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Abstract. Although water availability and water quality are equally important for an effective water resources 

management, to date, a combined representation of soil water balance components and water quality components in 

Python are not available. The new RoGeR toolbox contains models that can be used for the quantification of 

hydrological processes, fluxes and stores, but also solute transport processes based on StorAge selection. This study 

presents the code structure and functionalities of RoGeR developed as a scientific model toolbox following defined 10 

open-source software guidelines. RoGeR uses five different computational back-ends covering just-in-time 

compilation, parallelism and graphical-processing units that might be used for optimizing computational performance. 

We show that graphical-processing unit computing has the greatest potential to improve computation time and energy 

usage, especially for large modelling experiments. A simple modelling experiment highlights the capabilities of the 

new RoGeR model toolbox. We simulated the soil water balance, stable water isotope (18O) transport and 15 

corresponding travel time distributions of the Eberbaechle catchment, Germany, for a three-year period. Due to the 

current limitations for a variety of process components further development of RoGeR as a scientific software is 

needed. Future modifications are easily possible due to the open software architecture of RoGeR. 

1 Introduction 

The interplay between the water and solute mass balance (e.g. oxygen-18, chloride or nitrate) and its related flow and 20 

transport in the soil-vegetation-atmosphere interface plays an important role for the understanding of hydrologic 

systems (e.g. Benettin et al., 2017). However, measurements of their states and fluxes are neither in space nor in time 

ubiquitously available (Beven, 2011). Thus, soil hydrological models, soil-vegetation-atmosphere-transfer (SVAT) 

models and distributed catchment models are indispensable tools to complement measurements (e.g. for a better 

process understanding) and to make predictions (e.g. future climate impacts, land cover changes or in ungauged 25 

catchments). Currently, there are many models in hydrology and the landscape of models is highly diverse (from 

simple conceptual models to complex physically-based models). One reason for this large and diverse landscape of 

models is that hydrologist still disagree about modelling concepts (Weiler and Beven, 2015). Despite the large number 

of models, however, there is a lack of reproducibility in computational hydrology (Hutton et al., 2016; Reinecke et 



2 

 

al., 2022). The main reasons for this lack of reproducibility are poorly documented codes and workflows (e.g. 30 

Reinecke et al., 2022), code being too complex (e.g. Reinecke et al., 2022), unavailable code (e.g. Reinecke et al., 

2022), missing input data (e.g. Reinecke et al., 2022), a lack of calibration standards and a lack of standards dealing 

with uncertainties. 

Simulating the hydrological processes at the soil-vegetation-atmosphere interface including solute mass balance and 

transport with a high spatial and/or temporal resolution still requires long computation time. For reasons of 35 

computational performance, hydrological models such as HYDRUS (Šimůnek et al., 2016), Daisy (Abrahamsen and 

Hansen, 2000), HYPE (Lindström et al., 2010), EcH2O-iso (Kuppel et al., 2018) or mHM (Heße et al., 2017; Kumar 

et al., 2020; Kumar et al., 2013; Samaniego et al., 2010) are written in low-level programming languages such as 

Fortran or C++. However, these languages are hard to read, to learn and are usually not included in the curriculum of 

hydrology-related degree programs. By contrast, high-level programming languages are easier to read and to learn, 40 

but computation takes about 3-5 times longer than equivalent code in low-level programming languages (Häfner et 

al., 2021). Therefore, high-level programming languages have the potential to foster reproducibility. Recently, high-

level open-source programming languages such as R or Python gained popularity in the hydrological modelling 

community. Especially Python is currently the most popular programming language among software users (e.g. IEEE 

Spectrum, 2022; PYPL, 2022; Stack Overflow, 2021). Hydrological models quantifying the hydrological cycle that 45 

are written in Python, for example, are SUPERFLEX (Dal Molin et al., 2021; Fenicia et al., 2011), CWatM (Burek 

et al., 2020) and UniFHy (Hallouin et al., 2022) but none of these models consider transport of solutes, and they 

generally focus at the catchment scale. To date, only rsas (Harman, 2015) implemented a solute transport model 

written in Python. However, rsas does not quantify the water balance and requires hydrological fluxes as input. 

For reasons of longer computation times, high-level programming languages are often avoided in spatially distributed 50 

hydrological models. One solution to reduce computation time in high-level programming languages is using a just-

in-time compiler (JIT). However, Python does not contain a built-in JIT. Instead, Python requires program libraries 

such as Numba (Lam et al., 2022) or JAX (Bradbury et al., 2018). However, Numba and JAX provide the opportunity 

to run the code on graphical processing units (GPUs) to decrease computation times. Veros (Häfner et al., 2018; 

Häfner et al., 2021), an ocean model written in Python using JAX for acceleration, demonstrated that GPU 55 

computations are a competitive alternative to central processing units (CPUs). In addition to that, Häfner et al. (2021) 

could show that GPU computations save energy. 

The first model version of RoGeR had a focus on the event-based runoff generation (Steinbrich et al., 2021). Therafter, 

RoGeR has been further developed and by adding a routing scheme, surface runoff and subsurface runoff 

contributions to flooding events could be explicitly simulated (Steinbrich et al., 2021). Additionally, by considering 60 

snow hydrological processes, urban hydrological processes and redistribution processes such as evapotranspiration 

enabled the estimation of the long-term water balance (Steinbrich et al., 2021). Based on the previous development 

efforts of the RoGeR model by Weiler (2005), Steinbrich et al. (2016) and Steinbrich et al. (2021), we reimplemented 
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the process-based hydrological model RoGeR in a modular software architecture (e.g. different hydrological 

processes are implemented in separate modules that can be independently modified) written in Python. Since RoGeR 65 

had no implementation for solute transport so far, we include solute transport based on StorAge selection (SAS) 

functions (e.g. Benettin et al., 2017). We choose a high-level programming language and a modular software paradigm 

to foster reproducibility and wide-range application in teaching and research. In particular, we aim to facilitate general 

code understanding, writing new code and debugging code which usually takes most of the time within software 

projects. To overcome limitations on computational performance, we include the program library JAX. 70 

In the following, we describe the implementation of the new model developed as a scientific software following open-

source guidelines. Thereafter, we provide a brief overview about the representation of the hydrological processes and 

the related solute transport. We further profile the computational performance and energy usage. Finally, we 

demonstrate the capabilities of the model by simulating a three-year period for a synthetic site. 

2 Implementation 75 

2.1 RoGeR as a scientific open-source software 

For the development of RoGeR as scientific open-source software, we followed the guidelines presented in Table 1. 

We defined these guidelines based on van Gompel et al. (2016) and Hall et al. (2022), and on reviewing earth science 

related software written in Python (e.g. Bakker et al., 2016; Bartos, 2020; Burek et al., 2020; Collenteur et al., 2019; 

Dal Molin et al., 2021; Häfner et al., 2018; Hallouin et al., 2022; Helmus and Collis, 2016; Kratzert et al., 2022; 80 

Mälicke, 2022; May et al., 2022; Rose, 2018; Schwemmle et al., 2021). We suggest that different software concepts 

might be applied depending on the software complexity. Moreover, including these guidelines in the curriculum of 

hydrology-related degree programs may lay the foundation for a reproducible future in computational hydrology. 

2.1.1 Software architecture 

The basic modular structure of the software is adapted from Häfner et al. (2018). The core modules implement 85 

hydrological processes and solute transport. As such, these modules represent a toolbox which can be used to build 

pre-defined models (e.g. a SVAT model by considering only vertical processes). We already provided some pre-

defined models, but in general new models can be easily assembled and combined to the level of complexity that is 

required. Moreover, further processes might be added by writing new modules. In addition to that, further modules 

are available for the pre-/post-processing, writing the model output and handling computational back-ends. RoGeR 90 

is pure Python, hence not all computational bottlenecks might be solvable. In such cases, we recommend writing 

extensions using Cython instead of using a low-level language which would require a compiler. 
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2.1.2 Computational back-ends 

The computations are handled by five different back-ends which are implemented through a function decorator 

(Häfner et al., 2018). Users have to choose a suitable backend beforehand. The choice depends on programming skills, 95 

size of the 

Table 1 Guidelines for scientific open-source software in computational hydrology 
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modelling experiment and available computational resources. In the following, we briefly describe the back-ends and 

give recommendations on the usage: 100 

- numpy: This back-end uses NumPy (Harris et al., 2020) for computation and, hence, is easy to use. However, 

the interpreted execution of the code and running computations on a single CPU may cause performance 

limitations. We recommend this back-end to beginners and for small-scale modelling experiments. As long 

as the modelling experiment fits in the memory, there are no specific requirements for the computational 

resources. 105 

- numpy-mpi: The numpy-mpi back-end parallelizes the numpy back-end via mpi4py (Dalcin et al., 2011). 

The size of the modelling experiment might be limited by available memory and number of CPU cores. We 

recommend this back-end to users with experience in parallelized computations. 

- jax: The jax back-end is the same as numpy, but code is JIT compiled via JAX (Bradbury et al., 2018). Since 

JAX transforms NumPy code, it is required that all code is NumPy compatible. The JIT compilation leads 110 

to decreasing computation time (see Sect. 3). 

- jax-mpi: Same as numpy-mpi, but code is JIT compiled via mpi4jax (Häfner and Vicentini, 2021). This leads 

to computational speedup (see Sect. 3). 

- jax-gpu: The code is JIT compiled and computations are performed on GPU which leads to computational 

speedup (see Sect. 3). The jax-gpu backend requires an appropriate GPU. The size of the modelling 115 

experiment is limited to available GPU memory. We recommend this back-end to users with advanced 

programming skills. 

2.1.3 Discretization and data handling 

For RoGeR-1D (i.e. no lateral transfer between grid cells), space can be represented either through grid cells or 

polygons. By contrast, RoGeR-2D models (i.e. lateral transfer between grid cells) require a regular grid as spatial 120 

representation. In order to generate physically meaningful results, we recommend a spatial resolution between 0.25 

m2 and 25 m2. 

RoGeR requires input data for the following variables: 

- precipitation up to 10 minutes time steps 

- air temperature at daily time steps 125 

- potential evapotranspiration at daily time steps 

- solute concentrations at daily time steps (only if solute transport is simulated) 

The 10 minutes time step is required for the detailed representation of the runoff generation processes (i.e. infiltration, 

surface runoff and lateral subsurface runoff). Averaging the input flux for longer time steps leads to an overestimation 

of infiltration and underestimation of overland flow and preferential flow. Hourly precipitation or daily precipitation 130 

datasets can be used with the model and resampled to 10 minutes, however, losing the required temporal variability 
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to correctly simulate the runoff generation processes. For heavy rainfall intensities (the default threshold is > 5 mm/10 

minutes), the time step is adapted to 10 minutes (Figure 1). For non-heavy rainfall intensities (<5 mm/10 minutes and 

> 0 mm/10 minutes), the simulations use an hourly time-stepping. While no rainfall occurs, a daily time step is used. 

If precipitation data is available with coarser temporal resolution, for example, hourly or daily resolution, we 135 

recommend to resample the precipitation data to the required 10 minutes resolution. Depending on the resolution of 

the available precipitation data, different resampling methods can be applied. For example, hourly date can be linearly 

interpolated 10 minutes or daily data can be disaggregated (e.g. Förster et al., 2016; Koutsoyiannis and Onof, 2001).  

The input data can be a time series or spatio-temporal data (i.e. time series for each grid cell) which is either provided 

as text files (.txt) or NetCDF files (.nc). If the input data is provided as a time series using text files, the data is 140 

internally converted to NetCDF.  

Metadata (e.g. units, description) for all variables and constants are defined in single modules as dictionaries (Häfner 

et al., 2018). From these dictionaries, metadata (e.g. units) is automatically added to the model output data. All model 

output is written to NetCDF files. A major advantage of the NetCDF format is that I-O operations enables parallel 

writing with compression (Häfner et al., 2018). This reduces time of I-O operations and the size of output files. 145 

2.2 Hydrological model 

Different hydrological processes are implemented as modules. In the following, we list the already implemented 

processes and refer to the module and declare whether the module is tested or testing is still ongoing: 

- Surface water storage (surface.py; testing is complete) 

- Soil water storage (soil.py; testing is complete) 150 

- Root zone water storage (root_zone.py; testing is complete) 

- Subsoil water storage (subsoil.py; testing is complete) 

- Groundwater water storage (groundwater.py; testing is ongoing) 

- Transpiration (evapotranspiration.py; testing is complete) 

- Soil evaporation (evapotranspiration.py; testing is complete) 155 

- Interception (interception.py; testing is complete) 

- Snow accumulation/Snow melt (snow.py; testing is complete) 

- Infiltration driven by capillary forces (infiltration.py; testing is complete) 

- Infiltration driven by gravitational forces (film_flow.py; testing is ongoing) 

- Surface runoff (surface_runoff.py; testing is ongoing) 160 

- Lateral subsurface runoff (subsurface_runoff.py; testing is ongoing) 

- Lateral groundwater flow (groundwater_flow.py; testing is ongoing) 

- Percolation (subsurface_runoff.py; testing is complete) 

- Capillary rise (capillary_rise.py; testing is complete) 
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- Crop phenology (crop.py; testing is ongoing) 165 

The main reason for using a modular structure, is to support the readability of the code. Another motivation for using 

a modular structure is to represent a certain process by multiple process formulations that provide different 

complexities (Knoben et al., 2019). As such the processes can be combined in multiple ways to build different model 

structures. Thus, depending on the chosen process complexity, model structures represent the considered by different 

degrees of  170 
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Figure 1 Overview of model inputs, conceptual implementation shown for a single grid cell or unit (Water storages are 

represented in italic), and temporal discretization of the soil hydrologic cycle and solute transport. Spatial discretization for 

different scales is the same for the soil hydrologic cycle and solute transport. 
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complexity. However, building process-consistent model structures from many different process formulations can be 175 

challenging to model users. RoGeR uses single process formulations that constrains the flexibility of the structural 

complexity. However, we provide pre-defined model structures (i.e. a combination of various hydrological processes) 

to ensure a certain process consistency. The most basic model structure is shown in Figure 1 and is the basis for more 

complex model structures. We pre-defined further model structures by adding further hydrological processes (e.g. 

lateral subsurface flow, crop phenology). For more details about the pre-defined model structures, we refer to the 180 

online documentation of RoGeR (Schwemmle, 2023). 

RoGeR provides representations for bucket-type interception, degree-day based snow accumulation and snow melt 

(LARSIM-Entwicklergemeinschaft, 2021), soil matrix, macropore and shrinkage crack infiltration (Steinbrich et al., 

2016; Weiler, 2005), soil evaporation (Or et al., 2013), vegetation phenology and vegetation-specific transpiration 

(Steduto et al., 2009), capillary rise from a groundwater table and percolation to the groundwater (Salvucci, 1993) 185 

and lateral subsurface runoff (Steinbrich et al., 2016; Stoll and Weiler, 2010). For detailed information (e.g. model 

equations), we refer to the online documentation of RoGeR (Schwemmle, 2023). 

RoGeR solves explicitly the soil water balance (i.e. fluxes update the state in a specific sequence) using an adaptive 

time-stepping scheme (see Figure 1). The adaptive time stepping provides a better compromise between accuracy and 

performance compared to fixed time stepping schemes (Clark and Kavetski, 2010). Numerical errors may compensate 190 

for model structural errors, we have not evaluated the effect of other time stepping schemes on the numerical errors 

of RoGeR. Although numerical errors affect the simulations, parameter uncertainty (e.g. Wagener and Gupta, 2005) 

or input data uncertainty (e.g. Yatheendradas et al., 2008) may have a stronger impact on the simulations. 

2.3 Solute transport model 

Solute transport is implemented by a travel-time based approach. Particularly, we use StorAge selection (SAS) 195 

functions (Rinaldo et al., 2015). SAS is implemented by specific distribution functions. We assign a distribution 

function to each hydrological process (Figure 1). Here, we introduce two distribution functions which can be used for 

SAS and are implemented in the toolbox. The first distribution function is based on a power law and requires only a 

single parameter kQ (Fig. 2a). The power law distribution function is given as: 

ω𝑄(𝑇, 𝑡) = 𝑘𝑄
𝑘𝑄 ⋅ 𝑃𝑠(𝑇, 𝑡)(𝑘𝑄−1)          200 

 (1) 

with  

𝑃𝑆(𝑇, 𝑡) =
𝑆𝑇(𝑇,𝑡)

S(t)
            

 (2) 

and the corresponding cumulative power law distribution function: 205 
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Ω𝑄(𝑇, 𝑡) = 𝑃𝑠(𝑇, 𝑡)𝑘𝑄           

 (3) 

where T is the water age (day), t is the time step (day), Q(T,t) is the probability distribution function of the hydrologic 

flux, Q(T,t) is the cumulative probability distribution function), ST(T,t) is the cumulative age-ranked storage (mm), 

S(t) is the soil water content (mm) and PS(T,t) is the cumulative probability distribution of the storage.  210 

 

Figure 2 Storage selection with different parameters illustrated for power law distribution function (a; see Eq. (1)) and 

Kumaraswamy distribution function (b; see Eq. (3)) 

As a second distribution function, we employ the Kumaraswamy distribution (Kumaraswamy, 1980). With two 

parameters aQ and bQ, the Kumaraswamy distribution provides a greater flexibility than a power law distribution (Fig. 215 

2b). The Kumaraswamy distribution function is formulated as: 

ω𝑄(𝑇, 𝑡) = 𝑎 ⋅ 𝑏 ⋅ 𝑃𝑠(𝑇, 𝑡)(𝑎𝑄−1) ⋅ (1 − 𝑃𝑠(𝑇, 𝑡)𝑎𝑄
(𝑏𝑄−1)

)       

 (4) 

and the corresponding cumulative Kumaraswamy distribution function: 

Ω𝑄(𝑇, 𝑡) = 1 − (1 − (𝑃𝑠(𝑇, 𝑡))
𝑎𝑄

𝑏𝑄

)         220 

 (5) 

Generally, any distribution function might be used as long as a closed form (i.e. probabilities integrates to one) is 

available (Harman, 2015). We apply the fractional SAS function type (fSAS; van der Velde et al., 2012) and solve 

the SAS equations for each hydrologic flux Q. To solve the SAS functions, we provide three numerical schemes with 

fixed time steps: (i) deterministic (i.e. solving SAS equations for each flux in a sequential order), (ii) explicit Euler 225 

and (iii) explicit Runge-Kutta fourth-order. Transport processes can be defined for conservative and non-conservative 

solutes: 

- Stable water isotopes oxygen-18 (18O) and deuterium (2H): Isotopic fractionation is not yet considered. 

- Bromide and chloride: Evapoconcentration, sorption processes and partitioning of root uptake are included.  
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- Nitrate: Biogeochemical processes denitrification (Kunkel and Wendland, 2012), nitrification, soil nitrogen 230 

mineralization and nitrogen uptake by crops are implemented.  

Again, we refer to the online documentation of RoGeR for detailed information (Schwemmle, 2023). The following 

routines 

are implemented, and we refer to the module and declare whether the module  

is tested or testing is still ongoing: 235 

- Solute transport and water ages (transport.py and sas.py; testing is complete) 

- Nitrogen cycle (nitrate.py; testing is ongoing) 

3 Test cases for continuous development, computational performance and energy usage 

RoGeR uses unit tests and continuous integration to test and ensure technical functionality (see Table 1). Additionally, 

we use test cases for continuous development. The idea of these test cases is to guarantee predictive consistency and 240 

to track advances in model development (i.e. comparison between model versions). We run the test cases with model 

parameters that cover a wide range of common parameters and perform simulations with different input data. In 

contrast to unit tests, the execution time is longer and depends on the number of time steps covered by the input data. 

The results (see Sect. S1) can be compared to future versions of RoGeR. 

Table 2 Hardware specifications of computational benchmarks  245 

  Notebook Cluster node  

CPU 
Intel® CoreTM i7 @ 2.60 GHz (four physical 

cores) 

2 x Intel® Xeon® E5-2680v4 (Broadwell) @ 2.40 GHz 

(28 physical cores) 

TDP1 of CPU 45 Watt 280 Watt 

RAM 8 GB DDR3 128 GB DDR4 

GPU - Nvidia Tesla K80 (12 GB GDDR5 memory)  

TDP1 of GPU - 300 Watt 

Software 

stack 

GNU 8.1, Open MPI 4.1.3, HDF5 1.12.2, roger 

3.0  

GNU 9.2, Open MPI 4.1.3, HDF5 1.12, CUDA 11.4, 

roger 3.0 

PUE2 1 1.31 
1Total power draw 
2Power usage efficiency 

High-level programming languages such as Python still have the reputation of being comparatively slow. We profiled 

the computation time and energy usage using the five back-ends (see Sect. 2.1.2). For the profiling, we used two 

different hardware specifications representing commonly available computing resources and high-performance 250 

computing (HPC) resources (Table 2). We measured computation time and energy usage with a fixed number of 

iterations, but varying number of grid cells (Fig. 3). 
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Model parameters are the same for each grid cell. Figure 3 shows that for small modelling experiments (< 1000 grid 

cells), the numpy back-end performs equally well as the other back-ends. Parallel computation improves 

computational speed up only for intermediate to larger modelling experiments (> 1000 grid cells), provided that a 255 

greater number of CPU cores are available. Computation on a single GPU device is faster than on multiple CPUs for 

the RoGeR-SVAT type model, while multiple CPUs (numpy-mpi and jax-mpi) are faster than a single GPU device 

for the RoGeR-SVAT-18O type model. However, a major requirement for GPU computing is that the modelling 

experiment fits into the GPU memory (< 106 grid cells). A solution to the memory limitation would be the usage of 

multiple GPU devices. 260 

 

Figure 3 Runtime performance of computational back-ends for the RoGeR-SVAT type model (a, b) and for the RoGeR-SVAT-
18O type transport model (c, d). Note that, the number of grid cells represents the two horizontal spatial dimensions (e.g. longitudes 

and latitudes). The total number of elements is greater for transport models due to additional age dimensions and can be derived 

by multiplying the number of grid cells (i.e. two spatial dimensions) with the number of water ages (e.g. 1500). SVAT model used 265 
100 iterations and SVAT-18O transport model used 20 iterations. 



13 

 

 

Figure 4 Energy usage of computational back-ends on a cluster node for the RoGeR-SVAT type model (a, b) and for the RoGeR-

SVAT-18O type transport model (c, d) 

HPC consumes more energy than running computations on a notebook. Depending on the energy source, HPC 270 

contributes differently to climate warming (Lannelongue et al., 2021). In order to raise awareness about the energy 

usage in HPC context and to provide information for a sustainable allocation of computational resources, we profiled 

the energy usage of RoGeR in an HPC context (see Table 2). Based on the profiling of computation time, we 

calculated the energy usage of the five back-ends using the method proposed by Lannelongue et al. (2021). The results 

(Fig. 4) show that using multiple CPUs (numpy-mpi and jax-mpi) consumes more energy than other back-ends. Using 275 

a single GPU device decreases energy usage, while computation time still competes with multiple CPUs (cp. Fig. 3). 

For small and intermediate modelling experiments, single CPU (numpy and jax) back-ends use less energy than other 

back-ends. With these results, we aim to support efficient and sustainable allocation of computational resources. We 

suggest that computation time and energy usage should be considered equally for the allocation. 

 280 
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4 Application: Soil water balance, 18O transport and water age statistics of a three-year period 

To demonstrate the capabilities of RoGeR, we present a simple application example. We simulate the soil water 

balance and fluxes and 18O fluxes of the Eberbaechle catchment (1.54 km2 with a resolution of 25 m x 25 m) for a 

time period of three years. The input data was retrieved from the database WeatherDB, which provides data from 

stations operated by Deutscher Wetterdienst (DWD) tailored to the required format of RoGeR (Schmit, 2022). We  285 

 

 

Figure 5 The Eberbaechle catchment used for the application example. The Further catchment properties used as model parameters 

are shown in Figs. S28 – S39. The coordinates of the catchment outlet are 47°57’24”N 7°49’48”E. 

selected the DWD station at Freiburg airport (station ID: 1443) to obtain precipitation, air temperature and potential 290 

evapotranspiration data from November 2019 to October 2022. Since DWD stations do not measure solute 

concentrations in precipitation, data for 18O in precipitation has been generated by a sinusoidal function with random 

variation for amplitude and offset (Allen et al., 2018; amplitude=4.3±0.5 [‰], offset=-10±0.5 [‰] and phase=60 

[days]). In order to set the values for the model parameters listed in Table 3, we used the soil map BK50 

(Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau), LIDAR data 295 

(Landesvermessungsamt Baden-Würrtemberg), ATKIS DLM25 (Landesvermessungsamt Baden-Würrtemberg). 

Additionally, we assumed a deep groundwater table implemented through a high hydraulic conductivity of the 

bedrock (see Table 3). SAS parameters for the selected power law distribution function are assumed to be spatially 

and temporally constant for each hydrological process and grid cell. We assigned k=0.2 to soil evaporation and 
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capillary rise, k=0.5 to transpiration, k=1.5 to percolation of root zone and k=1.5 to percolation of subsoil. Thus, soil 300 

evaporation capillary rise, and transpiration have a preference for younger water, while percolation processes have a 

preference for older water (see Fig. 2a). 

Table 3 Model parameters for the Eberbaechle catchment 

Hydrological model parameter Symbol Unit Range of parameter values 

Land use/Land cover lu_id - 
Grass, forest, sealed surface, 

agriculture 

Surface sealing sealing - 0 - 1 

Soil depth zsoil mm 200 - 1000 

Length of vertical macropores  lmpv mm 0 - 800 

Density of vertical macropores  mpv m-2 0 - 200 

Air capacity of soil θac - 0.06 - 0.14 

Plant available field capacity of soil θufc - 0.1 - 0.2 

Permanent wilting point of soil θpwp - 0.09 - 0.18 

Saturated hydraulic conductivity of soil ks mm h-1 10.4 - 125 

Hydraulic conductivity of bedrock kf mm h-1 2500a 

Offset for air temperature TAoffset °C -2.5 - -0.4 

Weighting factor for potential evapotranspiration PETweight - 0.73 - 1.06 

Weighting factor for precipitation PRECIPweight - 1.0 - 1.27 
a results in free drainage    

 

In Figure 6, we display the time series of hydrologic fluxes and soil water content with the corresponding 18O signature 

and water age distributions of a single grid cell. The temporal pattern exhibits that soil water content and travel times 

of hydrologic fluxes can be related. This pattern emphasizes the interlinkage between hydrologic states and transport 

velocities of solutes (Hrachowitz et al., 2016). Figure 7 shows the cumulative distributions of soil hydrologic fluxes, 

soil water content, 18O signals and average water ages at four different dates with different soil water content 310 

conditions. Soil water content is wetter at 10th February 2021 and drier at 13th August 2022 while the other two dates 

represent the transition between drier and wetter conditions. The cumulative distributions of 18O signals and average 

water ages reveal differences for these different soil water content conditions. The 18O signals display distinct 

differences between the considered fluxes and soil water storage. The average water age exposes a more general 

pattern. For drier conditions, average water age is older, whereas for wetter conditions median water age decreases. 315 

The primary objective of the example is to demonstrate the capabilities of RoGeR. Therefore, we kept the complexity 

of the example at a simple level. Although a comparison between simulations and observations is important to 

evaluate the fidelity of the model, we do not provide such a comparison here. Instead, we refer to Schwemmle and 
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Weiler (2023) for an in-depth evaluation of RoGeR using measurements from a grassland lysimeter site. Since the 

development of RoGeR as scientific software started recently and is still ongoing, further evaluation of RoGeR will 320 

be addressed in the future. 

 

 

Figure 6 Simulated fluxes and soil water content (a-d), corresponding 18O signal (e-h) and corresponding 10th, 50th and 10th 

percentile of water ages (i-k) of a single grid cell. Vertical red lines indicate the four different dates from Figure 6. Power law 325 
distribution function serves as SAS function (SAS parameters: kevap-soil=0.2, ktransp=0.5, kperc-rz=1.5, kperc-ss=1.5; see Figure 2)  
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Figure 7 Cumulative distributions of simulated fluxes and soil water content (a-d), corresponding 18O signal (e-h) and the 

corresponding average travel time and average residence time (i-k) of the Eberbaechle catchment (1.54 km2) at four different dates 

(transition to dry, dry, transition to wet and wet conditions)  330 

The simple application example demonstrates the potential of RoGeR for a combined quantification of the water 

balance and solute mass balance. The example focusses on vertical soil hydrological processes and a conservative 

tracer, but this is just an excerpt of the toolbox. Other processes (e.g. lateral subsurface runoff, different SAS function; 

see Sect. 2.2 and 2.3) or other tracers (e.g. bromide; see Sect. 2.3) could also be considered and implemented.  

5 Summary and outlook 335 

The development of the process-based hydrological toolbox RoGeR followed open-source software guidelines (Sect. 

2.1). We believe that such guidelines improve the reproducibility in computational hydrology. With the modular code 
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structure (Sect. 2.1.1) and the good readability of Python code, RoGeR is intended to be easy to use (i.e. usable by 

programmers with little experience) and to be easy to modify (i.e. modification and extension of the code). With using 

different computational back-ends, we maintained code readability without hampering computational performance 340 

(Sect. 2.1.2). The five back-ends provide the opportunity to simulate anything between plot scale and the catchment 

scale with reasonable computation times. Especially, the GPU back-end has great potential to reduce computation 

time and energy usage of catchment scale modelling experiments (Sect. 3). 

In comparison to the publicly available hydrological models written in Python, we combined hydrological processes 

(Sect. 2.2) and solute transport based on SAS (Sect. 2.3). The combined representation enables the prediction of 345 

hydrologic states and fluxes and their corresponding solute concentrations including travel times. The simple 

application example considering the water balance and 18O transport through the soil of the Eberbaechle catchment 

showed plausible results. The RoGeR toolbox contains many processes to describe one dimensional hydrological 

processes (i.e. no lateral transfer between grid cells). The implementation of the lateral transfer between grid cells 

(i.e. routing schemes for surface and subsurface runoff) will be addressed in future releases. Surface runoff routing 350 

will be implemented using a hydraulic scheme. Subsurface runoff routing will use the approach of Steinbrich et al. 

(2016) which is based on the topographic slope and corresponding flow velocities. Moreover, we suggest that future 

work may improve or extend the currently available process representations (e.g. gravity-driven infiltration and 

percolation; Demand and Weiler, 2021; Germann and Prasuhn, 2018) and further evaluation of RoGeR with measured 

data may provide insights on the strengths and weaknesses. 355 

RoGeR contributes to a further diversification of the hydrological model landscape and the disagreement about 

process representation in the hydrological modelling community will continue (Weiler and Beven, 2015). In general, 

an advantage of this diversification and disagreement is that many different approaches are available and, hence, a 

great flexibility to address different problems. On the other hand, the theoretical diversification is accompanied by 

technical diversification (e.g. different programming languages or different data formats) that lead to inconsistencies 360 

in the application. We suggest that the diverse hydrological model landscape might benefit from focussing on 

constrained data interfaces of the models following common data conventions (Hallouin et al., 2022) and 

implementing standardized model interfaces (Hut et al., 2022; Hutton et al., 2020). This would facilitate the 

integration of hydrological models in earth science models. Another advantage would be that multiple hydrological 

models could be compared more easily. Such a model comparison of RoGeR with other models, for example, with 365 

tRIBS (Ivanov et al., 2004a, b; Vivoni et al., 2004), VIC (Hamman et al., 2018) or mHM (Samaniego et al., 2010) 

may be useful to highlight advantages and disadvantages of using RoGeR compared to other models. 

 

Supplement.  The supplement related to this article is available online at: https://doi.org/10.5194/gmd-2023-118-

supplement 370 
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