝑥() denotes the monthly initial states before assimilation, and the observational operator (𝐻) 296 

represents a one-month integration by the coupled model to generate monthly mean model outputs (𝑦(). 297 

Second, upon completion of the one-month coupled run, the observational innovation (𝑦>'()" ) is determined 298 

by calculating the differences in soil moisture and temperature between the monthly mean GLDAS data 299 

(𝑦'() ) and the model outputs (𝑦( ). From the 100-year sample database of the E3SMv2 PI-CTRL 300 

simulation, 30 samples of monthly mean perturbation (𝑦>") are chosen with the highest absolute correlation 301 

with the observational innovation. The corresponding 30 monthly IC samples (𝑥") are also obtained. 302 

Finally, the analysis increment is generated in the sample space and the optimal analysis (𝑥+) is calculated 303 

using the DRP-4DVar algorithm. 304 

The schematic diagram in Figure 2 outlines the assimilation process of the 4DEnVar-based WCLDA 305 
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system in E3SMv2. The incorporation of GLDAS data into the E3SMv2 model consists of the analysis 323 

step and the forecast step. In the analysis step, the differences between monthly mean GLDAS data and 324 

model outputs are calculated and utilized to produce the optimal assimilation analysis at the beginning of 325 

a one-month assimilation window. Subsequently, in the forecast step, this optimal assimilation analysis is 326 

used as the land ICs combined with the background ICs for other components to conduct one-month 327 

forecast using the E3SMv2 model. This forecast generates the backgrounds of all model components for 328 

the next assimilation window. As a result, the forecasted backgrounds for all components are influenced 329 

by the land reanalysis information incorporated into the ICs of the land component. In general, when the 330 

coupled model is used in the forecast step while the optimal assimilation analysis is updated separately 331 

for the respective component, the assimilation approach is identified as WCDA (Penny et al., 2019; Zhang 332 

et al., 2020). 333 

The detailed assimilation process mainly consists of three steps within each one-month assimilation 334 

window: 1) the E3SMv2 model is initially executed for one month to generate the simulated monthly 335 

mean soil moisture and temperature (𝑦(012); 2) the observational innovation (𝑦'()" ) is obtained through 336 

subtracting the model simulation (𝑦(012) from the monthly mean observation (𝑦'()012). This innovation is 337 

then applied to formulate the optimal assimilation analysis of land surface (𝑥+012) at the beginning of the 338 

assimilation window through the DRP-4DVar method; 3) the E3SMv2 model is rewound to the start of 339 

the month and the second one-month model run is executed using the optimal ICs (𝑥+) to generate the 340 

background for the next assimilation window. Due to multi-component interactions during the one-month 341 

freely coupled integration, the land reanalysis information can potentially benefit other components (e.g., 342 

atmosphere and ocean) in the coupled modeling framework (Li et al., 2021; Shi et al., 2022). To assimilate 343 

the monthly mean GLDAS product, fully coupled integration by the E3SMv2 model is performed twice 344 

within each one-month assimilation window: first to generate the observational innovation by computing 345 

the differences between the GLDAS data and model outputs for analysis, and second to forecast the 346 

backgrounds of all components for the next assimilation window. When the fully coupled model is 347 

executed for the second one-month run, the land reanalysis information is transferred to the other 348 

components through multi-component interactions. This approach is similar to previous studies that 349 

employed the "two-step" scheme in which the land model integration is performed twice within the same 350 
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month to assimilate the monthly GRACE-based TWS observations (Houborg et al., 2012; Girotto et al., 352 

2016). 353 

 354 

2.5 Evaluation Metrics 355 

The reduction rate of the cost function is a significant metric for verifying the effectiveness of the 356 

WCLDA system and evaluating the extent of reanalysis information assimilated by the coupled model, 357 

which is formulated as: 358 

⎩
⎪
⎨

⎪
⎧

3"-3#
3#

× 100%

𝐽4 =
#
$
(𝑦'() − 𝑦()*𝑅-#(𝑦'() − 𝑦()

𝐽# =
#
$
(𝑦'() − 𝑦+)*𝑅-#(𝑦'() − 𝑦+)

                              (8) 359 

where 𝐽4 and 𝐽# denote the cost function before and after assimilation respectively, 𝑦'() represents the 360 

GLDAS data, 𝑦+ denotes the monthly mean analyses, 𝑦( is the observation-space background, and 𝑅 is 361 

defined as the observation error covariance matrix. The observation error covariance matrix 𝑅 can be 362 

determined statistically by estimating the variance and covariance of the GLDAS data. Negative value 363 

for this metric indicates that reanalysis information has been correctly incorporated into the model 364 

variables. 365 

Following Yin et al. (2014), the assimilation efficiency (AE) index is defined to evaluate the efficiency 366 

of the WCLDA system as follows: 367 

𝐴𝐸 = 5678$%%&'
5678()*+

− 1	                                      (9) 368 

In this equation, 𝑅𝑀𝑆𝐸9))!& is the root mean square error (RMSE) between the analysis value from 369 

Assim and the reference data, while 𝑅𝑀𝑆𝐸:*5; represents the RMSE between CTRL and the reference 370 

data. Negative (positive) AE value indicates improvements (degradations) by the assimilation. In the 371 

following sections, we use the GLDAS data as the main reference data to verify the correctness of the 372 

WCLDA system, but some analyses are also performed using AMSR surface soil moisture and MODIS 373 

land surface temperature as the reference data. 374 

 375 

3 Results 376 

3.1 Evaluation of the cost function 377 
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Figure 3 displays the time series of the monthly reduction rate of the cost function in the 4DEnVar-382 

based WCLDA system. In the first month, the reduction rate reaches approximately 26.06% in Assim. 383 

Over the subsequent months, Assim maintains the average reduction rate of 7.73% throughout the entire 384 

37-year period. Furthermore, negative reduction rates are observed in 98.65% of the total months, 385 

indicating the effectiveness of the WCLDA system. These results suggest that the WCLDA system is 386 

correctly implemented, with GLDAS data successfully assimilated into the coupled model. 387 

 388 

3.2 Evaluation of the AE index 389 

The spatial pattern of the AE index for soil moisture at different depths is depicted in Figure 4. The 390 

AE value exhibits negative signal in most areas for total ten soil layers, suggesting the reduction in RMSE 391 

for soil moisture after assimilation. Significant improvements appear over North America, South America, 392 

southern Africa, Europe, and Asia. However, assimilation performance is degraded in the northern part of 393 

Russia and northern Africa. This is consistent with the findings in other studies that assimilation updates 394 

in northern Russia are limited due to the complexities of accurately representing frozen ground and snow 395 

processes in high latitudes (Edwards et al., 2007; Ireson et al., 2013). As surface soil moisture is highly 396 

susceptible to atmospheric conditions, assimilation performance of surface soil moisture is limited by the 397 

accuracy of atmospheric forcing. Furthermore, some degradations found in the deep layers could be 398 

attributed to the substantial influence of various terrestrial factors, such as subsurface runoff and 399 

interactions with groundwater, similar to the findings in previous studies (Liu and Mishra, 2017; Zeng 400 

and Decker, 2009). 401 

Figure 5 shows the spatial distribution of the AE index for soil temperature from surface to deep 402 

layers. Most grid cells from the ten soil layers are dominated by negative AE signals, indicating improved 403 

performance for soil temperature after assimilation. Moreover, the spatial patterns across different soil 404 

layers are highly consistent with each other and exhibit similar magnitudes in most areas. Notable 405 

improvements are observed in central Europe, South America, eastern Russia, and large parts of Eurasia 406 

and North America. In contrast, slight degradations appear over Southeast Asia and along the northern 407 

fringes of Africa. This may be partly related to model uncertainties and possible atmospheric noise, as 408 

shown by many past studies (Kwon et al., 2016; Lin et al., 2020). 409 
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We further perform an analysis of the spatial pattern of the AE index for surface soil moisture and 411 

land surface temperature between satellite data and model simulations (Figure A1). For surface soil 412 

moisture, the comparison with AMSR data suggests that the majority of global regions exhibit reduced 413 

RMSE after assimilation. The reduction of RMSE is pronounced in central North America, South America, 414 

southern Africa, Australia, and Europe. However, in high-latitude areas, significant degradations are 415 

observed in northern Russia, which may be possibly related to model deficiencies in simulating the 416 

complex frozen ground and snow processes (Edwards et al., 2007; Ireson et al., 2013). Regarding land 417 

surface temperature, improved performances are evident over South America, Australia, southern Africa, 418 

and large parts of Eurasia when compared to MODIS data. In contrast, some degradations appear over 419 

parts of North America and central Asia, which still require further improvement. 420 

 421 

3.3 Evaluation of the correlation 422 

Figure 6 displays the spatial patterns of the differences in temporal correlations for soil moisture 423 

between Assim and CTRL with GLDAS data across different soil layers. The majority of global regions 424 

in Assim exhibit higher correlations from the first to the tenth layer compared with CTRL, suggesting the 425 

overall good performance of the WCLDA system. Enhanced correlations in deep soil layers are more 426 

pronounced than in shallow layers, which may be attributed to the longer memory of soil processes in the 427 

deeper soil layers (Wang et al., 2010). Improved correlations appear over North America, central Europe, 428 

Asia, and parts of Africa. However, some scattered areas show slight degradations, such as northern South 429 

America, central Africa, and eastern Russia. Overall, Assim outperforms CTRL with higher correlation 430 

(Figure 6) and lower RMSE (Figure 4) in many regions, such as Europe, North America, southern South 431 

America, and South Asia. 432 

The correlation differences in soil temperature between Assim and CTRL from surface to deep 433 

layers are shown in Figure 7. Assim yields improved correlations from the first to the tenth layer across 434 

the majority of global regions. Furthermore, similar spatial patterns and magnitudes are observed in the 435 

performance of different soil layers, implying the significant heat transfer from the surface to deep zone 436 

that constrains soil temperature across the soil column. Notable improvements are located over South 437 

America, central Africa, Australia, central Europe, and East Asia. Nevertheless, some degradations 438 
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appear over North America, western Europe, and Northeast China. Assim shows superior performance 440 

over CTRL for soil temperature with higher correlation (Figure 7) and lower RMSE (Figure 5) in many 441 

regions, including South America, central Europe, Australia, and central Africa. 442 

 443 

3.4 RMSE and bias of the global mean soil moisture and temperature 444 

The vertical distributions of RMSE differences between Assim and CTRL for soil moisture and 445 

temperature are evaluated in Figure 8. Compared with CTRL, Assim shows noticeable improvements 446 

with reduced RMSE for both soil moisture and temperature in all ten soil layers. For soil moisture, the 447 

reduction of RMSE increases with depth from the upper to deep soil layers, reaching its maximum at the 448 

tenth layer. This could be attributed to the longer soil memory in deep layers than shallow layers. For soil 449 

temperature, the reduction of RMSE exhibits similar magnitude from the surface to deep soil layers, which 450 

may be explained by the significant heat transfer across different soil layers in regulating soil temperature 451 

throughout the soil column. 452 

Figure 9 shows the time evolutions of the vertically averaged global mean soil moisture and 453 

temperature bias and RMSE differences. For soil moisture bias (Figure 9a), CTRL exhibits dry biases 454 

during the first twenty years and wet biases afterwards. In contrast, Assim shows smaller biases during 455 

both periods by reducing the dry bias prior to ~2000 and the wet bias thereafter. Assim also exhibits 456 

reduced RMSE (Figure 9b) for soil moisture throughout the entire 37-year period. For soil temperature 457 

bias (Figure 9c), CTRL and Assim display comparable performances, possibly due to the small magnitude 458 

of model deviation in soil temperature. The RMSE differences (Figure 9d) suggest that Assim decreases 459 

the RMSE for soil temperature in the majority of months, with 74.10% of the total months in Assim 460 

exhibiting lower RMSE than CTRL. In summary, the superior performance for both soil moisture and 461 

temperature in Assim demonstrates that land reanalysis information has been effectively incorporated into 462 

the model variables through the WCLDA system. 463 

Noticeably, the simulated soil temperature and soil moisture display similar long-term trends, with 464 

cold and dry biases before ~2000 and warm and wet biases afterwards. The soil temperature biases may 465 

be related to the global surface air temperature simulated in E3SMv2, which is notably too cold compared 466 

to the observed record during the 1970s and 1980s while the model warms up quickly after ~year 2000 467 
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(see Figure 23 of Golaz et al., 2022). The global surface air temperature biases during the past decades in 468 

E3SMv1 and v2 have been attributed to the strong aerosol forcing in the model (Golaz et al., 2019; 2022). 469 

As the global mean precipitation scales with the surface temperature at ~2% per degree (Allen and Ingram, 470 

2002), model biases in surface temperature are reflected in biases in precipitation and hence soil moisture, 471 

resulting in similar long-term trends between soil temperature and soil moisture biases in the simulations. 472 

 473 

3.5 2012 U.S. Midwest Drought 474 

To further evaluate the performance of the WCLDA system, we briefly investigate the impact of land 475 

data assimilation on simulating the temporal evolution of the U.S. Midwest drought in 2012. Time series 476 

of soil moisture percentiles over the Midwest (36 ° -50 °N, 102 ° -88 °W) demonstrate significant 477 

improvements by Assim in reproducing the time evolution of agricultural drought in 2012 compared with 478 

CTRL (Figure 10). From ERA-Interim data, the agricultural drought starts in August 2011, follows by a 479 

brief relief in early spring of 2012, peaks in September 2012, and recovers by January 2013. The drought 480 

develops rapidly between May and July 2012 over a wide-spread area including the central and 481 

midwestern U.S. This flash drought caused significant agricultural damages and economic losses. 482 

The free running CTRL experiment fails to simulate the temporal evolution of the 2012 Midwest 483 

drought, with a correlation coefficient between CTRL and ERA-Interim of only 0.27. The onset and peak 484 

of the drought are remarkably well captured by Assim, although the drought recovery occurs two months 485 

later than observed. The correlation coefficient of the Assim time series with ERA-Interim is 0.56, which 486 

is statistically significant at the 95% confidence level. Our results highlight the importance of land surface 487 

states for drought lifecycle, with the potential to improve future drought predictions through the 488 

implementation of the WCLDA system. 489 

 490 

4 Conclusions 491 

In this study, we developed the 4DEnVar-based WCLDA system for the E3SMv2 model and 492 

evaluated the performance of this WCLDA system. The DRP-4DVar method was employed for 493 

implementing 4DVar using the ensemble method rather than the adjoint technique. Special attention is 494 

paid to directly assimilating monthly mean land reanalysis data in this system without interpolating to 495 
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every time step. Within each one-month assimilation window, we assimilate land reanalysis information 499 

into the coupled model without breaking the land-atmosphere interaction, which is important for the 500 

WCLDA system to be used to understand the potential sources of predictability provided by land. 501 

Monthly mean anomalies of soil moisture and temperature from the GLDAS reanalysis are 502 

assimilated from 1980 to 2016 through the WCLDA system, and its performance is evaluated using 503 

multiple metrics, including the cost function, AE index, correlation, RMSE and bias. Compared with 504 

CTRL, the cost function is reduced by Assim in most months, suggesting that the GLDAS reanalysis data 505 

has been effectively incorporated into the model. In terms of both soil moisture and temperature, Assim 506 

outperforms CTRL with lower RMSE and higher temporal correlation in many regions, especially in 507 

South America, central Africa, Australia, and large parts of Eurasia. For soil moisture bias, Assim further 508 

decreases the dry bias during the first twenty years and the wet bias thereafter. It is noteworthy that the 509 

subseasonal-to-seasonal time evolution of soil moisture percentiles during the 2012 U.S. Midwest drought 510 

can be quite well captured in Assim, underscoring the significant role of land surface states in drought 511 

propagation. 512 

Our current WCLDA system has some limitations and requires future improvements. Future 513 

enhancements of our WCLDA system will explore the assimilation of additional land products, 514 

particularly those derived from satellite observations. The incorporation of such satellite-based datasets 515 

is expected to further improve the performance of the WCLDA system. It is possible that the influence of 516 

the WCLDA system on atmospheric processes may be limited in some domains due to uncertainties of 517 

the model parameterizations, particularly in representing land-atmosphere interactions (Zhou et al., 2023). 518 

For example, in humid regions where the evaporation process is predominantly energy-limited, the 519 

assimilation of soil moisture tends to exert limited influence. Instead, the assimilation of soil temperature 520 

may yield more substantial improvements. This underscores the importance of the unique characteristics 521 

and constraints presented by complicated regional conditions in the application of assimilation processes. 522 

To this end, the application of the WCLDA system would motivate future work to better understand the 523 

roles of the land surface in climate variability and provide a foundational resource for future predictability 524 

studies by the E3SM community. 525 

 526 
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Code and data availability. The E3SMv2 source codes used in this study can be accessed on Zenodo at 537 

https://zenodo.org/record/8194050. The GLDAS monthly soil moisture and soil temperature data are 538 

available online (https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20monthly&page=1). The 539 

MODIS monthly land surface temperature data can be downloaded from the website 540 

(https://disc.gsfc.nasa.gov/datasets/MOD11CM1D_005/summary). The AMSR monthly surface soil 541 

moisture data are available from https://doi.org/10.11888/Soil.tpdc.270960. The ERA-Interim monthly 542 

soil moisture data are available at https://apps.ecmwf.int/archive-543 

catalogue/?levtype=sfc&type=an&class=ei&stream=moda&expver=1. The model data used in this study 544 

can be found on Zenodo at https://zenodo.org/record/8148737. 545 
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 843 
Figure 1. Flowchart of the 4DEnVar-based WCLDA system in E3SMv2 based on the DRP-4DVar 844 
method.  845 
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 846 

Figure 2. Schematic flowchart of the 4DEnVar-based WCLDA system. The beginning of a month is at 847 

0000 UTC on the first day of the month, and the end of the month is at 0000 UTC on the first day of the 848 

next month. 𝑥( denotes the background vector including the backgrounds of all E3SMv2 components 849 

(atmosphere (𝑥(+<&), ocean (𝑥('=1), sea ice (𝑥(!=>), river transport (𝑥(?!@>?) and land surface (𝑥(012)). 𝑥+ 850 

consists of the assimilation analysis of land surface (𝑥+012) and the backgrounds of other components. 851 

𝑦(012 represents the simulated monthly mean soil temperature (𝑇)(&) and moisture (𝑀U(&) by E3SMv2 using 852 

𝑥( as the initial condition. 𝑦'()012 denotes the monthly mean GLDAS data of soil temperature (𝑇)'()& ) and 853 

moisture (𝑀U'()& ). 𝑦'()"  denotes the observational innovation, which is the difference between the GLDAS 854 

data (𝑦'()012) and the observational background (𝑦(012).  855 
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 856 

Figure 3. Time series of the reduction rate of the cost function from 1980 to 2016 in the 4DEnVar-based 857 

WCLDA system.  858 
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 859 
Figure 4. Spatial distribution of the AE index for soil moisture from the surface to deep layers during 860 

the 1980-2016 period. The number at the top center denotes the depth of each soil layer.  861 
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 862 

Figure 5. Same as in Figure 4, but for soil temperature.  863 
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 864 

Figure 6. Differences between correlations of soil moisture in Assim and CTRL with the GLDAS data 865 

from the surface to deep layers for the period of 1980-2016. The number at the top center denotes the 866 

depth of each soil layer.  867 
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 868 

Figure 7. Same as in Figure 6, but for soil temperature.  869 
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 870 

Figure 8. Vertical distributions of RMSE differences (Assim minus CTRL) for (a) soil moisture and (b) 871 

soil temperature averaged over the global land during the 1980-2016 period.  872 
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 873 

Figure 9. Time series of the vertically averaged global mean soil moisture and temperature bias (left) for 874 

Assim (red line) and CTRL (blue line), and RMSE differences (right, green line) between Assim and 875 

CTRL from 1980 to 2016.  876 
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 877 

Figure 10. Time series of soil moisture percentiles between May 2011 and April 2013 during the 2012 878 

U.S. Midwest drought. Red line: observation, blue line: Assim, orange line: CTRL. The correlation 879 

coefficients of Assim and CTRL with observations are also shown. The three vertical dashed lines mark 880 

the timing of drought start, drought peak and drought end, respectively. The start of the agricultural 881 

drought is defined as the month when soil moisture falls below the 20th percentile. The soil moisture 882 

percentiles are averaged over the U.S. Midwest (36°-50°N, 102°-88°W). The observed soil moisture is 883 

derived from ERA-Interim monthly soil moisture data.  884 
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Appendix A: Supporting Information 885 

 886 

Figure A1. Spatial distribution of the AE index for (a) surface soil moisture and (b) land surface 887 

temperature during the 2003-2014 period. The surface soil moisture and land surface temperature are 888 

derived from monthly AMSR and MODIS satellite data, respectively. 889 


