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Response to review 1 
 

We are pleased that you are in favour of our manuscript and we would like to thank you for 

your comments which helped us to better structure the manuscript but also to clarify potential 

misconceptions and the fact of the non-capability of ANNs to extrapolate. 

 

Comment 1: 

“Section 2.4  

Here it would be nice to have some absolute statistics about the reference period, to provide 

some context. What is mean JJA temperature (or annual cycle) over the study area, quantify 

the heat extremes in this period (how many, what temperature?), etc from ERA5.” 

Response 1: 

We added some absolute statistics to give a better overview of the study periods. We added 

information on summer mean temperature, average of daily maximum values, and number of 

heat days (maximum Ta >= 30°C): 

During the study period, the mean annual Ta is 13.00°C, the mean summer (June-August) Ta is 

21.32°C, and the mean maximum daily summer Ta is 26.27°C. The number of hot days 

(maximum Ta >= 30°C) of the consecutive years from 2019 to 2022 are 26, 20, 9, and 37, 

respectively.  

 

 

Comment 2: 

“… In particular I suggest the authors to make this section more explicit as to what parts are 

physically modelled, and what parts are trained submodels. It is physical modelling part of the 

HTC-NN? Line 141 is confusing to me; I am expecting 3 subsections in 2.5 (i.e., two MLPs and 

RF), but there are 4. Further, I think it will be beneficial to explicitly state per submodel what it 

takes as input and forcing data. Regarding the physical modelling/preprocessing; consider 

adding an extra subsection to section 2 where you can explain how you have used LES and 

SUEWS.” 

Response 2: 

1. We re-arranged the structure of the method section. We divided the method section 

into two sections: data and model part (2 Data / 3 Modelling approach). In the data 

section we give an overview of the study area (2.1 Study Area), the spatial and 

meteorological forcing data (2.2 Spatial and forcing data), the validation data (2.3 

Validation data), and the study period (2.4 Study period). The modelling section on the 

other hand was re-arranged into a numerical modelling and a machine learning 

modelling part (3.1 Numerical Modelling / 3.2 Machine learning modelling). The 

section 3.1 covers the SUEWS and LES modelling (3.1.1 Local scale Ta and RH modeling 

(SUEWS) / 3.1.2 Micro-scale U modeling (LES)), while the section 3.2 covers the model 

development of the two MLPs for modelling Ta and RH (3.2.1 Multi-layer perceptron 

model development) and the random forest for modelling U (3.2.2 Random Forest 
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model development (U)). We hope that this re-arrangement clarifies the entire model 

development process.  

2. In section 2.2 Spatial and forcing data we mention which forcing data is used for the 

different numerical and machine learning models:  

The following variables are used as forcing data for SUEWS, the corresponding 

MLPs, and the U-Net: Ta, RH, atmospheric pressure, downwelling shortwave 

radiation, downwelling longwave radiation, precipitation, U and wind 

direction. LES and the RF model requires only standard forcing related to an 

initial shear velocity of 1 m s-1. 

However, we added some clarifications to section 3 and refer to table 2 where we 

added the forcing data: 

The development of the HTC-NN requires four steps (Fig. 2). The first step is to 

generate initial spatial and meteorological data from various sources, which are 

listed in Table 2. In the second step, the so-called ‘ground truth’ data (Ta, RH, 

Tmrt, and U) for the four HTC-NN submodels (two MLPs, U-Net, and RF) are 

calculated using numerical models (SUEWS, SOLWEIG, and LES). Training and 

evaluation of the HTC-NN submodels are done in the third step, while the 

fourth step is to link these submodels by calculating UTCI. As the U-Net has 

already been trained and validated, only the development and the 

requirements of the MLPs and the RF (spatial and temporal data, SUEWS, and 

LES) are explained. 

 
Table 2: Overview of required spatial and forcing data for the numerical and machine learning models. Note: SUEWS 

and MLP use abstract spatial data (see Table 1) and the RF model uses additional spatial predictors derived from DEM, 

DSMb, and DSMv which are not listed here. 

Data SUEWS / MLP 

(500 x 500 m) 

SOLWEIG / U-Net 

(1 x 1 m) 

LES / RF 

(1 x 1 m) 

LCC map x x - 

DEM x x x 

DSMb x x x 

DSMv x x x 

Sky view factor - x - 

Wall height and aspect - x - 

Soil characteristics x - - 

U x x x 

Ta, RH, atmospheric pressure, 

downwelling shortwave 

radiation, downwelling 

longwave radiation, 

precipitation, wind direction  

x x - 
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Comment 3: 

“Section 2.6  

Please expand the explanation of UTCI, elaborate and provide the definition of the heat stress 

classification groups. Later in your analysis you use these terms: strong, very strong, or extreme 

heat stress (e.g., l.279).” 

Response 3: 

We state out that UTCI can be categorized into different thermal comfort classes. We also 

added a table to Appendix A (Table A1), where all UTCI classes and the corresponding thermal 

comfort classes are listed: 

The UTCI values can be categorized based on thermal stress, e.g., UTCI values ranging from 

32–36°C are assigned to strong heat stress. The different UTCI stress categories and the 

corresponding UTCI ranges are listed in Table A1. 
Table A1: Universal thermal climate index (UTCI) classification of thermal stress. 

UTCI (°C) Stress category 

> +46 Extreme heat stress 

+38 – +46 Very strong heat stress 

+32 – +36 Strong heat stress 

+26 – +32 Moderate heat stress 

+9 – +26 No thermal stress 

0 – +9 Slight cold stress 

-13 – 0 Moderate cold stress 

-27 – -13 Strong cold stress 

-40 – -27 Very strong cold stress 

< -40 Extreme cold stress 

 

 

Comment 4: 

“Looking at figure 1, your sensor data is mainly situated in urban sites, while your model area 

has a considerable fraction of more open fields. That may skew your observations. Please 

validate the Ta, RH, and U submodel components as well as the UTCI temperature with ERA5 

and/or other types of reanalysis data full training period (2018-2022) . That will clarify whether 

the errors you find, such as the peaks in October and December (l.220), are robust.” 

Response 4: 

We have made an additional comparison of the results from SUEWS and the Ta and RH MLPs 

to investigate whether the error peaks in October and December are related to the forcing 

data or to the MLP models. A direct comparison between modelled Tmrt and U values with 

ERA5 Land data is difficult due to the spatial variability of Tmrt and U at the micro-scale, which 

tend to dominate the global effects of the forcing data. Nevertheless, we will include the 

results of the Ta / RH comparison in the appendix of our manuscript (see figure 1 in this 

document). This figure shows that the error peaks in late October and mid-December are 
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caused by the forcing data and forwarded to the model data. We mention this also in the 

discussion: 

Compared to the ERA5 land data, the forcing and model data show higher errors during these 

periods in October and December, indicating that errors are already present in the forcing 

data and are passed on to the model results (Figure A1). 

 

 

 
 

 

Comment 5: 

“Can you elaborate more generally on the limit of NNs, particularly training a network with a 

limited amount of extreme events?” 

Response 5: 

We added a short discussion on ANN an its dependencies on the occurrence of extreme events 

or spatial structures within the training data. We made a statement, that ANN are able to 

interpolate but nor to extrapolate which should clearly the fact, that ANN should be treated 

with caution when applied to cases with rare training data: 

Nevertheless, the HTC-NN should only be applied to ‘known’ spatial and temporal data, as 

ANN are generally capable of interpolation but not extrapolation. This means that similar 

Figure 1: Moving average of RMSE of Ta (a) and RH (b) from August to December 2022. As reference data ERA5-Land 

data is used (Muñoz Sabater, 2019). The window size of the moving average is seven days. Time series starts with the 

installation of the first Tier I stations in August 2022. Shaded areas represent 95 % confidence interval. 
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urban structures and/or meteorological forcing data are suitable as potential prediction data. 

However, any unknown spatial configurations or unknown extreme weather events, should 

be approached with caution and undergo validation against measurement or numerical model 

data. 

 

 

Comment 6: 

“Figure 1:  

I find the gray grid cells in the figure are not well visible. Perhaps you can experiment with a 

different shade of gray, or explicitly mention in the caption something along the lines of "Note: 

Gray grid cells indicating the training areas of the Ta and RH submodels may be less visible due 

to color contrast." 

Response 6: 

We changed the shade of gray. It is now brighter and should be better visible: 

 

 
 

 

Comment 7: 

“Table 1 and 2:  

Figure 2: Model domain of the City of Freiburg, Germany. The red star shows the location of the weather station used 

for forcing data on a rooftop. Orange and turquoise points show the locations of the urban sensor network used for 

model evaluation. Gray grid cells show the training areas of the Ta and RH submodels, while yellow grids show the test 

areas. Red and blue squares show the training and test areas of the U sub model, respectively. The pink border shows 

the prediction area of UTCI. Orthophoto in the background based on data from the City of Freiburg, www.freiburg.de. 
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Please write out the used abbreviations (LCC, DEM etc.) at their first use.” 

Response 7: 

We added the long names to the captions. 

 

 

 

References 
Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) 

Climate Data Store (CDS). (Accessed on < 21-04-2022 >). 10.24381/Cds.E2161bac. 
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Reply on RC2 ‘Comment on gmd-2023-122’ 
 

We are pleased that you are in favour of our manuscript and we would like to thank you for 

your suggestions for some corrections. 

 

Comment 1: 

“Ln. 61  

The authors state that ‘Nevertheless, the emulated ML model can never exceed the accuracy 

of the numerical model because it is trained based on the model's results’, but in the results 

and discussion it turns out that the proposed ML models often give better results than 

numerical models. I propose to explain this contradiction.” 

Response 1: 

Indeed. In some situations, the ML models are more accurate than the numerical models. 

There are several reasons for this. First, the UTCI estimated by the ML model is closer to the 

observations because it combines several downscaling models (Tmrt, Ta, RH, and wind speed) 

that take urban form and function into account. SOLWEIG, on the other hand, does not 

downscale Ta, RH, and wind speed. Another reason is simply luck. An ML model with high 

accuracy compared to a numerical model sometime has the error on the ‘right side’, which 

may lead to slightly higher accuracy when compared to observations. Nevertheless, we added 

a clarification to the manuscript (Line 344): 

The lower RMSE of the HTC-NN compared to SOLWEIG can be explained by the combination 

of four submodels that downscale Ta, RH, Tmrt, and U separately, while SOLWEIG downscales 

only Tmrt comprehensively. 

 

 

Comment 2: 

“Ln. 72  

‘… four cardinal wind directions …’ – I am used to analyzing the wind field as three-dimensional. 

Did I misunderstand something?” 

Response 2: 

Thank you for this comment. We have calculated the wind speed from the x, y, and z 

components. The four cardinal wind directions only describe the general inflow direction of 

the LES and ML models. That is, we computed statistical wind fields using x, y, z components, 

but only for four wind directions due to computational cost. We added the following sentence 

at line 72: 

The wind fields are calculated from the x, y, and z wind components. 

 

 

Comment 3: 

“Ln. 213  
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‘The error distributions of SUEWS and the MLP across the different stations are similar (Fig. 3a)…’ 

– I think that Fig. 3a shows the error for all stations rather than the error distributions across 

stations.” 

Response 3: 

You are right. Fig. 3 does not show error distributions of the models but boxplots. The boxplot 

shows all errors of all stations. We changed this in the text (line 221): 

The errors distributions of SUEWS and the MLP across the different stations are similar (Fig. 3a), 

with a higher variability during the night than the during day. 

 

 

Comment 4: 

“Ln. 227  

‘The Tmrt U-Net has a slightly lower accuracy than SOLWEIG (RMSE of 6.18 K to 5.86 K; R2 of 

0.84 to 0.86)’ (and also in ln. 239) – the acceptable level of accuracy is usually a subjective 

choice. However, for Tmrt in the standard ISO7726 (ISO, 1998), ISO recommends that the error 

in Tmrt estimates should be within ±5°C. Could you please address/discuss this.” 

Response 4: 

You are right. ISO7726 recommends that measurements or models should estimate Tmrt within 

±5°C. On average we are indeed within ±5°C, as the mean absolute errors (MAE) are 4.25 K 

and 3.83 K for the ML model and SOLWEIG respectively. However, the root mean square error 

is higher as this error metric gives more weight to outliers. Due to complex shadow patterns 

it is very difficult to always predict Tmrt accurately, even for numerical models (e.g., see also 

Fig. 4 (b) and Briegel et al. 2022). It is inevitable to always model Tmrt within the ±5°C range. 

Therefore, for the purpose of modelling outdoor urban thermal comfort, we believe that the 

achieved model accuracy of the ML is sufficient.  

 

 

Comment 5: 

“Fig. 4 

The RMSE of SUEWS predictions (orange lines) are almost invisible - could they be bolded? 

Please change “Dez” to “Dec”.” 

Response 5: 

Thank you for this suggestion. We changed it. The orange lines showing the SUEWS results are 

still not perfect to see. That is because the errors of SUEWS and the ML model are almost in 

line which makes it hard to make the both error lines perfectly visible.  
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Comment 6: 

“Fig. 6  

Some of the sharp drops in Tmrt and UTCI in the SOLWEIG charts (e.g. afternoon 2022-02-11 at 

the station marked "e") are likely the results of shading, which are directly calculated by 

SOLWEIG at ground level, while the reference data is from 3.5 m. Similarly at early morning or 

afternoon at other stations. Am I right? Anyway, could you comment on these rapid, sawtooth 

changes in the SOLWEIG charts and their effect on the accuracy statistics." 

Response 6: 

This is actually a very good point. The complex shadow patterns within the city as well as the 

different heights between model and observations could be reasons for the rapid and strong 

changes in the Tmrt and UTCI predictions. We have not investigated the impact of these strong 

outliers on the overall accuracy of the model. However, your question is also related to 

comment 4: RMSE are higher than MAE by 1-2 K. The reason for this could be the strong 

outliers you mention in this question. The MAE of SOLWEIG ranges from 1.99 to 3.30 K and 

the MAE of HTC-NN (U-Net) from 1.74 to 3.28 K for the different sensor stations. The plot you 

mention (Fig. 6 (e)) has actually the highest overall MAE of all stations with 3.30 K, while Fig. 

6 (b) has the lowest with 1.99 K. Fig. 6 (b) does not show any rapid, sawtooth changes.  

So, we can conclude that a more detailed investigation of the error patterns would be 

beneficial for further research and model development. But as we don’t intend to evaluate 

numerical models in this study this would exceed the scope of this research.  


