Review response for Universal D:ifferential Equations for glacier
ice flow modelling

The Authors

September 20, 2023
Dear Reviewer Douglas Brinkerhoff,

We thank you for your constructive comments and suggestions. Here we have elaborated
on some of your points. Original reviewer responses are in italic, while the authors responses
can be found in blue.

In this paper, the authors describe embedding a neural-network-based parameterization
of the wiscous rate factor within a shallow ice model and training it on a semi-synthetic dataset
with the aid of reverse mode automatic differentiation. I think that this is generally an important
topic and that this paper is a useful step in the direction of modelling/ML hybrids. I don’t have
many objections with respect to the technical content of this work, however I do think it suffers
from a few significant misunderstandings of its own methods, of referenced works, and of the
broader context into which these results fit. These issues, along with some more minor technical
corrections, are outlined below.

1. COMMENTS

L40 It should be noted here that adjoints have been known about and used in glaciology since
at least Doug Macayeal’s 1993 paper on optimal control methods (MacAyeal, Douglas R.
”A tutorial on the use of control methods in ice-sheet modeling.” Journal of Glaciology
39.131 (1993): 91-98.). While utilizing neural networks to do things in glaciology is
a bit new, the general notion of ‘reverse mode AD’ is not. (It would also be worth
citing Tarasov (2012, "A data-calibrated distribution of deglacial chronologies for the
North American ice complex from glaciological modeling.” Earth and Planetary Science
Letters 315 (2012): 80-40.) as an early example of NN surrogates in glaciology.

We completely agree with this point. We believe we have attempted to address this
point in LL51, where we try to make the difference between what efforts have been made
so far in terms of differentiable programming in glaciology with respect to this study.
We have added the following sentence in that paragraph to add this context: ”Such
gradients can be found by either computing the associated adjoint or by using AD.”. We

are also grateful for the references.
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L56-64

L67

I find this paragraph to be quite confusing on account of the use of ‘scalar parameters’.
Many inversion techniques (including the Macayeal paper listed above) are built around
finding spatially distributed parameter fields, which are not scalar. Indeed, different
forms of regularization in such fields often correspond to a Gaussian process functional
prior over spatial (and in some cases temporal) parameter fields. Furthermore, what
does ‘reduced to the current structure of the mechanical model mean’? As a side note
the reference to Brinkerhoff (2016) is questionable: that work uses no gradients but
rather very basic MCMC' to find distributions over parameter values. However, there
are many other good examples of differentiable ice flow models.

We agree that this concept is not easy to communicate, and it might require some im-
provements in the way we are writing it. What we mean by this, is the fact that in
what we call ”scalar inversions” the structure of the model (i.e. the equation itself) is
not modified. In this type of inversions, parameters already present in the equation are
fitted. However, for the case of functional inversions, we are actually inverting a func-
tion, which can then be translated into a mathematical expression, thus expanding the
already existing equation. This implies that such inversions ”build” on top of already
existing models, expanding them by adding new parts to them. In order to convey this
point, we have restructured this paragraph in the following way:

” Nonetheless, all efforts so far have been applied to the inversion of scalar parameters
and sometimes their distributions, i.e. parameters that are stationary for a single inver-
sion giwen a dataset. This means that the potential of learning the underlying physical
processes is reduced to the current structure of the mechanistic model. No changes are
made to the equations themselves, with the main role of the inversions being the fitting
of one or more parameters already present in the equations. To advance beyond scalar
parameter inversions, more complex inversions are required, shifting towards functional
wwversions. Functional inversions enable the capture of relationships between a parame-
ter of interest and other proxy variables, resulting in a function that can serve as a law
or parametrization. These learnt functions can then be added in the currently existing
equation, thus expanding the underlying model with new knowledge.”

I think it’s perhaps a bit of a stretch to say that the neural networks in this work learn
‘spatiotemporal variability’. What they are learning is a parameterization of ice softness
as a function of surface temperature based on a number of training examples that happen
(or are designed) to span a practical domain and range of said function.

Agreed, but we believe it is a good way to convey the fact that any empirical law will
ultimately depend on some proxies, which in the context of the geosciences, vary in the
temporal and spatial dimensions. Of course the dependency is not on space itself, but
in this case the climate does depend on space (and also time). So actually, what the
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NN is learning is the spatial variability (i.e. between glaciers) of A. It is also capturing
a temporal variability, but since the climate is computed with a 30 year rolling mean,
the changes are almost imperceptible.

I think it’s too early to talk about assuming that C' = 0 here: the equation remains a
“diffusion” equation regardless of this choice and it is not necessary in order to be able
to define a D.

We agree that the equation is a diffusivity equation independently of the assumption
C' = 0. We have now introduced the title of diffusivity equation before the assumption
C = 0, but we believe this simplification is useful to introduce the more compact form
of the STA equation we use for this application.

‘propriety’ — ‘property’
Noted.

I suggest using u or some other symbolic choice to make clear that velocity is a vector
(rather than V).

Thanks for the suggestion. We have changed the notation to u.

I think that this section needs to be moved after 2.3, since it is not yet clear what
the embedded neural net is supposed to be representing in this case. Furthermore, the
function SIASolver is never defined. Does this yield a thickness or a velocity? Since ice
velocities are prognostic, why should this function take VO as an argument, when there
cannot be any dependency on this argument? Should this be an HO?

We chose to present the concept of UDEs before presenting the actual functional inver-
sion we use in this study in order to first understand the global concept before introduce
an example of it. The way we present UDEs, and Dy is independent from what that
function is actually parametrising. First we introduce the big idea, and then in section
2.3 we introduce an application of this idea.

We have added a definition for SIASolver. SIASolver yields a thickness, but then
by performing a simple transformation we can obtain the surface velocities, as ex-
plained in Equation 4. We have clarified all this in the following manner: ”For a
single glacier, if we observed two different ice surface velocities ug and uy at times tq
and ty, respectively, then we want to find 6 that minimizes the discrepancy between
and SIASolver(Hy, to,t1, Dy), defined as the forward numerical solution of the SIA equa-
tion yielding a surface ice velocity field following Equation 47



Sec. 2.2

Regarding ug, indeed, this should be Hj, since this is what is used by SIASolver as
initial conditions. We have updated this accordingly.

I really struggle with casting this problem as one that is time dependent and I am not
sure I see the value in doing so in this work. The reason for this is that the inversion
targets are velocities, which are diagnostic of thickness. Since thickness al some time
18 being considered as known, then one can simply compute the velocity at this time
and use it in computing a loss, updating the parameters of the embedded neural network
parameterization of hardness, etc. There is simply no need for a time dependent solver in
the procedure as written (although, to be sure there is utility to time-dependent adjoints of
glacier models). I think that the consequences of this independence are readily apparent
in the authors results in the sense that they find no trouble in recovering their chosen
ice hardness parameterization even with mis-specified surface mass balance rates: the
reason for this is that the mass balance doesn’t really affect the velocity and thus doesn’t
affect the recovered parameterization. I think that the authors allude to this themselves
around L324, but I would like to see some more robust justification for why all of the
fancy stuff is necessary here. Finally, as a suggestion for an augmentation that might
make all of this a little bit more compelling, is it possible to do all of this with thickness
as the predicted value rather than velocity?

This is a very good point. We tried to argue about these aspects in section 4.1 and
in the discussion (L.326-330). Regarding the use of V against H. Indeed, we have tried
to use H as the target for the inversions, but this seems to work only when no surface
mass balance is present. The mass balance alters the ice thickness, thus introducing too
much noise for the model to correctly invert A. On the other hand, V is not sensitive
to the surface mass balance, as we have shown in this study. Therefore, we believe V
is a much better target data for inversions regarding ice rheology in the presence of a
surface mass balance signal.

As we explained in L326-330, we do agree that this approach might seem quite overkill
for the problem at hand. But again, like the use of a NN, this is to prove that this
more complex setup can work with this more complex nonlinear PDEs. Nonetheless,
some preliminary tests trying to solve this problem with a time-independent method
(not shown in this study) showed that that sort of inversion is highly sensitive to noise.
Small changes in the surface conditions (i.e. due to mass balance), made it quite hard
for the inversion to easily converge. Since we believe the more complex approach with
a time-dependent solver has more potential, both in terms of data assimilation in the
presence of noise and for transient simulations, we decided to focus on this.

In order to clarify this, we have added the following sentence in the sub-section ”Ro-
bustness to noise in observations”: ”Various tests using H instead of u as the target
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data showed that A cannot be successfully inverted in the presence of a surface mass
balance signal.”

I think that the phrase ‘spatial’ should be dropped here. This is trying to recover A(Ts).
One could imagine a circumstance in which Ts is a function of space internally to each
training example, but it does not seem to be the case here (based on Fig. 3, although I
could misunderstand this)

As explained above, we do believe that predicting the relationship with respect to cli-
mate accounts for spatial dependencies. Here, the climate is calculated at each glacier’s
centroid. This means that the climate signal changes through space (i.e. among
glaciers). When referring to spatial dependencies, we are not referring to spatial changes
within a glacier, but among glaciers (i.e. in their coordinates).

We have added this nuance in the text: "The objective of Ae(T') will be to learn the
spatial variability (i.e. among glaciers) of A with respect to T for multiple glaciers in
different climates.”

I think that this part is confusing: the authors write that their function for A ignores
ice temperature, but isn’t that what the surface temperature is supposed to proxy? This
section is generally a bit unclear and could benefit from improved notation. For example,
I suggest using the symbol Ts for surface temperature, to make it clear that this is what
1s being fed into the parameterization.

Indeed, it ignores ice temperature, since it’s not an input feature of the NN. We use
surface air temperature as a proxy of ice temperature. As suggested, we have updated all
instances of T" to Ts Moreover, we have rephrased this sentence to make this point clearer:
"This relationship is based on the hypothesis that T, is a proxy of ice temperature, and
therefore of A. However, it ignores many other important physical drivers influencing
the value of A, such as a direct relationship with the temperature of ice, the type of
fabric and the water content.”

Why ‘timestamps’ and not just ‘times’?
We agree that the word times here is mode adequate.

Typically model runs require some type of spinup because the physics and various data
products are not all self-consistent, leading to unrealistically large transient behavior as
all of these things equilibrate. Was that the case here? Does it influence the results?

This is true. Nonetheless, for this case study we did not experience any initial shock in
the simulations that we had to deal with. Both the used initial ice thickness and the
transient simulation look quite smooth.
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I know that the CFL is mentioned in Appendiz A, but it would be worth summarizing
the methods used to ensure time-stepping stability conditions are satisfied here.

Thank you for the suggestion. We have added the following sentence explaining this
in the manuscript based on the current implementation of the numerical solver: ”The
method implements an adaptive temporal step size close to the maximum value satisfying
the CFL conditions for numerical stability at the same time that controls numerical error
and computational storage”

Why is noise applied to A rather than to the observed velocity? It’s not A that is being
observed, and thus it makes little sense to simulate noise in A.

This is a good point. We could have directly added the noise in the surface velocity.
However, in practical terms this accounts to almost the same. Perturbating A results in
surface velocity perturbations, so the result is equivalent. Moreover, since what we want
to learn is A, this also gives us insight on how close we can get to a noisy empirical law.
At the end of the day, empirical laws are just a fitted function minimising the error.
There is indeed a transformation from A to u, but we find it interesting to directly treat
the A space, since it related more with the ”fundamental” function we are trying to
learn.

Most readers will not be able to infer what (1,3,10,3,1) means when describing neural
networks. This either needs to be expanded here, or a discussion of neural network
architecture choice should be added as an appendix.

We agree with this point. We had added a more detailed explanation regarding the
architecture without relying in the extra notation.

Once again, I think that some clarification of what is actually happening here is in
order: the authors are using a very common formulation of a numerical ice flow model
in a standard way. The novelty here is the replacement of a static rate factor A with a
function A,(Ts) that is parameterized via a function that happens to be quite flexible (a
neural network). I don’t think that this is semantically equivalent to saying the problem
15 highly constrained by the PDE nature of the ice flow model.

I think our original point was not correctly communicated. What we intended to explain
here is that this approach is simpler than a classic data-driven formulation of the prob-
lem, where the neural network would have to learn the whole dynamics of the problem
directly from data, from a purely machine learning perspective. The fact that we use a
numerical solver to solve a differential equation, and we leave just a small subset of the
dynamics to the neural network, results in a much simpler learning problem, since we
are imposing the optimization problem with the structure of the STA. We have updated
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the text by explicitly mentioning this:

”Since the optimization problem is much more constrained by the structure of the solu-
tions of the PDE compared to a pure data-driven approach, a very small neural network
is enough to learn the dynamics related to the subpart of the equation it is representing

(i.e. A).”

Why is the final sigmoid necessary? What happens without it? I can understand the de-
sire to impose positivity (which could perhaps more easily be effected by log-transforming
A, as is commonly done), but why should there be an upper bound?

This sigmoid output function with capped values is necessary for the NN to avoid pro-
ducing A values that are too large. If an upper bound is not used, the NN can output
large values (i.e. much larger than 107'%), which when ”injected” into the SIA produce
numerical instabilities (because the minimum and maximum timestep in the solver may
be also constrained) or makes the explicit solver to take smaller timesteps to ensure
suitability, which then leads to more computationally expensive computation of the
gradients. Moreover, this is part of the philosophy of introducing any possible physical
constrain into the model. If we know a priori that the values of A have a given range,
it makes sense to include this into the model.

In order to clarify this, we have added the following sentence: Constraining the out-
put values of the neural network is necessary in order to avoid numerical instabilities
in the solver or very small stepsizes in the forward model than will lead to expensive
computations of the gradient.

I don’t understand this section. Why does adding a source term in the ODE produce
instability? What is the H matrix? Are you saying that you’re adding the mass balance
after the integration of the flow equations?

The way the solvers in the DifferentialEquations.jl library are coded, imply that one
can seamlessly change the solver used to solve a given differential equation. This means
that the time stepping mechanisms are hidden under the hood to the user. For the
solvers to work correctly, it is important not to add any substantial source during the
computation of a time step, since it can interfere with the internals of each solver.
We observed empirically the effect of numerical instabilities when adding the mass bal-
ance contribution at every step size in the solver. In order to add the contribution of
mass balance to the ice thickness we decided instead to add it in discrete steps every
month, which makes sense both computationally and numerically. For that, we used
DiscreteCallback, which is especially designed to handle events during the solving of a
differential equation. They get called when a given condition is met. E.g. for the mass
balance, once a month of time has elapsed.
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We have updated this sentence in order to clarify this and the reference to the "H
matrix”: "In order to add the surface mass balance term b in the SIA Equation we used
a DiscreteCallback from DifferentialEquations. jl. This enabled the modifica-
tion of the glacier ice thickness H with any desired time intervals and without producing
numerical instabilities.”

How long are these runs for? Is there sufficient geometric change over this time period
to warrant such a detailed approach (and are the changes large enough to significantly
affect A)? Shouldn’t A re- spond over fairly long time scales, since it’s ultimately ice
temperature rather than surface temperature that controls flow?

In this study, we mostly ran simulations for a period of 5 to 10 years. These periods are
much shorter than the whole W5E5 or ERA5 period available in the raw file given by
OGGM. Therefore, in terms of memory usage, it is much better to preprocess once the
file, dropping unnecessary variables and cropping the needed time period, than doing
so each time step (i.e. monthly) in the solver. This is not done only to drive changes in
A. The main reason behind this is the computation of the surface mass balance, which
needs a detailed evolution of the climate on the glacier. That is why the name of the
sub-section is called ”Surface mass balance”.

I think that this section is too deep with respect to AD to be of use to glaciologists reading
this, while being too shallow to be of use to AD practitioners. I suggest either delving
deeply into a software- engineering type study of the influence of different AD approaches
or to cut this section and simply describe the approach that was actually used. This goes
for Appendiz B as well, which is mostly a textbook definition of finite differences and
the adjoint method.

We agree with the reviewer about the fact that here we are dealing with different
audiences. Rather than targetting the glaciologists or general AD practitioners, here we
focus on the set of practitioners working in the Scientific Machine learning ecosystem
in Julia. There is a large amount of people currently attempting to use these tools for
complex problems in geophysics. Focusing on these aspects is useful for other researchers
working in different applications, as we have experienced in conversations with people
in the community. As mentioned in the abstract, we believe this is one of the interesting
bits of information that a lot of people who will read the paper will be looking for.

Referencing the potential broader impacts of cloud computing is fine, but a statement
like this needs to be backed up with some evidence: it is not immediately obvious that
the cloud improves scientific equity.
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We thank the reviewer for rising this point. Although we the authors have experienced
the benefits of cloud computing in terms of scientific and pedagogical inclusivity, unfor-
tunately there is no formal study assessing the validity of this statement. We hope to
see work in this line in the future. We have then decided to remove this sentence from
the manuscript.

This figure begs the question: why use a neural network for parameterizing A(T). It
1s clear that a quadratic or exponential would have worked just as well. Indeed, if the
authors had predicted the log of A, then it is likely that a linear model would have fit
these data just as well as the NN. I appreciate the potential for generalization of the NN
approach, but an ablation study with simpler models might be helpful here.

This is indeed true. As you mentioned, the main reason behind to choice of a NN is
its universality in terms of function representation plus their capacity of being easily
differentiable with respect to their parameters. We purposely chose a simple case in
order to evaluate the performance in a controlled environment. For any other real case
scenario, any family of regression function with good expressively will serve well, but
NN are particularly easy to train inside the SciML ecosystem in Julia. It is important
to emphasize that NNs are easy to differentiate, compared to many other methods (e.g.
including tree-based methods). These aspects are largely commented in Rackauckas et
al. (2020).

Again, because velocity is diagnostic, this is not a surprising outcome.
Agreed

There is a substantial literature on the joint inference of traction and rheological param-
eters (typically in a Bayesian framework which allows for a quantification of induced
covariance between parameters). In summary, this inversion is not necessarily ill-posed
‘by nature’ because there is scale separation between different processes.

Thanks for this comment. We have adjusted the text in order to nuance a bit more
this message in the following way: ”Nonetheless, despite a scale difference between
these two processes, this can be an ill-posed problem, since the only available ice velocity
observations are from the surface, encompassing both creep and basal sliding.”. Indeed,
this is an interesting point to explore in future work, also to evaluate different methods
that can do inference on these two different contributions to the diffusivity.

This description of the seasonal cycle of glacier velocities is perhaps oversimplified:
many glaciers exhibit minimal velocities at the end of summer and speed up during the
winter. Maybe reword to express a bit more nuance?
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Sec. 5.2.1

L374

Indeed, this is simplified. We don’t want to get into details about these processes here.
Nonetheless, for midlatitude temperate glaciers, this is the main trend. In fact, here we
are not talking about velocities, we are just mentioning the main contributions of creep
during winter, and the onset of sliding during summer (independently of the effects on
surface velocity).

I don’t understand the use of “initial conditions’ here. If we’re not doing time evolution,
then the conditions aren’t really ‘initial’, they’re just the geometry.

Good point. We have updated this term to ”geometry”.

It would be nice to see some references that illustrate the so-called ‘equifinality problem’.

We have added two references covering this equifinality problem.

Throughout this work, the uncertainty in inferred parameters is not addressed. I think
that there should at least be a discussion of the potential implications of such and avenues
for providing a more rigorous uncertainty quantification.

Indeed, uncertainty quantification is not addressed in this work. Although we recognize
this is an important piece in geophysical models and that informing about the confidence
we have in our estimates is useful, we decided to leave this point of discussion for future
work. Notice than in this setup uncertainty quantification needs to be carried on the
output of the NN, and it’s not uncertainty on the parameters of the same. Therefore,
this implies inferring the uncertainty of the learnt function.

This editorial on AD approaches is not relevant to the current work.

This paper has two distinct target audiences: (1) Computational glaciologists interested
in advanced techniques to make inversions to improve understanding of glacier physical
processes; (2) Computer scientists and statisticians interested in Universal Differential
Equations and the Julia ecosystem. This subsection is directly targeted to the second
audience. It might seem out of topic for the glaciology community, but this information
is highly relevant to Julia practitioners who are interested in using these methods for
their own research.

The authors seem to have a misunderstanding of PINNs, which involve positing a neural
network as the PDE solution and then using a point collocation method to adjust the
solution so as to minimize the solution residual in some norm. As such, a PINN is
not a surrogate, but rather is a numerical method for solving PDFEs in the same vein as
FEM or FD and does not require ‘training data’ in the way that it s usually understood
in the ML literature. In contrast, the work of Jouvet (which is indeed a surrogate,
but which does not employ PINNs in the described way) trains a CNN to operate as the
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approximate solution operator to the ice flow equations from many examples of solutions
generated by a ‘normal’ ice flow model (or perhaps by using a PINN).

We thank the reviewer for this comment. We agree that the two concepts of using
NN as numerical solver and emulators are explained in a rather confusing way in this
section. The connection here with PINNs is confusing and we rather wanted to refer
to the family of emulators that can be used to emulate a numerical solver for different
initial condition and parameter choices. We have removed the reference to PINNs and
keep the one to emulators.

Sec. 5.2.3 I do not understand this section.

We agree that this section it was difficult to read as it was presented. We have re-written
this section to make our point more clear and understandable.

Eq. A9,A10 I don’t understand the how these conditions related to step size choices. Is there another
reference that might illustrate this point more clearly?

This condition is not related to the choice of the stepsize. Instead, this condition is used
to force the condition that the ice thickness cannot take negative values. We apologize
for not including a further reference for this point. We have included the pertinent
reference to the manuscript: Imhof, M. A.: Combined climate-ice flow modelling of the
Alpine ice field during the Last Glacial Mazimum, VAW-Mitteilungen, 260, 2021



