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    We thank Reviewer #1 for the constructive comments and suggestions, which greatly help 

to improve the quality of our manuscript. We have made revisions and replied to all the 

comments. Please find the point-by-point responses to the comments. Our responses are shown 

in "Blue" and the changes in the manuscript are shown in "Red". 

    

Response to the comments from Reviewer #1 

 

Comment#1: 

Abstract: Please specify the reanalysis data you assimilate and improvements of soil moisture 

and temperature simulations. 

 

Response: 

Thank you for your suggestion. In response to your comment, we have clarified in the abstract 

that the assimilated data is derived from the Global Land Data Assimilation System (GLDAS) 

reanalysis (L18-21). Additionally, we have provided more specific details (L26-29) regarding 

the improvements resulting from our soil moisture and temperature assimilation. In terms of 

both soil moisture and temperature, the assimilation experiment outperforms the control 

simulation with reduced RMSE and higher temporal correlation in many regions, especially in 

South America, Central Africa, Australia, and large parts of Eurasia. 

 

In light of your feedback, we have incorporated mentions of the specific "GLDAS" reanalysis 

(L18-21) and more detailed descriptions (L26-29) regarding the improvements in the Abstract. 

 

L18-21: With an initial interest in providing initial conditions for decadal climate predictions, 

monthly mean anomalies of soil moisture and temperature from the Global Land Data 

Assimilation System (GLDAS) reanalysis from 1980 to 2016 are assimilated into the land 

component of E3SMv2 within the coupled modeling framework with a one-month assimilation 

window. 

 

L26-29: In terms of both soil moisture and temperature, the assimilation experiment 

outperforms the control simulation with reduced RMSE and higher temporal correlation in 

many regions, especially in South America, Central Africa, Australia, and large parts of Eurasia.  

 

Comment#2: 

Sub-section 2.2: GLDAS dataset cannot actually be classified as a “observation dataset” since 

it is generally based on land surface models. Besides, soil moisture derived from different land 

surface models are systematically different (e.g., different soil moisture range and long-term 

mean value) which may introduce additional bias into the coupled data assimilation system. 

How do you handle this problem? 

 

Response: 

We agree that GLDAS data are land reanalysis data produced by models. Accordingly, we have 

revised our manuscript to replace the term "Observational Dataset" with "Land Reanalysis 

Dataset" on line 151. 
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We would like to clarify that our employed DRP-4DVar method does not input the full 

information of the GLDAS data into the initial conditions (ICs) of E3SM but rather, only 

incorporates part of the GLDAS information by fitting reanalysis data with historical samples 

produced by the model to form consistent forecast states (Wang et al., 2010). In light of your 

comment, we have further modified our experiment design to add bias correction before 

assimilation and conduct the anomaly assimilation for the weakly coupled land data 

assimilation (WCLDA) systems (L168-171). In our revised manuscript, we have updated all 

of the figures (Figures 3 to 10) along with their corresponding descriptions to represent the 

assimilation performance with bias correction. 

 

L168-171: In this study, we conduct the anomaly assimilation for the WCLDA system with 

bias correction applied to GLDAS data before assimilation. For bias correction, the difference 

between GLDAS data and its long-term average is calculated as anomalies and then added to 

the simulated model climatology. 

 

Comment#3: 

Eq. (5): How to represent the cost function? Please add a string or symbol. 

 

Response: 

In the revised manuscript, we have added equations for "𝐽0" and "𝐽1" (L303) to represent the 

observational cost function before and after assimilation respectively in Eq. (8). 
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where 𝐽0  and 𝐽1  denote the observational cost function before and after assimilation 

respectively. 

 

Comment#4: 

Figure 3: How do you explain the temporal dynamics (maybe some seasonal cycles) of the cost 

function? 

 

Response: 

We have also noticed the cyclical behavior in the cost function. It has been noted that the 

assimilation performance diminishes during the spring maybe related to the "spring barrier" 

(Mu et al., 2007) and subsequently recovers in the summer. This phenomenon might be 

attributed to intrinsic model limitations. Further analysis is required to fully elucidate the 

underlying causes. 

 

Comment#5: 

Figure 4: The explanations summarized in sub-section 3.2 are inadequately for demonstrating 
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soil moisture degradation over many regions after the coupled data assimilation. It is 

suspiciously for me that Figure 4a, i and j show similar degradation spatial patterns while 

Figure 4b-h perform differently. If these degradations are related to GLDAS data quality, the 

off-line data assimilation results should be degraded over similar regions. I think more 

interpretations or experiments are necessary to figure out these issues. 

 

Response: 

Thank you for your thoughtful comments. In Figure 4, assimilation performance is degraded 

in the northern part of Russia and northern Africa. This is consistent with the findings in other 

studies that assimilation updates in northern Russia are limited due to the complexities of 

accurately representing frozen ground and snow processes in high latitudes (Edwards et al., 

2007; Ireson et al., 2013). The surface soil moisture is highly susceptible to atmospheric 

conditions, subsequently affecting the assimilation performance. Furthermore, some 

degradations found in the deep layers could be attributed to the substantial influence of various 

terrestrial factors, such as subsurface runoff and interactions with groundwater, similar to the 

findings in previous studies (Liu and Mishra, 2017; Zeng and Decker, 2009). 

 

In light of your suggestions, we have incorporated more detailed interpretations (L331-339) 

into the revised manuscript. 

 

L331-339: However, assimilation performance is degraded in the northern part of Russia and 

northern Africa. This is consistent with the findings in other studies that assimilation updates 

in northern Russia are limited due to the complexities of accurately representing frozen ground 

and snow processes in high latitudes (Edwards et al., 2007; Ireson et al., 2013). As surface soil 

moisture is highly susceptible to atmospheric conditions, assimilation performance of surface 

soil moisture is limited by the accuracy of atmospheric forcing. Furthermore, some 

degradations found in the deep layers could be attributed to the substantial influence of various 

terrestrial factors, such as subsurface runoff and interactions with groundwater, similar to the 

findings in previous studies (Liu and Mishra, 2017; Zeng and Decker, 2009). 

     

Comment#6: 

I suggest adding a discussion section and focusing on the preconditions or theory basis for 

applying coupled data assimilation. For examples, if the land-atmosphere relationship is poorly 

represented, the improved land surface states may incorrectly influence the atmospheric 

process; for humid regions, the evaporative regime is typically energy-limited and the 

assimilation of soil moisture has very limited benefit while soil temperature may more effective. 

Vice versa for arid regions… 

 

Response: 

We agree with your opinion that the influence of the weakly coupled land data assimilation 

system on atmospheric processes may be limited in some domains due to uncertainties of the 

model parameterizations, particularly in representing land-atmosphere interactions (Zhou et al., 

2023). For instance, in humid regions, where the evaporation process is predominantly 

regulated by energy, the assimilation of soil moisture tends to manifest a relatively small 
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influence. In contrast, the assimilation of soil temperature may facilitate notable improvements 

within these regions. This underscores the importance of the unique characteristics and 

constraints presented by complicated regional conditions in the application of assimilation 

processes. 

 

In response to your recommendation, we have incorporated this discussion (L450-457) in the 

revised manuscript. 

 

L450-457: It is possible that the influence of the WCLDA system on atmospheric processes 

may be limited in some domains due to uncertainties of the model parameterizations, 

particularly in representing land-atmosphere interactions (Zhou et al., 2023). For example, in 

humid regions where the evaporation process is predominantly energy-limited, the assimilation 

of soil moisture tends to exert limited influence. Instead, the assimilation of soil temperature 

may yield more substantial improvements. This underscores the importance of the unique 

characteristics and constraints presented by complicated regional conditions in the application 

of assimilation processes. 
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    We thank Reviewer #2 for the constructive comments and suggestions, which greatly help 

to improve the quality of our manuscript. We have made revisions and replied to all the 

comments. Please find the point-by-point responses to the comments. Our responses are shown 

in "Blue" and the changes in the manuscript are shown in "Red". 

 

Response to the comments from Reviewer #2 

 

General Comment: 

This paper presents experiments assimilating soil moisture and soil temperature from the 

GLDAS modeling system into the E3SM model using 4DEnVar. The use of Hybrid DA method 

for the land DA is unusual, and is an interesting development that I am curious to see more 

work on. Unfortunately, the experimental design is badly flawed, and the information presented 

in the paper is vague, out-dated, very often incorrect, and difficult to follow. 

 

Response: 

Thank you very much for taking time to review our manuscript and providing us very useful 

comments. We are sorry for any confusions or misrepresentations that our initial draft might 

have conveyed. We value your comments and have revised the relevant contents on the 

experimental design. We have rewritten the introduction section of the manuscript and revised 

the manuscript carefully according to your comments and suggestions. Please refer to the point-

by-point responses in the following. 

 

Comment#1: 

This work is assimilating model output soil moisture and soil temperature into a different model, 

with no accounting for the systematic differences between the two models. Data assimilation 

is not typically applied to assimilate fields from one model into another (unless conducting a 

synthetic twin experiment to test aspects of the DA, which is not how this is presented). There 

is also extensive literature discussing the fact that soil moisture cannot be transferred from one 

model to another without rescaling it, which makes the approach here invalid. For example, 

see: RD Koster, Z Guo, R Yang, PA Dirmeyer, K Mitchell, MJ Puma, On the nature of soil 

moisture in land surface models, Journal of Climate 22 (16), 4322-4335. And many references 

in that paper. Additionally, the assimilated fields are monthly means, which is not the obvious 

choice, and this is not adequately discussed. To be publishable, the authors would need to 

assimilate actual observations, not model output, and would need to apply adequate bias 

correction/rescaling to those observations (particularly to soil moisture - see work by Rolf 

Reichle, Randy Koster, etc). 

 

Response: 

Many thanks to your detailed comment on the data assimilation (DA) approach used in our 

study. We recognize that DA is widely applied to produce high-quality real-time reanalysis data 

by assimilating actual observations such as satellite data for numerical weather predictions 

(NWPs). However, in this study, the weakly coupled data assimilation (WCDA) system we 

built is intended to be used to initialize decadal climate predictions (DCPs) with an earth system 

model that fully couples various component models including the atmospheric model, land 
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surface model, oceanic model, sea ice model, and so on. The initialization for DCPs is quite 

different from that of NWPs, primarily due to the large difference in temporal scales. Almost 

all initializations for DCPs in CMIP5 and CMIP6 incorporated monthly mean reanalysis data 

as observations (Table 1). This preference is based on two key considerations. Firstly, for 

decadal-scale applications, data signals with temporal resolutions shorter than one month could 

introduce undesirable noise, which can adversely affect DCPs when high temporal resolution 

data are assimilated into the ICs. This is why almost all initialization approaches for DCPs used 

in CMIP5 and CMIP6 assimilate monthly mean data. Secondly, the DA approaches utilized in 

the coupled data assimilation (CDA) for initializations of decadal prediction are generally 

much simpler than those used in NWPs, due to the complexity of the coupled model. For 

examples, many initialization systems used in CMIP5 and CMIP6 adopted the nudging method 

(Table 1). Because of the simpler DA approaches and more complex coupled models, actual 

observations cannot be assimilated directly into the WCDA system. Furthermore, unlike NWPs 

where long-term DA cycles aren't necessary, the initialization for DCPs requires DA cycles of 

at least ten years which makes it very difficult or even impossible to assimilate actual 

observations due to the very high computational cost. 

 

Table 1. Brief summaries of assimilation strategies used in CMIP5 and CMIP6 decadal 

prediction experiments through assimilation of reanalysis data. 

Model Assimilation Strategies Method References 

BCC-CSM1.1 

 

Ocean: assimilate the 

SODA reanalysis  

Nudging Xin et al., 2013 

CanCM4 

 

Atmosphere: assimilate the 

ERA reanalysis 

Nudging Merryfield et al., 

2013 

CNRM-CM5 

 

Ocean: assimilate the 

NEMOVAR reanalysis  

Nudging Voldoire et al., 

2014 

HadCM3 

 

Atmosphere: assimilate the 

ERA-40 reanalysis 

Nudging Smith et al., 2013 

FGOALS-g2 

 

Ocean: assimilate the 

ds285.3 reanalysis 

Nudging Wang et al., 2013 

EC-Earth3 Ocean: assimilate the 

ORAS4 reanalysis 

Nudging Bilbao et al., 2021 

NorCPM1 Ocean: assimilate the 

HadISST reanalysis 

EnKF Bethke et al., 2021 

CanE3M5 Ocean: assimilate the 

ORAS5 reanalysis 

Nudging  Sospedra-Alfonso 

et al., 2021 

 

GLDAS product generates optimal fields of land surface states and fluxes in near-real time 

because the atmospheric forcing is based on actual observations (Rodell et al., 2004). These 

reliable and high-resolution global land surface datasets from GLDAS are extensively utilized 

in weather and climate research (Chen et al., 2021; Zhang et al., 2018). In our search for the 

most suitable long-term land surface dataset, GLDAS emerged as a top choice. Therefore, we 

employed the advanced WCDA approach to incorporate the GLDAS monthly mean soil 

temperature and soil moisture into the fully coupled E3SMv2 model. It is noteworthy that 
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GLDAS products were also assimilated in another coupled model (FGOALS-g2), showing 

significant improvements in the interannual prediction skills over East Asia and Europe, as 

shown in previous studies by Shi et al. (2021, 2022). 

 

Furthermore, it's important to clarify that assimilating the GLDAS data into E3SM does not 

mean directly transferring soil moisture data from one model to another, because our employed 

DRP-4DVar method, which is a 4DVar approach, does not input the full information of the 

GLDAS data in the initial conditions (ICs) of E3SM but instead this approach only incorporates 

part of the GLDAS information by fitting reanalysis data with historical samples produced by 

the model to form consistent forecast states (Wang et al., 2010). More detailed descriptions of 

the DRP-4DVar method can be found in Wang et al. 2010. 

 

We have added a detailed reason for assimilating monthly mean reanalysis (L245-252) in the 

revised manuscript. 

 

L245-252: In contrast to decadal timescales, data signals with temporal resolutions shorter than 

one month can potentially introduce undesirable noise, which can adversely affect DCPs when 

high temporal resolution data are assimilated into the ICs. Moreover, it is very computationally 

demanding to assimilate complex actual observations in the initialization for DCPs that 

requires long-term DA cycles. Therefore, similar to most existing initialization approaches for 

DCPs that assimilate reanalysis data, this study describes the implementation of a data 

assimilation approach for initializing DCPs by assimilating monthly mean GLDAS data within 

the one-month assimilation window. 

 

We recognize the current limitations of the weakly coupled land data assimilation (WCLDA) 

system implemented for E3SMv2. Specifically, our current assimilation system lacks the 

design of the observation operator, making it challenging to assimilate actual observations (e.g., 

satellite data) at this stage. The observation operator is important in providing the linkage 

between the model variables and actual observations that differ in spatial and temporal 

resolutions. We have noted the design of the observation operator as a direction for future 

development, and highlighted this limitation in the discussions of the revised manuscript 

(L446-450). 

 

L446-450: Our current WCLDA system has some limitations such as the lack of an observation 

operator to integrate actual observations (e.g., satellite and station data). An observation 

operator is crucial in providing the linkage between the model variables and actual observations, 

which differ in spatial and temporal resolutions. Hence future exploration will focus on 

developing observation operators suitable for assimilating various satellite data, such as the 

AMSR-E and GRACE data. 

 

In light of your comments, we have changed the experiment design to add the bias correction 

to GLDAS data before assimilation (L168-171), and then conducted the anomaly assimilation 

through assimilating observed anomalies into the model in the revised manuscript. Due to the 

modifications of our experimental design, we have revised all of the figures (Figure 3 to 10) 
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and relevant descriptions to illustrate the assimilation performance with bias correction in our 

revised manuscript. 

 

L168-171: In this study, we conduct the anomaly assimilation for the WCLDA system with 

bias correction applied to GLDAS data before assimilation. For bias correction, the difference 

between GLDAS data and its long-term average is calculated as anomalies and then added to 

the simulated model climatology. 

 

Comment#2: 

The background information presented in the introduction demonstrates very little 

understanding of the standard methods used in land DA and coupled land/atmosphere DA, and 

presents a picture of modern data assimilation practices that is incorrect. Much of the 

introduction is also rather vague-with references to coupled and uncoupled systems that are 

unclear. I recommend completely re-writing the introduction by first identifying the modeling 

system that you are working with (land /atmosphere?), and introducing examples related to that 

system. Then, then make sure it is always clear what you are referring to when referencing a 

coupled model or coupled DA system (with a clear distinction between coupling in the model 

and coupling in the DA). Of greatest concern, the method is presented as ‘coupled data 

assimilation’ but the experiments assimilate land “observations” into only the land component 

of their model (a coupled land/atmosphere model)-this is not coupled DA! In general, the paper 

seems confused between coupled modeling, and coupled DA. There’s also no mention of 

weakly or strongly coupled DA, which is very relevant. 

 

Response: 

We appreciate very much this valuable comment that greatly benefits the improvement of the 

introduction of our manuscript and the whole paper. According to this comment, we've 

completely rewritten the introduction. In the revised manuscript, we first elucidate our focus 

on the initialization of a climate model that fully couples various component models, including 

atmospheric model, land surface model, ocean model, sea ice model and so on. Subsequently, 

we delve into both uncoupled data assimilation (DA) and coupled data assimilation (CDA) 

methodologies. Within the domain of CDA, we draw distinctions between weakly coupled data 

assimilation (WCDA) and strongly coupled data assimilation (SCDA), providing detailed 

descriptions for each approach. To address the comment, we have added a description of the 

fully coupled climate model and the initialization of the climate model (L41-56) in the 

introduction of the revised manuscript. 

 

L41-56: Much work has been devoted to initializing climate system models for practicable 

decadal climate predictions (DCPs). These models couple various components, such as models 

of the atmosphere, land surface, ocean, sea ice, and so on. Due to their much higher complexity, 

coupled models are often more susceptible to initial conditions (ICs) than their individual 

model components, underscoring the importance of dedicated data assimilation (DA) 

(Sakaguchi et al., 2012). The capability of DA methods is essential to incorporate available 

observations into the components of coupled model and produce the optimal estimate of ICs to 

improve DCPs. The initialization for DCPs uses uncoupled DA and coupled data assimilation 
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(CDA) methods. Uncoupled DA performs DA under the framework of an individual 

component model (e.g., standalone land surface model forced by atmospheric observations or 

reanalysis data rather than coupled with an atmospheric model), and then the uncoupled DA 

analyses from different individual components are combined to form the ICs of a coupled 

model (Zhang et al., 2020). For example, most existing reanalysis data were produced using 

uncoupled DA approaches, and these reanalysis datasets are then directly used to initialize 

DCPs in some studies (Du et al., 2012; Bellucci et al., 2013). However, such uncoupled DA 

often exhibits poor consistency among the ICs of different component models, and eventually 

produces low prediction skills (Balmaseda et al., 2009; Boer et al., 2016; Ardilouze et al., 2017). 

 

We have also revised our Introduction (L57-80) to include descriptions of both weakly coupled 

data assimilation (WCDA) and strongly coupled data assimilation (SCDA). We distinguish 

between WCDA and SCDA by highlighting the characteristics of coupling in the model and 

coupled DA. 

 

L57-80: To obtain balanced multi-component ICs in coupled models, recent studies focus on 

the development of CDA methods under the coupled modeling framework (Penny and Hamill, 

2017; He et al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all 

components within the climate system by incorporating observational information from one or 

more components in the coupled model, providing great potential for improving seamless 

climate predictions (Dee et al., 2014). Some studies underscore the superior advantages of CDA 

over traditional uncoupled DA methods (Lea et al., 2015; Zhang et al., 2005). CDA methods 

are categorized into two main types: weakly coupled data assimilation (WCDA) and strongly 

coupled data assimilation (SCDA). WCDA assimilates the observations or existing reanalysis 

into the respective component of the coupled model and then transfers the observational 

information to the other components through the coupled model integration (He et al., 2020b; 

Zhang et al., 2020). Considering that sequential DA encompasses both the analysis and the 

forecast steps, WCDA allows no direct influence of observations from a single component to 

other components in the analysis step as the cross-component background error covariances 

are not used, but coupling in the forecast step allows interactions across different components 

during the model integration (Browne et al., 2019) and propagates the observational 

information to other components. In contrast, SCDA utilizes cross-component background 

error covariances to directly assimilate the observational information from one component into 

all components, treating the entire Earth system model as one unified system (Penny et al., 

2019). Furthermore, similar to WCDA, SCDA also allows coupling in the forecast step to 

propagate the observations from one component to the other components (Yoshida and Kalnay, 

2018). Several studies indicate that SCDA typically exhibits more pronounced improvements 

in assimilation performance relative to WCDA (Smith et al., 2015; Sluka et al., 2016). However, 

the application of SCDA poses substantial technical challenges, particularly in the 

establishment of effective cross-component background error covariances. Consequently, the 

majority of contemporary CDA systems still utilize the WCDA framework. 

 

According to the aforesaid introduction to uncoupled DA and CDA, their main difference is 

the use of forecast model at the forecast step. If the forecast model is the coupled model, the 
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DA is categorized as CDA. Otherwise, if the forecast model is an individual component model, 

the DA is referred to as uncoupled DA. Additionally, it's important to note that CDA does not 

necessarily require assimilating observations from multiple components. Even if CDA 

assimilates the observations just from a single component, it can still enhance the ICs of all 

components within the coupled model. 

 

In this study, the WCDA system was built and used to produce ICs for all components of E3SM 

by incorporating GLDAS reanalysis. During the analysis step, our WCDA system only 

assimilates land reanalysis data into the land component of an earth system model. However, 

it's crucial to highlight that in the forecast step, the entire E3SM climate model rather than the 

land surface model is used as the forecast model to forecast the IC backgrounds of all 

components for the next assimilation window and the land reanalysis information can 

propagate to the other components (e.g., atmosphere and ocean) dynamically through the 

coupled integration of E3SM during the one-month forecast. In general, when the coupled 

model is used in the forecast step while the optimal assimilation analysis is updated separately 

for the respective component, the assimilation approach is identified as WCDA (Penny et al., 

2019; Zhang et al., 2020). Thus, the assimilation approach in this study is referred to as a 

WCDA system. 

 

We have added a detailed description (L221-228, L268-278 and L288-294) of the 

implementation of weakly coupled assimilation system and updated the name of our data 

assimilation system from CDA to WCDA throughout the manuscript. This modification is 

intended to provide a clearer depiction of the WCDA system in this manuscript. 

 

L221-228: In the analysis step, only the land state variables are updated to the optimal analysis 

(𝑥𝑎
𝑙𝑛𝑑). Subsequently, we proceed with a one-month freely coupled integration of the E3SMv2 

model during the forecast step. This integration is initialized from the optimal land ICs (𝑥𝑎
𝑙𝑛𝑑) 

along with the background fields as the ICs of other components (e.g., atmosphere and ocean). 

Throughout this one-month free integration, the interactions among the model components 

indirectly enhance the background states of these components (e.g., atmosphere and ocean) for 

the next assimilation window due to the more realistic land state variables. Moreover, this 

coupled integration also contributes to the balance between the ICs of different components. 

 

L268-278: The incorporation of GLDAS data into the E3SMv2 model consists of the analysis 

step and the forecast step. In the analysis step, the differences between monthly mean GLDAS 

data and model outputs are calculated and utilized to produce the optimal assimilation analysis 

at the beginning of a one-month assimilation window. Subsequently, in the forecast step, this 

optimal assimilation analysis is used as the land ICs combined with the background ICs for 

other components to conduct one-month forecast using the E3SMv2 model. This forecast 

generates the backgrounds of all model components for the next assimilation window. As a 

result, the forecasted backgrounds for all components are influenced by the land reanalysis 

information incorporated into the ICs of the land component. In general, when the coupled 

model is used in the forecast step while the optimal assimilation analysis is updated separately 
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for the respective component, the assimilation approach is identified as WCDA (Penny et al., 

2019; Zhang et al., 2020). 

 

L288-294: To assimilate the monthly mean GLDAS product, fully coupled integration by the 

E3SMv2 model is performed twice within each one-month assimilation window: first to 

generate the observational innovation by computing the differences between the GLDAS data 

and model outputs for analysis, and second to forecast the backgrounds of all components for 

the next assimilation window. When the fully coupled model is executed for the second one-

month run, the land reanalysis information is transferred to the other components through 

multi-component interactions. 

 

Comment#3: 

Paragraph starting L37. I had a lot of trouble following the argument in this paragraph, largely 

because the terms used have not been defined (and I suspect are not being applied in their 

standard usage). The distinction between coupling in the model and in the DA is unclear, and I 

really don’t know what the “uncoupled” option is. Perhaps using an explanatory example might 

help. 

 

Response: 

We are sorry for any confusion caused. We understand your concerns about the unclear 

distinction between coupling in the model and the DA. In the revised manuscript, we have 

rewritten this paragraph (L41-56 in the revised manuscript) to clearly differentiate between 

uncoupled and coupled data assimilation. Uncoupled DA implies that DA is conducted using a 

standalone component model (e.g., a standalone land surface model forced by atmospheric 

reanalysis data or observations rather than coupled with an atmospheric model) as the forecast 

model to produce the IC background, and then the uncoupled DA analyses from different 

components are combined to form the ICs of the coupled model (Zhang et al., 2020). For 

example, most existing reanalysis data were produced by uncoupled DA, and some decadal 

predictions were initialized directly using reanalysis data for different components (Du et al., 

2012; Bellucci et al., 2013). 

 

We have introduced a new paragraph (L57-80 in the revised manuscript) dedicated to 

elucidating the concept of coupled data assimilation (CDA), as explained in our response to 

the last comment. 

 

Comment#4: 

L38: I’m not sure what is meant by “uncoupled initialization” here or “uncoupled data 

assimilation”. I suspect you mean weakly coupled data assimilation (as in separate DA systems 

for each model component, each assimilating obs from that component) - which is still coupled 

DA. 

 

Response: 

We have revised the relevant descriptions (L48-54) to provide a clearer definition on 

"uncoupled initialization". In this context, "uncoupled initialization" is not the same as WCDA. 
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Instead, in "uncoupled initialization" reanalysis data are directly used to initialize the individual 

components of the coupled models, and this approach is defined as uncoupled DA. 

 

L48-54: Uncoupled DA performs DA under the framework of an individual component model 

(e.g., standalone land surface model forced by atmospheric observations or reanalysis data 

rather than coupled with an atmospheric model), and then the uncoupled DA analyses from 

different individual components are combined to form the ICs of a coupled model (Zhang et 

al., 2020). For example, most existing reanalysis data were produced using uncoupled DA 

approaches, and these reanalysis datasets are then directly used to initialize DCPs in some 

studies (Du et al., 2012; Bellucci et al., 2013). 

 

We agree with your opinion about the definition of weakly coupled data assimilation. In this 

study, soil moisture and temperature data from GLDAS are assimilated into the land component 

of the climate model during the analysis step. Subsequently, during the forecast step, the entire 

E3SM climate model is used as the forecast model to forecast the IC backgrounds of all 

components for the next assimilation window and the observed land information is transferred 

to the other components (e.g., atmosphere and ocean) through the coupled model integration. 

Thus, our DA process under the coupled modeling framework is referred as the WCDA system. 

 

Comment#5: 

L39: what is a “stand-alone” model state? 

 

Response: 

"Stand-alone" model refers to the individual component models, such as the atmospheric or 

land surface models, which operate independently without interactions with other components. 

For example, a standalone land surface model is forced by atmospheric observations or 

reanalysis data but not coupled with an atmospheric model. 

 

Comment#6: 

L40: I assume the Prodhomme paper refers to a hydrological system, so it’s a bit misleading to 

say “some modeling centers …” and then refer to a single product that is not their main product. 

 

Response: 

Thank you for bringing this to our attention. The phrase "some modeling centers" has been 

revised to "some studies" for clarity. Furthermore, we have decided to remove the citation of 

the Prodhomme paper and replaced it with references to other relevant articles. This sentence 

(L51-54) is revised as "For example, most existing reanalysis data were produced using 

uncoupled DA approaches, and these reanalysis datasets are then directly used to initialize 

DCPs in some studies (Du et al., 2012; Bellucci et al., 2013)." 

 

In response to this comment, we have made adjustments to this sentence (L51-54) in the revised 

manuscript. 

 

L51-54: For example, most existing reanalysis data were produced using uncoupled DA 
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approaches, and these reanalysis datasets are then directly used to initialize DCPs in some 

studies (Du et al., 2012; Bellucci et al., 2013). 

 

Comment#7: 

L41: again, I don’t know what you mean by “uncoupled methods”. If you’re applying DA to 

multiple model components in a coupled model, there is some coupling introduced via the 

model forecasts - at a minimum, this is weakly coupled DA. 

 

Response: 

The "uncoupled methods" here refer to the direct use of reanalysis data as ICs for the coupled 

model. We have explained what “uncoupled DA” implies. Please refer to the responses to 

Comments #3 and #4 for the details. 

 

According to your comments, we have revised the manuscript (L48-54) to explicitly define the 

"uncoupled DA", and we have also added detailed descriptions (L113-118) to emphasize that 

the data assimilation system employed in our study is a weakly coupled DA system. This will 

help delineate the differences between the uncoupled methods we initially mentioned and the 

weakly coupled approach we utilized. 

 

L48-54: Uncoupled DA performs DA under the framework of an individual component model 

(e.g., standalone land surface model forced by atmospheric observations or reanalysis data 

rather than coupled with an atmospheric model), and then the uncoupled DA analyses from 

different individual components are combined to form the ICs of a coupled model (Zhang et 

al., 2020). For example, most existing reanalysis data were produced using uncoupled DA 

approaches, and these reanalysis datasets are then directly used to initialize DCPs in some 

studies (Du et al., 2012; Bellucci et al., 2013). 

 

L113-118: In this WCLDA system, monthly mean anomalies of soil moisture and temperature 

from a global land reanalysis product are assimilated into the land component of a coupled 

climate model in the analysis step, and subsequently during the forecast step, the land 

reanalysis information incorporated into the ICs of the land component is propagated to the 

other components (e.g., atmosphere and ocean) through the fully coupled model integration 

and influences the ICs of all components for the next assimilation window. 

 

Comment#8: 

L44 “each coupled model individually”. Do you mean each component of the coupled model? 

 

Response: 

“Each coupled model individually” refers to each climate system model, rather than each 

component of the coupled model. What we intended to express was that distinct DA systems 

could be constructed for different climate models to obtain high-quality and well-balanced 

initial conditions. To avoid further ambiguity, we have removed this sentence in the revised 

manuscript. 
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Comment#9: 

L50: Again, without concrete examples it is hard to follow the argument in the paragraph. I am 

unclear what the actual application being discussed is, since the text just refers to “modeling 

centers” or “models”. The references come largely from atmospheric DA, with some coupled 

atmosphere / other component examples. If this is the case, then the information presented is 

this paragraph about the usage of different methods is largely incorrect and very outdated. 

 

Response: 

According to your comments, we have made consistent modifications throughout the 

manuscript, replacing "modeling centers” with more appropriate terms like “some studies” and 

"previous studies". This ensures a clearer depiction of the source of our references and the 

focus of our work. 

 

Furthermore, to improve clarity, we have started this paragraph by emphasizing the use of 

coupled data assimilation methods to initialize decadal climate predictions (DCPs) (L81-82): 

"Recent research efforts have started to implement the CDA system to initialize DCPs, using a 

diverse range of DA techniques from simple to complex." Based on our careful review of 

literature, most of DCPs do not assimilate land observations or reanalysis data. 

 

We have rewritten this paragraph (L81-108) to introduce the development of CDA methods by 

providing more recent and relevant literature. 

 

L81-108: Recent research efforts have started to implement the CDA system to initialize DCPs, 

using a diverse range of DA techniques from simple to complex. The simplest method is 

nudging which adjusts the model states towards the observations or existing reanalysis (Hoke 

and Anthes, 1976; Zhang et al., 2020). Although the nudging method is time-saving and easy 

to implement, its application in CDA is restricted primarily due to the limited types of 

observations and the required interpolation of observations at every time step of model 

integration (He et al., 2017). Previous studies have developed advanced CDA systems using 

variational and filtering approaches, such as the three-dimensional variational data assimilation 

(3DVar) (Laloyaux et al., 2016; Yao et al., 2021), and ensemble-based techniques like the 

ensemble Kalman filter (EnKF) (Zhang et al., 2007). The former generally utilizes the 

stationary background error covariance and assimilates observations sequentially (Lin et al., 

2017). In contrast, the latter uses the flow-dependent forecast error covariance and recursively 

integrates observations into the model (Lei and Hacker, 2015). Several studies also show 

encouraging progress in constructing CDA systems using four-dimensional variational data 

assimilation (4DVar) method (Smith et al., 2015; Fowler and Lawless, 2016). The objective of 

4DVar is to optimize four-dimensional model states and provide a compatible temporal 

trajectory that matches observational records across each assimilation window (Mochizuki et 

al., 2016). The 4DVar method is an advanced assimilation technique that exhibits superiority 

over other assimilation techniques like nudging and 3DVar in multiple aspects. Initial shocks 

that influence prediction skills can be significantly minimized by the 4DVar approach due to 

the dynamical consistency between the model and ICs (Sugiura et al., 2008). However, it is 

difficult to apply the 4DVar method for CDA systems in the fully coupled model because of 
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the challenge in adjoint integration of the coupled model and its high computational cost in the 

analysis step. Finally, to capitalize on the strengths of both ensemble and variational techniques, 

recent studies focus on developing new hybrid data assimilation methods (Wang et al., 2010; 

Buehner et al., 2018). The hybrid approach utilizes an ensemble forecast to generate flow-

dependent forecast error covariances and presents a way to perform 4DVar optimization 

without the need for tangent linear and adjoint models (Lorenc et al., 2015). However, most 

studies on CDA have focused on assimilating observations or reanalysis data of ocean, 

atmosphere and even sea ice. There have been relatively few instances of CDA studies 

assimilating land observations or reanalysis data. 

 

Comment#10: 

L52: Here you are talking about the method used to add the analysis increment to the model 

states, which is a secondary detail to how the increment is calculated - the discussion is very 

misleading. For example, the Bloom paper you cite is from NASA GMAO. They currently use 

4DEnVar to calculate the increment, and IAU to add it. You may also be mixing up the 

“nudging” DA method with nudging methods to add increments. If so, nudging is also a very 

old DA technique, and has not been standard use for decades. 

 

Response: 

In light of this comment, we have revised our overview of the nudging methods (L82-86). 

Furthermore, we have removed the citation to the Bloom paper and have replaced it with more 

recent and relevant references. Additionally, we have highlighted the limitations and potential 

drawbacks associated with nudging to offer a comprehensive perspective. 

 

L82-86: The simplest method is nudging which adjusts the model states towards the 

observations or existing reanalysis (Hoke and Anthes, 1976; Zhang et al., 2020). Although the 

nudging method is time-saving and easy to implement, its application in CDA is restricted 

primarily due to the limited types of observations and the required interpolation of observations 

at every time step of model integration (He et al., 2017). 

 

Comment#11: 

L54: IAU (and nudging schemes I know of ) do not "recover the observations". They move the 

model towards the observations, by some amount determined by the respective observation and 

background errors. 

 

Response: 

We recognize that this phrasing "recover the observations" is not accurate in describing the 

nudging and IAU methods. We have removed this phrasing from the revised manuscript to 

ensure clarity and accuracy. 

 

Comment#12: 

L59: The information presented here is very outdated. Major NWP / reanalysis all use hybrid 

DA methods now - 3Dvar was two generations of DA schemes ago. I’m not familiar with the 
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Yao paper, but the Lin paper was conducted at a university, not a “modeling center”. Likewise 

the Santonello paper - that’s a research paper, not linked to an operational DA system. 

 

Response: 

We have replaced "some modeling centers" with "previous studies". This sentence (L86-87) is 

revised as "Previous studies have developed advanced CDA systems using variational and 

filtering approaches". Although we acknowledge that major NWPs now utilize hybrid DA 

methods, our focus in this paragraph is on the research progress of coupled data assimilation 

systems in coupled models. The development of coupled data assimilation in the coupled 

models is still at its early stages (Zhang et al., 2020) compared to DA used in NWPs due to the 

complexity of the coupled models. Additionally, we have removed the citation to the Santonello 

paper and have chosen to cite other relevant research articles instead. 

 

In light of this comment, we have revised the sentence (L86-89) in the revised manuscript. 

 

L86-89: Previous studies have developed advanced CDA systems using variational and 

filtering approaches, such as the three-dimensional variational data assimilation (3DVar) 

(Laloyaux et al., 2016; Yao et al., 2021), and ensemble-based techniques like the ensemble 

Kalman filter (EnKF) (Zhang et al., 2007). 

 

Comment#13: 

L71: This sentence is wrong (or at least, extremely misleading). If we’re talking about Earth 

system modeling - so NWP, reanalysis, etc (which the references imply is what we’re talking 

about) then most centers did use 4DVar, but have now moved on to more sophisticated hybrid 

methods. 

 

Response: 

We have removed this sentence "few modeling centers utilize 4DVar-based initialization 

methods". To better convey our point, we have revised this sentence (L99-100) as "However, 

it is difficult to apply the 4DVar method for CDA systems in the fully coupled model" to 

emphasize the challenges of applying the 4DVar method. 

 

In our revised manuscript, we have revised this sentence (L99-101) accordingly. 

 

L99-101: However, it is difficult to apply the 4DVar method for CDA systems in the fully 

coupled model because of the challenge in adjoint integration of the coupled model and its high 

computational cost in the analysis step. 

 

Comment#14: 

L121: how many soil layers? 

 

Response: 
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Totally ten soil layers. We have revised this sentence (L152-153) that monthly mean soil 

moisture and soil temperature data in a total of ten soil layers are produced by the Global Land 

Data Assimilation System (GLDAS; Rodell et al., 2004). 

 

L152-153: Monthly mean soil moisture and soil temperature data in a total of ten soil layers 

are produced by the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004). 

 

Comment#15: 

L123:  GLDAS does not produce observations! These are modeled output. 

 

Response: 

We agree that GLDAS data are land reanalysis data from model outputs. In response to your 

feedback, we have revised the term "Observational Dataset" to "Land Reanalysis Dataset" 

(L151). 

 

L151: 2.2 Land Reanalysis Dataset 

 

Comment#16: 

There is not enough information here on the 4DEnVar / DRP-4Dvar technique for the reader 

to understand how it works. Also, how is the ensemble created? How do you ensure the 

ensemble has reasonable spread near the land? How do you estimate the B matrix? 

 

Response: 

The DRP-4DVar method has been extensively introduced in Wang et al. (2010), Shi et al. (2021, 

2022) and He et al. (2017, 2020) in the context of its application in another climate system 

model FGOALS-g2. Therefore, we did not provide a detailed introduction to the DRP-4DVar 

method. In the revised manuscript, we have rewritten Section 2.3 "Data Assimilation Scheme" 

to provide a comprehensive and clear introduction to the DRP-4DVar method (L178-228), 

especially to the process of ensemble creation and the estimation of the background error 

covariance matrix B. 

 

L178-228: DRP-4DVar is an economical approach that minimizes the cost function of the 

standard 4DVar by using the ensemble technique instead of the adjoint technique (Wang et al., 

2010). The background error covariance matrix 𝐵  is estimated using the pure ensemble 

covariance. The ensemble members originate from historical or ensemble forecasts. 

Considering the high computational cost of ensemble forecasts for the coupled model in our 

study, we utilize outputs from the pre-industrial control (PI-CTRL) experiment of E3SMv2 to 

generate ensemble members. The instantaneous state at the beginning of each month and the 

corresponding monthly mean state of this month from the 100-year balanced PI-CTRL 

simulation are used as the samples of initial condition (𝑥𝑖)  and forecast samples (𝑦𝑖) . The 

corresponding perturbation samples are calculated as 𝑥𝑖
′ = 𝑥𝑖 − �̅� and 𝑦𝑖

′ = 𝑦𝑖 − �̅�, where �̅� 

and �̅� are the 100-year average values of 𝑥𝑖 and 𝑦𝑖 at the same month, respectively. Then, 

𝑚  pairs of perturbation samples (𝑥1
′ , 𝑥2

′ , 𝑥3
′ ,⋯ , 𝑥𝑚

′  ) and (𝑦1
′ , 𝑦2

′ , 𝑦3
′ ,⋯ , 𝑦𝑚

′  ) are selected at 

each DA analysis step according to the correlations between 𝑦𝑖
′  and the observational 



 18 

innovation 𝑦𝑜𝑏𝑠
′ = 𝑦𝑜𝑏𝑠 − 𝑦𝑏 and the independence between 𝑦′ samples. In this study, 𝑚 =

30. Then the estimation of the background error covariance matrix 𝐵 is represented by the 

formula in Eq. (1), utilizing the selected 𝑥′  samples. To remove the spurious remote 

correlations in the B matrix, the localization approach is applied to optimize the assimilation 

performance (Wang et al., 2018). 

                              

{
 
 

 
 

𝐵 = 𝑏𝑏𝑇

𝑏 =
1

√𝑚 − 1
× (𝑥1

′ − �̅�′, 𝑥2
′ − �̅�′, 𝑥3

′ − �̅�′,⋯ , 𝑥𝑚
′ − �̅�′)  

�̅�′ =
1

𝑚
(𝑥1

′ + 𝑥2
′ + 𝑥3

′ +⋯+ 𝑥𝑚
′ )

                             (1) 

According to Wang et al. (2010), DRP-4DVar produces the analysis increment ( 𝑥𝑎
′  ) by 

minimizing the 4DVar cost function in the incremental form (Courtier et al., 1994): 

                               {
𝐽(𝑥𝑎

′ ) = min
𝑥′

𝐽(𝑥′)

𝐽(𝑥′) =
1

2
(𝑥′)𝑇𝐵−1𝑥′ +

1

2
(�̃�′ − �̃�𝑜𝑏𝑠

′ )𝑇(�̃�′ − �̃�𝑜𝑏𝑠
′ )

                                       (2) 

Here 𝑥′ = 𝑥 − 𝑥𝑏  represents the increment of model variables relative to the background; 

�̃�𝑜𝑏𝑠
′ = 𝑟−1𝑦𝑜𝑏𝑠

′ = 𝑟−1(𝑦𝑜𝑏𝑠 − 𝑦𝑏)  denotes the weighted observational innovation for 

monthly mean anomalies of soil moisture and temperature, and 𝑅 = 𝑟𝑟𝑇 is the observational 

error covariance matrix that is usually diagonal; �̃�′ = 𝑟−1𝑦′ = 𝑟−1(𝑦 − 𝑦𝑏) is the weighted 

projection of the increment (𝑥′) onto the observation space; the superscript 𝑇 represents the 

transpose. 

    To simplify the calculation of the minimization, the increment of model state variables 𝑥′ 

and the corresponding weighted observation increment �̃�′ are projected onto the dimension-

reduced sample space through the following projection transformations: 

                                                                {
𝑥′ = 𝑃𝑥𝛼

�̃�′ = 𝑃𝑦𝛼
                                                                                 (3)

where 𝛼  is the 𝑚 -dimension column vector containing the weight coefficients 

(𝛼1, 𝛼2, 𝛼3, ⋯ , 𝛼𝑚 ); 𝑃𝑥  and 𝑃𝑦  denote the projection matrices that incorporate the initial 

condition perturbations and the corresponding monthly mean samples as follows: 

                                                             {
𝑃𝑥 = (𝑥1

′ , 𝑥2
′ , 𝑥3

′ ,⋯ , 𝑥𝑚
′ )

𝑃𝑦  =  (�̃�1
′ , �̃�2

′ , �̃�3
′ ,⋯ , �̃�𝑚

′ )
                                                        (4)

where �̃�𝑖
′ = 𝑟−1𝑦𝑖

′ (𝑖 = 1, 2,⋯ ,𝑚). Then the original 4DVar cost function defined in Eq. (2) 

is transformed into the following new cost function and the analysis can be computed in the 

sample space by minimizing this new cost function: 

                                          

{
 
 

 
 𝐽(𝛼𝑎) = min

𝛼
𝐽(𝛼)

𝐽(𝛼) =
1

2
𝛼𝑇𝐵𝛼

−1𝛼 +
1

2
(𝑃𝑦𝛼 − �̃�𝑜𝑏𝑠

′ )𝑇(𝑃𝑦𝛼 − �̃�𝑜𝑏𝑠
′ )

𝑥𝑎 = 𝑥𝑏 + 𝑥𝑎
′ = 𝑥𝑏 + 𝑃𝑥𝛼𝑎

                           (5) 

    The solution to this minimization problem is formulated as: 

                                               𝛼𝑎 = (𝐵𝛼
−1 + 𝑃𝑦

𝑇𝑃𝑦)
−1𝑃𝑦

𝑇�̃�𝑜𝑏𝑠
′                                                               (6) 

In this study, the DRP-4DVar-based WCLDA system is used to incorporate the land reanalysis 

data only. The optimal analysis for the land state variables (𝑥𝑎
𝑙𝑛𝑑) is obtained by adding the 
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analysis increment (𝑥′𝑎
𝑙𝑛𝑑
) to the background of land ICs (𝑥𝑏

𝑙𝑛𝑑), as expressed in Eq. (7): 

                            𝑥𝑎
𝑙𝑛𝑑 = 𝑥𝑏

𝑙𝑛𝑑 + 𝑥′𝑎
𝑙𝑛𝑑

= 𝑥𝑏
𝑙𝑛𝑑 + 𝑃𝑥(𝐵𝛼

−1 + 𝑃𝑦
𝑇𝑃𝑦)

−1
𝑃𝑦
𝑇�̃�𝑜𝑏𝑠

′                                (7) 

    In the analysis step, only the land state variables are updated to the optimal analysis (𝑥𝑎
𝑙𝑛𝑑). 

Subsequently, we proceed with a one-month freely coupled integration of the E3SMv2 model 

during the forecast step. This integration is initialized from the optimal land ICs (𝑥𝑎
𝑙𝑛𝑑) along 

with the background fields as the ICs of other components (e.g., atmosphere and ocean). 

Throughout this one-month free integration, the interactions among the model components 

indirectly enhance the background states of these components (e.g., atmosphere and ocean) for 

the next assimilation window due to the more realistic land state variables. Moreover, this 

coupled integration also contributes to the balance between the ICs of different components. 

 

Comment#17: 

L152: This paragraph implies that there is no atmospheric DA in these experiments? In which 

case this is not coupled DA. It is land data assimilation into a coupled model. 

 

Response: 

This study did not include atmospheric DA because our focus is on investigating the role of 

land component in initialization for climate predictions, with an initial interest in decadal 

climate predictions, as very few CDA studies incorporated land observations or reanalysis data. 

 

As we mentioned in our response to Comment#2, our data assimilation system is a WCDA 

system. The CDA system can provides ICs for all components of the coupled model no matter 

if the assimilated observations (or reanalysis data) are from one or more components. The ICs 

of all components are influenced by the observations directly or indirectly through the fully 

coupled model integration. Please refer to our response to Comment #2 for more details. 

 

In light of this comment, we have incorporated additional clarifications (L221-228) to reflect 

the influence of land DA on other components (e.g., atmosphere and ocean) under the coupled 

modeling framework. 

 

L221-228: In the analysis step, only the land state variables are updated to the optimal analysis 

(𝑥𝑎
𝑙𝑛𝑑). Subsequently, we proceed with a one-month freely coupled integration of the E3SMv2 

model during the forecast step. This integration is initialized from the optimal land ICs (𝑥𝑎
𝑙𝑛𝑑) 

along with the background fields as the ICs of other components (e.g., atmosphere and ocean). 

Throughout this one-month free integration, the interactions among the model components 

indirectly enhance the background states of these components (e.g., atmosphere and ocean) for 

the next assimilation window due to the more realistic land state variables. Moreover, this 

coupled integration also contributes to the balance between the ICs of different components. 

 

Comment#18: 

L157 it’s not clear what “freely coupled” means. Which components are coupled? Likewise 

“externally forced”, which components are externally forcing used for? 
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Response: 

The term "freely coupled" here refers to the mode of interaction among the various components 

of our Earth system model, namely the atmosphere, land, river, ocean, and sea ice. The term 

"freely coupled" implies that the model components interact dynamically without any restraints. 

The term "externally forced” refers to “forced by solar radiation, greenhouse gases, aerosols 

and so on”. These external forcings mainly act on the atmospheric component and then 

influence other components (e.g., land surface, ocean, and sea ice) through their coupling with 

the atmosphere. 

 

In response to this comment, we have revised our manuscript (L236-239) to clearly state that 

external forcings are used to drive the fully coupled climate system model, namely the 

atmosphere, land, river, ocean, and sea ice. 

 

L236-239: In the freely coupled simulation, the various components of the Earth system model, 

namely the atmosphere, land, river, ocean, and sea ice, interact dynamically without any 

restraints. The observed external forcing mainly acts on the atmospheric component and then 

influences other components (e.g., land surface, ocean, and sea ice) through their coupling with 

the atmosphere. 

 

Comment#19: 

L187: Some discussion here of how you updated the model states from monthly means would 

have been useful, as this is not straight forward. There has been a lot of work done on this 

within the context of assimilation GRACE terrestrial water storage. Also, assimilating monthly 

means to update instantaneous states is not the obvious way to do it - given that you’re 

assimilating model output, you had the option of assimilation instantaneous output. 

 

Response: 

To assimilate the monthly mean GLDAS product, fully coupled integration by the E3SMv2 

model is performed twice within each one-month assimilation window: first to generate the 

observational innovation by computing the differences between the GLDAS data and model 

outputs for analysis, and second to forecast the backgrounds of all components for the next 

assimilation window. When the fully coupled model is executed for the second one-month run, 

the land reanalysis information is transferred to the other components through multi-

component interactions. Similarly, to assimilate the monthly GRACE-based TWS observations, 

previous studies employed the "two-step" scheme in which the land model integration is 

performed twice within the same month (Houborg et al., 2012; Girotto et al., 2016). The 

primary reason for assimilating monthly averages rather than updating instantaneous states is 

that observational information on timescales shorter than one month can potentially introduce 

undesirable noise, adversely affecting DCPs upon assimilation into the ICs. 

 

In light of this comment, we have included more detailed discussions (L288-297) on how we 

assimilate monthly mean GLDAS data and previous work about assimilating monthly GRACE 

data in our revised manuscript. 
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L288-297: To assimilate the monthly mean GLDAS product, fully coupled integration by the 

E3SMv2 model is performed twice within each one-month assimilation window: first to 

generate the observational innovation by computing the differences between the GLDAS data 

and model outputs for analysis, and second to forecast the backgrounds of all components for 

the next assimilation window. When the fully coupled model is executed for the second one-

month run, the land reanalysis information is transferred to the other components through 

multi-component interactions. This approach is similar to previous studies that employed the 

"two-step" scheme in which the land model integration is performed twice within the same 

month to assimilate the monthly GRACE-based TWS observations (Houborg et al., 2012; 

Girotto et al., 2016). 
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    We thank Reviewer #3 for the constructive comments and suggestions, which greatly help 

to improve the quality of our manuscript. We have made revisions and replied to all comments. 

Please find the point-by-point responses to the comments. Our responses are shown in "Blue" 

and the changes in the manuscript are shown in "Red". 

    

Response to the comments from Reviewer #3 

 

General Comment: 

This manuscript presents the implementation of a 4DEnVAR method in the E3SMv2. The 

authors assimilate monthly mean soil moisture and temperature from a land re-analysis product 

and evaluate the performance of the new data assimilation system vs a control experiment (no 

assimilation). I find the approach of 4DEnVAR for land data assimilation very interesting. 

However, there are several shortcomings of the paper that need to be addressed before it is 

ready to be published in GMD. 

 

Response: 

We would like to express our sincere gratitude for your time and effort in reviewing our 

manuscript. We truly appreciate your constructive comments and suggestions, which have 

significantly contributed to enhancing the quality of our work. We have carefully addressed 

each comment, as outlined below, and have made the necessary revisions to our manuscript. 

 

Comment#1: 

The authors need to differentiate between coupled data assimilation and coupled modelling, 

the study is presented as “land coupled data assimilation” however it is land data assimilation 

only. Please consider to re-write parts of the introduction to make this clear. 

 

Response: 

Thank you for your valuable feedback. We apologize for any ambiguities in our original 

manuscript. In response to your comment, the introduction of our manuscript has been 

thoroughly rewritten. Effort has been made to clearly distinguish between weakly coupled data 

assimilation (WCDA) and strongly coupled data assimilation (SCDA) by highlighting the 

differentiations between coupled modeling and coupled data assimilation. WCDA implies 

coupling in the forecast step, but no coupling in the analysis step. In contrast, SCDA allows 

coupling in both the analysis and forecast steps. 

 

We have incorporated a more thorough description of our assimilation process and clarified 

that the assimilation method used in our study is referred as the WCDA system. In this study, 

the incorporation of GLDAS data into the E3SMv2 model consists of the analysis step and the 

forecast step. In the analysis step, the differences between monthly mean GLDAS data and 

model outputs are utilized to produce the optimal assimilation analysis. Subsequent to this, in 

the forecast step, the entire E3SM climate model rather than the land surface model is used as 

the forecast model to forecast the IC backgrounds of all components for the next assimilation 

window and the land reanalysis information can propagate to the other components (e.g., 

atmosphere and ocean) dynamically through the coupled integration of E3SM during the one-
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month forecast. In general, when the coupled model is used in the forecast step while the 

optimal assimilation analysis is updated separately for the respective component, the 

assimilation approach is identified as WCDA (Penny et al., 2019; Zhang et al., 2020). Thus, 

the assimilation approach in this study is referred to as a WCDA system. 

 

In the revised introduction, we first elucidate the distinctions between uncoupled data 

assimilation (DA) and coupled data assimilation (CDA). Uncoupled DA implies that DA is 

conducted using an individual component model (e.g., land surface model forced by 

atmospheric observations or reanalysis data rather than coupled with an atmospheric model) as 

the forecast model that does not consider any interactions with other components. For example, 

most existing reanalysis data are generated by uncoupled DA, and previous studies employ 

uncoupled DA that directly utilizes reanalysis data as initial conditions (ICs) to initialize 

decadal climate predictions (DCPs) based on coupled models (Du et al., 2012; Bellucci et al., 

2013). However, such uncoupled DA often exhibits poor consistency between ICs of 

component models, and eventually produces low prediction skills (Balmaseda et al., 2009; 

Boer et al., 2016; Ardilouze et al., 2017). 

 

To obtain balanced multi-component ICs in coupled models, recent studies focus on the 

development of CDA methods under the coupled modeling framework (Penny and Hamill, 

2017; He et al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all 

components within the climate system by incorporating observational information from one or 

more components in the coupled model. Then CDA methods are categorized into two main 

types: weakly coupled data assimilation (WCDA) and strongly coupled data assimilation 

(SCDA). 

 

When introducing WCDA and SCDA, we make a clear distinction between coupling in the 

model and coupling in the DA. Sequential DA encompasses both the analysis and the forecast 

steps. WCDA allows no direct influence of observations from a single component to other 

components in the analysis step as the cross-component background error covariances are not 

used, but coupling in the forecast step allows interactions across different components during 

the model integration (Browne et al., 2019) and propagates the observational information to 

other components. In contrast, SCDA utilizes cross-component background error covariances 

to directly assimilate the observational information from one component into all components, 

treating the entire Earth system model as one unified system (Penny et al., 2019). Furthermore, 

similar to WCDA, SCDA also allows coupling in the forecast step to propagate the observations 

from one component to the other components (Yoshida and Kalnay, 2018). 

 

In response to this comment, we have revised our introduction to first elucidate the distinctions 

between uncoupled DA and coupled data assimilation (L41-56), and then distinguish between 

WCDA and SCDA by highlighting the characteristics of coupling in the model and coupled 

DA (L57-80). We hope that these modifications can better distinguish between uncoupled DA 

and CDA, as well as more effectively illustrate that the data assimilation system we developed 

in this study is referred to as the WCDA system. 
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L41-56: Much work has been devoted to initializing climate system models for practicable 

decadal climate predictions (DCPs). These models couple various components, such as models 

of the atmosphere, land surface, ocean, sea ice, and so on. Due to their much higher complexity, 

coupled models are often more susceptible to initial conditions (ICs) than their individual 

model components, underscoring the importance of dedicated data assimilation (DA) 

(Sakaguchi et al., 2012). The capability of DA methods is essential to incorporate available 

observations into the components of coupled model and produce the optimal estimate of ICs to 

improve DCPs. The initialization for DCPs uses uncoupled DA and coupled data assimilation 

(CDA) methods. Uncoupled DA performs DA under the framework of an individual 

component model (e.g., standalone land surface model forced by atmospheric observations or 

reanalysis data rather than coupled with an atmospheric model), and then the uncoupled DA 

analyses from different individual components are combined to form the ICs of a coupled 

model (Zhang et al., 2020). For example, most existing reanalysis data were produced using 

uncoupled DA approaches, and these reanalysis datasets are then directly used to initialize 

DCPs in some studies (Du et al., 2012; Bellucci et al., 2013). However, such uncoupled DA 

often exhibits poor consistency among the ICs of different component models, and eventually 

produces low prediction skills (Balmaseda et al., 2009; Boer et al., 2016; Ardilouze et al., 2017). 

 

L57-80: To obtain balanced multi-component ICs in coupled models, recent studies focus on 

the development of CDA methods under the coupled modeling framework (Penny and Hamill, 

2017; He et al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all 

components within the climate system by incorporating observational information from one or 

more components in the coupled model, providing great potential for improving seamless 

climate predictions (Dee et al., 2014). Some studies underscore the superior advantages of CDA 

over traditional uncoupled DA methods (Lea et al., 2015; Zhang et al., 2005). CDA methods 

are categorized into two main types: weakly coupled data assimilation (WCDA) and strongly 

coupled data assimilation (SCDA). WCDA assimilates the observations or existing reanalysis 

into the respective component of the coupled model and then transfers the observational 

information to the other components through the coupled model integration (He et al., 2020b; 

Zhang et al., 2020). Considering that sequential DA encompasses both the analysis and the 

forecast steps, WCDA allows no direct influence of observations from a single component to 

other components in the analysis step as the cross-component background error covariances 

are not used, but coupling in the forecast step allows interactions across different components 

during the model integration (Browne et al., 2019) and propagates the observational 

information to other components. In contrast, SCDA utilizes cross-component background 

error covariances to directly assimilate the observational information from one component into 

all components, treating the entire Earth system model as one unified system (Penny et al., 

2019). Furthermore, similar to WCDA, SCDA also allows coupling in the forecast step to 

propagate the observations from one component to the other components (Yoshida and Kalnay, 

2018). Several studies indicate that SCDA typically exhibits more pronounced improvements 

in assimilation performance relative to WCDA (Smith et al., 2015; Sluka et al., 2016). However, 

the application of SCDA poses substantial technical challenges, particularly in the 

establishment of effective cross-component background error covariances. Consequently, the 

majority of contemporary CDA systems still utilize the WCDA framework. 
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To better elucidate that our data assimilation approach in this study is referred as WCDA, we 

have augmented our manuscript with a more comprehensive description (L113-118, L221-228, 

L268-278, and L288-294) of each assimilation process with both the analysis and the forecast 

steps. Specifically, in the forecast step, we have emphasized that the entire E3SM climate 

model is utilized for forecasting, and coupling in the forecast step transfers the land reanalysis 

information to the other components (e.g., atmosphere and ocean) through multi-component 

interactions. This DA process under the coupled modeling framework is referred as the WCDA 

system. To distinctly differentiate our assimilation approach (WCDA) from SCDA, we have 

changed the terminology coupled data assimilation (CDA) to weakly coupled data assimilation 

(WCDA) throughout the manuscript to accurately represent our utilization of weakly coupled 

data assimilation. As a result, our assimilation system in this study is explicitly named the 

weakly coupled land data assimilation (WCLDA). 

 

L113-118: In this WCLDA system, monthly mean anomalies of soil moisture and temperature 

from a global land reanalysis product are assimilated into the land component of a coupled 

climate model in the analysis step, and subsequently during the forecast step, the land 

reanalysis information incorporated into the ICs of the land component is propagated to the 

other components (e.g., atmosphere and ocean) through the fully coupled model integration 

and influences the ICs of all components for the next assimilation window. 

 

L221-228: In the analysis step, only the land state variables are updated to the optimal analysis 

(𝑥𝑎
𝑙𝑛𝑑). Subsequently, we proceed with a one-month freely coupled integration of the E3SMv2 

model during the forecast step. This integration is initialized from the optimal land ICs (𝑥𝑎
𝑙𝑛𝑑) 

along with the background fields as the ICs of other components (e.g., atmosphere and ocean). 

Throughout this one-month free integration, the interactions among the model components 

indirectly enhance the background states of these components (e.g., atmosphere and ocean) for 

the next assimilation window due to the more realistic land state variables. Moreover, this 

coupled integration also contributes to the balance between the ICs of different components. 

 

L268-278: The incorporation of GLDAS data into the E3SMv2 model consists of the analysis 

step and the forecast step. In the analysis step, the differences between monthly mean GLDAS 

data and model outputs are calculated and utilized to produce the optimal assimilation analysis 

at the beginning of a one-month assimilation window. Subsequently, in the forecast step, this 

optimal assimilation analysis is used as the land ICs combined with the background ICs for 

other components to conduct one-month forecast using the E3SMv2 model. This forecast 

generates the backgrounds of all model components for the next assimilation window. As a 

result, the forecasted backgrounds for all components are influenced by the land reanalysis 

information incorporated into the ICs of the land component. In general, when the coupled 

model is used in the forecast step while the optimal assimilation analysis is updated separately 

for the respective component, the assimilation approach is identified as WCDA (Penny et al., 

2019; Zhang et al., 2020). 
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L288-294: To assimilate the monthly mean GLDAS product, fully coupled integration by the 

E3SMv2 model is performed twice within each one-month assimilation window: first to 

generate the observational innovation by computing the differences between the GLDAS data 

and model outputs for analysis, and second to forecast the backgrounds of all components for 

the next assimilation window. When the fully coupled model is executed for the second one-

month run, the land reanalysis information is transferred to the other components through 

multi-component interactions. 

 

Comment#2: 

As pointed out by Referee #2, the authors assimilate model derived soil moisture and 

temperature without taking into account the systematic differences between the two models. I 

fully agree with Referee #2 that the authors need to do some kind of bias correction before the 

assimilation step. It is not clear to me why monthly mean values are chosen and also not why 

you do not assimilate actual observations, please make this clear to the reader. In my opinion 

the authors should consider changing the experiment design and either assimilate (and evaluate) 

their system against actual observations or create a synthetic twin experiment study. 

 

Response: 

Thank you for your insightful comments. In light of your suggestions, we have now applied 

bias correction before assimilation and incorporated detailed explanations for our selection of 

monthly mean values, and assimilating land reanalysis products rather than actual observations 

in our revised manuscript. 

 

Following your advice, we have modified our experiment design to add bias correction before 

assimilation (L168-171), and then conducted the anomaly assimilation through assimilating 

observed anomalies into the model. Due to the modifications of our experimental design, we 

have comprehensively updated all figures (Figure 3 to 10) and relevant descriptions that depict 

the assimilation performance with bias correction in our revised manuscript. 

 

L168-171: In this study, we conduct the anomaly assimilation for the WCLDA system with 

bias correction applied to GLDAS data before assimilation. For bias correction, the difference 

between GLDAS data and its long-term average is calculated as anomalies and then added to 

the simulated model climatology. 

 

Regarding the use of monthly mean values, we realize that our initial manuscript did not 

sufficiently explain this decision, which is driven by our initial interest in using data 

assimilation to produce initial conditions for decadal climate predictions (DCPs). Almost all 

initializations for DCPs in CMIP5 and CMIP6 incorporated monthly mean reanalysis data as 

observations (Table 1). This preference is primarily driven by two critical factors. Firstly, for 

decadal-scale climate predictions, assimilating data with temporal resolutions shorter than one 

month may introduce undesirable noise, which can adversely affect DCPs when high temporal 

resolution data are assimilated into the initial conditions. Hence, the prevalent practice in both 

CMIP5 and CMIP6 is to assimilate monthly mean data for DCPs. Secondly, the DA techniques 

applied in the coupled data assimilation (CDA) for initializations of decadal prediction are 
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generally much simpler than those used in NWPs, attributed largely to the increased complexity 

in coupled climate models. For examples, many initialization systems used in CMIP5 and 

CMIP6 adopted the simple nudging method (Table 1). Therefore, these much simpler DA 

approaches and much more complex coupled models do not allow the direct assimilation of 

actual observations. Furthermore, unlike NWPs where long-term DA cycles aren't necessary, 

the initialization for DCPs requires DA cycles spanning at least ten years which makes it very 

difficult or even impossible to assimilate complex actual observations due to the very high 

computational cost. 

 

Table 1. Brief summaries of assimilation strategies used in CMIP5 and CMIP6 decadal 

prediction experiments through assimilation of reanalysis data. 

Model Assimilation Strategies Method References 

BCC-CSM1.1 

 

Ocean: assimilate the 

SODA reanalysis  

Nudging Xin et al., 2013 

CanCM4 

 

Atmosphere: assimilate the 

ERA reanalysis 

Nudging Merryfield et al., 

2013 

CNRM-CM5 

 

Ocean: assimilate the 

NEMOVAR reanalysis  

Nudging Voldoire et al., 

2014 

HadCM3 

 

Atmosphere: assimilate the 

ERA-40 reanalysis 

Nudging Smith et al., 2013 

FGOALS-g2 

 

Ocean: assimilate the 

ds285.3 reanalysis 

Nudging Wang et al., 2013 

EC-Earth3 Ocean: assimilate the 

ORAS4 reanalysis 

Nudging Bilbao et al., 2021 

NorCPM1 Ocean: assimilate the 

HadISST reanalysis 

EnKF Bethke et al., 2021 

CanE3M5 Ocean: assimilate the 

ORAS5 reanalysis 

Nudging  Sospedra-Alfonso 

et al., 2021 

 

To clarify our choice of using monthly mean GLDAS reanalysis, we have incorporated detailed 

explanations (L245-252) in our revised manuscript. 

 

L245-252: In contrast to decadal timescales, data signals with temporal resolutions shorter than 

one month can potentially introduce undesirable noise, which can adversely affect DCPs when 

high temporal resolution data are assimilated into the ICs. Moreover, it is very computationally 

demanding to assimilate complex actual observations in the initialization for DCPs that 

requires long-term DA cycles. Therefore, similar to most existing initialization approaches for 

DCPs that assimilate reanalysis data, this study describes the implementation of a data 

assimilation approach for initializing DCPs by assimilating monthly mean GLDAS data within 

the one-month assimilation window. 

 

The key challenge we face in assimilating actual observations, particularly satellite data, arises 

from the lack of the observation operator within our current system. The observation operator 

plays a critical role in establishing the connection between the model variables and actual 
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observations, accounting for the discrepancies in spatial and temporal resolutions between the 

two datasets. It takes us one year to build this weakly coupled land data assimilation (WCLDA) 

system for the E3SMv2 model. Unfortunately, our current WCLDA system lacks the design of 

the observation operator, thereby presenting a significant obstacle to incorporating actual 

observational data effectively. Recognizing this limitation, we will focus on the development 

of the observation operator for future improvement of our WCLDA system. 

 

To shed light on the current limitations of our WCLDA system, we have incorporated the 

reasons (L446-450) for its inability to assimilate actual observations in our revised manuscript. 

Our objective in adding these explanations is to provide readers with additional reasons behind 

our decision not to assimilate actual observations. 

 

L446-450: Our current WCLDA system has some limitations such as the lack of an observation 

operator to integrate actual observations (e.g., satellite and station data). An observation 

operator is crucial in providing the linkage between the model variables and actual observations, 

which differ in spatial and temporal resolutions. Hence future exploration will focus on 

developing observation operators suitable for assimilating various satellite data, such as the 

AMSR-E and GRACE data. 

 

GLDAS product generate optimal fields of land surface states and fluxes in near-real time 

(Rodell et al., 2004), and these reliable global GLDAS datasets are extensively utilized in 

weather and climate research (Chen et al., 2021; Zhang et al., 2018). In identifying an optimal 

long-term land surface dataset for our study, we found the GLDAS to be exceptionally suitable. 

Additionally, GLDAS products were also assimilated in another coupled model (FGOALS-g2), 

showing significant improvements in the interannual prediction skills over East Asia and 

Europe, as shown in previous studies by Shi et al. (2021, 2022). Therefore, we employed the 

advanced WCDA approach to incorporate the GLDAS monthly mean soil temperature and soil 

moisture into the fully coupled E3SMv2 model. 

 

In response to your suggestion, we have expanded our analysis by further evaluating our 

assimilation performance against MODIS satellite observations from 2003 to 2014. We have 

introduced a new figure (Figure A1) in the Appendix and incorporated detailed descriptions 

about the assimilation performance compared with MODIS data (L348-357) in our revised 

manuscript. Figure A1 shows the spatial pattern of the AE index for surface soil moisture and 

land surface temperature between MODIS data and model simulations. For surface soil 

moisture, the comparison with MODIS data suggests that the majority of global regions exhibit 

reduced RMSE after assimilation. The reduction of RMSE is pronounced in central North 

America, South America, southern Africa, Australia, and Europe. However, in high-latitude 

areas, significant degradations are observed in northern Russia, which may be possibly related 

to model deficiencies in simulating the complex frozen ground and snow processes (Edwards 

et al., 2007; Ireson et al., 2013). Regarding land surface temperature, improved performances 

are evident over South America, Australia, southern Africa, and parts of Eurasia when 

compared to MODIS data. In contrast, some degradations appear over parts of North America 

and central Asia, which still require further improvement. 
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L348-357: We further perform an analysis of the spatial pattern of the AE index for surface soil 

moisture and land surface temperature between MODIS data and model simulations (Figure 

A1). For surface soil moisture, the comparison with MODIS data suggests that the majority of 

global regions exhibit reduced RMSE after assimilation. The reduction of RMSE is pronounced 

in central North America, South America, southern Africa, Australia, and Europe. However, in 

high-latitude areas, significant degradations are observed in northern Russia, which may be 

possibly related to model deficiencies in simulating the complex frozen ground and snow 

processes (Edwards et al., 2007; Ireson et al., 2013). Regarding land surface temperature, 

improved performances are evident over South America, Australia, southern Africa, and large 

parts of Eurasia when compared to MODIS data. In contrast, some degradations appear over 

parts of North America and central Asia, which still require further improvement. 

 

 

Figure A1. Spatial distribution of the AE index for (a) surface soil moisture and (b) land surface 

temperature during the 2003-2014 period. The observations are derived from monthly MODIS 

satellite data. 
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Current initialization techniques consist of two main categories: full-field initialization with 

observed values, and anomaly initialization with observed anomalies. The optimal strategy for 

model initialization (full-field versus anomaly initialization) is still an active research topic (Hu 

et al., 2020; Polkova et al., 2019). The full-field assimilation is commonly performed to reduce 

the influence of systematic model biases by replacing the initial model state with the optimal 

available estimate of the observed state (Volpi et al., 2017). However, the model trajectory 

tends to drift away from the observations and revert to the model's inherent preferred state 

because of model deficiencies (Smith et al., 2013). This problem is partially addressed with the 

anomaly assimilation by assimilating the observed anomalies added to the model climatology 

(Carrassi et al., 2014). 

 

We have incorporated a discussion (L161-168) to outline the advantages and disadvantages of 

both full-field and anomaly assimilation in our revised manuscript. This discussion also 

clarifies our decision to select the anomaly assimilation for the WCLDA system, emphasizing 

our methodology of applying bias correction to the GLDAS data before assimilation. 

 

L161-168: Current initialization techniques are broadly classified into two categories: full-field 

assimilation with observed values, and anomaly assimilation with observed anomalies (Hu et 

al., 2020; Polkova et al., 2019). The full-field assimilation is commonly performed to reduce 

the influence of systematic model biases by replacing the initial model state with the optimal 

available estimate of the observed state (Volpi et al., 2017). However, the model trajectory 

tends to drift away from the observations and revert to the model's inherent preferred state 

because of model deficiencies (Smith et al., 2013). This problem is partially addressed with the 

anomaly assimilation by assimilating the observed anomalies added to the model climatology 

(Carrassi et al., 2014). 
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