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Abstract. A new eakly coupled land data assimilation (WCLDA) system based on the four-dimensional

ensemble variational (4DEnVar) method is developed and applied to the fully coupled Energy Exascale
Earth System Model version 2 (E3SMv2). The dimension-reduced projection four-dimensional
variational (DRP-4DVar) method is employed to implement 4D Var using the ensemble technique instead

of the adjoint technique. With an initial interest in providing initial conditions for decadal climate

predictions, monthly mean anomalies of soil moisture and temperature analyses from the Global Land

Data Assimilation System (GLDAS) yeanalysis are assimilated into the land component of E3SMv2 ]

within the coupled modeling framework with a one-month assimilation window, from 1980 to 2016. The

coupled assimilation experiment is evaluated using multiple metrics, including the cost function,
assimilation efficiency index, correlation, root mean square error (RMSE) and bias, and compared with

a control simulation without land data assimilation. The WCLDA system yields improved simulation of

soil moisture and temperature compared with the control simulation, with improvements found

throughout the soil layers and in many regions of the global land. In terms of both soil moisture and

temperature, the assimilation experiment outperforms the control simulation with reduced RMSE and

enhanced temporal correlation in many regions, especially in South America, Central Africa, Australia

and large parts of Eurasia. Furthermore, significant improvements are also found in reproducing the time

evolution of the 2012 U.S. Midwest drought, highlighting the crucial role of land surface in drought

lifecycle. The WCLDA system is intended to be a foundational resource for research to investigate land-

derived climate predictability,
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BT : Furthermore, significant improvements are also
found in reproducing the time evolution of the 2012 U.S.
Midwest drought, highlighting the crucial role of land surface
in drought lifecycle. The LCDA system is intended to be a
foundational resource to investigate land-derived climate

predictability for future prediction research by the E3SM

community.
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1 Introduction

The intrinsic chaos of the atmosphere limits traditional weather forecasting to roughly two weeks
(Simmons and Hollingsworth, 2002). The feasibility of atmospheric predictability beyond two weeks lies
with the interactions of the atmosphere with slowly varying components of the Earth system such as the
ocean or land surface, or from predictable external forcing (Guo et al., 2012). Climate prediction can
therefore be conceptually divided into both an initial value and a forced boundary value problem (Collins
and Allen, 2002; Conil et al., 2007). One of the biggest technical challenges for improving the quality of
climate predictions is the initialization of coupled models from observations (Taylor et al., 2012).

Much work has been devoted to initializing climate system models for practicable decadal climate

predictions (DCPs). These models couple various components, such as models of the atmosphere, land

surface, ocean, sea ice, and so on. Due to their much higher complexity, coupled models are often more

susceptible to initial conditions (ICs) than their individual model components, underscoring the

importance of dedicated data assimilation (DA) (Sakaguchi et al., 2012). The capability of DA methods

is essential to incorporate available observations into the components of coupled model and produce the

optimal estimate of ICs to improve DCPs. The initialization for DCPs uses uncoupled DA and coupled

data assimilation (CDA) methods. Uncoupled DA performs DA under the framework of an individual

component model (e.g., standalone land surface model forced by atmospheric observations or reanalysis

data rather than coupled with an atmospheric model), and then the uncoupled DA analyses from different

individual components are combined to form the ICs of a coupled model (Zhang et al., 2020). For

example, most existing reanalysis data were produced using uncoupled DA approaches, and these

reanalysis datasets are then directly used to initialize DCPs in some studies (Du et al., 2012; Bellucci et

al., 2013). However, such uncoupled DA often exhibits poor consistency among the ICs of different

component models, and eventually produces low prediction skills (Balmaseda et al., 2009; Boer et al.

2016; Ardilouze et al., 2017).

To obtain balanced multi-component ICs in coupled models, recent studies focus on the

development of CDA methods under the coupled modeling framework (Penny and Hamill, 2017; He et

al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all components within the

climate system by incorporating observational information from one or more components in the coupled
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model, providing great potential for improving seamless climate predictions (Dee et al., 2014). Some

studies underscore the superior advantages of CDA over traditional uncoupled DA methods (Lea et al.,

2015; Zhang et al., 2005). CDA methods are categorized into two main types: weakly coupled data

assimilation (WCDA) and strongly coupled data assimilation (SCDA). WCDA assimilates the

observations or existing reanalysis into the respective component of the coupled model and then transfers

the observational information to the other components through the coupled model integration (He et al.

2020b; Zhang et al., 2020). Considering that sequential DA encompasses both the analysis and the

forecast steps, WCDA allows no direct influence of observations from a single component to other

components in the analysis step as the cross-component background error covariances are not used, but

coupling in the forecast step allows interactions across different components during the model integration

(Browne et al., 2019) and propagates the observational information to other components. In contrast

SCDA utilizes cross-component background error covariances to directly assimilate the observational

information from one component into all components, treating the entire Earth system model as one

unified system (Penny et al., 2019). Furthermore, similar to WCDA, SCDA also allows coupling in the

forecast step to propagate the observations from one component to the other components (Yoshida and

Kalnay, 2018). Several studies indicate that SCDA typically exhibits more pronounced improvements in

assimilation performance relative to WCDA (Smith et al., 2015; Sluka et al., 2016). However, the

application of SCDA poses substantial technical challenges, particularly in the establishment of effective

cross-component background error covariances. Consequently, the majority of contemporary CDA

systems still utilize the WCDA framework.

Recent research efforts have started to implement the CDA system to initialize DCPs, using a

diverse range of DA techniques from simple to complex. The simplest method is nudging which adjusts

the model states towards the observations or existing reanalysis (Hoke and Anthes, 1976; Zhang et al.,
2020). Although the nudging method is time-saving and easy to implement, its application in CDA is

restricted primarily due to the limited types of observations and the required interpolation of observations

at every time step of model integration (He et al., 2017). Previous studies have developed advanced CDA

systems using variational and filtering approaches, such as the three-dimensional variational data

assimilation (3DVar) (Laloyaux et al., 2016; Yao et al., 2021), and ensemble-based techniques like the
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ensemble Kalman filter (EnKF) (Zhang et al., 2007). The former generally utilizes the stationary

background error covariance and assimilates observations sequentially (Lin et al., 2017). In contrast, the

latter uses the flow-dependent forecast error covariance and recursively integrates observations into the

model (Lei and Hacker, 2015). Several studies also show encouraging progress in constructing CDA

systems using four-dimensional variational data assimilation (4DVar) method (Smith et al., 2015; Fowler

and Lawless, 2016). The objective of 4D Var is to optimize four-dimensional model states and provide a

compatible temporal trajectory that matches observational records across each assimilation window

(Mochizuki et al., 2016). The 4DVar method is an advanced assimilation technique that exhibits

superiority over other assimilation techniques like nudging and 3DVar in multiple aspects. Initial shocks

that influence prediction skills can be significantly minimized by the 4DVar approach due to the

dynamical consistency between the model and ICs (Sugiura et al., 2008). However, it is difficult to apply

the 4DVar method for CDA systems in the fully coupled model because of the challenge in adjoint

integration of the coupled model and its high computational cost in the analysis step. Finally, to capitalize

on the strengths of both ensemble and variational techniques, recent studies focus on developing new

hybrid data assimilation methods (Wang et al., 2010; Buehner et al., 2018). The hybrid approach utilizes

an ensemble forecast to generate flow-dependent forecast error covariances and presents a way to

perform 4D Var optimization without the need for tangent linear and adjoint models (Lorenc et al., 2015).

However, most studies on CDA have focused on assimilating observations or reanalysis data of ocean, |

atmosphere and even sea ice. There have been relatively few instances of CDA studies assimilating land

observations or reanalysis data,

Jn this study, we introduce the development of the 4DEnVar-based weakly coupled land data -~

assimilation (WCLDA) system for the Energy Exascale Earth System Model version 2 (E3SMv2) (Golaz

et al., 2022). The 4DEnVar method in this WCLDA system is the dimension-reduced projection 4DVar

(DRP-4DVar; Wang et al., 2010) which utilizes the ensemble technique as an alternative to the adjoint

technique for implementing 4DVar, In this WCLDA system, monthly mean anomalies of soil moisture

[ﬂ’l‘]l‘? 7: land

and temperature from a global land reanalysis product are assimilated into the land component of a

coupled climate model in the analysis step, and subsequently during the forecast step, the land reanalysis

information incorporated into the ICs of the land component is propagated to the other components (e.g.

MHBE T : Much work has been devoted to initializing climate

| models for practicable Earth system prediction, including

/| uncoupled and coupled data assimilation (CDA) methods.

Some modeling centers employ uncoupled initialization
methods that directly utilize reanalysis data or stand-alone
model states driven by observations as initial conditions (ICs)
(Du et al., 2012; Prodhomme et al., 2016). However, ICs
derived from uncoupled methods often exhibit poor
consistency between model components (Balmaseda et al.,
2009). Initializing a coupled model with data obtained from
another model may result in initial shocks due to
inconsistencies and eventually produce low prediction skills
(Boer et al., 2016). A more effective initialization would
involve performing a CDA with observations for each
coupled model individually (Ardilouze et al., 2017). The
CDA methods incorporate observations into one or several
components of the coupled model through data assimilation
techniques, with long-term assimilation cycles executed
under the coupled modeling framework (He et al., 2020a).
The CDA method outperforms the uncoupled method due to
the constraint of the coupled model, leading to better
consistency of the ICs with the coupled model (He et al.,
2020b).<

The CDA approaches for initializing coupled models are
becoming increasingly prevalent, using a diverse range of
data assimilation techniques. Most of these methods utilize
simple nudging or nudging-based Incremental Analysis

Update (IAU) approaches where analysis increments into a

.. [

model integration are incorporated in a gradual manEer;]

“| MFET : Some modeling centers have developed more

advanced CDA systems using variational and filtering
approaches, such as the three-dimensional variational data
assimilation (3DVar) (Lin et al., 2017; Yao et al., 2021) and

ensemble-based techniques like the ensemble Kalman filter

... [2]

(EnKF) (Santanello et al., 2016) or ensemble optimﬁl;

)
)
)

[WHJB,%T : LCDA
\ [ﬂﬂﬂ B T: LCDA
MIER 7 In this LCDA system, monthly mean soil moisture

and temperature data from a global land reanalysis product

are assimilated to
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atmosphere and ocean) through the fully coupled model integration and influences the ICs of all

components for the next assimilation window.,The primary goal of the WCLDA system is intended to be

a foundational resource for exploring predictability of the Earth system by the E3SM community,
specifically focusing on understanding the sources of predictability provided by land versus ocean. This

WCLDA system also provides the groundwork for future actionable predictions of Earth system

‘[)MIJ%T: LCDA

variability using E3SM,

The objective of this paper is to introduce the implementation of the 4DEnVar-based WCLDA
system for the land component of E3SMv2. In Sect. 2, we provide an overview of the E3SMv2 model,

describe the 4DEnVar methodology in detail and outline the framework of the 4DEnVar-based WCLDA

system. Preliminary evaluation of the WCLDA system is presented in Sect. 3. Finally, major conclusions

are discussed in Sect. 4.

2 Methods
2.1 Model Description

The model used in this study is a relatively new state-of-the-art Earth system model known as
Energy Exascale Earth System Model version 2 (E3SMv2), supported by the U.S. Department of Energy
(DOE) to improve actionable Earth system predictions and projections (Leung et al., 2020). The
atmospheric component is the E3SM Atmosphere Model version 2 (EAMv2), which is built on the
spectral-element atmospheric dynamical core with 72 vertical levels (Dennis et al., 2012; Taylor et al.,
2020). At the standard resolution, EAMv2 is applied on a cubed sphere with a grid spacing of ~100 km
for the dynamics. The ocean component is the Model for Prediction Across Scales-Ocean (MPAS-O),
which applies the underlying spatial discretization to the primitive equations with 60 layers using a z-
star vertical coordinate (Petersen et al., 2018; Reckinger et al., 2015). The sea ice component is MPAS-
SI, which shares the same Voronoi mesh with MPAS-O, with mesh spacing varying between 60km in the
mid-latitudes and 30 km at the equator and poles (Golaz et al., 2022). The land component is the E3SM
Land Model version 2 (ELMv2), which is based on the Community Land Model version 4.5 (CLM4.5)
(Oleson et al. 2013). Simulations are run in a satellite phenology mode with prescribed leaf area index,

and the prescribed vegetation distribution has been updated for better consistency between land use and

MR T : constrain the land fields of a coupled climate model

with a one-month assimilation window.

[ﬂﬂﬂl&%?: LCDA
(BETHR: THHI6O: a6

N N N
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N

@WJ f%7: LCDA




291

292

293

294

295

296

297

298

299

300

302

303

304

305

306

307

308

309

310

312

313

314

315

316

317

318

changes in plant functional types described by Golaz et al. (2022). The river transport component is the
Model for Scale Adaptive River Transport version 2 (MOSARTvV2), which provides detailed
representation of riverine hydrologic variables (Li et al., 2013). These five components exchange fluxes
through the top-level coupling driver version 7 (CPL7) (Craig et al., 2012). Further details on the

E3SMv2 model are described in Golaz et al. (2022).

2.2 Land Reanalysis Dataset

Monthly mean soil moisture and soil temperature data in total ten soil layers are produced by the

Global Land Data Assimilation System (GLDAS; Rodell et al., 2004). The GLDAS products generate
optimal fields of land surface states and fluxes in near-real time by forcing multiple offline land surface
models with observation-based data fields. These reliable and high-resolution global land surface datasets
from GLDAS are extensively utilized in weather and climate studies, hydrometeorological investigations
and water cycle research (Chen et al., 2021; Zhang et al., 2018). The GLDAS datasets have been available
globally at high spatial resolution since January 1979 and can be accessed through the Goddard Earth
Science Data and Information Service Center. For more consistency with ELM, we utilize GLDAS data

produced by CLM. Furthermore, we add the bias correction to GLDAS data before assimilation and

conduct the anomaly assimilation for the WCLDA system in this study.

v

2.3 Data Assimilation Scheme

The 4DEnVar algorithm in this study is based on the DRP-4DVar technique, which is an efficient

pathway for applying 4D Var through using the ensemble method rather than the adjoint technique (Wang

et al., 2010). The DRP-4DVar method generates the optimal estimation in the sample space through

aligning the observations with ensemble samples along the coupled model trajectory (Liu et al., 2011),

DRP-4DVar is an economical approach that minimizes the cost function of the standard 4D Var by<-.. .

using the ensemble technique instead of the adjoint technique (Wang et al., 2010). The B matrix is

estimated using the pure ensemble covariance. The ensemble members originate from historical or

ensemble forecasts. Considering the high computational cost of ensemble forecasts for the coupled model

in our study, we utilize outputs, from the Pre-industrial Control (PI-CTRL) experiment of E3SMv2 to

@WJ 47 : Observational

[mﬂ“lﬁ?? : used in this study

(w7

[JM'J%?T: 4Dvar

[ﬂ’}ﬂ [T : 4Dvar

[ﬂ’]ﬂ%‘i I 4Dvar
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generate _ensemble _members. The instantaneous state at the beginning of each month and the

corresponding monthly mean state of this month from the 100-year balanced PI-CTRL simulation are

used as the samples of initial condition () and forecast samples (). The corresponding perturbation /G&ET#&'ﬁ 3]

RETHKR ... (4]
samples are calculated as x/,= x,— X, and yi,= y;,— . where x, and y, are the 100-year average /G&E?'iﬁﬁ

1

[... [5]]

values of x, and p, at the same month, respectively. Then, m_pairs of perturbation samples :&ET*&?& ... [6]
= RETHR [... [7]]

(Kiadtadtn  rfamn) ANd (Vi oediw " 1ana)_are selected at each DA analysis step according to_the HwE KR . [8]
RETHR [... [97]
correlations between y;, and the observational innovation Y, ,.,.= Vonsi— Vi and the independence BE TR [T
between ,, samples. In this study, m = 30. Then the estimation of the background error covariance #ET*&_A‘ C.. [11]3
RETHKR [... [12]]
matrix B is represented by the formula in Eq. (1), utilizing the selected x,, samples. To remove the BETHER . 13D

HRETHER [... (34T
spurious remote correlations in the B matrix, a localization approach is used (Wang et al., 2018). BETHKRR (W
) B bbT BRETHR (. T16D)
Vb =———X(x; —x", x5 —x', x5 —x', -, x), —x'
J \/m_ 1 ( 1 2 3 m ) (1)
! r_ I 1 ’ ’
k xfm(x1+xz+x3+ + Xp)

According to Wang et al. (2010), DRP-4DVar produces the analysis increment () by minimizing=-. G&ET#&‘A‘: FAREE: S 1

)
T (RETER D

the 4DVar cost function in the incremental form (Courtier et al., 1994): (%#giﬁﬂfl gik: EAT4EDE:  0.67 JEkK, TCIMTHEH )
J () = minJ (x) C(RETHER: FHbie: CF 1 )

@

A

’ 1. —1.0 4 Lo ’ ’ ’
J(x) =SB 45 (7 = Yors)" O = Vons)

Here x/,= x — x;, represents the increment of model variables relative to the background; y,.,= /G&ET#&;‘&

e i . o . . BE TR .. 119D
T Veonaa= I Vonsa— Yo _denotes the weighted observational innovation for monthly mean soil (ﬁET#&:‘&

—
-
oo
=

[... [20]]
moisture and temperature, and R = 77, is the observational error covariance matrix that is usually ——( ®#EBTH#HR ... [21]]
diagonal; y, is the weighted prediction of innovation that is the projection of ... 221
the increment () onto the observation space; the superscript T _represents the transpose. /G&E?'iﬁﬁ [... 123]]
__ To simplify the calculation of the minimization, the increment of model state variables x,, and the _—{ BHETH#HR [... [24T]
corresponding weighted prediction of innovation /| are projected onto a dimension-reduced sample /G&ET#&:‘& (W

space through the following projection transformations:

{x' =P @) wE TR G 126D

2= bl N

Where @ is the m-dimension column vector containing the weight coefficients (Q, Qoslae " »Qand: B BETHER

b e the refestion matiees | e eendiien oo and e CEETHR G 5]
an enote_the projection matrices that incorporate the initial condition perturbations and the "(&ET*&:‘&
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corresponding monthly mean samples as follows:

P = (31, X3, %%, )
(B (g @

Wwhere y/ =r v (i=1,2,---,m). Then the original 4DVar cost function defined in Eq. (2) is

transformed into the following new cost function and the analysis can be produced in the sample space

by minimizing this new cost function:
‘ J(@e) = minJ(a)

J 1 Tp-1 1 ! T ’
f([l) =§Ct Bg a+E(Pya_yobs) (Pya_yohs)

In this study, the DRP-4DVar-based CDA system is used to incorporate the land surface analysis data

only. The optimal analysis for the land state variables (x/"%) is obtained by adding the analysis increment

/Iy 10 the background of land ICs (x"%), as expressed in Eq. (7):

xlnd — ylnd 4 xrlnd —

. In the analysis step, only the land state variables are updated to the optimal analysis (x,

Subsequently, we proceed with a one-month free coupled integration of E3SMv2 model during the

forecast step. This integration is initiated from the optimal land ICs ()c‘ll"d) along with the background

fields as the ICs of pther components (e.g., atmosphere and ocean). Throughout this one-month free /

integration, the interactions among the model components indirectly enhance the background states of

these components (e.g., atmosphere and ocean) for the next assimilation due to the more realistic land

state variables. Moreover, this coupled integration also contributes to the good balance between the ICs

of different components.

v

2.4 4DEnVar-based WCLDA System

The 4DEnVar-based WCLDA system is developed to assimilate the monthly mean soil moisture and

| can be implemented to produce the optimal analysis in the

temperature data from the GLDAS analysis dataset into the land component of E3SMv2 using the DRP-
4DVar method. Two sets of numerical experiments are conducted to evaluate the performance of land

data assimilation in the WCLDA system. The control simulation (CTRL) is a 36-year freely coupled

BETHR . oD
BETHR T

BETHR

\
(BETHR: FHgitn: 7 1 )
BB TR [
RETHR

MR T : Following Wang et al. (2010), the original 4DVar

sample space by minimizing a new cost function:<'
=+=+

OF

= )¢

=a+ (@) @)

The optimal solution to the aforementioned minimization
problem is formulated as:<

= @

Here, ,, and represent the optimal analysis, background, and
analysis increment, respectively; is the projection matrix
comprised of initial perturbation samples; a is the weight
coefficients; the superscript T represents the transpose; B
denotes the background error covariance matrix; is the
projection matrix consisting of observational perturbation

samples; represents the weighted observational innovation.<
[WHJ %7 : LCDA ]

MIB% T : LCDA...CLDA system is developed to assimilate

the full-field ...onthly mean soil moisture and temperature
data from the GLDAS analysis dataset into the land
component of E3SMv2 using the DRP-4DVar method. Two
sets of numerical experiments are conducted to evaluate the

performance of land data assimilation in the LCD [40]
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integration driven by observed external forcing from 1980 to 2016. The freely coupled simulation implies

that the various components of our Earth system model, namely the atmosphere, land, river, ocean, and

sea ice, are interacting dynamically without any restraints. The observed external forcing mainly acts on

the atmospheric component and then influences other components (e.g., land surface, ocean, and sea ice)

through the atmosphere. CTRL provides the benchmark for assessing the performance of the WCLDA

system. The assimilation experiment (Assim) is conducted from 1980 to 2016 based on the WCLDA
system in which the GLDAS data are assimilated into the land state variables from the first to the tenth
layer with a one-month assimilation window under the coupled modeling framework. The effectiveness

of the WCLDA system is evaluated through the comparison between Assim and CTRL. In both Assim

and CTRL, the transient-historical external forcings are prescribed following the CMIP6 protocol (Eyring

et al., 2016). In contrast to decadal timescales, data signals with temporal resolutions shorter than one

month can potentially introduce undesirable noise, adversely affecting the DCPs upon assimilation into

the ICs. Moreover, it is also very difficult to assimilate complex actual observations in the initialization

for DCPs that needs long-term DA cycles due to the very high computational cost. Therefore, similar to

most existing initialization approaches for DCPs that assimilate reanalysis data, this study initialize the

DCPs by assimilating monthly mean GLDAS data within the one-month assimilation window,

The flowchart of the 4DEnVar-based WCLDA system is illustrated in Figure 1. The DRP-4DVar

method incorporates three inputs: model background, observational innovation and 30 perturbation
samples. First, the E3SMv2 model is executed for one month, during which state variables such as model
background (x,,), observational operator (H) and observational background (y,) are stored. The model
background (x;) denotes monthly initial states before assimilation, and the observational operator (H)
represents a one-month integration by the coupled model to generate monthly mean model outputs (y;,).
Second, upon completion of the one-month coupled run, the observational innovation (y,y,) is determined

by calculating the differences in soil moisture and temperature between the monthly mean GLDAS data

30 monthly mean perturbation samples (y') are chosen according to the highest absolute correlation with
the observational innovation. The corresponding 30 monthly IC samples (x') are also obtained. Finally,

the analysis increment is generated in the sample space and the optimal analysis (x,) is calculated using

(BBTHR: FHHIE: CF 1

[ﬂﬂﬂl&%?: LCDA

[mnuzﬂ: LcDA

[?WJIL%T: LCDA

(BRBTHRRA: FHHIf: CF 1

(BETHR: 7O a6

[%JF»% 7: LCDA

[ﬂﬂﬂ [T : Pre-industrial Control (

““[mnuzﬂ: )
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the DRP-4DVar algorithm. To alleviate the spurious correlations, a localization scheme is implemented

in the 4DEnVar-based WCLDA system (Wang et al., 2018).

The schematic diagram in Figure 2 outlines the assimilation process of the 4DEnVar-based WCLDA

system in E3SMv2. The incorporation of GLDAS data into the E3SMv2 model consists of the analysis

step and the forecast step. In the analysis step, the differences between monthly mean GLDAS data and

model outputs are calculated, and are then utilized to produce the optimal assimilation analysis at the

beginning of a one-month assimilation window. Subsequent to this, in the forecast step, this optimal

assimilation analysis is used to as the land surface ICs combined with background ICs for other

components to gconduct one-month forecast using E3SMv2 model. This forecast generates the

backgrounds of all components for the next assimilation. As a result, the forecasted backgrounds for all

components are influenced by the observed land information incorporated into the ICs pf land surface

component. In general, when the coupled model is used in the forecast step but the optimal assimilation

analysis is updated separately for the respective component, the assimilation approach is identified as

WCDA (Penny et al., 2019; Zhang et al., 2020). The detailed assimilation process mainly consists of three

steps within each one-month assimilation window: 1) the E3SMv2 model is initially executed for one

Ind
b

month to generate the simulated monthly mean soil moisture and temperature (y,*“); 2) the observational

innovation (y,,s) is obtained through subtracting model simulation (y;*) from the monthly mean
observation (y224). This innovation is then applied to formulate the optimal assimilation analysis of land
surface (x[4) at the beginning of the assimilation window through the DRP-4DVar method; 3) the
E3SMv2 model is rewound to the start of the month and the second one-month model run is executed

using the optimal ICs (x,) to generate the background for the next assimilation cycle. Due to land-

atmosphere-ocean interactions during the one-month free coupled integration, the observed land

information can potentially benefit other components (e.g., atmosphere and ocean) in the coupled

modeling framework (Li et al., 2021; Shi et al., 2022). To assimilate the monthly mean GLDAS product

the fully coupled integration by E3SMv2 model is performed twice within each one-month assimilation

window: first to generate the observational innovation by computing the differences between GLDAS .

data and model outputs for analysis, and second to forecast the backgrounds of all components for the

next assimilation. When the fully coupled model is executed for the second one-month run, the observed
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land information is transferred into the other components through multi-component interactions. Similarly.

to assimilate the monthly GRACE-based TWS observations, previous studies employed the "two-step"

scheme in which the land model integration is performed twice within the same month (Houborg et al.

2012; Girotto et al., 2016).

2.5 Evaluation Metrics

The reduction rate of the cost function is a significant metric for verifying the effectiveness of the

PN N

AN/ N N

WCLDA system and evaluating the extent of observational information assimilated by the coupled model, [ﬂﬂ']li’i—i? . LCDA
which is formulated as:
’ A 100% / @wuz,%?: X 100%
Uo=2Gons =) RO =v)  —® (o 7
Lll =2 Oobs = Ya) "R Gons = ¥a), , iy [ﬂm%r B
where /,_and J;_denotes the observational cost function before and after assimilation respectively, y,ps
represents the GLDAS data, y, denotes the monthly mean analyses, y, is the observation-space
background, and R is defined as the observation error covariance matrix. Negative value for this metric
indicates that observational information has been correctly incorporated into the model variables.
Following Yin et al. (2014), the assimilation efficiency (AE) index is defined to evaluate the efficiency
of the WCLDA system as follows: [ﬂ’}']li%? . LCDA
AE = WSEssin_ Q) (w76
In this equation, RMSE ., is the root mean square error (RMSE) between Assim and the reference data, [ﬂmﬂ‘%? . GLDAS data
while RMSE 7y, represents the RMSE between CTRL and the reference data, Negative (positive) AE [ﬂ’}']li%?: GLDAS data
value indicates improvements (degradations) by the assimilation. In the following sections, we continue
to use the GLDAS data as the reference dataset to verify the correctness of the WCLDA system. [)]’HJ B T: LCDA
3 Results
3.1 Evaluation of the cost function
Figure 3 displays the time series of the monthly reduction rate of the cost function in the 4DEnVar-
based WCLDA system. In the first month, the reduction rate reaches approximately 26.067 in Assim. .- : [%JE’%T: LCDA
(7 - 28
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Over the subsequent months, Assim maintains the average reduction rate of 7.73% throughout the entire

period. Furthermore, negative reduction rates are observed in 98.65% of the total months, indicating the

effectiveness of the WCLDA system. These results suggest that the WCLDA system is correctly .

implemented, with the observational data successfully assimilated into the coupled model.

3.2 Evaluation of the AE index
The spatial pattern of the AE index for soil moisture at different depths is depicted in Figure 4. The

AE value exhibits negative signal in most areas from _total ten soil layers, suggesting the reduction in

""‘[ﬂmw,%r

RMSE for soil moisture after assimilation. Significant improvements appear over North America, South

America, southern Africa, Europe, and Asia. However, assimilation performance is degraded in the .

northern part of Russia and northern Africa. [This is consistent with the findings in other studies that

assimilation updates in northern Russia are limited due to the complexities of accurately representing

(w7

frozen ground and snow processes in high latitudes (Edwards et al., 2007; Ireson et al., 2013)..The surface

soil moisture is highly susceptible to atmospheric conditions, subsequently affecting the assimilation

performance. Furthermore, some degradations found in the deep layers could be attributed to fhe

substantial influence of various terrestrial factors, such as subsurface runoff and interactions with %

groundwater, similar to the findings in previous studies (Liu and Mishra, 2017; Zeng and Decker, 2009).

Figure 5 shows the spatial distribution of the AE index for soil temperature from surface to deep

layers. Most grid cells from total ten soil layers are dominated by negative AE signals, indicating -

improved performance for soil temperature after assimilation. Moreover, the spatial patterns across

different soil layers are highly consistent with each other and exhibit similar magnitudes in most areas.

Notable improvements are observed in central Europe, South America, eastern Russia, and large parts of

Eurasia and North America. Jn contrast, slight degradations appear over Southeast Asia and along the

(Wi

northern fringes of Africa. ,This may be partly related to model yncertainties and possible atmospheric

noise, as shown by many past studies (Kwon et al., 2016; Lin et al., 2020),,

We further perform our analysis to the spatial pattern of the AE index for surface soil moisture and *

land surface temperature between MODIS data and model simulations (Figure A1) in the Appendix. For

surface soil moisture, the comparison with MODIS data suggests that the majority of global regions

[ﬂﬂﬂl&%? : 85

[W,%T: %

[)WJF%T: LCDA

LCDA

PN/ N

(e 7

the second to the eighth layer

[)I’HJ F% 7 : Northern Africa

. [ﬂ’}IJF,%T : Northern

The largest improvement in these soil layers is

observed in the northern part of the Eurasian continent.

BT : South America and monsoon regions (e.g., East

Asia and India).

» ‘[ﬂ’m %7 : monsoon regions

BT : the dominant impact of monsoon circulations

(Timouk et al., 2009; Brocca et al., 2017). The first soil layer,
which is highly susceptible to atmospheric forcing, also

shows degradation in large areas.

: [ﬂﬂﬂl‘éﬁ?: are

)

MR T : , especially the ninth and tenth layers. This may be
linked to

the quality of assimilation data and other terrestrial
factors, as noted in previous studies (Liu and Mishra, 2017,

Zeng and Decker, 2009).<

- [ﬂ’}ﬂ &7 : the first to the ninth layer

MER T : Eastern Russia, Europe, North America, Australia,

and large parts of Eurasia.

| MR T : Northwestern Africa, Southern South America and
Saudi Arabia.

‘ [?]’HJF/%T: assimilation
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exhibit reduced RMSE after assimilation. The reduction of RMSE is pronounced in central North America.

South America, southern Africa, Australia, and Europe. However, in high-latitude areas, significant

degradations are observed in northern Russia, which may be possibly related to model deficiencies in

simulating the complex frozen ground and snow processes. Regarding land surface temperature, improved

performances are evident over South America, Australia, southern Africa, and parts of Eurasia when

compared to MODIS data. In contrast, some degradations appear over parts of North America and central

Asia, which still require further improvement.

v

3.3 Evaluation of the correlation
Figure 6 displays the spatial patterns of the differences in temporal correlations for soil moisture

between Assim and CTRL with observations across different soil layers. The, majority of global regions

in Assim exhibit higher correlations from the first to the tenth layer compared with CTRL, suggesting the

overall good performance of the WCLDA system. Enhanced correlations in deep soil layers are more

pronounced than in shallow layers, which may be attributed to the longer memory of soil processes in the

deeper layers (Wang et al., 2010). Improved correlations appear over North America, central Europe, Asia

and parts of Africa. However, some scattered areas show slight degradations, such as northern South -

| #HB% T : Northern Africa, North America, Eurasia, and

America, central Africa, and eastern Russia. Overall, Assim outperforms CTRL with higher correlation

(Figure 6) and lower RMSE (Figure 4) in many regions, such as Europe, North America, southern South

America, and South Asia.

JThe correlation differences in soil temperature between Assim and CTRL from surface to deep

[ﬂ’}ﬂl@'fi? : Central Africa, and Eastern Russia. j

/| BT : Western Russia, Northern Africa, North America,

" / [ﬂ’l‘]l‘fﬁ? : ninth j

layers are shown in Figure 7. Assim yields improved correlations from the first to the tenth, layer across

the majority of global regions. Furthermore, similar spatial patterns and magnitudes are observed in the

performance of different soil layers, jmplying the significant heat transfer from the surface to deep zone -

y '[ﬂ’]ﬂ BT :  except for the tenth layer, j

/| MHIB& T : North America, Northern Africa, Australia, and

that constrains soil temperature across the soil column. Notable improvements are located over South

America, central Africa, Australia, central Europe, and East Asia. Nevertheless, some degradations

appear over North America, western Europe, and Northeast China. Assim shows superior performance
over CTRL for soil temperature with higher correlation (Figure 7) and lower RMSE (Figure 5) in many

regions, including South America, central Europe, Australia, and central Africa,

B T : Some locations with degradation are also noted in

the tenth layer, which still requires further improvement.<

(ma7: )
[ﬂﬂﬂl&%?: LCDA j
[ﬂ’}ﬂfiffT: prominent j

Australia.

and Central Eurasia.<

MR T : global domain, with the exception of the northern

region of the Eurasian continent.

Southern Eurasia.

MEE T : Central Africa, Eastern Russia, and part of South
China. Obvious degradations are also found in the tenth layer.
The diminished performance may come from uncertainties in
the assimilation data and imbalances between land variables
during data assimilation, as supported by the findings of other

studies (Park et al., 2018; Zhang et al., 2014).

‘ ‘[ﬂ’}IJ %7 : Southern Eurasia, Australia, and North America.<' ]
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3.4 RMSE and bias of the global mean soil moisture and temperature
The vertical distributions of RMSE differences between Assim and CTRL for soil moisture and
temperature are evaluated in Figure 8. Assim shows noticeable improvements with reduced RMSE for

Dboth soil moisture and temperature from total ten soil layers compared with CTRL. For soil moisture, the

reduction of RMSE increases with depth from the upper to deep Jevels, reaching its maximum at the tenth -

k[ﬂ’l‘“ﬂﬁf T : atall vertical levels

Jayer. .This could be attributed to the longer soil memory in deep layers than shallow layers. For soil‘

temperature, the reduction of RMSE exhibits similar magnitude from the surface to deep soil layers, which

may be explained by the significant heat transfer across different soil layers in regulating soil temperature %

[ﬂmﬂifﬁz cighth
: ‘[mﬂuzﬂ:

(e 7

[ﬂﬂﬂ F7: middle

N A N A Y,

throughout the soil column.

Figure 9 shows the time evolutions of the vertically averaged global mean soil moisture and

temperature bias and RMSE differences. For soil moisture bias (Figure 9a), CTRL exhibits dry biases
during the first twenty years and wet biases afterwards. In contrast, Assim shows smaller biases during
both periods by reducing the dry bias prior to ~2000 and the wet bias thereafter. Assim also exhibits
reduced RMSE (Figure 9b) for soil moisture throughout the entire 37-year period. For soil temperature
bias (Figure 9¢), CTRL and Assim display comparable performances, possibly due to the small magnitude

of model deviation in soil temperature. The RMSE differences (Figure 9d) suggest that Assim decreases

the RMSE for soil temperature in the majority of months, with 74.10% of the total months in Assim

. [}]ﬂi]l?,%?: across shallow layers j

| MIB& T - process within the soil. From the middle to deep

exhibiting lower RMSE than CTRL. In summary, the superior performance for both soil moisture and
temperature in Assim demonstrates that land observational information has been effectively incorporated

into the model variables through the WCLDA system.

Noticeably, the simulated soil temperature and soil moisture display similar long-term trends, with
cold and dry biases before ~2000 and warm and wet biases afterwards. The soil temperature biases may
be related to the global surface air temperature simulated in E3SMv2, which is notably too cold compared
to the observed record during the 1970s and 1980s while the model warms up quickly after ~year 2000
(see Figure 23 of Golaz et al., 2022). The global surface air temperature biases in E3SMv1 and v2 during
the past decades have been attributed to the strong aerosol forcing in the model (Golaz et al., 2019; 2022).

As the global mean precipitation scales with the surface temperature at ~2% per degree (Allen and Ingram,

MiIF% T : However, this value then decreases as the depth
extends further into the tenth layer. This decrease is likely due

to the overestimation of observation errors in deep soil layers.

levels, this reduction initially increases with depth, peaking at
the eighth layer, and then gradually decreases. In the ninth

and tenth layers, there is potential for further improvement in

assimilation performance.

[ﬂﬂﬂ (%7 : in most months, ]
(i r: 017 )
[ﬂﬂﬂﬂﬁ?: LCDA ]
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2002), model biases in surface temperature are reflected in biases in precipitation and hence soil moisture,

resulting in similar long-term trends between soil temperature and soil moisture biases in the simulations.

3.52012 U.S. Midwest Drought

To further evaluate the performance of the WCLDA system, we preliminarily investigate the impact

of land data assimilation on simulating the temporal evolution of the U.S. Midwest drought in 2012. Time
series of soil moisture percentiles over the Midwest (36°-50°N, 102°-88°W) demonstrate significant
improvements by Assim in reproducing the time evolution of agricultural drought in 2012 compared with
CTRL (Figure 10). From the observation based on ERA-Interim data, the agricultural drought starts in
August 2011, follows by a brief relief in early spring of 2012, peaks in September 2012, and recovers by
January 2013. The drought develops rapidly between May and July 2012 over a wide-spread area
including the central and midwestern U.S. This flash drought caused significant agricultural damages and
economic losses.

The free running CTRL experiment fails to simulate the temporal evolution of the 2012 Midwest
drought, with a correlation coefficient between CTRL and observation of only 0.27. The onset and peak
of the drought are remarkably well captured by Assim, although the drought recovery occurs two months

later than observed. The correlation coefficient of the Assim time series with observation is .56, which

Js statistically significant at the 95% confidence level. Our results highlight the importance of land surface

states for drought lifecycle, with the potential to improve future drought predictions through the

implementation of the WCLDA system.

We further conduct the comparative analysis to investigate the impacts of full-field versus anomaly

land assimilation on simulating the temporal evolutions of soil moisture (Figure A2) and precipitation

(Figure A3) variability during the 2012 Midwest drought in the Appendix. Full-field assimilation utilizes

actual observed values for model initialization, whereas anomaly assimilation employs only observed

anomalies. The full-field assimilation exhibits a correlation coefficient of 0.61 with observed soil moisture

(Figure A2), higher than that of anomaly assimilation (0.56). Furthermore, it is noteworthy that the full-

field assimilation significantly outperforms the anomaly assimilation in capturing the precipitation

anomaly variability (Figure A3). More specifically, the full-field assimilation can reproduce the positive

i [ﬂﬂﬂl&%?: LCDA
@WJF»% 1 : one month earlier than observed.
(ﬂﬂﬂl&%?: 0.61
[ﬂ’}ﬂﬂﬁ? T
[MUI%%T: LCDA
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precipitation anomaly from February 2012 to April 2012 and the dry anomaly from May 2012 to October

2012. The correlation coefficient of the full-field assimilation with observed precipitation is 0.40, much

higher than a low correlation of -0.03 from anomaly assimilation. These results underscore the enhanced

capability of full-field assimilation to reproduce both soil moisture and precipitation variability more

accurately than anomaly assimilation during the 2012 Midwest drought, suggesting its potential for more

reliable drought-related simulations.

v

4 Conclusions

In this study, we developed the 4DEnVar-based WCLDA system for the E3SMv2 model and

evaluated the performance of this WCLDA system. The DRP-4DVar method was employed for“

implementing 4D Var using the ensemble method rather than the adjoint technique. Special attention is

paid to directly assimilating monthly mean land reanalysis data in this system without interpolating to

every time step,,Within each one-month assimilation window, we assimilate observed land information

into the coupled model without breaking the land-atmosphere interaction, which is important for the

JWCLDA system to be used to understand the potential sources of predictability provided by land.

The WCLDA system is conducted from 1980 to 2016, and its performance is evaluated using multiple

BT : compare the time series of observed and simulated
precipitation anomaly over the Midwest during the 2012 U.S.
Midwest drought (Figure 11). As a free running simulation,
the precipitation in CTRL is not expected to reproduce the
overall dry anomaly in observation. It is noteworthy that the
magnitude of the precipitation anomaly is remarkably well
captured by Assim. More specifically, Assim can reproduce
the positive precipitation anomaly from February 2012 to
April 2012 and the dry anomaly from May 2012 to October
2012. The correlation coefficient of the Assim time series
with observation is 0.40, much higher than that of CTRL (-
0.21). The dramatic increase in the correspondence in
precipitation between Assim and observation strongly
suggests that the effects of land data assimilation can transmit
to the atmosphere through land-atmosphere interactions in the
LCDA system, which may improve precipitation simulation.
Improvements in the atmosphere states through land data

assimilation highlight the important role of the land surface in

metrics, including the cost function, AE index, correlation, RMSE and bias. Compared with CTRL, the ' '

cost function is reduced by Assim in most months, suggesting that observational data has been effectively
incorporated into the model. In terms of both soil moisture and temperature, Assim outperforms CTRL

with lower RMSE and higher temporal correlation in many regions, especially in South America, central

Africa, Australia, and large parts of Eurasia. However, some degradations are observed in the deep layers,

which requires future research to better characterize observation errors in these deep zones. For soil
moisture bias, Assim further decreases the dry bias during the first twenty years and the wet bias thereafter.
It is noteworthy that the subseasonal-to-seasonal time evolution of soil moisture percentiles during the
2012 U.S. Midwest drought can be quite well captured in Assim, underscoring the significant role of land

surface states in drought propagation,,

Our current WCLDA system has some limitations and future improvements in the WCLDA system

AN A A A 4 N

drought development.«
[ﬂﬂﬂl&%?: LCDA
(i 7 he
(s r: Lopa
f[ﬂfwm: ,
@I}IJ f%7: asneeded in the nudging method.
(ﬂﬂﬂﬁ,’ff : LCDA
[%WJF,%T: LCDA
fIER T : North America, Northern Africa, Australia, and

large parts of Eurasia.

| MIBR T : The dramatic increase in the temporal correlations

for precipitation anomaly in Assim also demonstrates that the
impacts of land data assimilation could potentially contribute
to the improvement in the atmospheric states through land-

atmosphere interactions, highlighting the importance of the

land surface in drought development.

(w7

[ﬂﬂﬂ B7: LCDA

will depend on integrating actual observations (e.g., satellite and station data).,Specifically, one significant

‘ ‘[ﬂmj [T : the use of more observations
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limitation in this WCLDA system is the lack of the observation operator, making it challenging to

assimilate actual observations at this stage. The observation operator is crucial in providing the linkage

between the model variables and actual observations, considering their diverse spatial and temporal

resolutions. Further exploration will focus on developing observation operators suitable for assimilating

various satellite data, such as the AMSR-E and GRACE data. Jt is possible that the influence of the

WCLDA system on atmospheric process may be restricted in specific domains due to the model

characterizations, particularly in the representation of land-atmosphere interactions (Zhou et al., 2023).

For example, in humid regions where the evaporation process is predominantly energy-limited, the

assimilation of soil moisture tends to exert limited influence. Instead, the assimilation of soil temperature

may vield substantial improvements. This underscores the importance of the unique characteristics and

constraints presented by complicated regional conditions in the application of assimilation processes.,Jo

this end, the application of the WCLDA system would motivate future work to better understand the roles

of the land surface in climate variability and provide a foundational resource for future predictability

studies by the E3SM community.

Code and data availability. The E3SMv2 source codes used in this study can be accessed on Zenodo at
https://zenodo.org/record/8194050. The GLDAS monthly soil moisture and soil temperature data can be
downloaded from the website
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20monthly&page=1. The GPCP monthly
precipitation data are available online (https://psl.noaa.gov/data/gridded/data.gpcp.html). The ERA-
Interim  monthly soil moisture data are available at https:/apps.ecmwf.int/archive-
catalogue/?levtype=sfc&type=an&class=ei&stream=moda&expver=1. The model data used in this study

can be found on Zenodo at https://zenodo.org/record/8148737.
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MER T and improving the quality of the ensemble

covariance.

BT : assimilation performance is restricted in specific
domains due to biased atmospheric and oceanic forcing from
the coupled model. Hence the continual integration of
atmospheric and oceanic assimilations into the LCDA system
could be an important way to further enhance its performance,
particularly in regions where the land is primarily influenced
by other components. Given the independence of the LCDA
system from the coupled model, future exploration will focus

on its implementation in other model components (e.g.,

atmosphere, ocean, and sea ice) or different climate models.
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Figure 1. Flowchart of the 4DEnVar-based WCLDA system in E3SMv2 based on the DRP-4DVar

method.
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Figure 2. Schematic flowchart of the 4DEnVar-based WCLDA system. The beginning of a month is at

0000 UTC on the first day of the month, and the end of the month is at 0000 UTC on the first day of the

next month. x;, denotes the background vector including the backgrounds of all E3SMv2 components

(atmosphere (x£™), ocean (x5, sea ice (x{), river transport (x5*") and land surface (x*9)). x,

consists of the assimilation analysis of land surface (x/*¢) and the backgrounds of other components.

yin® represents the simulated monthly mean soil temperature (T") and moisture (M;") by E3SMv2 using

x,, as the initial condition. Y74 denotes the monthly mean GLDAS data of soil temperature (T7}) and
moisture (M};). Yops denotes the observational innovation, which is the difference between the GLDAS

data (y24) and the observational background (y;"®).
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1153 Figure 3. Time series of the reduction rate of the cost function from 1980 to 2016 in the 4DEnVar-based

154  WCLDA system. @Wﬂ, LCDA
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1157 Figure 4. Spatial distribution of the AE index for soil moisture from the surface to deep layers during

1158 the 1980-2016 period. The number at the top center denotes the depth of each soil layer.
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1160 Figure 5. Same as in Figure 4, but for soil temperature.
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1162 Figure 6. Differences between correlations of soil moisture in Assim and CTRL with the GLDAS data
1163 from the surface to deep layers for the period of 1980-2016. The number at the top center denotes the

1164 depth of each soil layer.
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1166 Figure 7. Same as in Figure 6, but for soil temperature.
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1168 Figure 8. Vertical distributions of RMSE differences (Assim minus CTRL) for (a) soil moisture and (b)

1169 soil temperature averaged over the global land and throughout 1980-2016.
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1171 Figure 9. Time series of the vertically averaged global mean soil moisture and temperature bias (left) for
1172 Assim (red line) and CTRL (blue line), and RMSE differences (right, green line) between Assim and
1173 CTRL from 1980 to 2016.
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Figure 10. Time series of soil moisture percentiles between May 2011 and April 2013 during the 2012
U.S. Midwest drought. Red line: observation, blue line: Assim, orange line: CTRL. The correlation
coefficients between Assim and CTRL with observations are also shown. The three vertical dashed lines
mark the timing of drought start, drought peak and drought end, respectively. The start of the agricultural
drought is defined as the month when soil moisture falls below the 20th percentile. The soil moisture
percentiles are averaged over the U.S. Midwest (36°-50°N, 102°-88°W). The observed soil moisture is

derived from ERA-Interim monthly soil moisture data.
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Figure 11. Time series of precipitation anomaly over the Midwest between May 2011 and April 2013
during the 2012 U.S. Midwest drought. Gray bar: observation, blue line: Assim, orange line: CTRL. The
precipitation anomalies are calculated by removing the annual cycle and the long-term trend. The
correlation coefficients of Assim and CTRL with observation are also shown. The precipitation anomalies
are averaged over the U.S. Midwest (36°-50°N, 102°-88°W). The observed precipitation is derived from

GPCP monthly precipitation data.
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