
    We thank Reviewer #3 for the constructive comments and suggestions, which greatly help 

to improve the quality of our manuscript. We have made revisions and replied to all comments. 

Please find the point-by-point responses to the comments. Our responses are shown in "Blue" 

and the changes in the manuscript are shown in "Red". 

    

Response to the comments from Reviewer #3 

 

General Comment: 

This manuscript presents the implementation of a 4DEnVAR method in the E3SMv2. The 

authors assimilate monthly mean soil moisture and temperature from a land re-analysis product 

and evaluate the performance of the new data assimilation system vs a control experiment (no 

assimilation). I find the approach of 4DEnVAR for land data assimilation very interesting. 

However, there are several shortcomings of the paper that need to be addressed before it is 

ready to be published in GMD. 

 

Response: 

We would like to express our sincere gratitude for your time and effort in reviewing our 

manuscript. We truly appreciate your constructive comments and suggestions, which have 

significantly contributed to enhancing the quality of our work. We have carefully addressed 

each comment, as outlined below, and have made the necessary revisions to our manuscript. 

 

Comment#1: 

The authors need to differentiate between coupled data assimilation and coupled modelling, 

the study is presented as “land coupled data assimilation” however it is land data assimilation 

only. Please consider to re-write parts of the introduction to make this clear. 

 

Response: 

Thank you for your valuable feedback. We apologize for any ambiguities in our original 

manuscript. In response to your comment, the introduction of our manuscript has been 

thoroughly rewritten. Effort has been made to clearly distinguish between weakly coupled data 

assimilation (WCDA) and strongly coupled data assimilation (SCDA) by highlighting the 

differentiations between coupled modeling and coupled data assimilation. WCDA implies 

coupling in the forecast step, but no coupling in the analysis step. In contrast, SCDA allows 

coupling in both the analysis and forecast steps. 

 

We have incorporated a more thorough description of our assimilation process and clarified 

that the assimilation method used in our study is referred as the WCDA system. In this study, 

the incorporation of GLDAS data into the E3SMv2 model consists of the analysis step and the 

forecast step. In the analysis step, the differences between monthly mean GLDAS data and 

model outputs are utilized to produce the optimal assimilation analysis. Subsequent to this, in 

the forecast step, the entire E3SM climate model rather than the land surface model is used as 

the forecast model to forecast the IC backgrounds of all components for the next assimilation 

window and the land reanalysis information can propagate to the other components (e.g., 

atmosphere and ocean) dynamically through the coupled integration of E3SM during the one-



month forecast. In general, when the coupled model is used in the forecast step while the 

optimal assimilation analysis is updated separately for the respective component, the 

assimilation approach is identified as WCDA (Penny et al., 2019; Zhang et al., 2020). Thus, 

the assimilation approach in this study is referred to as a WCDA system. 

 

In the revised introduction, we first elucidate the distinctions between uncoupled data 

assimilation (DA) and coupled data assimilation (CDA). Uncoupled DA implies that DA is 

conducted using an individual component model (e.g., land surface model forced by 

atmospheric observations or reanalysis data rather than coupled with an atmospheric model) as 

the forecast model that does not consider any interactions with other components. For example, 

most existing reanalysis data are generated by uncoupled DA, and previous studies employ 

uncoupled DA that directly utilizes reanalysis data as initial conditions (ICs) to initialize 

decadal climate predictions (DCPs) based on coupled models (Du et al., 2012; Bellucci et al., 

2013). However, such uncoupled DA often exhibits poor consistency between ICs of 

component models, and eventually produces low prediction skills (Balmaseda et al., 2009; 

Boer et al., 2016; Ardilouze et al., 2017). 

 

To obtain balanced multi-component ICs in coupled models, recent studies focus on the 

development of CDA methods under the coupled modeling framework (Penny and Hamill, 

2017; He et al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all 

components within the climate system by incorporating observational information from one or 

more components in the coupled model. Then CDA methods are categorized into two main 

types: weakly coupled data assimilation (WCDA) and strongly coupled data assimilation 

(SCDA). 

 

When introducing WCDA and SCDA, we make a clear distinction between coupling in the 

model and coupling in the DA. Sequential DA encompasses both the analysis and the forecast 

steps. WCDA allows no direct influence of observations from a single component to other 

components in the analysis step as the cross-component background error covariances are not 

used, but coupling in the forecast step allows interactions across different components during 

the model integration (Browne et al., 2019) and propagates the observational information to 

other components. In contrast, SCDA utilizes cross-component background error covariances 

to directly assimilate the observational information from one component into all components, 

treating the entire Earth system model as one unified system (Penny et al., 2019). Furthermore, 

similar to WCDA, SCDA also allows coupling in the forecast step to propagate the observations 

from one component to the other components (Yoshida and Kalnay, 2018). 

 

In response to this comment, we have revised our introduction to first elucidate the distinctions 

between uncoupled DA and coupled data assimilation (L41-56), and then distinguish between 

WCDA and SCDA by highlighting the characteristics of coupling in the model and coupled 

DA (L57-80). We hope that these modifications can better distinguish between uncoupled DA 

and CDA, as well as more effectively illustrate that the data assimilation system we developed 

in this study is referred to as the WCDA system. 

 



L41-56: Much work has been devoted to initializing climate system models for practicable 

decadal climate predictions (DCPs). These models couple various components, such as models 

of the atmosphere, land surface, ocean, sea ice, and so on. Due to their much higher complexity, 

coupled models are often more susceptible to initial conditions (ICs) than their individual 

model components, underscoring the importance of dedicated data assimilation (DA) 

(Sakaguchi et al., 2012). The capability of DA methods is essential to incorporate available 

observations into the components of coupled model and produce the optimal estimate of ICs to 

improve DCPs. The initialization for DCPs uses uncoupled DA and coupled data assimilation 

(CDA) methods. Uncoupled DA performs DA under the framework of an individual 

component model (e.g., standalone land surface model forced by atmospheric observations or 

reanalysis data rather than coupled with an atmospheric model), and then the uncoupled DA 

analyses from different individual components are combined to form the ICs of a coupled 

model (Zhang et al., 2020). For example, most existing reanalysis data were produced using 

uncoupled DA approaches, and these reanalysis datasets are then directly used to initialize 

DCPs in some studies (Du et al., 2012; Bellucci et al., 2013). However, such uncoupled DA 

often exhibits poor consistency among the ICs of different component models, and eventually 

produces low prediction skills (Balmaseda et al., 2009; Boer et al., 2016; Ardilouze et al., 2017). 

 

L57-80: To obtain balanced multi-component ICs in coupled models, recent studies focus on 

the development of CDA methods under the coupled modeling framework (Penny and Hamill, 

2017; He et al., 2020a). The purpose of CDA is to produce balanced and coherent ICs for all 

components within the climate system by incorporating observational information from one or 

more components in the coupled model, providing great potential for improving seamless 

climate predictions (Dee et al., 2014). Some studies underscore the superior advantages of CDA 

over traditional uncoupled DA methods (Lea et al., 2015; Zhang et al., 2005). CDA methods 

are categorized into two main types: weakly coupled data assimilation (WCDA) and strongly 

coupled data assimilation (SCDA). WCDA assimilates the observations or existing reanalysis 

into the respective component of the coupled model and then transfers the observational 

information to the other components through the coupled model integration (He et al., 2020b; 

Zhang et al., 2020). Considering that sequential DA encompasses both the analysis and the 

forecast steps, WCDA allows no direct influence of observations from a single component to 

other components in the analysis step as the cross-component background error covariances 

are not used, but coupling in the forecast step allows interactions across different components 

during the model integration (Browne et al., 2019) and propagates the observational 

information to other components. In contrast, SCDA utilizes cross-component background 

error covariances to directly assimilate the observational information from one component into 

all components, treating the entire Earth system model as one unified system (Penny et al., 

2019). Furthermore, similar to WCDA, SCDA also allows coupling in the forecast step to 

propagate the observations from one component to the other components (Yoshida and Kalnay, 

2018). Several studies indicate that SCDA typically exhibits more pronounced improvements 

in assimilation performance relative to WCDA (Smith et al., 2015; Sluka et al., 2016). However, 

the application of SCDA poses substantial technical challenges, particularly in the 

establishment of effective cross-component background error covariances. Consequently, the 

majority of contemporary CDA systems still utilize the WCDA framework. 



 

To better elucidate that our data assimilation approach in this study is referred as WCDA, we 

have augmented our manuscript with a more comprehensive description (L113-118, L221-228, 

L268-278, and L288-294) of each assimilation process with both the analysis and the forecast 

steps. Specifically, in the forecast step, we have emphasized that the entire E3SM climate 

model is utilized for forecasting, and coupling in the forecast step transfers the land reanalysis 

information to the other components (e.g., atmosphere and ocean) through multi-component 

interactions. This DA process under the coupled modeling framework is referred as the WCDA 

system. To distinctly differentiate our assimilation approach (WCDA) from SCDA, we have 

changed the terminology coupled data assimilation (CDA) to weakly coupled data assimilation 

(WCDA) throughout the manuscript to accurately represent our utilization of weakly coupled 

data assimilation. As a result, our assimilation system in this study is explicitly named the 

weakly coupled land data assimilation (WCLDA). 

 

L113-118: In this WCLDA system, monthly mean anomalies of soil moisture and temperature 

from a global land reanalysis product are assimilated into the land component of a coupled 

climate model in the analysis step, and subsequently during the forecast step, the land 

reanalysis information incorporated into the ICs of the land component is propagated to the 

other components (e.g., atmosphere and ocean) through the fully coupled model integration 

and influences the ICs of all components for the next assimilation window. 

 

L221-228: In the analysis step, only the land state variables are updated to the optimal analysis 

(𝑥𝑎
𝑙𝑛𝑑). Subsequently, we proceed with a one-month freely coupled integration of the E3SMv2 

model during the forecast step. This integration is initialized from the optimal land ICs (𝑥𝑎
𝑙𝑛𝑑) 

along with the background fields as the ICs of other components (e.g., atmosphere and ocean). 

Throughout this one-month free integration, the interactions among the model components 

indirectly enhance the background states of these components (e.g., atmosphere and ocean) for 

the next assimilation window due to the more realistic land state variables. Moreover, this 

coupled integration also contributes to the balance between the ICs of different components. 

 

L268-278: The incorporation of GLDAS data into the E3SMv2 model consists of the analysis 

step and the forecast step. In the analysis step, the differences between monthly mean GLDAS 

data and model outputs are calculated and utilized to produce the optimal assimilation analysis 

at the beginning of a one-month assimilation window. Subsequently, in the forecast step, this 

optimal assimilation analysis is used as the land ICs combined with the background ICs for 

other components to conduct one-month forecast using the E3SMv2 model. This forecast 

generates the backgrounds of all model components for the next assimilation window. As a 

result, the forecasted backgrounds for all components are influenced by the land reanalysis 

information incorporated into the ICs of the land component. In general, when the coupled 

model is used in the forecast step while the optimal assimilation analysis is updated separately 

for the respective component, the assimilation approach is identified as WCDA (Penny et al., 

2019; Zhang et al., 2020). 

 



L288-294: To assimilate the monthly mean GLDAS product, fully coupled integration by the 

E3SMv2 model is performed twice within each one-month assimilation window: first to 

generate the observational innovation by computing the differences between the GLDAS data 

and model outputs for analysis, and second to forecast the backgrounds of all components for 

the next assimilation window. When the fully coupled model is executed for the second one-

month run, the land reanalysis information is transferred to the other components through 

multi-component interactions. 

 

Comment#2: 

As pointed out by Referee #2, the authors assimilate model derived soil moisture and 

temperature without taking into account the systematic differences between the two models. I 

fully agree with Referee #2 that the authors need to do some kind of bias correction before the 

assimilation step. It is not clear to me why monthly mean values are chosen and also not why 

you do not assimilate actual observations, please make this clear to the reader. In my opinion 

the authors should consider changing the experiment design and either assimilate (and evaluate) 

their system against actual observations or create a synthetic twin experiment study. 

 

Response: 

Thank you for your insightful comments. In light of your suggestions, we have now applied 

bias correction before assimilation and incorporated detailed explanations for our selection of 

monthly mean values, and assimilating land reanalysis products rather than actual observations 

in our revised manuscript. 

 

Following your advice, we have modified our experiment design to add bias correction before 

assimilation (L168-171), and then conducted the anomaly assimilation through assimilating 

observed anomalies into the model. Due to the modifications of our experimental design, we 

have comprehensively updated all figures (Figure 3 to 10) and relevant descriptions that depict 

the assimilation performance with bias correction in our revised manuscript. 

 

L168-171: In this study, we conduct the anomaly assimilation for the WCLDA system with 

bias correction applied to GLDAS data before assimilation. For bias correction, the difference 

between GLDAS data and its long-term average is calculated as anomalies and then added to 

the simulated model climatology. 

 

Regarding the use of monthly mean values, we realize that our initial manuscript did not 

sufficiently explain this decision, which is driven by our initial interest in using data 

assimilation to produce initial conditions for decadal climate predictions (DCPs). Almost all 

initializations for DCPs in CMIP5 and CMIP6 incorporated monthly mean reanalysis data as 

observations (Table 1). This preference is primarily driven by two critical factors. Firstly, for 

decadal-scale climate predictions, assimilating data with temporal resolutions shorter than one 

month may introduce undesirable noise, which can adversely affect DCPs when high temporal 

resolution data are assimilated into the initial conditions. Hence, the prevalent practice in both 

CMIP5 and CMIP6 is to assimilate monthly mean data for DCPs. Secondly, the DA techniques 

applied in the coupled data assimilation (CDA) for initializations of decadal prediction are 



generally much simpler than those used in NWPs, attributed largely to the increased complexity 

in coupled climate models. For examples, many initialization systems used in CMIP5 and 

CMIP6 adopted the simple nudging method (Table 1). Therefore, these much simpler DA 

approaches and much more complex coupled models do not allow the direct assimilation of 

actual observations. Furthermore, unlike NWPs where long-term DA cycles aren't necessary, 

the initialization for DCPs requires DA cycles spanning at least ten years which makes it very 

difficult or even impossible to assimilate complex actual observations due to the very high 

computational cost. 

 

Table 1. Brief summaries of assimilation strategies used in CMIP5 and CMIP6 decadal 

prediction experiments through assimilation of reanalysis data. 

Model Assimilation Strategies Method References 

BCC-CSM1.1 

 

Ocean: assimilate the 

SODA reanalysis  

Nudging Xin et al., 2013 

CanCM4 

 

Atmosphere: assimilate the 

ERA reanalysis 

Nudging Merryfield et al., 

2013 

CNRM-CM5 

 

Ocean: assimilate the 

NEMOVAR reanalysis  

Nudging Voldoire et al., 

2014 

HadCM3 

 

Atmosphere: assimilate the 

ERA-40 reanalysis 

Nudging Smith et al., 2013 

FGOALS-g2 

 

Ocean: assimilate the 

ds285.3 reanalysis 

Nudging Wang et al., 2013 

EC-Earth3 Ocean: assimilate the 

ORAS4 reanalysis 

Nudging Bilbao et al., 2021 

NorCPM1 Ocean: assimilate the 

HadISST reanalysis 

EnKF Bethke et al., 2021 

CanE3M5 Ocean: assimilate the 

ORAS5 reanalysis 

Nudging  Sospedra-Alfonso 

et al., 2021 

 

To clarify our choice of using monthly mean GLDAS reanalysis, we have incorporated detailed 

explanations (L245-252) in our revised manuscript. 

 

L245-252: In contrast to decadal timescales, data signals with temporal resolutions shorter than 

one month can potentially introduce undesirable noise, which can adversely affect DCPs when 

high temporal resolution data are assimilated into the ICs. Moreover, it is very computationally 

demanding to assimilate complex actual observations in the initialization for DCPs that 

requires long-term DA cycles. Therefore, similar to most existing initialization approaches for 

DCPs that assimilate reanalysis data, this study describes the implementation of a data 

assimilation approach for initializing DCPs by assimilating monthly mean GLDAS data within 

the one-month assimilation window. 

 

The key challenge we face in assimilating actual observations, particularly satellite data, arises 

from the lack of the observation operator within our current system. The observation operator 

plays a critical role in establishing the connection between the model variables and actual 



observations, accounting for the discrepancies in spatial and temporal resolutions between the 

two datasets. It takes us one year to build this weakly coupled land data assimilation (WCLDA) 

system for the E3SMv2 model. Unfortunately, our current WCLDA system lacks the design of 

the observation operator, thereby presenting a significant obstacle to incorporating actual 

observational data effectively. Recognizing this limitation, we will focus on the development 

of the observation operator for future improvement of our WCLDA system. 

 

To shed light on the current limitations of our WCLDA system, we have incorporated the 

reasons (L446-450) for its inability to assimilate actual observations in our revised manuscript. 

Our objective in adding these explanations is to provide readers with additional reasons behind 

our decision not to assimilate actual observations. 

 

L446-450: Our current WCLDA system has some limitations such as the lack of an observation 

operator to integrate actual observations (e.g., satellite and station data). An observation 

operator is crucial in providing the linkage between the model variables and actual observations, 

which differ in spatial and temporal resolutions. Hence future exploration will focus on 

developing observation operators suitable for assimilating various satellite data, such as the 

AMSR-E and GRACE data. 

 

GLDAS product generate optimal fields of land surface states and fluxes in near-real time 

(Rodell et al., 2004), and these reliable global GLDAS datasets are extensively utilized in 

weather and climate research (Chen et al., 2021; Zhang et al., 2018). In identifying an optimal 

long-term land surface dataset for our study, we found the GLDAS to be exceptionally suitable. 

Additionally, GLDAS products were also assimilated in another coupled model (FGOALS-g2), 

showing significant improvements in the interannual prediction skills over East Asia and 

Europe, as shown in previous studies by Shi et al. (2021, 2022). Therefore, we employed the 

advanced WCDA approach to incorporate the GLDAS monthly mean soil temperature and soil 

moisture into the fully coupled E3SMv2 model. 

 

In response to your suggestion, we have expanded our analysis by further evaluating our 

assimilation performance against MODIS satellite observations from 2003 to 2014. We have 

introduced a new figure (Figure A1) in the Appendix and incorporated detailed descriptions 

about the assimilation performance compared with MODIS data (L348-357) in our revised 

manuscript. Figure A1 shows the spatial pattern of the AE index for surface soil moisture and 

land surface temperature between MODIS data and model simulations. For surface soil 

moisture, the comparison with MODIS data suggests that the majority of global regions exhibit 

reduced RMSE after assimilation. The reduction of RMSE is pronounced in central North 

America, South America, southern Africa, Australia, and Europe. However, in high-latitude 

areas, significant degradations are observed in northern Russia, which may be possibly related 

to model deficiencies in simulating the complex frozen ground and snow processes (Edwards 

et al., 2007; Ireson et al., 2013). Regarding land surface temperature, improved performances 

are evident over South America, Australia, southern Africa, and parts of Eurasia when 

compared to MODIS data. In contrast, some degradations appear over parts of North America 

and central Asia, which still require further improvement. 



 

L348-357: We further perform an analysis of the spatial pattern of the AE index for surface soil 

moisture and land surface temperature between MODIS data and model simulations (Figure 

A1). For surface soil moisture, the comparison with MODIS data suggests that the majority of 

global regions exhibit reduced RMSE after assimilation. The reduction of RMSE is pronounced 

in central North America, South America, southern Africa, Australia, and Europe. However, in 

high-latitude areas, significant degradations are observed in northern Russia, which may be 

possibly related to model deficiencies in simulating the complex frozen ground and snow 

processes (Edwards et al., 2007; Ireson et al., 2013). Regarding land surface temperature, 

improved performances are evident over South America, Australia, southern Africa, and large 

parts of Eurasia when compared to MODIS data. In contrast, some degradations appear over 

parts of North America and central Asia, which still require further improvement.

 

Figure A1. Spatial distribution of the AE index for (a) surface soil moisture and (b) land surface 

temperature during the 2003-2014 period. The observations are derived from monthly MODIS 

satellite data. 

 



Current initialization techniques consist of two main categories: full-field initialization with 

observed values, and anomaly initialization with observed anomalies. The optimal strategy for 

model initialization (full-field versus anomaly initialization) is still an active research topic (Hu 

et al., 2020; Polkova et al., 2019). The full-field assimilation is commonly performed to reduce 

the influence of systematic model biases by replacing the initial model state with the optimal 

available estimate of the observed state (Volpi et al., 2017). However, the model trajectory 

tends to drift away from the observations and revert to the model's inherent preferred state 

because of model deficiencies (Smith et al., 2013). This problem is partially addressed with the 

anomaly assimilation by assimilating the observed anomalies added to the model climatology 

(Carrassi et al., 2014). 

 

We have incorporated a discussion (L161-168) to outline the advantages and disadvantages of 

both full-field and anomaly assimilation in our revised manuscript. This discussion also 

clarifies our decision to select the anomaly assimilation for the WCLDA system, emphasizing 

our methodology of applying bias correction to the GLDAS data before assimilation. 

 

L161-168: Current initialization techniques are broadly classified into two categories: full-field 

assimilation with observed values, and anomaly assimilation with observed anomalies (Hu et 

al., 2020; Polkova et al., 2019). The full-field assimilation is commonly performed to reduce 

the influence of systematic model biases by replacing the initial model state with the optimal 

available estimate of the observed state (Volpi et al., 2017). However, the model trajectory 

tends to drift away from the observations and revert to the model's inherent preferred state 

because of model deficiencies (Smith et al., 2013). This problem is partially addressed with the 

anomaly assimilation by assimilating the observed anomalies added to the model climatology 

(Carrassi et al., 2014). 
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