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Abstract. Although water availability and water quality are equally important for an effective water resources 

management at various spatial and temporal scales, to date, a combined representation of soil water balance 

components and water quality components in Python are not available. The new RoGeR toolbox contains models 

that can be used for the quantification of hydrological processes, fluxes and stores, but also solute transport 

processes based on StorAge selection. This study presents the code structure and functionalities of RoGeR 10 

developed as a scientific model toolbox following defined open-source software guidelines. RoGeR uses five 

different computational back-ends covering just-in-time compilation, parallelism and graphical-processing units 

that might be used for optimizing computational performance. We show that graphical-processing unit computing 

has the greatest potential to improve computation time and energy usage, especially for large modelling 

experiments. A simple modelling experiment highlights the capabilities of the new RoGeR model toolbox. We 15 

simulated the soil water balance, stable water isotope (18O) transport and corresponding travel time distributions 

of the Eberbaechle catchment, Germany, for a three-year period. Due to the current limitations for a variety of 

process components further development of RoGeR as a scientific software is needed. Future modifications are 

easily possible due to the open software architecture of RoGeR. 

1 Introduction 20 

The interplay between the water and solute mass balance (e.g. oxygen-18, chloride or nitrate) and its related flow 

and transport in the soil-vegetation-atmosphere interface plays an important role for the understanding of 

hydrologic systems (e.g. Benettin et al., 2017). However, measurements of their states and fluxes are neither in 

space nor in time ubiquitously available (Beven, 2011). Thus, soil hydrological models, soil-vegetation-

atmosphere-transfer (SVAT) models and distributed catchment models are indispensable tools to complement 25 

measurements (e.g. for a better process understanding) and to make predictions (e.g. future climate impacts, land 

cover changes or in ungauged catchments). Currently, there are many models in hydrology and the landscape of 

models is highly diverse (from simple conceptual models to complex physically-based models). One reason for 

this large and diverse landscape of models is that hydrologist still disagree about modelling concepts (Weiler and 
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Beven, 2015). Despite the large number of models, however, there is a lack of reproducibility in computational 30 

hydrology (Hutton et al., 2016; Reinecke et al., 2022). The main reasons for this lack of reproducibility are poorly 

documented codes and workflows, code being too complex, unavailable code, missing input data, a lack of 

calibration standards and a lack of standards dealing with uncertainties (e.g. Reinecke et al., 2022). 

Simulating the hydrological processes at the soil-vegetation-atmosphere interface including solute mass balance 

and transport with a high spatial and/or temporal resolution still requires long computation time. For reasons of 35 

computational performance, hydrological models such as HYDRUS (Šimůnek et al., 2016), EcH2O-iso (Kuppel 

et al., 2018a) or mHM (Heße et al., 2017; Kumar et al., 2020; Kumar et al., 2013; Samaniego et al., 2010) are 

written in low-level programming languages such as Fortran or C++. However, these languages are hard to read, 

to learn and are usually not included in the curriculum of hydrology-related degree programs. By contrast, high-

level programming languages are easier to read and to learn, but computation takes about 3-5 times longer than 40 

equivalent code in low-level programming languages (Häfner et al., 2021). Therefore, high-level programming 

languages have the potential to foster reproducibility. Recently, high-level open-source programming languages 

such as R or Python gained popularity in the hydrological modelling community. Especially Python is currently 

the most popular programming language among software users (e.g. IEEE Spectrum, 2022; PYPL, 2022; Stack 

Overflow, 2021). Hydrological models quantifying the hydrological cycle that are written in Python, for example, 45 

are SUPERFLEX (Dal Molin et al., 2021; Fenicia et al., 2011), CWatM (Burek et al., 2020) and UniFHy (Hallouin 

et al., 2022) but none of these models consider transport of solutes, and they generally focus at the catchment 

scale. To date, only rsas (Harman, 2015) implemented a solute transport model written in Python. However, rsas 

does not quantify the water balance and requires hydrological fluxes as input. 

For reasons of longer computation times, high-level programming languages are often avoided in spatially 50 

distributed hydrological models. One solution to reduce computation time in high-level programming languages 

is using a just-in-time compiler (JIT). However, Python does not contain a built-in JIT. Instead, Python requires 

program libraries such as Numba (Lam et al., 2022) or JAX (Bradbury et al., 2018). However, Numba and JAX 

provide the opportunity to run the code on graphical processing units (GPUs) to decrease computation times. 

Veros (Häfner et al., 2018; Häfner et al., 2021), an ocean model written in Python using JAX for acceleration, 55 

demonstrated that GPU computations are a competitive alternative to central processing units (CPUs). In addition 

to that, Häfner et al. (2021) could show that GPU computations save energy. 

The first model version of RoGeR had a focus on the event-based runoff generation (Steinbrich et al., 2021). 

Thereafter, RoGeR has been further developed and by adding a routing scheme, surface runoff and subsurface 

runoff contributions to flooding events could be explicitly simulated (Steinbrich et al., 2021). Additionally, by 60 

considering snow hydrological processes, urban hydrological processes and redistribution processes such as 

evapotranspiration enabled the estimation of the long-term water balance (Steinbrich et al., 2021). Based on the 

previous development efforts of the RoGeR model by Weiler (2005), Steinbrich et al. (2016) and Steinbrich et al. 
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(2021), we reimplemented the process-based hydrological model RoGeR in a modular software architecture (e.g. 

different hydrological processes are implemented in separate modules that can be independently modified) written 65 

in Python. Since RoGeR had no implementation for solute transport so far, we include solute transport based on 

StorAge selection (SAS) functions (e.g. Benettin et al., 2017). We choose a high-level programming language and 

a modular software paradigm to foster reproducibility and wide-range application in teaching and research. In 

particular, we aim to facilitate general code understanding, writing new code and debugging code which usually 

takes most of the time within software projects. To overcome limitations on computational performance, we 70 

include the program library JAX. 

EcH2O-iso provides simulations with a spatial resolution of 30 m (Kuppel et al., 2018b) and mHM uses a spatial 

discretization that starts at 100 m (Yang et al., 2018). HYDRUS can be used at the plot scale (e.g. Asadollahi et 

al., 2020), but applying HYDRUS at the hillslope or catchment scale requires a commercial license. Thus, the 

main objective of the toolbox is to provide simulations with a high spatial (<25 m) and temporal resolution (> 10 75 

minutes) at the local scale (< 10 km). The local scale covers different scales: the plot scale (1 – 25 m; Blöschl and 

Sivapalan, 1995), the hillslope scale (25 – 100 m; Blöschl and Sivapalan, 1995) and the smaller catchment scale 

(100m – 10 km; Blöschl and Sivapalan, 1995). RoGeR contributes to the modelling of the soil-vegetation-

atmosphere continuum by enabling simulations with a fine spatial resolution. 

In the following, we describe the implementation of the new model developed as a scientific software following 80 

open-source guidelines. Thereafter, we provide a brief overview about the representation of the hydrological 

processes and the related solute transport. We further profile the computational performance and energy usage. 

Finally, we demonstrate the capabilities of the model by simulating a three-year period for a synthetic site. 

2 Implementation 

2.1 RoGeR as a scientific open-source software 85 

For the development of RoGeR as scientific open-source software, we followed the guidelines presented in Table 

1. We defined these guidelines based on van Gompel et al. (2016) and Hall et al. (2022), and on reviewing earth 

science related software written in Python (e.g. Bakker et al., 2016; Bartos, 2020; Burek et al., 2020; Collenteur 

et al., 2019; Dal Molin et al., 2021; Häfner et al., 2018; Hallouin et al., 2022; Helmus and Collis, 2016; Kratzert 

et al., 2022; Mälicke, 2022; May et al., 2022; Rose, 2018; Schwemmle et al., 2021). We organised the different 90 

software concepts by the degree of complexity. The application of different software concepts incorporates 

different workload and require different knowledge in computer science. In order to keep the workload at a 

minimum level, we organised the application by the degree of software complexity. An example for a high degree 

of complexity could be a complex model or data analysis tool. Such software is often shipped with many lines of 

programming code. In order to maintain the software and make it reusable, we suggest a range of different software 95 
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concepts (see Table 1). Hands-on-tutorials, online documentation and unit tests may consume extra working hours 

and increase the workload of a single researcher, but in the long-term workload of other researchers can be reduced 

by facilitating the usage of existing methodology. An example for using existing methodology could be a simple 

application script (e.g. running the model or analyse the data) which contains often a few lines of code and hence 

the complexity is low. If existing methodology is used to generate scientific results and no new functionalities are 100 

added, comments, public access and a license are sufficient for reusing the approach. Moreover, including these 

guidelines in the curriculum of hydrology-related degree programs may lay the foundation for a reproducible 

future in computational hydrology. 

2.1.1 Software architecture 

The basic modular structure of the software is adapted from Häfner et al. (2018). The core modules implement 105 

hydrological processes and solute transport. As such, these modules represent a toolbox which can be used to 

build pre-defined models (e.g. a SVAT model by considering only vertical processes). We already provided some 

pre-defined models, but in general new models can be easily assembled and combined to the level of complexity 

that is required. Moreover, further processes might be added by writing new modules. In addition to that, further 

modules are available for the pre-/post-processing, writing the model output and handling computational back-110 

ends. RoGeR is pure Python, hence not all computational bottlenecks might be solvable. In such cases, we 

recommend writing extensions using Cython instead of using a low-level language which would require a 

compiler. 

2.1.2 Computational back-ends 

The computations are handled by five different back-ends which are implemented through a function decorator 115 

(Häfner et al., 2018). Users have to choose a suitable backend beforehand. The choice depends on programming 

skills, size of the modelling experiment and available computational resources. In the following, we briefly 

describe the back-ends and give recommendations on the usage: 

- numpy: This back-end uses NumPy (Harris et al., 2020) for computation and, hence, is easy to use. 

However, the interpreted execution of the code and running computations on a single CPU may cause 120 

performance limitations. We recommend this back-end to beginners and for small-scale modelling 

experiments. As long as the modelling experiment fits in the memory, there are no specific requirements 

for the computational resources. 

- numpy-mpi: The numpy-mpi back-end parallelizes the numpy back-end via mpi4py (Dalcin et al., 2011). 

The size of the modelling experiment might be limited by available memory and number of CPU cores. 125 

We recommend this back-end to users with experience in parallelized computations. 
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Table 1 Guidelines for scientific open-source software in computational hydrology 

 



6 
 

- jax: The jax back-end is the same as numpy, but code is JIT compiled via JAX (Bradbury et al., 2018). 130 

Since JAX transforms NumPy code, it is required that all code is NumPy compatible. The JIT compilation 

leads to decreasing computation time (see Sect. 3). 

- jax-mpi: Same as numpy-mpi, but code is JIT compiled via mpi4jax (Häfner and Vicentini, 2021). This 

leads to computational speedup (see Sect. 3). 

- jax-gpu: The code is JIT compiled and computations are performed on GPU which leads to computational 135 

speedup (see Sect. 3). The jax-gpu backend requires an appropriate GPU. The size of the modelling 

experiment is limited to available GPU memory. We recommend this back-end to users with advanced 

programming skills. 

2.1.3 Discretization and data handling 

For RoGeR-1D (i.e. no lateral transfer between grid cells), space can be represented either through grid cells or 140 

polygons. By contrast, RoGeR-2D models (i.e. lateral transfer between grid cells) require a regular grid as spatial 

representation. In order to generate physically meaningful results, we recommend a spatial resolution between 

0.5x0.5 m2 and 5x5 m2. 

RoGeR requires input data for the following variables: 

- precipitation up to 10 minutes time steps 145 

- air temperature at daily time steps 

- potential evapotranspiration at daily time steps 

- solute concentrations at daily time steps (only if solute transport is simulated) 

The 10 minutes time step is required for the detailed representation of the runoff generation processes (i.e. 

infiltration, surface runoff and lateral subsurface runoff). Averaging the input flux for longer time steps leads to 150 

an overestimation of infiltration and underestimation of overland flow and preferential flow. Hourly precipitation 

or daily precipitation datasets can be used with the model and resampled to 10 minutes, however, losing the 

required temporal variability to correctly simulate the runoff generation processes. For heavy rainfall intensities 

(the default threshold is > 5 mm/10 minutes), the time step is adapted to 10 minutes (Figure 1). For non-heavy 

rainfall intensities (<5 mm/10 minutes and > 0 mm/10 minutes), the simulations use an hourly time-stepping. 155 

While no rainfall occurs, a daily time step is used. If precipitation data is available with coarser temporal 

resolution, for example, hourly or daily resolution, we recommend to resample the precipitation data to the 

required 10 minutes resolution. Depending on the resolution of the available precipitation data, different 

resampling methods can be applied. For example, hourly date can be linearly interpolated 10 minutes or daily data 

can be disaggregated (e.g. Förster et al., 2016; Koutsoyiannis and Onof, 2001).  160 
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The input data can be a time series or spatio-temporal data (i.e. time series for each grid cell) which is either 

provided as text files (.txt) or NetCDF files (.nc). If the input data is provided as a time series using text files, the 

data is internally converted to NetCDF.  

Metadata (e.g. units, description) for all variables and constants are defined in single modules as dictionaries 

(Häfner et al., 2018). From these dictionaries, metadata (e.g. units) is automatically added to the model output 165 

data. All model output is written to NetCDF files. A major advantage of the NetCDF format is that I-O operations 

enables parallel writing with compression (Häfner et al., 2018). This reduces time of I-O operations and the size 

of output files. 

2.2 Hydrological model 

Different hydrological processes are implemented as modules. In the following, we list the already implemented 170 

processes and refer to the module and declare whether the module is tested or testing is still ongoing: 

- Surface water storage (surface.py; testing is complete) 

- Soil water storage (soil.py; testing is complete) 

- Root zone water storage (root_zone.py; testing is complete) 

- Subsoil water storage (subsoil.py; testing is complete) 175 

- Groundwater water storage (groundwater.py; testing is ongoing) 

- Transpiration (evapotranspiration.py; testing is complete) 

- Soil evaporation (evapotranspiration.py; testing is complete) 

- Interception (interception.py; testing is complete) 

- Snow accumulation/Snow melt (snow.py; testing is complete) 180 

- Infiltration driven by capillary forces (infiltration.py; testing is complete) 

- Infiltration driven by gravitational forces (film_flow.py; testing is ongoing) 

- Surface runoff (surface_runoff.py; testing is ongoing) 

- Lateral subsurface runoff (subsurface_runoff.py; testing is ongoing) 

- Lateral groundwater flow (groundwater_flow.py; testing is ongoing) 185 

- Percolation (subsurface_runoff.py; testing is complete) 

- Capillary rise (capillary_rise.py; testing is complete) 

- Crop phenology (crop.py; testing is ongoing) 

The main reason for using a modular structure, is to support the readability of the code. Another motivation for 

using a modular structure is to represent a certain process by multiple process formulations that provide different 190 

complexities (Knoben et al., 2019). As such the processes can be combined in multiple ways to build different 

model structures. Thus, depending on the chosen process complexity, model structures represent the considered 

by different degrees of complexity. However, building process-consistent model structures from many different  
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Figure 1 Overview of model inputs, conceptual implementation shown for a single grid cell or unit (Water storages are 195 
represented in italic), and temporal discretization of the soil hydrologic cycle and solute transport. Spatial discretization for 
different scales is the same for the soil hydrologic cycle and solute transport. 
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process formulations can be challenging to model users. RoGeR uses single process formulations that constrains 

the flexibility of the structural complexity. However, we provide pre-defined model structures (i.e. a combination 

of various hydrological processes) to ensure a certain process consistency. The most basic model structure is 200 

shown in Figure 1 and is the basis for more complex model structures. We pre-defined further model structures 

by adding further hydrological processes (e.g. lateral subsurface flow, crop phenology). For more details about 

the pre-defined model structures, we refer to the online documentation of RoGeR (Schwemmle, 2023). 

RoGeR provides representations for bucket-type interception, degree-day based snow accumulation and snow 

melt (LARSIM-Entwicklergemeinschaft, 2021), soil matrix, macropore and shrinkage crack infiltration 205 

(Steinbrich et al., 2016; Weiler, 2005), soil evaporation (Or et al., 2013), vegetation phenology and vegetation-

specific transpiration (Steduto et al., 2009), capillary rise from a groundwater table and percolation to the 

groundwater (Salvucci, 1993) and lateral subsurface runoff (Steinbrich et al., 2016; Stoll and Weiler, 2010). For 

detailed information (e.g. model equations), we refer to the online documentation of RoGeR (Schwemmle, 2023). 

RoGeR solves explicitly the soil water balance (i.e. fluxes update the state in a specific sequence) using an adaptive 210 

time-stepping scheme (see Figure 1). The adaptive time stepping provides a better compromise between accuracy 

and performance compared to fixed time stepping schemes (Clark and Kavetski, 2010). Numerical errors may 

compensate for model structural errors, we have not evaluated the effect of other time stepping schemes on the 

numerical errors of RoGeR. Although numerical errors affect the simulations, parameter uncertainty (e.g. 

Wagener and Gupta, 2005) or input data uncertainty (e.g. Yatheendradas et al., 2008) may have a stronger impact 215 

on the simulations. 

2.3 Solute transport model 

Solute transport is implemented by a travel-time based approach. Particularly, we use StorAge selection (SAS) 

functions (Rinaldo et al., 2015). SAS is implemented by specific distribution functions. We assign a distribution 

function to each hydrological process (Figure 1). Here, we introduce two distribution functions which can be used 220 

for SAS and are implemented in the toolbox. The first distribution function is based on a power law and requires 

only a single parameter kQ (Fig. 2a). The power law distribution function is given as: 

ω!(𝑇, 𝑡) = 𝑘!
"! ⋅ 𝑃#(𝑇, 𝑡)("!%&)          

 (1) 

with  225 

𝑃((𝑇, 𝑡) =
("(),+)
,(-)

            

 (2) 

and the corresponding cumulative power law distribution function: 
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Ω!(𝑇, 𝑡) = 𝑃#(𝑇, 𝑡)"!           

 (3) 230 

where T is the water age (day), t is the time step (day), wQ(T,t) is the probability distribution function of the 

hydrologic flux, WQ(T,t) is the cumulative probability distribution function), ST(T,t) is the cumulative age-ranked 

storage (mm), S(t) is the soil water content (mm) and PS(T,t) is the cumulative probability distribution of the 

storage.  

 235 
Figure 2 Storage selection with different parameters illustrated for power law distribution function (a; see Eq. (1)) and 
Kumaraswamy distribution function (b; see Eq. (3)) 

As a second distribution function, we employ the Kumaraswamy distribution (Kumaraswamy, 1980). With two 

parameters aQ and bQ, the Kumaraswamy distribution provides a greater flexibility than a power law distribution 

(Fig. 2b). The Kumaraswamy distribution function is formulated as: 240 

ω!(𝑇, 𝑡) = 𝑎 ⋅ 𝑏	 ⋅ 𝑃#(𝑇, 𝑡)(.!%&) ⋅ /1 − 𝑃#(𝑇, 𝑡).!
($!%&)2       

 (4) 

and the corresponding cumulative Kumaraswamy distribution function: 

Ω!(𝑇, 𝑡) = 1 − 31 − 4𝑃#(𝑇, 𝑡)5
.!

$!
6         

 (5) 245 

Generally, any distribution function might be used as long as a closed form (i.e. probabilities integrates to one) is 

available (Harman, 2015). We apply the fractional SAS function type (fSAS; van der Velde et al., 2012) and solve 

the SAS equations for each hydrologic flux Q. To solve the SAS functions, we provide three numerical schemes 

with fixed time steps: (i) deterministic (i.e. solving SAS equations for each flux in a sequential order), (ii) explicit 

Euler and (iii) explicit Runge-Kutta fourth-order. Transport processes can be defined for conservative and non-250 

conservative solutes: 

- Stable water isotopes oxygen-18 (18O) and deuterium (2H): Isotopic fractionation is not yet considered. 
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- Bromide and chloride: Evapoconcentration, sorption processes and partitioning of root uptake are 

included.  

- Nitrate: Biogeochemical processes denitrification (Kunkel and Wendland, 2012), nitrification, soil 255 

nitrogen mineralization and nitrogen uptake by crops are implemented.  

Again, we refer to the online documentation of RoGeR for detailed information (Schwemmle, 2023). The 

following routines 

are implemented, and we refer to the module and declare whether the module  

is tested or testing is still ongoing: 260 

- Solute transport and water ages (transport.py and sas.py; testing is complete) 

- Nitrogen cycle (nitrate.py; testing is ongoing) 

3 Test cases for continuous development, computational performance and energy usage 

RoGeR uses unit tests and continuous integration to test and ensure technical functionality (see Table 1). 

Additionally, we use test cases for continuous development. The idea of these test cases is to guarantee predictive 265 

consistency and to track advances in model development (i.e. comparison between model versions). We run the 

test cases with model parameters that cover a wide range of common parameters and perform simulations with 

different input data. In contrast to unit tests, the execution time is longer and depends on the number of time steps 

covered by the input data. The results (see Sect. S1) can be compared to future versions of RoGeR. 
Table 2 Hardware specifications of computational benchmarks  270 

  Notebook Cluster node  

CPU Intel® CoreTM i7 @ 2.60 GHz 
(four physical cores) 

2 x Intel® Xeon® E5-2680v4 (Broadwell) @ 2.40 GHz 
(28 physical cores) 

TDP1 of CPU 45 Watt 280 Watt 
RAM 8 GB DDR3 128 GB DDR4 
GPU - Nvidia Tesla K80 (12 GB GDDR5 memory)  
TDP1 of GPU - 300 Watt 
Software 
stack 

GNU 8.1, Open MPI 4.1.3,  
HDF5 1.12.2, roger 3.0  

GNU 9.2, Open MPI 4.1.3, HDF5 1.12,  
CUDA 11.4, roger 3.0 

PUE2 1 1.31 
1Total power draw 
2Power usage efficiency 

High-level programming languages such as Python still have the reputation of being comparatively slow. We 

profiled the computation time and energy usage using the five back-ends (see Sect. 2.1.2). For the profiling, we 

used two different hardware specifications representing commonly available computing resources and high-275 
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performance computing (HPC) resources (Table 2). We measured computation time and energy usage with a fixed 

number of iterations, but varying number of grid cells (Fig. 3). 

Model parameters are the same for each grid cell. Figure 3 shows that for small modelling experiments (< 1000 

grid cells), the numpy back-end performs equally well as the other back-ends. Parallel computation improves 

computational speed up only for intermediate to larger modelling experiments (> 1000 grid cells), provided that 280 

a greater number of CPU cores are available. Computation on a single GPU device is faster than on multiple CPUs 

for the RoGeR-SVAT type model, while multiple CPUs (numpy-mpi and jax-mpi) are faster than a single GPU 

device for the RoGeR-SVAT-18O type model. However, a major requirement for GPU computing is that the 

modelling experiment fits into the GPU memory (< 106 grid cells). A solution to the memory limitation would be 

the usage of multiple GPU devices. 285 

 
Figure 3 Runtime performance of computational back-ends for the RoGeR-SVAT type model (a, b) and for the RoGeR-
SVAT-18O type transport model (c, d). Note that, the number of grid cells represents the two horizontal spatial dimensions 
(e.g. longitudes and latitudes). The total number of elements is greater for transport models due to additional age dimensions 
and can be derived by multiplying the number of grid cells (i.e. two spatial dimensions) with the number of water ages (e.g. 290 
1500). SVAT model used 100 iterations and SVAT-18O transport model used 20 iterations. 
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Figure 4 Energy usage of computational back-ends on a cluster node for the RoGeR-SVAT type model (a, b) and for the 
RoGeR-SVAT-18O type transport model (c, d) 

HPC consumes more energy than running computations on a notebook. Depending on the energy source, HPC 295 

contributes differently to climate warming (Lannelongue et al., 2021). In order to raise awareness about the energy 

usage in HPC context and to provide information for a sustainable allocation of computational resources, we 

profiled the energy usage of RoGeR in an HPC context (see Table 2). Based on the profiling of computation time, 

we calculated the energy usage of the five back-ends using the method proposed by Lannelongue et al. (2021). 

The results (Fig. 4) show that using multiple CPUs (numpy-mpi and jax-mpi) consumes more energy than other 300 

back-ends. Using a single GPU device decreases energy usage, while computation time still competes with 

multiple CPUs (cp. Fig. 3). For small and intermediate modelling experiments, single CPU (numpy and jax) back-

ends use less energy than other back-ends. With these results, we aim to support efficient and sustainable 

allocation of computational resources. We suggest that computation time and energy usage should be considered 

equally for the allocation. 305 
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4 Application: Soil water balance, 18O transport and water age statistics of a three-year period 

To demonstrate the capabilities of RoGeR, we present a simple application example. We simulate the soil water 

balance and fluxes and 18O fluxes of the Eberbaechle catchment (1.54 km2 with a resolution of 25 m x 25 m) for 

a time period of three years. The input data was retrieved from the database WeatherDB, which provides data 310 

from stations operated by Deutscher Wetterdienst (DWD) tailored to the required format of RoGeR (Schmit, 

2022). We  

 

 
Figure 5 The Eberbaechle catchment used for the application example. The Further catchment properties used as model 315 
parameters are shown in Figs. S28 – S39. The coordinates of the catchment outlet are 47°57’24”N 7°49’48”E. 

selected the DWD station at Freiburg airport (station ID: 1443) to obtain precipitation, air temperature and 

potential evapotranspiration data from November 2019 to October 2022. Since DWD stations do not measure 

solute concentrations in precipitation, data for 18O in precipitation has been generated by a sinusoidal function 

with random variation for amplitude and offset (Allen et al., 2018; amplitude=4.3±0.5 [‰], offset=-10±0.5 [‰] 320 

and phase=60 [days]). In order to set the values for the model parameters listed in Table 3, we used the soil map 

BK50 (Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau), LIDAR data 

(Landesvermessungsamt Baden-Würrtemberg), ATKIS DLM25 (Landesvermessungsamt Baden-Würrtemberg). 

Additionally, we assumed a deep groundwater table implemented through a high hydraulic conductivity of the 

bedrock (see Table 3). SAS parameters for the selected power law distribution function are assumed to be spatially 325 

and temporally constant for each hydrological process and grid cell. We assigned k=0.2 to soil evaporation and 
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capillary rise, k=0.5 to transpiration, k=1.5 to percolation of root zone and k=1.5 to percolation of subsoil. Thus, 

soil evaporation capillary rise, and transpiration have a preference for younger water, while percolation processes 

have a preference for older water (see Fig. 2a). 
Table 3 Model parameters for the Eberbaechle catchment 330 

Hydrological model parameter Symbol Unit Range of parameter values 

Land use/Land cover lu_id - Grass, forest, sealed surface, 
agriculture 

Surface sealing sealing - 0 - 1 

Soil depth zsoil mm 200 - 1000 

Length of vertical macropores  lmpv mm 0 - 800 

Density of vertical macropores  rmpv m-2 0 - 200 

Air capacity of soil θac - 0.06 - 0.14 

Plant available field capacity of soil θufc - 0.1 - 0.2 

Permanent wilting point of soil θpwp - 0.09 - 0.18 

Saturated hydraulic conductivity of soil ks mm h-1 10.4 - 125 
Hydraulic conductivity of bedrock kf mm h-1 2500a 
Offset for air temperature TAoffset °C -2.5 - -0.4 
Weighting factor for potential evapotranspiration PETweight - 0.73 - 1.06 
Weighting factor for precipitation PRECIPweight - 1.0 - 1.27 
aparameter value represents free drainage. We assume free drainage since information for the lower 
boundary condition (i.e. depth of the groundwater table) is not available.  

 

In Figure 6, we display the time series of hydrologic fluxes and soil water content with the corresponding 18O 

signature and water age distributions of a single grid cell. The temporal pattern exhibits that soil water content 

and travel times of hydrologic fluxes can be related. This pattern emphasizes the interlinkage between hydrologic 

states and transport velocities of solutes (Hrachowitz et al., 2016). Figure 7 shows the cumulative distributions of 335 

soil hydrologic fluxes, soil water content, d18O signals and average water ages at four different dates with different 

soil water content conditions. Soil water content is wetter at 10th February 2021 and drier at 13th August 2022 

while the other two dates represent the transition between drier and wetter conditions. The cumulative distributions 

of d18O signals and average water ages reveal differences for these different soil water content conditions. The 

d18O signals display distinct differences between the considered fluxes and soil water storage. The average water 340 

age exposes a more general pattern. For drier conditions, average water age is older, whereas for wetter conditions 

median water age decreases. 

The primary objective of the example is to demonstrate the capabilities of RoGeR. Therefore, we kept the 

complexity of the example at a simple level. Although a comparison between simulations and observations is 
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important to evaluate the fidelity of the model, we do not provide such a comparison here. Instead, we refer to 345 

Schwemmle and Weiler (2023) for an in-depth evaluation of RoGeR using measurements from a grassland 

lysimeter site. Since the development of RoGeR as scientific software started recently and is still ongoing, further 

evaluation of RoGeR will be addressed in the future. 

 

 350 
Figure 6 Simulated fluxes and soil water content (a-d), corresponding d18O signal (e-h) and corresponding 10th, 50th and 10th 
percentile of water ages (i-k) of a single grid cell. Vertical red lines indicate the four different dates from Figure 6. Power law 
distribution function serves as SAS function (SAS parameters: kevap-soil=0.2, ktransp=0.5, kperc-rz=1.5, kperc-ss=1.5; see Figure 2)  
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Figure 7 Cumulative distributions of simulated fluxes and soil water content (a-d), corresponding d18O signal (e-h) and the 355 
corresponding average travel time and average residence time (i-k) of the Eberbaechle catchment (1.54 km2) at four different 
dates (transition to dry, dry, transition to wet and wet conditions)  

The simple application example demonstrates the potential of RoGeR for a combined quantification of the water 

balance and solute mass balance. The example focusses on vertical soil hydrological processes and a conservative 

tracer, but this is just an excerpt of the toolbox. Other processes (e.g. lateral subsurface runoff, different SAS 360 

function; see Sect. 2.2 and 2.3) or other tracers (e.g. bromide; see Sect. 2.3) could also be considered and 

implemented.  
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5 Summary and outlook 

The development of the process-based hydrological toolbox RoGeR followed open-source software guidelines 

(Sect. 2.1). We believe that such guidelines improve the reproducibility in computational hydrology. With the 365 

modular code structure (Sect. 2.1.1) and the good readability of Python code, RoGeR is intended to be easy to use 

(i.e. usable by programmers with little experience) and to be easy to modify (i.e. modification and extension of 

the code). With using different computational back-ends, we maintained code readability without hampering 

computational performance (Sect. 2.1.2). The five back-ends provide the opportunity to simulate anything 

between plot scale and the catchment scale with reasonable computation times. Especially, the GPU back-end has 370 

great potential to reduce computation time and energy usage of catchment scale modelling experiments (Sect. 3). 

In comparison to the publicly available hydrological models written in Python, we combined hydrological 

processes (Sect. 2.2) and solute transport based on SAS (Sect. 2.3). The combined representation enables the 

prediction of hydrologic states and fluxes and their corresponding solute concentrations including travel times. 

The simple application example considering the water balance and 18O transport through the soil of the 375 

Eberbaechle catchment showed plausible results. The RoGeR toolbox contains many processes to describe one 

dimensional hydrological processes (i.e. no lateral transfer between grid cells). The implementation of the lateral 

transfer between grid cells (i.e. routing schemes for surface and subsurface runoff) will be addressed in future 

releases. Surface runoff routing will be implemented using a hydraulic scheme. Subsurface runoff routing will use 

the approach of Steinbrich et al. (2016) which is based on the topographic slope and corresponding flow velocities. 380 

Moreover, we suggest that future work may improve or extend the currently available process representations (e.g. 

gravity-driven infiltration and percolation; Demand and Weiler, 2021; Germann and Prasuhn, 2018) and further 

evaluation of RoGeR with measured data may provide insights on the strengths and weaknesses. 

RoGeR contributes to a further diversification of the hydrological model landscape and the disagreement about 

process representation in the hydrological modelling community will continue (Weiler and Beven, 2015). In 385 

general, an advantage of this diversification and disagreement is that many different approaches are available and, 

hence, a great flexibility to address different problems. On the other hand, the theoretical diversification is 

accompanied by technical diversification (e.g. different programming languages or different data formats) that 

lead to inconsistencies in the application. We suggest that the diverse hydrological model landscape might benefit 

from focussing on constrained data interfaces of the models following common data conventions (Hallouin et al., 390 

2022) and implementing standardized model interfaces (Hut et al., 2022; Hutton et al., 2020). This would facilitate 

the coupling of hydrological models with other models (e.g. groundwater model). Another advantage would be 

that multiple hydrological models could be compared more easily. Such a model comparison of RoGeR with other 

models, for example, with tRIBS (Ivanov et al., 2004a, b; Vivoni et al., 2004), DHSVM (Wigmosta et al., 1994) 
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or mHM (Samaniego et al., 2010) may be useful to highlight advantages and disadvantages of using RoGeR 395 

compared to other models. 
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