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Abstract. This study enhances an existing global hydrological model (GHM), Xanthos, by adding a new water management 

module that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We 

remapped reservoirs in the GranD database to Xanthos' 0.5-degree spatial resolution so that a single lumped reservoir exists 

per grid cell, which yielded 3790 large reservoirs. We implemented unique operation rules for each reservoir type based on 15 

their primary purposes. In particular, hydropower reservoirs have been treated as flood control reservoirs in previous GHM 

studies, while here, we determined the operation rules for hydropower reservoirs via optimization that maximizes long-term 

hydropower production. We conducted global simulations using the enhanced Xanthos and validated monthly streamflow for 

91 large river basins where high-quality observed streamflow data were available. A total of 1878 (296 hydropower, 486 

irrigation, and 1096 flood control and others) out of the 3790 reservoirs are located in the 91 basins and are part of our reported 20 

results. The Kling-Gupta Efficient (KGE) value (after adding the new water management) is ≥ 0.5 and ≥ 0.0 in 39 and 81 

basins, respectively. After adding the new water management module, model performance improved for 75 out of 91 basins 

and worsened for only seven. To measure the relative difference between explicitly representing hydropower reservoirs and 

representing hydropower reservoirs as flood control reservoirs (as is commonly done in other GHMs), we use normalized-

root-mean-square-error (NRMSE) and the coefficient of determination (R2). Out of the 296 hydropower reservoirs, NRMSE 25 

is > 0.25 (i.e., considering 0.25 to represent a moderate difference) for over 44% of the 296 reservoirs when comparing both 

the simulated reservoir releases and storage time series between the two simulations. We suggest that correctly representing 

hydropower reservoirs in GHMs could have important implications for our understanding and management of freshwater 

resource challenges at regional-to-global scales. This enhanced global water management modeling framework will allow for 

the analysis of future global reservoir development and management from a coupled human-earth system perspective. 30 
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1 Introduction 

Reservoirs are pivotal in fulfilling various societal needs, including irrigation, hydropower production, flood control, domestic 

water supply, and navigation, to list a few(Belletti et al., 2020; Biemans et al., 2011; Grill et al., 2019). There are 6,862 large 

reservoirs ( ≥ 0.1km3) globally, with a cumulative storage capacity of 6,197 billion m3 in the Global Reservoir and Dam 35 

(GRanD) dataset (Lehner et al., 2011). Many of these reservoirs serve multiple purposes. However, if we partition reservoirs 

into categories based on their primary purposes, 1,789 are irrigation reservoirs with a total storage capacity of ~1,100 billion 

m3; 1,541 are hydropower reservoirs with a total storage capacity of ~3,880 billion m3; 542 are flood control reservoirs with a 

total storage capacity of ~509 billion m3; and the rest are water supply, navigation, or recreation reservoirs. Water storage and 

releases in any given reservoir are managed based on the reservoir's purposes. It is, therefore, important in Global Hydrological 40 

Models (GHMs) to represent how management strategies differ across reservoirs with different purposes in order to more 

accurately simulate water balances and explore the implications of alternative water management strategies. It is particularly 

important to distinguish the behavior of hydropower reservoirs from others because hydropower production represents the 

primary purpose for nearly 63% (based on GranD) of total global reservoir storage capacity.  

Hanasaki et al. (2006) proposed a generic reservoir simulation scheme for use in GHMs that has been widely used, 45 

denoted hereinafter as the Hanasaki scheme. This scheme categorizes all reservoirs into only two types based on their primary 

purposes: irrigation and non-irrigation reservoirs. All non-irrigation reservoirs are essentially simulated as flood control 

reservoirs. The Hanasaki scheme determines reservoir release in two stages. First, the provisional release is estimated. For 

irrigation reservoirs, the provisional release is estimated as a function of the demand for water placed on the reservoir, while 

provisional release from non-irrigation reservoirs is the long-term mean inflow. The provisional release is then adjusted based 50 

on the reservoir's degree of regulation (i.e., the ratio of reservoir storage capacity to inflow).  

Most existing GHMs (see Table 1) adopt the Hanasaki classification and treat reservoirs as irrigation or non-irrigation 

(Burek et al., 2020; Hanasaki et al., 2008; Pokhrel et al., 2012; Schaphoff et al., 2018; Müller Schmied et al., 2021; Sutanudjaja 

et al., 2018; van der Knijff et al., 2010; Wisser et al., 2010; Zhou et al., 2020). Several GHM studies have employed this 

scheme with some modifications, including H08 (Hanasaki et al., 2008), MATSIRO-TRIP (Pokhrel et al., 2012), WaterGAP2 55 

(Müller Schmied et al., 2021), WBMPlus (Wisser et al., 2010), and LPJmL4 (Schaphoff et al., 2018). For example, some 

studies have modified the technique for estimating the parameters for irrigation reservoirs, i.e., water demand and spatial extent 

of the dependent area of a specific reservoir, etc. (Biemans et al., 2011). LPJmL (Schaphoff et al., 2018) and PCR-GLOBWB 

(Sutanudjaja et al., 2018) estimate irrigation reservoir release based on water demand, and for all other primary purposes, these 

models use a default strategy where they release a pre-determined value (e.g., average discharge) while maintaining levels 60 

between a minimum and maximum storage. LISFLOOD (van der Knijff et al., 2010) and CWatM (Burek et al., 2020) do not 

classify reservoirs based on their purposes. Instead, they use three pre-determined releases based on storage: minimum outflow, 

non-damaging outflow, and normal outflow.   
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Most GHMs, however, still largely follow the Hanasaki scheme in treating all non-irrigation reservoirs as flood 

control reservoirs. In the Hanasaki scheme, the inflow, minimum pool level, maximum static full level, and water stored at the 65 

beginning of the hydrological year are the only significant factors controlling the magnitude and timing of water release 

(Hanasaki et al., 2006; Yassin et al., 2019). In reality, among non-irrigation reservoirs, hydropower reservoirs are typically 

operated differently from flood control reservoirs (Turner et al., 2017; Loucks et al., 2017). An essential difference 

between them is that hydropower reservoirs mostly operate with the objective of storing water over certain target levels to 

maximize releases through turbines (Loucks et al., 2017). The minimum and maximum releases corresponding to the minimum 70 

and maximum storage levels are also pre-determined. Furthermore, in large storage hydropower reservoirs with a large degree 

of regulation, storage levels may vary significantly over the course of a year (between the minimum and maximum storage 

levels) to avoid significant spillage and enable reliable hydropower generation throughout the year. Conversely, an essential 

feature of flood control reservoirs is to provide a reliable capacity to retain a predicted or unforeseen future flooding event by 

emptying existing reservoir storage. The objective of flood control reservoirs is to reduce peak flow magnitude, and storage 75 

level is only a concern when there is an incoming flood event (Votruba and Broza, 1989). Therefore, treating hydropower 

reservoirs as flood control reservoirs can significantly underestimate their operational benefits (Turner et al., 2017; Loucks et 

al., 2017). 

The model performance implications of representing reservoirs as flood control versus hydropower reservoirs are 

evident at the individual reservoir level. However, there remains a gap in the literature regarding the regional-to-global model 80 

performance implications of the representation of hydropower reservoirs, given that GHMs are designed for applications at 

this spatial scale but have not yet explored this question surrounding the representation of hydropower (Best et al., 2011; Döll 

et al., 2009; Hanasaki et al., 2008; Pokhrel et al., 2012; Schaphoff et al., 2018; Wisser et al., 2010; Voisin et al., 2013). This 

study overcomes the aforementioned limitation by demonstrating an enhancement to how water management is employed in 

Xanthos, a global hydrological model. Xanthos is a relatively lightweight model designed to interact with the components of 85 

the Global Change Intersectoral Modeling System (GCIMS), which includes the Global Change Analysis Model (GCAM) 

(Hejazi et al., 2013, 2014; Li et al., 2017) at its core, along with a broader suite of interacting energy, water, and land models. 

GCAM is an integrated tool for exploring the dynamics of coupled human-Earth systems and the response of these systems to 

global changes (Calvin et al., 2019). Aided by Xanthos, GCAM enables an internally consistent evaluation of time-evolving 

water supply (i.e., surface water, groundwater, and desalinated water) and demand dynamics across multiple sectors. As such, 90 

GCAM and Xanthos have been used in combination to study issues such as the relative contributions of humans and climate 

change to future global water scarcity (Graham et al., 2020), regional water scarcity (Birnbaum et al., 2022), and sub-national 

water scarcity (Khan et al., 2020; Wild et al., 2021b, c), as well as climate impacts on the future evolution of hydropower and 

the broader power sector (Arango-Aramburo et al., 2019; Santos da Silva et al., 2021). Nevertheless, the existing version of 

Xanthos, denoted here as Xanthos-original, focuses only on representing the natural global water balance without human 95 

interventions such as reservoirs (Hejazi et al., 2013; Liu et al., 2018; Vernon et al., 2019). Accounting for water management 
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in the way we propose will ensure that the crucial role of reservoirs is represented in regulating streamflow by mediating water 

availability and demand (Wan et al., 2018, 2017; Zhang et al., 2020, 2019, 2018).  

The specific objectives of this study are threefold: 1) to enhance Xanthos by adding a new water management module, 

where irrigation, hydropower, and flood control reservoirs are treated differently (this enhanced Xanthos is denoted as Xanthos-100 

enhanced); 2) to evaluate the performance of Xanthos-enhanced in terms of reproducing observed streamflow variability; and 

3) to understand the impacts of differentiating between flood control and hydropower reservoir operations on regional-to-

global scale water balance. The first two objectives represent improvements to Xanthos and, thus, potential improvements to 

a broad array of coupled human-earth system studies that rely on linkages between GCAM and Xanthos. The third objective 

has the potential to inform future improvements to a diverse array of GHMs (see Table 1) because our study is the first, to our 105 

knowledge, to explore the GHM performance improvements that can be gained by treating the operational characteristics of 

hydropower dams as distinct from those of irrigation and flood control dams. 

2 Methodology 

Xanthos is a distributed global hydrological model with a spatial resolution of 0.5 degrees.  Xanthos framework permits 

configurations of potential evapotranspiration estimation, runoff generation, routing, and post-processing 110 

modules(https://github.com/JGCRI/xanthos). By accounting for reservoir operation and local water withdrawal, Xanthos-

enhanced adds an opportunity to explore the influence of water management. This section focuses on the water management 

module but first briefly summarizes the runoff and river routing components for completeness. For more details on the runoff 

and river routing components, please refer to Li et al. (2017), Liu et al. (2018), and Vernon et al. (2019) 

2.1 Runoff Generation Module 115 

Runoff generation in Xanthos-original is based on the abcd model. First developed by Thomas (1981), abcd is a simple water 

balance model effective for capturing key hydrologic processes, and their interactions, in diverse climatic and landscape 

settings (Martinez and Gupta, 2010, 2011). Liu et al. (2018) introduced the abcd model into Xanthos as its runoff module, 

simulating direct runoff, baseflow, evapotranspiration, and soil moisture at a monthly time step. The sum of direct runoff and 

baseflow is denoted as total runoff, which feeds into the river routing module. The five parameters in the abcd model are 120 

described in Table 2. Parameters a and b pertain to runoff characteristics, while c and d relate to shallow soil moisture and 

deeper groundwater storage. The fifth parameter is a snowmelt coefficient, denoted as m. Since Xanthos-original is a 

distributed model, each grid cell has its own set of abcd parameters, though these parameters can optionally have the same 

values for all grid cells within a given river basin. Xanthos classifies the global water system into 235 large water basins. 

2.2 River Routing Module 125 

In Xanthos, the routing of water through river networks is simulated using a simple cell-to-cell river routing scheme, a modified 

version of the River Transport Model (Branstetter and Erickson, 2003), hereinafter denoted as MRTM. MRTM is essentially 

https://doi.org/10.5194/gmd-2023-12
Preprint. Discussion started: 1 February 2023
c© Author(s) 2023. CC BY 4.0 License.



5 

 

based on the linear reservoir routing method. The channel flow rate is estimated as a function of channel water storage, channel 

velocity, and flow distance from one grid cell to another (Zhou et al., 2015). MRTM uses spatially variable but temporally 

constant channel velocities, which were derived by averaging the long-term channel velocity simulations from Li et al. (2015). 130 

The flow distance values were derived by tracing the natural dominant river channel between grid cells to account for the 

meandering nature of rivers (Wu et al., 2011). Here we add a channel velocity adjustment coefficient (Table 2) to account for 

the uncertainties in our channel velocity field. For more details about MRTM, please refer to Zhou et al. (2015).    

2.3 Water Management Module 

To enhance Xanthos, we add a water management module on top of the river routing module. The water management module 135 

represents the two most common surface water management activities: local surface water extraction and reservoir operation. 

Local surface water extraction is water that is locally consumed within a particular grid cell. For example, thermal power plants 

use water for cooling purposes, and some of this water may evaporate and effectively be unavailable for use in a given grid 

cell. This local consumptive water use is subtracted from the total runoff produced by the abcd model. The remaining runoff 

is discharged into the channels and routed downstream using MRTM. If the consumptive water use is greater than the total 140 

runoff in a grid cell, the remaining runoff is zero. In such a case, the grid cell is considered to have unmet water demand or 

access to supply from other external sources, such as desalination or groundwater pumping, which are not represented in 

Xanthos. If there is a reservoir in a grid cell, local runoff (after removing water consumption) and upstream inflow are first 

intercepted and stored in the reservoir. Reservoir operation is then invoked to estimate the release from the reservoir to the 

downstream grid cells. Note that a grid cell can contain only one reservoir. That is, if there are multiple individual reservoirs 145 

co-located in the same grid cell, we first lump these individual reservoirs into a single reservoir with a storage capacity 

equivalent to all the combined reservoirs. The primary purpose of this lumped reservoir within a given grid cell is determined 

in two steps: 1) sum up the storage capacities of the individual reservoirs in four categories based on their primary purposes 

(irrigation, hydropower, flood control, and other); 2) in each category, we sum up the reservoir storage capacities. The 

aggregated reservoir's primary purpose is assigned to the category with the largest summed storage capacity, while the volume 150 

of the single lumped reservoir is equivalent to the sum of all individual reservoir storage capacities across all purposes. The 

reservoir operation rule is defined for each lumped reservoir based on its primary purpose. For reservoir purposes, if the 

estimated release is unavailable or less than 10% of the mean annual inflow, the monthly release is set to the minimum 

environmental flow requirement, i.e., 10% of the mean annual inflow (Tennant, 1976; Hanasaki et al., 2008; Müller Schmied 

et al., 2021). Next, we provide more details on the operating rule for each reservoir type (Fig. 1). 155 

2.3.1 Irrigation Reservoirs 

Irrigation reservoirs are represented by adapting the widely adopted Hanasaki et al. (2006) approach, which determines the 

reservoir release based on the upstream inflow and the total water demand from the downstream areas. More specifically, for 

each irrigation reservoir, the provisional release is given as 

https://doi.org/10.5194/gmd-2023-12
Preprint. Discussion started: 1 February 2023
c© Author(s) 2023. CC BY 4.0 License.



6 

 

 

𝑅𝑚,𝑦
′ = {

𝑖𝑚𝑒𝑎𝑛

2
∗ (1 +

𝑑𝑚,𝑦

𝑑𝑚𝑒𝑎𝑛
),              𝑑𝑚𝑒𝑎𝑛 ≥ 0.5 ∗ 𝑖𝑚𝑒𝑎𝑛

  𝑖𝑚𝑒𝑎𝑛 + 𝑑𝑚,𝑦 − 𝑑𝑚𝑒𝑎𝑛 ,    𝑑𝑚𝑒𝑎𝑛 < 0.5 ∗ 𝑖𝑚𝑒𝑎𝑛 ,   

              (1) 

where 𝑅𝑚,𝑦
′   is the provisional monthly reservoir release (m3/s) in month m and year y; 𝑑𝑚,𝑦  is the monthly mean demand from 160 

the downstream areas that are dependent on this reservoir (m3/s); 𝑑𝑚𝑒𝑎𝑛 is the long-term mean monthly water demand from 

the downstream areas (m3/s); 𝑖𝑚𝑒𝑎𝑛 is the mean annual inflow from upstream (m 3/s). Both the magnitude of long-term average 

water demands and the monthly timing of demands are used as inputs, so releases are responsive to the timing of typical 

demands. The Hanasaki scheme has an allocation coefficient, which is a coefficient for grid cells with more than one reservoir 

upstream, but here it is assumed to be one and is thus not shown in equation (1). This is because, in this study, the dependent 165 

areas of reservoirs on the same stream do not overlap. 

Though deterministic by nature, the provisional release equation for irrigation reservoirs is demand-driven.  

𝑑𝑒𝑚𝑎𝑛𝑑𝑚,𝑦 is calculated based on the delineated downstream dependent grid cells. If 𝑑𝑚𝑒𝑎𝑛 is greater than or equal to 50% 

of the mean annual inflow 𝑖𝑚𝑒𝑎𝑛, 50% of 𝑖𝑚𝑒𝑎𝑛 is continually released as a baseline, while seasonal release dynamics are 

determined by the ratio of monthly demand to 𝑑𝑚𝑒𝑎𝑛. If 𝑑𝑚𝑒𝑎𝑛 is less than 50% of 𝑖𝑚𝑒𝑎𝑛, the provisional release can be 170 

estimated as the mean annual inflow modified by the seasonal demand variation around the mean annual demand.  

The provisional release is further adjusted based on the degree of regulation (), initial storage at the beginning of yth 

operational year (𝑆𝑓𝑖𝑟𝑠𝑡,𝑦), and reservoir capacity reduction factor (𝜶). The degree of regulation is the ratio of reservoir storage 

capacity (C) to annual total inflow in cubic meters per year (Imean). The reservoir capacity reduction factor is a non-dimensional 

constant that reduces the total reservoir capacity reported in GranD to account for surcharge storage and storage reduction due 175 

to sediment accumulation. It ranges between 0~1, where a lower value means the reservoir capacity may have been 

significantly reduced by sediment accumulation, and at 0, the reservoir is not operational. The final release is estimated as 

follows: 

 

𝑅𝑚,𝑦 = {
(

𝑆𝑓𝑖𝑟𝑠𝑡,𝑦

𝛼𝐶
) ∗ 𝑅𝑚,𝑦

′                                                                                   𝛾 ≥ 0.5

(
𝜸

0.5
)

2

∗ (
𝑆𝑓𝑖𝑟𝑠𝑡,𝑦

𝜶𝐶
) ∗ 𝑅𝑚,𝑦

′ + (1 − (
𝜸

0.5
)

2

) 𝑖𝑚,𝑦                 0 ≤ 𝛾 < 0.5,

 

 

(2) 

where 𝑅𝑚,𝑦 is the monthly release (m3/s); 𝑖𝑚,𝑦 is the monthly inflow (m3/s); and 𝐼𝑚𝑒𝑎𝑛 is the annual inflow (m3/year).  

The GranD reservoirs can be classified into relatively large and small storage reservoirs based on the degree of regulation. If 180 

a reservoir's total storage capacity is less than 50% of its mean annual inflow, it is considered a hydrologically small reservoir, 

whereas greater than 50% indicates a hydrologically large reservoir. In relatively large reservoirs (upper part of equation 2), 

releases are relatively independent of their monthly inflows, while in relatively small reservoirs (lower part of equation 2), 

releases are dependent on their monthly inflows (Hanasaki et al., 2006).  

The total water demand for each reservoir is estimated by summing up water demand values from grid cells within 185 

the reservoir's downstream dependent area. The reservoir-dependent area is determined following Hanasaki et al. (2006), 
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Haddeland et al. (2006), and Biemans et al. (2011). Specifically, the downstream spatial extent of reservoir dependency along 

the main stem is determined based on an average stream velocity and the study's temporal interval (monthly). Assuming an 

average velocity of 0.5 m/s, the total travel distance of water in one month is 0.5 m/s × (30 × 24 × 3600 s/month) × (0.001 

km/m) = 1296 km/month. Therefore, the dependent downstream grid cells along the main stem are roughly 20 grid cells (0.5 190 

× 0.5 degrees, about 55 km along each direction) downstream. If other reservoirs are located within this travel distance, we 

assume the dependency on the current reservoir stops and is taken over by the other reservoir (the allocation coefficient in 

Hanasaki et al. (2006) is set to one for this reason). We then delineate a buffer zone within four–grid-cell ranges from each 

side of the main stem. Finally, assuming water movement is by gravity only, those grid cells with a mean elevation lower than 

that of the reservoir are identified as the reservoir's dependent grid cells within the buffer zone.  195 

2.3.2 Hydropower Reservoirs 

We represent the operation of hydropower reservoirs using a stochastic dynamic programming (SDP) approach (Loucks et al., 

2017; Turner et al., 2017). The SDP approach extends the dynamic programming approach to account for the uncertain nature 

of reservoir inflows explicitly (Loucks et al., 2017). It executes sequential decisions for temporal stages with nonlinear 

objectives while considering reservoir inflows as random variables (Loucks et al., 2017). For a known inflow 𝑖𝑚,𝑦  and 200 

hydrologic state variables in the current period (Stedinger et al., 1984), the SDP formulation estimates the benefit function, 

𝑓𝑚,𝑦, resulting from each release decision 𝑅𝑚,𝑦  as, 

 𝑓𝑚,𝑦(𝑆𝑚,𝑦, 𝑖𝑚,𝑦) = 𝑚𝑎𝑥𝑅𝑚,𝑦
𝐸{𝐵𝑚,𝑦(𝑆𝑚,𝑦, 𝑖𝑚,𝑦, 𝑅𝑚,𝑦) + 𝑓𝑚+1,𝑦(𝑆𝑚+1,𝑦, 𝑖𝑚,𝑦) } 

∀𝑆𝑚,𝑦, 𝑖𝑚,𝑦  𝑚 ∈ {1, … , 𝑇}, 
(3) 

where 𝑇 is the current system period (𝑇  = 12 for a monthly operating scheme). The reservoir state at each decision-making 

time step, i.e., month 𝑚 in the year 𝑦, is described by the storage 𝑆𝑚,𝑦 and the current inflow 𝑖𝑚,𝑦. For each state and time step, 

the release decision 𝑅𝑚,𝑦  is selected to maximize the immediate benefit 𝐵𝑚,𝑦(𝑆𝑚,𝑦, 𝑖𝑚,𝑦, 𝑅𝑚,𝑦) plus future benefit function 205 

𝑓𝑚+1,𝑦(𝑆𝑚+1,𝑦, 𝑖𝑚,𝑦), which depends on the resultant state of the system at time step 𝑚 + 1, i.e., the succeeding month.  

The method for simulating the hydropower reservoir operation is adopted from reservoir, an R package that contains 

several reservoir release decision-making tools, including the SDP techniques (Turner, 2016). The method was later employed 

in a global-scale study of hydroelectric plants' vulnerability to climate change (Turner et al., 2017). We integrated the SDP 

approach from this package (Turner, 2016; Turner et al., 2017) into Xanthos for hydropower release simulation. Here the SDP 210 

approach is first trained using the naturalized inflow to each reservoir to represent hydrological uncertainty, which we obtain 

by running MRTM without the water management option. The objective function is set to maximize hydropower production 

over the long term. The SDP procedure is executed to develop an optimal release policy for each month as a function of storage 

levels (see Fig. 1).  

The working concept for the SDP algorithm we implemented is summarized as follows. The working concept for the 215 

SDP algorithm we implemented is summarized as follows. Power (P in kilowatt) generated by a hydropower plant is given by 
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P = ρg*R*H, where ρg is the specific weight of water (kN/m3), R is turbine flow (m3/s), and H is the turbine head (m). g term 

is a constant term; hence the power generation variability is a function of R*H. Thus, maximizing the R*H translates to 

maximizing power production. The following four steps are used to identify an optimal policy (i.e., a hydropower-maximizing 

policy) from a given reservoir inflow realization. First, we discretize the maximum turbine flow (i.e., the 220 

maximum allowable flow rate through the turbine) into ten increments (i.e., between 0 to maximum turbine flow) and the 

storage capacity into 1000 (i.e., between 0 to storage capacity) increments. Discretization of decision and state variable space 

is a common practice in implementing dynamic programming-based methods(Piccardi and Soncini‐Sessa, 1991; Zeng et al., 

2019). Second, we developed a depth-volume relationship based on an assumed reservoir shape. Here we assume a wedge 

reservoir shape for all reservoirs globally in the absence of any global datasets to support more heterogeneous representations. 225 

The storage-volume relationship is employed to estimate storage depth (y) corresponding to 1000 discretized storage volume 

levels. The turbine head at each storage level was obtained from the sum of y and intake elevation. The intake elevation is 

computed as the maximum turbine head (i.e., the difference between reservoir pool level and turbine elevation) minus the 

maximum storage depth (equal to dam height in this study). Using the power equation, the maximum turbine head is computed 

from the plant installed capacity and maximum turbine flow. Third, we have an array of releases and turbine heads from the 230 

discretization; multiplying them as a matrix yields a 1000x10 matrix of RH (i.e., ten possible RH values for each storage level). 

The maximum one is chosen as the best policy, as it maximizes power production. The best policy for each month (i.e., January 

to December) at all 1000 storage levels is obtained through backward recursive iterations (i.e., from December to January)—

this yields what we call the release policy, a matrix of size 1000 (storage levels)x12 (months). Lastly, during streamflow 

simulation, the storage volume and month are used to look up the optimal release policy table (i.e., the 1000x12 table), and the 235 

corresponding optimal release is determined. When a storage level is at the reservoir's maximum storage capacity, release 

equals the maximum turbine flow that generates power at the power plant's installed capacity.  

2.3.3 Flood Control and Other Purpose Reservoirs  

The primary purpose of flood control reservoirs is to redistribute the floodwater from a flood season to a non-flood season. 

The operation of flood control reservoirs is also estimated following Hanasaki et al. (2006). 240 

 

𝑅𝑚,𝑦 = {
(

𝑆𝑓𝑖𝑟𝑠𝑡,𝑦

𝛼𝐶
 ) ∗ 𝑖𝑚𝑒𝑎𝑛                                                                                 𝛾 ≥ 0.5

(
𝛾

0.5
)

2

(
𝑆𝑓𝑖𝑟𝑠𝑡,𝑦

𝜶𝐶
 ) ∗ 𝑖𝑚𝑒𝑎𝑛   + (1 − (

𝛾

0.5
)

2

) 𝑖𝑚,𝑦,                  0 ≤ 𝛾 < 0.5,

 (4) 

where 𝑅𝑚,𝑦 is the monthly release (m3/s); and  𝑖𝑚,𝑦  is the monthly inflow (m3/s). In this study, release from reservoirs 

categorized as "others" is also determined as a function of inflow and storage characteristics only and is thus similar to flood 

control reservoirs. The logical reasoning for the equations employed here is in line with equation (2). For instance, as with 

irrigation reservoirs, the 𝜶 and 𝜸 parameters are used to adjust the behavior of flood control reservoirs. 

 245 
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2.4 Model Parameter Determination Strategy 

In total, there are seven parameters in runoff and routing water management modules added to Xanthos-enhanced. Typically, 

there are two strategies for determining the parameter values in a hydrologic model: calibration and estimation a priori (i.e., 

without calibration) (Beven, 2012). Parameter calibration requires thousands of model runs and is only feasible for 

computationally inexpensive models. The feasibility is in terms of the need to refactor models to run more efficiently, the 250 

budget required to scale simulations via high-performance computing resources, and the time needed for a comprehensive run. 

Furthermore, most hydrological models are subject to the equifinality issue since the number of parameters, in most cases, far 

exceeds the number of observational variables available for calibration (Beven, 2006). Parameter estimation a priori requires 

each parameter to be physically meaningful and have robust relationships with the existing climate or landscape information. 

These relationships are usually not readily available and have to be identified via good prior knowledge (e.g., Li et al., 2015) 255 

or machine-learning techniques (e.g., Abeshu et al., 2022; Li et al., 2021).  

This study proposes a new, two-stage parameter determination strategy (described in Fig. 2) that seeks to overcome 

existing limitations by (1) screening out parameter sets that are not physically meaningful and (2) significantly reducing the 

overall computational burden associated with identifying optimal parameter sets. We seek to determine seven Xanthos 

parameters in total: five from the runoff module and two from the routing module, including water management. We determine 260 

runoff parameters in the 1st stage and routing parameters in the 2nd stage. The runoff module runs separately from the routing 

and water management modules and is relatively lightweight, taking a standard personal computer less than two hours to 

execute it at a global scale for one million simulations covering a 20-year duration. Meanwhile, the routing and water 

management modules are much more computationally intensive because they run at a three-hour time step to ensure numerical 

stability (Li et al., 2011, 2015). The 1st stage takes advantage of the lightweight runoff module to exhaustively explore the 265 

runoff parameter space before handing off favorable subsets of parameters to the 2nd stage, which then limits its focus to the 

more computationally intensive search for the remaining two (routing) parameters. We describe the parametrization strategy 

in detail in the remainder of this section, whereas the results of implementing the strategy using a particular set of global data 

are detailed in Section 3.2. This strategy is designed based on the characteristics of the Xanthos modules, but we suggest that 

it has the potential to be useful in diverse global hydrological modeling contexts.  270 

In the first stage, we determine the optimal values for the five parameters in the runoff generation module (see Table 

2) in four steps. 1) We generate one million runoff parameter combinations using a Latin Hypercube Sampling (LHS) scheme 

(McKay et al., 1979)(Fig. S1). LHS is a statistical method for multidimensional parameter space sampling. The stratified 

sampling strategy employed by LHS ensures that all portions of the sampling space are represented (McKay et al., 1979). The 

user decides on the required number of parameter combinations and individual parameters' upper and lower bounds. Based on 275 

that, LHS simultaneously stratifies all input dimensions. 2) For each runoff parameter combination, we execute the runoff 

module to produce the simulated monthly total runoff time series at each grid cell in the study period. In this study, we 

uniformly apply the same parameter values to all the grid cells in a basin to generate monthly runoff time series at each grid 

cell. Parameter values vary among basins, just not across grid cells within a basin. 3) We calculate the simulated annual runoff 
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depth at each grid cell. We then take the spatial average across the grid cells within the upstream drainage area of a gauge 280 

station where observed streamflow data is available, denoted as Qsim_annual (mm/year). 4) At the river gauge station, we take the 

long-term mean of observed streamflow and divide it by the drainage area, Qobs_annual (mm/year). We then select the top 100 

runoff parameter combinations that produce the smallest normalized root mean square error (NRMSE) between (Qsim_annual – 

annual water consumption) and Qobs_annual.  

Before these 100 runoff parameter combinations are passed onto the 2nd stage, the runoff generated by the top 100 285 

parameters is further evaluated at the mean monthly scale to confirm that the selected parameter combinations yield reasonable 

runoff simulations in terms of timing. For this purpose, we compare the peak time of the simulated mean monthly runoff (i.e., 

the calendar month when the mean monthly runoff is highest, denoted as simulated peak runoff time hereinafter) with that of 

GRDC mean monthly flow (i.e., the calendar month when the mean monthly flow is highest, denoted as observed peak flow 

time) (Fig. S2). Note that the mean monthly runoff employed here is a simple spatial average with no channel routing. 290 

Therefore, a reasonable simulated peak runoff time is expected to be earlier than the observed peak flow time by 0~3 months. 

The range of 0~3 months is estimated by applying a 1.0 m/s travel velocity to the longest river in the world, the Nile River, 

which yields a total travel time between 2.0 and 3.0 months.  

The selected 100 parameter combinations are then passed on to the 2nd stage, where we determine the final optimal 

parameter set in four steps. 1) We set the reservoir capacity reduction factor (α ) to a value of 0.85 following Hanasaki et al. 295 

(2006). 2) Channel velocity adjustment coefficient (β ) is sampled in a relatively uniform manner within the range of 0.1~10.0. 

In total, there are 19 possible β values to be considered, i.e., β = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 

6.0, 7.0, 8.0, 9.0, 10.0.  3). For each of the 100 selected runoff parameter combinations, we use the corresponding simulated 

runoff time series as the inputs and run the river and water management modules 19 times (each time corresponds to one of 

the 19 β values and α = 0.85) at a 3-hour time step. 4) We validate the simulated streamflow time series at the grid cell where 300 

the gauge station is located against the observed monthly streamflow time series. From Step (3), there are 1900 simulations 

for each basin, each corresponding to a combination of five runoff parameters and one routing parameter (a, b, c, d, m, and β). 

The final optimal parameter set is the one that produces the best model performance (per the performance metrics discussed 

in the following Section 2.5). Note that, within each basin, we held the set of parameters constant across the cells, which is a 

reasonable simplification since, typically, there is no sufficient observational data to effectively capture the spatial 305 

heterogeneity of these parameters within each basin. 

This new strategy has several benefits: 1) It largely alleviates the equifinality issue by effectively sampling the whole 

parameter space. Our experimental design covers the full theoretical value range for each of the six parameters. 2) It reduces 

the computational load to a reasonable level. Our suggested approach includes one million model runs for the runoff module 

at the monthly time step for each river basin and another 1900 runs for the river routing and water management modules at the 310 

three-hour time step. We suggest that this new strategy applies to those hydrologic modeling frameworks where 1) some 

module(s) is computationally much cheaper than the others and 2) these modules can run sequentially instead of 

simultaneously. A demonstration of this parameter determination strategy is provided in Section 3.   
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2.5 Metrics for Model Assessment 

To evaluate model performance, we use the Kling–Gupta efficiency (KGE) (Gupta et al., 2009), which is given by 315 

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑆𝑖𝑚

𝜎𝑂𝑏𝑠
− 1)

2

+ (
𝜇𝑆𝑖𝑚

𝜇𝑂𝑏𝑠
− 1)

2

, (5) 

where  𝜎𝑠𝑖𝑚, 𝜎𝑜𝑏𝑠, 𝜇𝑠𝑖𝑚, 𝑎𝑛𝑑 𝜇𝑜𝑏𝑠 are the standard deviation of streamflow value for a given simulation, the standard deviation 

of observed streamflow, the simulated mean, and the observed mean values, respectively. A higher KGE indicates a better 

degree of agreement between the simulated and observed variables, and a KGE value of 1.0 indicates perfect agreement. The 

KGE value is -0.41 if the simulated monthly flow equals the observed long-term mean flow for all months (Knoben et al., 

2019). 320 

While KGE is a useful means of evaluating the skill of a particular set of model parameters in reproducing observed 

streamflow, we also wish to directly compare simulation outputs against one another across multiple model configurations and 

parameterizations for both reservoir storage and reservoir release. To enable this comparison, we employ the following indices 

that capture key aspects of reservoirs' regulation behavior. 

Reservoir Impact Index (RII): RII is the ratio of a reservoir storage capacity (C) to annual mean flow ( 𝐼𝑚𝑒𝑎𝑛) (López and 325 

Francés, 2013; Wang et al., 2017). RII is similar to the Hanasaki scheme's degree of regulation term, except that RII is 

computed at the GRDC site instead of the reservoir site. Low and high values of RII indicate that the stream is lightly and 

heavily regulated, respectively. 

 
𝑅𝐼𝐼 =  

𝐶

𝑄𝑚𝑒𝑎𝑛
 (6) 

Where Qmean is the observed annual mean flow at the GRDC site in m3/year.   

Seasonality Index (SI): SI represents the degree of variability in monthly release or storage within a year and is computed with 330 

the Walsh and Lawler (1981) method.  

 

𝑆𝐼 =  
1

𝑋̅
∑ |𝑋𝑚 −

𝑋̅

12
|

12

𝑚=1

 (7) 

Where Xm is the mean monthly value for the month m and 𝑋̅ is the annual mean value. SI ranges between 0 and 1.833, 

indicating uniform distribution over the 12 months and a single-month occurrence, respectively. 

Coefficient of Variation (CV).   CV is the ratio of standard deviation to mean and is employed here to depict the extent of inter-

annual variability in storage and release.  335 

No reliable global observational datasets exist for reservoir storage levels and releases, so it is difficult to establish 

whether the metric values (for RII, SI, and CV) from one model configuration versus another are closer to reality. Despite this 

limitation, comparing metric values across simulations is still useful to understand the effects of modeling assumptions (e.g., 

representing hydropower reservoirs as such instead of as flood control reservoirs). To enable comparison, we measure the 
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difference or closeness between two alternative time series, representing two alternative model configurations or 340 

parametrizations, using normalized-mean-square-error (NRMSE) and coefficient of determination (R2). NRMSE typically 

captures the magnitude difference between two-time series, while R2 measures the proportion of the variance explained 

(Moriasi et al., 2007). 

2.6 Metrics for Sensitivity Analysis 

As we have discussed, equifinality is a crucial issue when calibrating a hydrological model that is highly parameterized. To 345 

assess model robustness, it is important to evaluate how sensitive the model's performance is to each model parameter. The 

sensitivity analysis approach we propose here is moderately different from traditional methods since we implement a novel 

parameter determination strategy (see Section 2.4). The sensitivity analysis aims to identify the most and least influential model 

parameters. Such understanding can help identify priorities of parameter estimation in future works and simplify or improve 

the model structure. Two separate sensitivity analyses are performed. The first sensitivity analysis is performed before 350 

parameter selection using results from all one million parameter sets. Here, an NRMSE for each of the one million parameter 

sets was computed between simulated annual runoff and observed annual runoff. The annual runoff is observed as annual 

streamflow converted to an equivalent depth over the upstream contributing basin area. The simulated annual runoff is 

calculated by subtracting the basin's annual water consumption from the total runoff. The correlation coefficient was then 

computed between an array of the computed NRMSE and each runoff parameter to evaluate the correlation between the change 355 

in parameter values and model performance. We computed five correlation coefficients from the one million runs, i.e., between 

model performance and the five runoff parameters for each basin. 

After applying the new parameter selection strategy, the second sensitivity analysis is carried out on 1900 samples 

(i.e., samples generated from combining the 100 samples from the first stage with 19 discretized β values). Each sample 

includes the five runoff parameters and the velocity adjustment coefficient employed for streamflow simulation during the 360 

second stage. Here, the model performance (KGE) is computed between the monthly observed and simulated streamflow. We 

switched to KGE for monthly time series evaluation as we are interested in metrics that reflect the agreement in both magnitude 

and patterns of monthly flow. The correlation coefficient is computed between the KGE and each parameter. We obtain six 

correlation coefficient values for each basin, corresponding to the five abcd model parameters and the routing parameter (i.e., 

β). As with its interpretation in Stage 1 of the sensitivity analysis, here, a higher correlation coefficient between a parameter's 365 

values and the corresponding performance metric (in this case, KGE) suggests that the variance in model simulation outcomes 

is more strongly related to the changes in the target parameter, hence more sensitive to this parameter.  

3 Global Application and Results 

We apply Xanthos-enhanced over the global domain at a 0.5-degree resolution and monthly time step. The study period is 

1971-1990 based on the availability of forcing and observed streamflow data over all the basins. We divide the study period 370 

into a calibration period, 1971-1980, and a validation period, 1981-1990. 
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3.1 Data and Numerical Experiments 

For this study, we obtain gridded global monthly climatic data, including precipitation, maximum temperature, and minimum 

temperature, from the WATer and global CHange (WATCH; Weedon et al., 2011) dataset, which covers the period 1971-

2001. We obtain global reservoir data from the GRanD dataset (Lehner et al., 2011) (Fig. 3a). Monthly water demand and 375 

consumptive water use data for various sectors at a 0.5-degree resolution are from (Huang et al., 2018b, a), which are available 

from 1971 to 2010 (Fig. 3c). Observed streamflow data for model parameter identification and validation are obtained from 

the Global Runoff Data Center (GRDC) (https://www.bafg.de/GRDC). We begin by comparing Xanthos' corresponding 

MRTM upstream area (after locating each gauge station within a Xanthos grid cell) with the GRDC gauge contributing area. 

If the drainage area difference is larger than ±20%, we look for an option to readjust the station to one of the eight neighboring 380 

grid cells. Here, only gauges within ±20% in area difference (3097 GRDC gauges) are retained for further use in this study. 

Temporal filtering of these gauges with the availability of 20 years (1971-1990) of continuous data reduced the number of 

stations to 1178. These gauge stations are located within 91 of the 235 Xanthos basins. For model validation purposes, we 

select the GRDC gauge with the largest upstream area within each basin, i.e., 91 GRDC gauges in total (Fig. 3b). 

The GRanD database we use here only considers reservoirs with storage capacity values greater than 0.1 km3. We 385 

also exclude reservoirs with missing storage capacity values and those identified with purposes such as tide control, which 

reduces the total GranD reservoirs from 6862 to 6847. For any grid cell with more than one reservoir, we aggregate all of the 

reservoirs located locally (i.e., within the grid cell) into a single reservoir with a storage capacity equivalent to that of the local 

reservoirs combined. The purpose of the combined storage is determined by the two steps described in Section 2.3. As a result 

of this process, the 6847 GranD reservoirs are remapped into 3790 reservoirs. Among the 3790 reservoirs, 1095, 598, and 2097 390 

are categorized as irrigation, hydropower, and flood control and others, respectively (Fig. 1). Further, of the 3790 global 

reservoirs and only 1878 of them are located within 91 basins simulated in this study. Out of these 1878 reservoirs, the primary 

purpose is hydropower for 296, irrigation for 486, and flood control/others for 1096. 

With the aforementioned data, we carry out three global simulations to explore the performance of the enhanced 

Xanthos (see Table 3 ): 1) A simulation with Xanthos-original, denoted as Xanthos-original-sim, where the simulated flow is 395 

obtained by routing calibrated runoff data generated by Liu et al. (2018) with calibrated abcd model parameters but no water 

management; 2) A simulation with Xanthos-enhanced denoted as Xanthos-enhanced-sim, where we run the runoff, river 

routing, and water management modules with the final optimal parameter values determined following the new strategy as 

outlined in Section 2.4; 3) A simulation similar to Xanthos-enhanced-sim, but treating all the hydropower reservoirs as flood 

control reservoirs, denoted as Xanthos-enhanced-sim2. By comparing Xanthos-enhanced-sim with Xanthos-original-sim, we 400 

demonstrate the overall improvement of model performance from Xanthos-original to Xanthos-enhanced due to a combination 

of the new parameter determination strategy and new water management module. Note that in Liu et al. (2018), the traditional, 

brute-force calibration strategy was invoked since Xanthos-original only consists of a monthly runoff generation module and 

runs very quickly. By comparing Xanthos-enhanced-sim with Xanthos-enhanced-sim2, we isolate the net difference between 
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simulating hydropower reservoirs based on Eqn. (3) and the traditional approach employed by GHMs, i.e., treating hydropower 405 

reservoirs as flood control reservoirs based on Eqn. (4).  

3.2 Parameter Determination Outcomes 

We apply the two-stage model parameter determination strategy described in Section 2.4 using the global datasets described 

in Section 3.1. The LHS generates a parameter set using defined bounds (see Fig. S1). Here, we describe the results from the 

implementation of the two-stage strategy using the Amazon basin as an example. A subset of one hundred good parameter sets 410 

(filtered) are identified among the one million parameter sets (raw) (see Fig. S2a). The mean monthly runoff generated with 

the subset and the observed mean monthly runoff (see Fig. S2b) showed that the simulated runoff peak time is earlier than the 

streamflow peak time, within the 1-3 month range established in Section 2.4. The peak time differences (i.e., the difference 

between GRDC mean monthly peak flow time minus simulated runoff peak flow time) corresponding to the selected sets of 

parameters are among the best of the one million samples when ranked in an ascending order based on an absolute value of 415 

the peak time difference (Fig. S2c). The robustness of the implemented procedure is justified by the presence of a range of 

parameter values between their upper and lower bounds (see Fig. S2d), indicating that the selected parameters are not 

concentrated within a specific parameter space. These characteristics have also been observed in most of the basins evaluated 

for this study (figure not shown). We select one parameter combination for each basin that results in the best KGE value. The 

spatial maps of the final optimal parameter values are shown in Fig. S3. In most cases, optimal values for parameter a are close 420 

to the upper bound, while those of parameter d is closer to the lower bound. Parameter b is low in basins in the high-latitude 

sub-region; to some degree, this may be attributed to the fact that, in general, evapotranspiration decreases towards most of 

the high-latitude regions. Parameter c seems to be lower in the eastern hemisphere and has relatively no distinct pattern in the 

western hemisphere basins. The snowmelt parameter m is only above zero in regions with significant snow contributions. The 

parameter β is higher in high-latitude basins. β was only introduced to readjust the global velocity data after noticing 425 

unreasonably delayed monthly streamflow at many sites; hence applications of our methodology that use more reliable velocity 

data should consider setting β to a value of 1. The high values of β in the higher latitude basins could be attributed to the 

original velocity estimation approach's systematic bias in cold regions (Li et al., 2015). 

3.3 Global Evaluation 

Overall, Xanthos' performance has improved after adding the water management module. Figure 4 shows the violin plots of 430 

KGE between the GRDC monthly observed streamflow and those simulated from the Xanthos-original-sim and Xanthos-

enhanced-sim simulations for the 91 basins during the calibration (Fig. 4a) and validation (Fig. 4b) periods, respectively. In 

most cases, during both calibration and validation periods, the Xanthos-enhanced-sim simulation's KGE values are consistently 

higher than those of the Xanthos-original-sim simulation. For the Xanthos-enhanced-sim simulation, the KGE value is no less 

than 0.5 and 0.0 for 59/39 and 89/81 basins during the calibration/validation period, respectively. 435 
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Figure 5 shows that adding water management in Xanthos-enhanced-sim has improved the KGE values (i.e., KGE values 

increased by more than 0.05, compared to the Xanthos-original-sim) in 75 basins and worsened the KGE values (i.e., KGE 

values decreased by more than 0.05) in only 7 basins. In the remaining nine basins, KGE did not significantly change. For 

basins in which performance worsened, the decrease in performance is likely due to factors such as the uncertainties in the 

climate forcing data and GRDC streamflow observations (Moges et al., 2021) and the lack of spatial heterogeneity in the 440 

estimated parameters at the sub-basin scale (i.e., the parameters are uniform across all grid-cells in a given basin). 

To further examine Xanthos' performance in more detail, Fig. 5 also shows the monthly time series of simulated and 

observed streamflow at the 12 GRDC stations (out of the 91 evaluated here) with relatively higher average annual water 

demand in their geographical region (see Fig. 3c) and hence stronger water management effects. The twelve basins are Rhine, 

Po, Siberia North Coast, Ziya He Interior, Ganges-Brahmaputra, Chao Phraya, Murray-Darling, South Africa South Coast, 445 

Uruguay-Brazil South Atlantic Coast, East Brazil South Atlantic Coast, California Basin, and Mid Atlantic Basin. Compared 

to Xanthos-original, Xanthos-enhanced-sim better captures the seasonal variations of streamflow, more closely matching the 

observed streamflow during the high-flow and low-flow periods. This highlights the importance of the reservoir regulation 

effect (e.g., attenuating high flows and augmenting low flows) that Xanthos-original has not captured.  

3.4 Parameter Sensitivity Analysis 450 
To identify which parameters are most critical (i.e., contribute most to variance in key model outputs), we evaluate the 

sensitivity of the model's performance to the changes of a, b, c, d, m, and β, as shown in Fig. 6. Note that we fix the value of 

α at 0.85 following Hanasaki et al. (2006) in this study. We first carry out the sensitivity analysis on the runoff parameters 

only based on the first-stage parameter determination results (Fig. 6a). The results show a significant sensitivity (correlation 

coefficient > |± 0.4|) only for parameters a (which represents the propensity of runoff to occur before the soil is fully saturated) 455 

and b (which represents an upper limit on the sum of evapotranspiration and soil moisture storage). The correlation between 

parameter a and model performance is negative, indicating it is inversely related to the NRMSE computed from annual 

observed and simulated runoff. Parameter a controls the amount of runoff generation when soil is undersaturated, and the 

relationship suggests annual runoff is estimated better when saturation excess runoff is not the primary process. Parameter b 

controls the soil saturation level. Hence, it is responsible for the memory of the basin. Therefore, the positive correlation 460 

indicates that the difference between simulated and observed annual runoff increases as the basin memory increases.  

A similar analysis is made for the set of parameters generated by combining the one hundred best abcd model 

parameters set with the velocity adjustment parameter (β ) (Fig. 6b). Here, it appears that β has a stronger influence on model 

performance than the other parameters. This is expected because the differences among the 100 selected runoff parameter 

combinations are supposed to be small (e.g., see Fig. S2a (filtered) for Amazon). For β, the sensitivity corresponds to 465 

adjustment in flow timing, leading to improved KGE. Note that this parameter can be avoided with a better estimate of spatially 

and temporally varying flow velocity. 
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3.5 Hydropower Reservoirs 

Among the 91 basins we studied here, 51 have one or more hydropower reservoirs included in GRanD and hence in our 

simulations. Recall that these reservoir counts reflect our lumping of multiple reservoirs together within any given grid cell, 470 

so 296 reservoirs in our methodology reflect 433 actual reservoirs. At each of the 296 reservoirs, the simulated release and 

storage time series from Xanthos-enhanced-sim2 are compared with those from Xanthos-enhanced-sim to identify the benefit 

of capturing hydropower operations. 

Figure 7 compares Xanthos-enhanced-sim and Xanthos-enhanced-sim2 intra-annual (Fig. 7a and b) and inter-annual 

(Fig. 7c and d) variability. The Seasonality Index (SI) summarizes the intra-annual variability; weak seasonality (i.e., low SI) 475 

indicates that most months contribute significantly to the annual flux magnitude, and strong seasonality (i.e., high SI) indicates 

that very few months contribute to the annual flux magnitude. Although SI showed more difference, both the SI and CV for 

release fall on the 1:1 line for most reservoirs (Fig. 7a and c), indicating that in most cases, the two scenarios have less impact 

on the intra- and inter-annual variability of release. On the other hand, both SI and CV values for storage at most reservoirs 

show a significant difference, indicating that the two experiments significantly disagree in inter-annual and intra-annual 480 

variability of storage. We emphasize that the significant takeaway from this comparison is not that one experiment's storage 

and release simulations are more variable than the other but that the two experiments led to substantially different seasonal 

and annual patterns. This highlights the drawbacks of representing hydropower reservoirs as flood control reservoirs. 

Figure 8 summarizes the reservoir storage and release comparisons between Xanthos-enhanced-sim and Xanthos-

enhanced-sim2 with an empirical Cumulative Distribution Function (CDF) that plots R2 (and/or NRMSE) values across all 485 

296 hydropower reservoirs according to their rank-ordered exceedance probabilities. The spatial map for the comparisons is 

also shown in Fig. S4. Recall that a high NRMSE value means a significant magnitude difference between the two different 

time series, and a low R2 value means a significant timing difference. Of the 296 reservoirs, the simulated reservoir releases 

significantly differ between the two model configurations in ~ 45 % of reservoirs in terms of magnitude (if we set a threshold 

at NRMSE > 0.25) (Fig. 8b) and at only ~28% in terms of timing (if we set a threshold at R2 < 0.5) (Fig. 8a). According to 490 

Figs. 8a and 8b, treating hydropower reservoirs as flood control reservoirs does not significantly impact the model simulated 

reservoir releases from most reservoirs, which partly supports the lack of differentiation between hydropower and flood control 

reservoirs in previous studies. However, the simulated reservoir storages are significantly different for ~ 44 % of the 296 

reservoirs in terms of magnitude (NRMSE > 0.25) (Fig. 8b) and ~90% in terms of timing (R2< 0.5) (Fig. 8a). Treating 

hydropower as flood control reservoirs thus have much more impact on the simulation of reservoir storage than releases, 495 

particularly in terms of timing. The NRMSE and R2 values in Fig. 8 do not appear to relate to the reservoir sizes (figure not 

shown).  

To explore the dynamics responsible for these broad patterns in Fig. 8, we select the Yenisey basin here to study in 

more detail. Here, the Yenisey basin is selected for demonstration because it has a mix of only flood control and hydropower 

reservoirs having just six reservoirs upstream of the GRDC site. In the Yenisey basin, the upstream area of the GRDC station 500 

is dominated by hydropower reservoirs, i.e., four hydropower reservoirs and two flood-control, as shown in Fig. S5a. Note 
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that one of the two flood control reservoirs is located downstream of the hydropower reservoirs (Fig. S5a). This spatial 

arrangement allows us to evaluate the effects of simulating hydropower reservoirs as flood control reservoirs without 

interference from the third purpose (i.e., in cases where an irrigation reservoir is located downstream of a hydropower 

reservoir). Figure S5b shows the total simulated storage (sum of all six reservoirs) from Xanthos-enhanced-sim2 and Xanthos-505 

enhanced-sim. The difference in the magnitude of total simulated storage between the two simulations is very significant (KGE 

between them is 0.44). In Xanthos-enhanced-sim2, where all reservoirs are simulated as flood-control, the storage is relatively 

more variable from month to month, while Xanthos-enhanced-sim changes are more smooth, likely because the release aims 

to maintain mean annual flow in Xanthos-enhanced-sim2, which leads to releases that exceed inflow during the drier seasons 

and quick fill-up during the wet seasons. The streamflow comparison at the GRDC site (Fig. S5c) indicates that the difference 510 

in the simulated reservoir releases is also significant. The KGE values drop from 0.366 to 0.152 during the calibration period 

(1971-1980) and from 0.293 to 0.008 during the validation period (1981-1990) when simulating the hydropower reservoirs as 

flood control.  

For those basins where hydropower reservoirs serve a secondary purpose compared to irrigation, flood control, or 

other types of reservoirs, there is no significant difference in the KGE values between Xanthos-enhanced-sim2 and Xanthos-515 

enhanced-sim, suggesting that treating hydropower reservoirs as flood control reservoirs do not lead to a significant difference 

in streamflow simulations at the regional/basin level. Figure 9 depicts the RII of the hydropower reservoirs on flow at GRDC 

stations for basins with one or more hydropower reservoirs (i.e., 51 of the 91 basins). The RII, shown here, corresponds to a 

hydropower reservoir with the largest storage within the basin. Figure 9 also shows a time series plot of the relative difference 

between Xanthos-enhanced-sim2 and Xanthos-enhanced-sim storage and release for ten basins with relatively higher RII 520 

within different geographic regions. 

The time series plots in Fig. 9 show the Storage Relative Difference (S-RD) and Release Relative Difference (R-RD) 

between the two scenarios. S-RD represents Xanthos-enhanced-sim storage minus Xanthos-enhanced-sim2 storage scaled by 

the mean of the two storages. Similarly, R-RD is the scaled difference of simulated releases. From the time series plots of S-

RD, one can see that, in some example basins, S-RD is > 0 (Fig. 9).  This characteristic implies that when a reservoir is 525 

simulated as a hydropower reservoir, it generally maintains high storage with less variation than when simulated as a flood 

control reservoir. This can be attributed to our release policy for hydropower simulation, which targets maximum long-term 

revenue, where reservoir storage level is an essential component. Out of the 296 reservoirs, about 150 of them demonstrate 

this type of behavior for at least 50% of the study period (1981-1990). 

Flow downstream of hydropower reservoirs is also influenced by the change of reservoir purpose from hydropower 530 

to flood control (Fig. S5c). Similarly, a comparison of simulated releases (Fig. S6) shows the difference between the simulated 

monthly releases in the peak and low flow periods. On the one hand, the release from the flood control reservoirs is high during 

peak flow periods because they aim to create space for the next flood event. On the other hand, the release from the hydropower 

reservoirs can only go up to the maximum turbine flow plus spillover. The Hanasaki et al. (2006) approach readjusts the mean 

annual flow depending on the reservoir's degree of regulation (i.e., capacity ratio to mean annual inflow). Therefore, in 535 
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Xanthos, given that the readjusted mean annual flow is greater than the environmental flow (10% of the mean annual flow), 

release remains constant during the low flow periods. For hydropower reservoirs, low-flow releases are determined by a release 

policy intended to maximize revenue. Because of the changes in reservoir purpose, downstream reservoir releases are also 

modified. 

Taken together, Figs. 7-9 and Figs. S4-S6 suggests that individual hydropower and flood control reservoirs behave 540 

very differently under the same climate and upstream conditions, particularly in terms of the simulated reservoir storage 

variations. Regarding regional-scale simulations, treating hydropower reservoirs as flood control leads to noticeably different 

simulated streamflow only in the basins where hydropower reservoirs dominate over the other types of reservoirs. For instance, 

for the Lower Colorado (RII=1.92), the Caspian Sea South West Coast (RII=1.2), Yenisey (RII=1.02), the Hudson Bay Coast 

(RII=1.32), and the Sao Francisco (RII=0.67) basins, KGE improvement was >0.1 over the calibration period. The indicated 545 

RII corresponds to the total effect of hydropower reservoirs located upstream of the basins GRDC site. This observation will 

have critical implications in the studies where freshwater storage is the core interest since reservoir storage is a critical 

component of terrestrial freshwater storage. For instance, the number of hydropower reservoirs in many global basins is rapidly 

increasing (Zarfl et al., 2015). Hence, the potential of simulating them in GHMs is vital, as many of these basins' water use 

characteristics with hydropower reservoirs could change in the next decade or two if hundreds of new dams are built. Further, 550 

the observed distinct characteristics between hydropower and flood control reservoir storages have substantial implications for 

reservoir sedimentation, which is another essential feature the GHMs are increasingly looking to capture. 

The results in this paper highlight some promising potential outcomes from accounting explicitly for hydropower 

objectives and operational behavior in GHMs. However, we note that it is premature to conclude from the above analysis that 

treating hydropower reservoirs as flood control leads to poor hydrological simulations and vice versa. Many reservoirs, 555 

particularly large ones, serve multiple purposes, so their behavior is controlled by multiple factors. This study takes the same 

simplification strategy adopted by all existing GHMs, i.e., treating each reservoir as having a single purpose. Overcoming this 

simplification in a GHM setting is beyond the scope of this study and is left for the future.  

4 Discussion and Conclusions  

This study adds a new water management module into the Xanthos model to improve its representation of global hydrological 560 

systems. The new water management module enhances Xanthos mainly by introducing reservoir regulation and local surface 

water withdrawal. We represent unique reservoir operation behavior for each reservoir based on its primary purpose, which 

can fall into the following three categories: irrigation, hydropower, and flood-control and others. In particular, hydropower 

reservoirs have been treated as flood control reservoirs in previous GHM studies, whilst here we determined the operation 

rules for hydropower reservoirs via optimization that maximizes long-term hydropower production. We apply the enhanced 565 

Xanthos (Xanthos-enhanced) globally at a 0.5-degree spatial resolution and monthly time step. Validation against observed 

streamflow in 91 river gauge stations demonstrates improved performance over the original Xanthos (Xanthos-original) 
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version. At the individual reservoir level, we show that hydropower and flood control reservoirs indeed behave quite 

differently, particularly in terms of reservoir storage variations. At the regional level, we show that treating hydropower 

reservoirs as flood control reservoirs leads to a noticeable impact on the simulated streamflow only in the basins where 570 

hydropower reservoirs are dominant. The model's performance improved by more than the KGE of 0.1 for some of the basins 

with significant RII (e.g., the Lower Colorado basin, the Caspian Sea South West Coast basin, Yenisey basin, the Hudson Bay 

Coast). The indicated RII corresponds to the total effect of hydropower reservoirs located upstream of the basins GRDC site. 

Adding this new hydropower reservoir module can improve the analysis of finer-scale energy-water-land dynamics within 

frameworks capable of ingesting Xanthos outputs to capture water sector supply-demand dynamics (e.g., Graham et al., 2020; 575 

Khan et al., 2020; Birnbaum et al., 2022; Wild et al., 2021c, b). The benefits of distinguishing the unique behavior of 

hydropower reservoirs in GHMs may become more prominent if hydropower expansion in the coming decades occurs as 

planned (Zarfl et al., 2015). 

There are several opportunities to improve Xanthos-enhanced further. First, in this study, we only determine optimal 

parameters for Xanthos-enhanced in 91 out of 235 large river basins globally due to the availability of observed streamflow 580 

data, and we assume each set of basin parameter values is uniform across grid cells within a basin. For future global applications 

of Xanthos-enhanced, one candidate approach to estimate the parameter values in the remaining river basins is to simply use 

average parameter values from the 91 basins that are gauged. Another possible approach is to estimate the parameters over 

these ungauged basins by invoking a hydrologic parameter regionalization strategy, i.e., estimating the parameter values a 

priori from existing climatology and landscape data based on multivariable regression techniques (Ye et al., 2014) or machine-585 

learning methods (Abeshu et al., 2022). Second, the groundwater storage (both above and below confined aquifers) could be 

represented more explicitly in line with advancements in the representation of groundwater made by other GHMs (Gleeson et 

al., 2021), which will enable a more realistic representation of water supply with groundwater pumping as an additional source 

and potentially better streamflow simulation. Third, natural lakes should be represented in the model in addition to reservoirs. 

Lakes are an essential source of water supply, although they are not as heavily managed as reservoirs. They also have important 590 

impacts on the regional climate through their water and energy exchanges with the atmosphere. Fourth, hydrologically small 

reservoirs (i.e., those with a storage capacity less than 0.1 km3) (Lehner et al., 2011) are currently not accounted for due to 

data limitations, but they potentially play an important role in the regional and global water supply. Last but not least, the 

representation of reservoirs could be enhanced by accounting for reservoir sedimentation, given that reservoir storage is being 

lost globally at a rate of 0.5% per year (Mahmood, 1987; White, 2001). Relatively simple, empirically-based approaches to 595 

capture these dynamics for reservoirs globally have been shown to be effective and can be borrowed from other open-source 

modeling frameworks (e.g., Wild et al., 2021a). 

Even with the above limitations, the water management module we introduce here offers a more realistic 

representation of river systems in global hydrological models like Xanthos. The model has the potential to provide insight into 

the competition between changes in water availability (primarily affected by climate variability) and water demand (controlled 600 
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mainly by human activities) at regional or global scales and support scientific analysis and planning in a complex socio-

economic system setting under various future climate change and management scenarios. 

Code availability 
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Tables 

Table 1 : List of global hydrological models with reservoir representations. The spatial domain column indicates the 

scale at which the model has been applied. The Representations column describes how each reservoir class (from the 

Reservoir classification column) is simulated. In all cases, the reservoirs are integrated into the models. The Reservoir 

Classification column shows how the reservoirs were represented. 

Model  Domain Reservoir 

Classification 

Representations Reference websites 

H08  Global Irrigation/ 

Non-Irrigation 

Irrigation: release is based on demand 

Non-Irrigation: treated as flood 

control, where releases are 

adjustments to the mean annual 

inflow based on storage 

Hanasaki et al. 

(2008) 

Boulange et al. 

(2021)  

Yoshida et al. 

(2022)  

http://h08.nies.

go.jp/h08/inde

x.html 

WaterGAP Global Irrigation/ 

Non-Irrigation 

Modified Hanasaki et al. (2006) Döll et al. (2009)  

Müller Schmied et 

al. (2021)  

www.watergap

.de 

WBMplus Global Irrigation/ 

Non-Irrigation 

Modified Hanasaki et al. (2006) Wisser et al. 

(2010)  

Grogan et al. 

(2022)  

https://wsag.un

h.edu/wbm.ht

ml 

  

PCR-

GLOBWB 

Global Irrigation/ 

Non-Irrigation  

Uses a default strategy aimed at 

passing the average discharge while 

maintaining levels between a 

minimum and maximum storage. For 

Irrigation, release based on 

downstream water demand is 

possible for an elaborate release 

strategy.   

Sutanudjaja et al. 

(2018) 

Shen et al. (2022) 

 

https://globalh

ydrology.nl/res

earch/models/p

cr-globwb-2-0/ 

 

LISFLOOD Europe, 

Global 

No 

classification 

based on the 

purpose 

Uses a simple general reservoir 

operation scheme, simulated as an 

outflow function between three 

storage limits: minimum outflow, 

non-damaging outflow, and normal 

outflow 

De Roo et al. 

(2000) 

van der Knijff et 

al. (2010) Hirpa et 

al. (2018) 

https://ec-

jrc.github.io/lis

flood-

model/3_03_o

ptLISFLOOD_

reservoirs/ 

MATSIRO Global Irrigation/ 

Non-Irrigation 

Modified Hanasaki et al. (2006) 
Pokhrel et al. 

(2012)  

http://hydro.ii

s.u-

tokyo.ac.jp/~
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Pokhrel et al. 

(2015)  

Telteu et al. 

(2021) 

sujan/researc

h/models/mat

siro.html 

LPJmL Global Irrigation/ 

Non-Irrigation 

Irrigation: assumed to release water 

proportionally to gross irrigation 

water demand.  

Other purposes (hydropower, flood 

control, etc.): assumed to be designed 

for releasing a constant volume 

throughout the year. 

 

 

Schaphoff et al. 

(2018)  

Telteu et al. 

(2021)  

http://www.pik

-

potsdam.de/res

earch/projects/

activities/biosp

here-water-

modelling/lpjm

l 

CWatM  Global No 

classification 

based on the 

purpose 

Adopts LISFLOOD generic reservoir 

operation method. Reservoirs are 

simulated as outflow functions 

between three storage limits 

(conservative, normal, flood) and 

three outflow functions (minimum, 

normal, non-damaging) 

Burek et al. 

(2020)  

https://cwatm.i

iasa.ac.at/mode

ldesign.html 

MOSART‐

WM 

Global Irrigation/ 

Flood control / 

Combination 

of both and 

others 

 

The operating rules are determined 

based on historical long‐term mean 

monthly inflow, reservoir 

characteristics, and reservoir purpose 

Zhou et al. (2020)  https://im3.pnn

l.gov/model?m

odel=MOSAR

T-WM 
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Table 2: List of model parameters, description, and ranges. The parameters a, c, d, m, β, and α are dimensionless, and 

the unit for parameter b is meters. The value of   is fixed at 0.85 following Hanasaki et al. (2006). 

Parameter Description Range                    Type 

a Propensity of runoff to occur before the soil 

is fully saturated 

0–1 runoff 

b Upper limit on the sum of 

evapotranspiration and soil moisture 

storage 

0–8                      runoff 

c Degree of recharge to groundwater 0–1 runoff 

d Release rate of groundwater to baseflow 0–1 runoff 

m Snowmelt coefficient 0–1 runoff 

 Velocity adjustment coefficient  0–10 routing 

 Reservoir capacity reduction factor  0–1 reservoir 
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Table 3: Types of modeling experiments performed in this study 

Experiment Modeling Scenarios Description 

1 Xanthos-original-sim 

Simulated flow is obtained by routing calibrated runoff data generated by 

Liu et al. (2018). No water management components (Vernon et al., 2019) 

are implemented. Routing is performed using the optimal velocity 

adjustment coefficient obtained after stage-2 parameter filtering. 

2 Xanthos-enhanced-sim 

Simulated streamflow is obtained by routing runoff generated with optimal 

parameter sets determined following a new parameter determination 

strategy (described in Section 2.4). Water management components (i.e., 

reservoirs and water consumption) are included. Reservoirs are classified 

into hydropower, irrigation, and flood control category types. A unique 

operation scheme is applied for each reservoir type (Fig. 2). 

3 Xanthos-enhanced-sim2 

Similar to Xanthos-enhanced-sim, but reservoirs are classified into two 

types only: irrigation and flood control. All hydropower reservoirs are 

merged into the flood control category. Comparison to the Xanthos-

enhanced-sim experiment reveals the value of representing hydropower as 

a unique class of reservoir behavior, a key contribution of this paper. 

5 
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Figures 

 

Figure 1: A detailed schematic of the river routing and reservoir management module in Xanthos-enhanced.
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Figure 2: Runoff and routing parameters selection strategy for Xanthos-enhanced.   Each component of the process is categorized 10 
as one of the following: (1) sampling, wherein parameter combinations are sampled; (2) downselection criteria, which are applied to 

downsample a larger parameter set into a smaller, more favorable subset;  (3) outputs, which describes model outputs; and (4) 

modules, which describes Xanthos model methods (or sections of code).
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Figure 3: Global data used in this study: (a) Global distribution of 6862 reservoirs from the GranD database classified based on 15 
primary reservoir purpose; (b) GRDC stream gauge stations in 91 basins where data were of sufficient length, quality, and upstream 

watershed contributing area for use in this study; and (c) basin mean monthly water demand in those same 91 river basins. 
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 20 

Figure 4: Boxplots of the KGE values for the Xanthos-original-sim and Xanthos-enhanced-sim simulations during: (a) the calibration 

period (1971-1980) and (b) the validation period (1981-1990). In this plot, the outliers (KGE values lower than -1) are not shown. 

For Xanthos-original-sim, 77 basins in calibration and 70 basins in validation are shown, and for Xanthos-enhanced-sim, 91 basins 

during calibration and 89 during validation are shown.
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 25 

Figure 5: Spatial maps of basin-specific difference between the KGE values from Xanthos-enhanced-sim and 

those from Xanthos-original-sim for the calibration period 1971-1980 (map at center), where greater than 

zero indicates improved performance from the addition of water management features to Xanthos. The time 

series plots are simulated and observed monthly streamflow for basins with the highest water demand in 

different global regions during the validation period (1981-1990). KGEcal is the KGE during the calibration 30 

period, while KGEval is the KGE during the validation period. 
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Figure 6: Parameter sensitivity analysis for Xanthos-enhanced in the form of the Pearson correlation coefficient (Pearson r): (a) 

between runoff parameters (i.e., 1 million parameter sets) and their corresponding Normalized Root Mean Squared Error (NRMSE) 35 
computed with annual runoff, (b) between streamflow simulation parameters (i.e., the combination of the top 100 runoff parameter 

sets and sampled routing parameter) and KGE computed from streamflow simulated at monthly scale. A higher Pearson r implies 

that the model performance is more sensitive to the parameter. For instance, for (a) Pearson r less than zero indicates a decrease in 

annual runoff NRMSE as parameter value increases, while Pearson r greater than zero indicates a positive association between 

annual runoff NRMSE and parameter value. Note: Out of the 91 basins, only half of the basin labels (i.e., the x-axis labels) appear 40 
on the first panel, and the other half appears on the second panel, but all labels apply to both panels.
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Figure 7: Comparing intra-annual and inter-annual variability of storages and releases simulated with Xanthos-enhanced-sim and 

Xanthos-enhanced-sim2 experiments hydropower reservoirs distributed over the 91 basins. a ) Seasonality Index (SI) for release, b) 

Seasonality index for storage, c) Coefficient of Variation (CV) for release at the annual scale, and d) Coefficient of Variation (CV) 45 
for storage at the annual scale. The red line is a 1:1 line where both scenarios are equal. 
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Figure 8: Empirical CDF of reservoir storage and release R2 (a) and NRMSE (b) between Xanthos-enhanced-sim and Xanthos-

enhanced-sim2 monthly simulations across all hydropower reservoir sites. The R2 CDF plot demonstrates that we produce very 50 
different storage and release patterns by accounting explicitly for hydropower reservoir functionality in Xanthos-enhanced-sim, 

although the difference in magnitude, as indicated by NRMSE CDF, is small. A higher R2 of 1.0 and NRMSE of 0.0 indicate a perfect 

agreement between the two simulations, indicating that distinguishing between the representation of hydropower and flood control 

behavior was less important. The CDF plot is made of 296 hydropower reservoirs distributed across 51 basins. The labels on plots 

HP-1, HP-2, HP-3, and HP-4 correspond to hydropower reservoirs located upstream of the Yenisey basin's GRDC site (See Figure 55 
S5). The markers for these labels are similar for both a) and b).  
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Figure 9:The difference between reservoir storage and release monthly time series between Xanthos-enhanced-sim and Xanthos-

enhanced-sim2 simulations at hydropower reservoirs demonstrates the value-added by accounting explicitly for hydropower 

reservoir functionality in Xanthos-enhanced-sim. The Reservoir Impact Index (RII) is the ratio of reservoir storage capacity (in cubic 65 
meters) to annual mean flow(in cubic meters). Low and high values of RII indicate that the stream is lightly and highly regulated, 

respectively. For instance, RII > 1.0 shows the reservoir's capacity to shift the downstream flow below the annual mean flow. The 

map at the center of the figure displays the RII for the hydropower reservoir with the largest RII in each basin. In other words, each 

basin is represented by one hydropower reservoir with the largest impact on flow at the GRDC site. The times series plots show the 

Storage Relative Difference (S-RD) and Release Relative Difference (R-RD) between the two scenarios. For example, S-RD 70 
represents Xanthos-enhanced-sim storage minus Xanthos-enhanced-sim2 storage scaled by the mean of the two storages.  
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