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1 Summary

In this paper, the authors describe embedding a neural-network-based parameterization of the viscous rate
factor within a shallow ice model and training it on a semi-synthetic dataset with the aid of reverse mode
automatic differentiation. I think that this is generally an important topic and that this paper is a useful step
in the direction of modelling/ML hybrids. I don’t have many objections with respect to the technical content
of this work, however I do think it suffers from a few significant misunderstandings of its own methods, of
referenced works, and of the broader context into which these results fit. These issues, along with some more
minor technical corrections, are outlined below.

2 Comments

L40 It should be noted here that adjoints have been known about and used in glaciology since at least Doug
Macayeal’s 1993 paper on optimal control methods (MacAyeal, Douglas R. ”A tutorial on the use of
control methods in ice-sheet modeling.” Journal of Glaciology 39.131 (1993): 91-98.). While utilizing
neural networks to do things in glaciology is a bit new, the general notion of ‘reverse mode AD’ is not.
(It would also be worth citing Tarasov (2012, ”A data-calibrated distribution of deglacial chronologies
for the North American ice complex from glaciological modeling.” Earth and Planetary Science Letters
315 (2012): 30-40.) as an early example of NN surrogates in glaciology.

L56 – 64 I find this paragraph to be quite confusing on account of the use of ‘scalar parameters’. Many
inversion techniques (including the Macayeal paper listed above) are built around finding spatially
distributed parameter fields, which are not scalar. Indeed, different forms of regularization in such
fields often correspond to a Gaussian process functional prior over spatial (and in some cases temporal)
parameter fields. Furthermore, what does ‘reduced to the current structure of the mechanical model
mean’? As a side note the reference to Brinkerhoff (2016) is questionable: that work uses no gradients
but rather very basic MCMC to find distributions over parameter values. However, there are many
other good examples of differentiable ice flow models.

L67 I think it’s perhaps a bit of a stretch to say that the neural networks in this work learn ‘spatiotemporal
variability’. What they are learning is a parameterization of ice softness as a function of surface
temperature based on a number of training examples that happen (or are designed) to span a practical
domain and range of said function.

L84 I think it’s too early to talk about assuming that C = 0 here: the equation remains a “diffusion”
equation regardless of this choice and it is not necessary in order to be able to define a D.

L99 ‘propriety’ → ‘property’
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Eq. 4 I suggest using u or some other symbolic choice to make clear that velocity is a vector (rather than
V ).

Sec. 2.2 I think that this section needs to be moved after 2.3, since it is not yet clear what the embedded
neural net is supposed to be representing in this case. Furthermore, the function SIASolver is never
defined. Does this yield a thickness or a velocity? Since ice velocities are prognostic, why should this
function take V0 as an argument, when there cannot be any dependency on this argument? Should
this be an H0?

Sec. 2.2 I really struggle with casting this problem as one that is time dependent and I am not sure I see
the value in doing so in this work. The reason for this is that the inversion targets are velocities, which
are diagnostic of thickness. Since thickness at some time is being considered as known, then one can
simply compute the velocity at this time and use it in computing a loss, updating the parameters of
the embedded neural network parameterization of hardness, etc. There is simply no need for a time
dependent solver in the procedure as written (although, to be sure there is utility to time-dependent
adjoints of glacier models). I think that the consequences of this independence are readily apparent
in the authors results in the sense that they find no trouble in recovering their chosen ice hardness
parameterization even with mis-specified surface mass balance rates: the reason for this is that the
mass balance doesn’t really affect the velocity and thus doesn’t affect the recovered parameterization.
I think that the authors allude to this themselves around L324, but I would like to see some more
robust justification for why all of the fancy stuff is necessary here. Finally, as a suggestion for an
augmentation that might make all of this a little bit more compelling, is it possible to do all of this
with thickness as the predicted value rather than velocity?

L140 I think that the phrase ‘spatial’ should be dropped here. This is trying to recover A(Ts). One could
imagine a circumstance in which Ts is a function of space internally to each training example, but it
does not seem to be the case here (based on Fig. 3, although I could misunderstand this).

L144 I think that this part is confusing: the authors write that their function for A ignores ice temperature,
but isn’t that what the surface temperature is supposed to proxy? This section is generally a bit
unclear and could benefit from improved notation. For example, I suggest using the symbol Ts for
surface temperature, to make it clear that this is what is being fed into the parameterization.

L162 Why ‘timestamps’ and not just ‘times’?

Sec 3.1 Typically model runs require some type of spinup because the physics and various data products
are not all self-consistent, leading to unrealistically large transient behavior as all of these things
equilibrate. Was that the case here? Does it influence the results?

L176 I know that the CFL is mentioned in Appendix A, but it would be worth summarizing the methods
used to ensure time-stepping stability conditions are satisfied here.

177–180 Why is noise applied to A rather than to the observed velocity? It’s not A that is being observed,
and thus it makes little sense to simulate noise in A.

L181 Most readers will not be able to infer what (1,3,10,3,1) means when describing neural networks. This
either needs to be expanded here, or a discussion of neural network architecture choice should be added
as an appendix.

L182 Once again, I think that some clarification of what is actually happening here is in order: the authors
are using a very common formulation of a numerical ice flow model in a standard way. The novelty
here is the replacement of a static rate factor A with a function Aω(Ts) that is parameterized via a
function that happens to be quite flexible (a neural network). I don’t think that this is semantically
equivalent to saying the problem is highly constrained by the PDE nature of the ice flow model.
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L186 Why is the final sigmoid necessary? What happens without it? I can understand the desire to impose
positivity (which could perhaps more easily be effected by log-transforming A, as is commonly done),
but why should there be an upper bound?

L195–198 I don’t understand this section. Why does adding a source term in the ODE produce instability?
What is the H matrix? Are you saying that you’re adding the mass balance after the integration of
the flow equations?

L199–205 How long are these runs for? Is there sufficient geometric change over this time period to warrant
such a detailed approach (and are the changes large enough to significantly affect A)? Shouldn’t A re-
spond over fairly long time scales, since it’s ultimately ice temperature rather than surface temperature
that controls flow?

Sec 3.4 I think that this section is too deep with respect to AD to be of use to glaciologists reading this,
while being too shallow to be of use to AD practitioners. I suggest either delving deeply into a software-
engineering type study of the influence of different AD approaches or to cut this section and simply
describe the approach that was actually used. This goes for Appendix B as well, which is mostly a
textbook definition of finite differences and the adjoint method.

L254–255 Referencing the potential broader impacts of cloud computing is fine, but a statement like this
needs to be backed up with some evidence: it is not immediately obvious that the cloud improves
scientific equity.

Fig. 3 This figure begs the question: why use a neural network for parameterizing A(T ). It is clear that a
quadratic or exponential would have worked just as well. Indeed, if the authors had predicted the log
of A, then it is likely that a linear model would have fit these data just as well as the NN. I appreciate
the potential for generalization of the NN approach, but an ablation study with simpler models might
be helpful here.

L4.1 Again, because velocity is diagnostic, this is not a surprising outcome.

L316 There is a substantial literature on the joint inference of traction and rheological parameters (typically
in a Bayesian framework which allows for a quantification of induced covariance between parameters).
In summary, this inversion is not necessarily ill-posed ‘by nature’ because there is scale separation
between different processes.

L324 This description of the seasonal cycle of glacier velocities is perhaps oversimplified: many glaciers
exhibit minimal velocities at the end of summer and speed up during the winter. Maybe reword to
express a bit more nuance?

L329 I don’t understand the use of ‘initial conditions’ here. If we’re not doing time evolution, then the
conditions aren’t really ‘initial’, they’re just the geometry.

L335 It would be nice to see some references that illustrate the so-called ‘equifinality problem’.

Sec. 5 Throughout this work, the uncertainty in inferred parameters is not addressed. I think that there
should at least be a discussion of the potential implications of such and avenues for providing a more
rigorous uncertainty quantification.

Sec. 5.2.1 This editorial on AD approaches is not relevant to the current work.

L374 The authors seem to have a misunderstanding of PINNs, which involve positing a neural network as
the PDE solution and then using a point collocation method to adjust the solution so as to minimize
the solution residual in some norm. As such, a PINN is not a surrogate, but rather is a numerical
method for solving PDEs in the same vein as FEM or FD and does not require ‘training data’ in the
way that it is usually understood in the ML literature. In contrast, the work of Jouvet (which is indeed
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a surrogate, but which does not employ PINNs in the described way) trains a CNN to operate as the
approximate solution operator to the ice flow equations from many examples of solutions generated by
a ‘normal’ ice flow model (or perhaps by using a PINN).

Sec. 5.2.3 I do not understand this section.

Eq. A9,A10 I don’t understand the how these conditions related to step size choices. Is there another
reference that might illustrate this point more clearly?
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