
1

RoGeR v3.0.4 – a process-based hydrological toolbox model in

Python

Robin Schwemmle1, Hannes Leistert1, Andreas Steinbrich1, Markus Weiler1

1Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany

Correspondence to: Robin Schwemmle (robin.schwemmle@hydrology.uni-freiburg.de) 5

Abstract. Although water availability and water quality are equally important for an effective water resources

management, to date, a combined representation of soil water balance components and water quality components in

Python are not available. The new RoGeR toolbox contains models that can be used for the quantification of

hydrological processes, fluxes and stores, but also solute transport processes based on StorAge selection. This study

presents the code structure and functionalities of RoGeR developed as a scientific model toolbox following defined 10

open-source software guidelines. RoGeR uses five different computational back-ends covering just-in-time

compilation, parallelism and graphical-processing units that might be used for optimizing computational performance.

We show that graphical-processing unit computing has the greatest potential to improve computation time and energy

usage, especially for large modelling experiments. A simple modelling experiment highlights the capabilities of the

new RoGeR model toolbox. We simulated the soil water balance, stable water isotope (18O) transport and 15

corresponding travel time distributions of the Eberbaechle catchment, Germany, for a three-year period. Due to the

current limitations for a variety of process components further development of RoGeR as a scientific software is

needed. Future modifications are easily possible due to the open software architecture of RoGeR.

1 Introduction

The interplay between the water and solute mass balance (e.g. oxygen-18, chloride or nitrate) and its related flow and 20

transport in the soil-vegetation-atmosphere interface plays an important role for the understanding of hydrologic

systems (e.g. Benettin et al., 2017). However, measurements of their states and fluxes are neither in space nor in time

ubiquitously available (Beven, 2011). Thus, soil hydrological models, soil-vegetation-atmosphere-transfer (SVAT)

models and distributed catchment models are indispensable tools to complement measurements (e.g. for a better

process understanding) and to make predictions (e.g. future climate impacts, land cover changes or in ungauged 25

catchments). Currently, there are many models in hydrology and the landscape of models is highly diverse (from

simple conceptual models to complex physically-based models). One reason for this large and diverse landscape of

models is that hydrologist still disagree about modelling concepts (Weiler and Beven, 2015). Despite the large number

of models, however, there is a lack of reproducibility in computational hydrology (Hutton et al., 2016; Reinecke et

2

al., 2022). The main reasons for this lack of reproducibility are poorly documented codes and workflows (e.g. 30

Reinecke et al., 2022), code being too complex (e.g. Reinecke et al., 2022), unavailable code (e.g. Reinecke et al.,

2022), missing input data (e.g. Reinecke et al., 2022), a lack of calibration standards and a lack of standards dealing

with uncertainties.

Simulating the hydrological processes at the soil-vegetation-atmosphere interface including solute mass balance and

transport with a high spatial and/or temporal resolution still requires long computation time. For reasons of 35

computational performance, hydrological models such as HYDRUS (Šimůnek et al., 2016), Daisy (Abrahamsen and

Hansen, 2000), HYPE (Lindström et al., 2010), EcH2O-iso (Kuppel et al., 2018) or mHM (Heße et al., 2017; Kumar

et al., 2020; Kumar et al., 2013; Samaniego et al., 2010) are written in low-level programming languages such as

Fortran or C++. However, these languages are hard to read, to learn and are usually not included in the curriculum of

hydrology-related degree programs. By contrast, high-level programming languages are easier to read and to learn, 40

but computation takes about 3-5 times longer than equivalent code in low-level programming languages (Häfner et

al., 2021). Therefore, high-level programming languages have the potential to foster reproducibility. Recently, high-

level open-source programming languages such as R or Python gained popularity in the hydrological modelling

community. Especially Python is currently the most popular programming language among software users (e.g. IEEE

Spectrum, 2022; PYPL, 2022; Stack Overflow, 2021). Hydrological models quantifying the hydrological cycle that 45

are written in Python, for example, are SUPERFLEX (Dal Molin et al., 2021; Fenicia et al., 2011), CWatM (Burek

et al., 2020) and UniFHy (Hallouin et al., 2022) but none of these models consider transport of solutes, and they

generally focus at the catchment scale. To date, only rsas (Harman, 2015) implemented a solute transport model

written in Python. However, rsas does not quantify the water balance and requires hydrological fluxes as input.

For reasons of longer computation times, high-level programming languages are often avoided in spatially distributed 50

hydrological models. One solution to reduce computation time in high-level programming languages is using a just-

in-time compiler (JIT). However, Python does not contain a built-in JIT. Instead, Python requires program libraries

such as Numba (Lam et al., 2022) or JAX (Bradbury et al., 2018). However, Numba and JAX provide the opportunity

to run the code on graphical processing units (GPUs) to decrease computation times. Veros (Häfner et al., 2018;

Häfner et al., 2021), an ocean model written in Python using JAX for acceleration, demonstrated that GPU 55

computations are a competitive alternative to central processing units (CPUs). In addition to that, Häfner et al. (2021)

could show that GPU computations save energy.

The first model version of RoGeR had a focus on the event-based runoff generation (Steinbrich et al., 2021). Therafter,

RoGeR has been further developed and by adding a routing scheme, surface runoff and subsurface runoff

contributions to flooding events could be explicitly simulated (Steinbrich et al., 2021). Additionally, by considering 60

snow hydrological processes, urban hydrological processes and redistribution processes such as evapotranspiration

enabled the estimation of the long-term water balance (Steinbrich et al., 2021). Based on the previous development

efforts of the RoGeR model by Weiler (2005), Steinbrich et al. (2016) and Steinbrich et al. (2021), we reimplemented

3

the process-based hydrological model RoGeR in a modular software architecture (e.g. different hydrological

processes are implemented in separate modules that can be independently modified) written in Python. Since RoGeR 65

had no implementation for solute transport so far, we include solute transport based on StorAge selection (SAS)

functions (e.g. Benettin et al., 2017). We choose a high-level programming language and a modular software paradigm

to foster reproducibility and wide-range application in teaching and research. In particular, we aim to facilitate general

code understanding, writing new code and debugging code which usually takes most of the time within software

projects. To overcome limitations on computational performance, we include the program library JAX. 70

In the following, we describe the implementation of the new model developed as a scientific software following open-

source guidelines. Thereafter, we provide a brief overview about the representation of the hydrological processes and

the related solute transport. We further profile the computational performance and energy usage. Finally, we

demonstrate the capabilities of the model by simulating a three-year period for a synthetic site.

2 Implementation 75

2.1 RoGeR as a scientific open-source software

For the development of RoGeR as scientific open-source software, we followed the guidelines presented in Table 1.

We defined these guidelines based on van Gompel et al. (2016) and Hall et al. (2022), and on reviewing earth science

related software written in Python (e.g. Bakker et al., 2016; Bartos, 2020; Burek et al., 2020; Collenteur et al., 2019;

Dal Molin et al., 2021; Häfner et al., 2018; Hallouin et al., 2022; Helmus and Collis, 2016; Kratzert et al., 2022; 80

Mälicke, 2022; May et al., 2022; Rose, 2018; Schwemmle et al., 2021). We suggest that different software concepts

might be applied depending on the software complexity. Moreover, including these guidelines in the curriculum of

hydrology-related degree programs may lay the foundation for a reproducible future in computational hydrology.

2.1.1 Software architecture

The basic modular structure of the software is adapted from Häfner et al. (2018). The core modules implement 85

hydrological processes and solute transport. As such, these modules represent a toolbox which can be used to build

pre-defined models (e.g. a SVAT model by considering only vertical processes). We already provided some pre-

defined models, but in general new models can be easily assembled and combined to the level of complexity that is

required. Moreover, further processes might be added by writing new modules. In addition to that, further modules

are available for the pre-/post-processing, writing the model output and handling computational back-ends. RoGeR 90

is pure Python, hence not all computational bottlenecks might be solvable. In such cases, we recommend writing

extensions using Cython instead of using a low-level language which would require a compiler.

4

2.1.2 Computational back-ends

The computations are handled by five different back-ends which are implemented through a function decorator

(Häfner et al., 2018). Users have to choose a suitable backend beforehand. The choice depends on programming skills, 95

size of the

Table 1 Guidelines for scientific open-source software in computational hydrology

5

modelling experiment and available computational resources. In the following, we briefly describe the back-ends and

give recommendations on the usage: 100

- numpy: This back-end uses NumPy (Harris et al., 2020) for computation and, hence, is easy to use. However,

the interpreted execution of the code and running computations on a single CPU may cause performance

limitations. We recommend this back-end to beginners and for small-scale modelling experiments. As long

as the modelling experiment fits in the memory, there are no specific requirements for the computational

resources. 105

- numpy-mpi: The numpy-mpi back-end parallelizes the numpy back-end via mpi4py (Dalcin et al., 2011).

The size of the modelling experiment might be limited by available memory and number of CPU cores. We

recommend this back-end to users with experience in parallelized computations.

- jax: The jax back-end is the same as numpy, but code is JIT compiled via JAX (Bradbury et al., 2018). Since

JAX transforms NumPy code, it is required that all code is NumPy compatible. The JIT compilation leads 110

to decreasing computation time (see Sect. 3).

- jax-mpi: Same as numpy-mpi, but code is JIT compiled via mpi4jax (Häfner and Vicentini, 2021). This leads

to computational speedup (see Sect. 3).

- jax-gpu: The code is JIT compiled and computations are performed on GPU which leads to computational

speedup (see Sect. 3). The jax-gpu backend requires an appropriate GPU. The size of the modelling 115

experiment is limited to available GPU memory. We recommend this back-end to users with advanced

programming skills.

2.1.3 Discretization and data handling

For RoGeR-1D (i.e. no lateral transfer between grid cells), space can be represented either through grid cells or

polygons. By contrast, RoGeR-2D models (i.e. lateral transfer between grid cells) require a regular grid as spatial 120

representation. In order to generate physically meaningful results, we recommend a spatial resolution between 0.25

m2 and 25 m2.

RoGeR requires input data for the following variables:

- precipitation up to 10 minutes time steps

- air temperature at daily time steps 125

- potential evapotranspiration at daily time steps

- solute concentrations at daily time steps (only if solute transport is simulated)

The 10 minutes time step is required for the detailed representation of the runoff generation processes (i.e. infiltration,

surface runoff and lateral subsurface runoff). Averaging the input flux for longer time steps leads to an overestimation

of infiltration and underestimation of overland flow and preferential flow. Hourly precipitation or daily precipitation 130

datasets can be used with the model and resampled to 10 minutes, however, losing the required temporal variability

6

to correctly simulate the runoff generation processes. For heavy rainfall intensities (the default threshold is > 5 mm/10

minutes), the time step is adapted to 10 minutes (Figure 1). For non-heavy rainfall intensities (<5 mm/10 minutes and

> 0 mm/10 minutes), the simulations use an hourly time-stepping. While no rainfall occurs, a daily time step is used.

If precipitation data is available with coarser temporal resolution, for example, hourly or daily resolution, we 135

recommend to resample the precipitation data to the required 10 minutes resolution. Depending on the resolution of

the available precipitation data, different resampling methods can be applied. For example, hourly date can be linearly

interpolated 10 minutes or daily data can be disaggregated (e.g. Förster et al., 2016; Koutsoyiannis and Onof, 2001).

The input data can be a time series or spatio-temporal data (i.e. time series for each grid cell) which is either provided

as text files (.txt) or NetCDF files (.nc). If the input data is provided as a time series using text files, the data is 140

internally converted to NetCDF.

Metadata (e.g. units, description) for all variables and constants are defined in single modules as dictionaries (Häfner

et al., 2018). From these dictionaries, metadata (e.g. units) is automatically added to the model output data. All model

output is written to NetCDF files. A major advantage of the NetCDF format is that I-O operations enables parallel

writing with compression (Häfner et al., 2018). This reduces time of I-O operations and the size of output files. 145

2.2 Hydrological model

Different hydrological processes are implemented as modules. In the following, we list the already implemented

processes and refer to the module and declare whether the module is tested or testing is still ongoing:

- Surface water storage (surface.py; testing is complete)

- Soil water storage (soil.py; testing is complete) 150

- Root zone water storage (root_zone.py; testing is complete)

- Subsoil water storage (subsoil.py; testing is complete)

- Groundwater water storage (groundwater.py; testing is ongoing)

- Transpiration (evapotranspiration.py; testing is complete)

- Soil evaporation (evapotranspiration.py; testing is complete) 155

- Interception (interception.py; testing is complete)

- Snow accumulation/Snow melt (snow.py; testing is complete)

- Infiltration driven by capillary forces (infiltration.py; testing is complete)

- Infiltration driven by gravitational forces (film_flow.py; testing is ongoing)

- Surface runoff (surface_runoff.py; testing is ongoing) 160

- Lateral subsurface runoff (subsurface_runoff.py; testing is ongoing)

- Lateral groundwater flow (groundwater_flow.py; testing is ongoing)

- Percolation (subsurface_runoff.py; testing is complete)

- Capillary rise (capillary_rise.py; testing is complete)

7

- Crop phenology (crop.py; testing is ongoing) 165

The main reason for using a modular structure, is to support the readability of the code. Another motivation for using

a modular structure is to represent a certain process by multiple process formulations that provide different

complexities (Knoben et al., 2019). As such the processes can be combined in multiple ways to build different model

structures. Thus, depending on the chosen process complexity, model structures represent the considered by different

degrees of 170

8

Figure 1 Overview of model inputs, conceptual implementation shown for a single grid cell or unit (Water storages are

represented in italic), and temporal discretization of the soil hydrologic cycle and solute transport. Spatial discretization for

different scales is the same for the soil hydrologic cycle and solute transport.

9

complexity. However, building process-consistent model structures from many different process formulations can be 175

challenging to model users. RoGeR uses single process formulations that constrains the flexibility of the structural

complexity. However, we provide pre-defined model structures (i.e. a combination of various hydrological processes)

to ensure a certain process consistency. The most basic model structure is shown in Figure 1 and is the basis for more

complex model structures. We pre-defined further model structures by adding further hydrological processes (e.g.

lateral subsurface flow, crop phenology). For more details about the pre-defined model structures, we refer to the 180

online documentation of RoGeR (Schwemmle, 2023).

RoGeR provides representations for bucket-type interception, degree-day based snow accumulation and snow melt

(LARSIM-Entwicklergemeinschaft, 2021), soil matrix, macropore and shrinkage crack infiltration (Steinbrich et al.,

2016; Weiler, 2005), soil evaporation (Or et al., 2013), vegetation phenology and vegetation-specific transpiration

(Steduto et al., 2009), capillary rise from a groundwater table and percolation to the groundwater (Salvucci, 1993) 185

and lateral subsurface runoff (Steinbrich et al., 2016; Stoll and Weiler, 2010). For detailed information (e.g. model

equations), we refer to the online documentation of RoGeR (Schwemmle, 2023).

RoGeR solves explicitly the soil water balance (i.e. fluxes update the state in a specific sequence) using an adaptive

time-stepping scheme (see Figure 1). The adaptive time stepping provides a better compromise between accuracy and

performance compared to fixed time stepping schemes (Clark and Kavetski, 2010). Numerical errors may compensate 190

for model structural errors, we have not evaluated the effect of other time stepping schemes on the numerical errors

of RoGeR. Although numerical errors affect the simulations, parameter uncertainty (e.g. Wagener and Gupta, 2005)

or input data uncertainty (e.g. Yatheendradas et al., 2008) may have a stronger impact on the simulations.

2.3 Solute transport model

Solute transport is implemented by a travel-time based approach. Particularly, we use StorAge selection (SAS) 195

functions (Rinaldo et al., 2015). SAS is implemented by specific distribution functions. We assign a distribution

function to each hydrological process (Figure 1). Here, we introduce two distribution functions which can be used for

SAS and are implemented in the toolbox. The first distribution function is based on a power law and requires only a

single parameter kQ (Fig. 2a). The power law distribution function is given as:

ω𝑄(𝑇, 𝑡) = 𝑘𝑄
𝑘𝑄 ⋅ 𝑃𝑠(𝑇, 𝑡)(𝑘𝑄−1) 200

 (1)

with

𝑃𝑆(𝑇, 𝑡) =
𝑆𝑇(𝑇,𝑡)

S(t)

 (2)

and the corresponding cumulative power law distribution function: 205

10

Ω𝑄(𝑇, 𝑡) = 𝑃𝑠(𝑇, 𝑡)𝑘𝑄

 (3)

where T is the water age (day), t is the time step (day), Q(T,t) is the probability distribution function of the hydrologic

flux, Q(T,t) is the cumulative probability distribution function), ST(T,t) is the cumulative age-ranked storage (mm),

S(t) is the soil water content (mm) and PS(T,t) is the cumulative probability distribution of the storage. 210

Figure 2 Storage selection with different parameters illustrated for power law distribution function (a; see Eq. (1)) and

Kumaraswamy distribution function (b; see Eq. (3))

As a second distribution function, we employ the Kumaraswamy distribution (Kumaraswamy, 1980). With two

parameters aQ and bQ, the Kumaraswamy distribution provides a greater flexibility than a power law distribution (Fig. 215

2b). The Kumaraswamy distribution function is formulated as:

ω𝑄(𝑇, 𝑡) = 𝑎 ⋅ 𝑏 ⋅ 𝑃𝑠(𝑇, 𝑡)(𝑎𝑄−1) ⋅ (1 − 𝑃𝑠(𝑇, 𝑡)𝑎𝑄
(𝑏𝑄−1)

)

 (4)

and the corresponding cumulative Kumaraswamy distribution function:

Ω𝑄(𝑇, 𝑡) = 1 − (1 − (𝑃𝑠(𝑇, 𝑡))
𝑎𝑄

𝑏𝑄

) 220

 (5)

Generally, any distribution function might be used as long as a closed form (i.e. probabilities integrates to one) is

available (Harman, 2015). We apply the fractional SAS function type (fSAS; van der Velde et al., 2012) and solve

the SAS equations for each hydrologic flux Q. To solve the SAS functions, we provide three numerical schemes with

fixed time steps: (i) deterministic (i.e. solving SAS equations for each flux in a sequential order), (ii) explicit Euler 225

and (iii) explicit Runge-Kutta fourth-order. Transport processes can be defined for conservative and non-conservative

solutes:

- Stable water isotopes oxygen-18 (18O) and deuterium (2H): Isotopic fractionation is not yet considered.

- Bromide and chloride: Evapoconcentration, sorption processes and partitioning of root uptake are included.

11

- Nitrate: Biogeochemical processes denitrification (Kunkel and Wendland, 2012), nitrification, soil nitrogen 230

mineralization and nitrogen uptake by crops are implemented.

Again, we refer to the online documentation of RoGeR for detailed information (Schwemmle, 2023). The following

routines

are implemented, and we refer to the module and declare whether the module

is tested or testing is still ongoing: 235

- Solute transport and water ages (transport.py and sas.py; testing is complete)

- Nitrogen cycle (nitrate.py; testing is ongoing)

3 Test cases for continuous development, computational performance and energy usage

RoGeR uses unit tests and continuous integration to test and ensure technical functionality (see Table 1). Additionally,

we use test cases for continuous development. The idea of these test cases is to guarantee predictive consistency and 240

to track advances in model development (i.e. comparison between model versions). We run the test cases with model

parameters that cover a wide range of common parameters and perform simulations with different input data. In

contrast to unit tests, the execution time is longer and depends on the number of time steps covered by the input data.

The results (see Sect. S1) can be compared to future versions of RoGeR.

Table 2 Hardware specifications of computational benchmarks 245

 Notebook Cluster node

CPU
Intel® CoreTM i7 @ 2.60 GHz (four physical

cores)

2 x Intel® Xeon® E5-2680v4 (Broadwell) @ 2.40 GHz

(28 physical cores)

TDP1 of CPU 45 Watt 280 Watt

RAM 8 GB DDR3 128 GB DDR4

GPU - Nvidia Tesla K80 (12 GB GDDR5 memory)

TDP1 of GPU - 300 Watt

Software

stack

GNU 8.1, Open MPI 4.1.3, HDF5 1.12.2, roger

3.0

GNU 9.2, Open MPI 4.1.3, HDF5 1.12, CUDA 11.4,

roger 3.0

PUE2 1 1.31
1Total power draw
2Power usage efficiency

High-level programming languages such as Python still have the reputation of being comparatively slow. We profiled

the computation time and energy usage using the five back-ends (see Sect. 2.1.2). For the profiling, we used two

different hardware specifications representing commonly available computing resources and high-performance 250

computing (HPC) resources (Table 2). We measured computation time and energy usage with a fixed number of

iterations, but varying number of grid cells (Fig. 3).

12

Model parameters are the same for each grid cell. Figure 3 shows that for small modelling experiments (< 1000 grid

cells), the numpy back-end performs equally well as the other back-ends. Parallel computation improves

computational speed up only for intermediate to larger modelling experiments (> 1000 grid cells), provided that a 255

greater number of CPU cores are available. Computation on a single GPU device is faster than on multiple CPUs for

the RoGeR-SVAT type model, while multiple CPUs (numpy-mpi and jax-mpi) are faster than a single GPU device

for the RoGeR-SVAT-18O type model. However, a major requirement for GPU computing is that the modelling

experiment fits into the GPU memory (< 106 grid cells). A solution to the memory limitation would be the usage of

multiple GPU devices. 260

Figure 3 Runtime performance of computational back-ends for the RoGeR-SVAT type model (a, b) and for the RoGeR-SVAT-
18O type transport model (c, d). Note that, the number of grid cells represents the two horizontal spatial dimensions (e.g. longitudes

and latitudes). The total number of elements is greater for transport models due to additional age dimensions and can be derived

by multiplying the number of grid cells (i.e. two spatial dimensions) with the number of water ages (e.g. 1500). SVAT model used 265
100 iterations and SVAT-18O transport model used 20 iterations.

13

Figure 4 Energy usage of computational back-ends on a cluster node for the RoGeR-SVAT type model (a, b) and for the RoGeR-

SVAT-18O type transport model (c, d)

HPC consumes more energy than running computations on a notebook. Depending on the energy source, HPC 270

contributes differently to climate warming (Lannelongue et al., 2021). In order to raise awareness about the energy

usage in HPC context and to provide information for a sustainable allocation of computational resources, we profiled

the energy usage of RoGeR in an HPC context (see Table 2). Based on the profiling of computation time, we

calculated the energy usage of the five back-ends using the method proposed by Lannelongue et al. (2021). The results

(Fig. 4) show that using multiple CPUs (numpy-mpi and jax-mpi) consumes more energy than other back-ends. Using 275

a single GPU device decreases energy usage, while computation time still competes with multiple CPUs (cp. Fig. 3).

For small and intermediate modelling experiments, single CPU (numpy and jax) back-ends use less energy than other

back-ends. With these results, we aim to support efficient and sustainable allocation of computational resources. We

suggest that computation time and energy usage should be considered equally for the allocation.

 280

14

4 Application: Soil water balance, 18O transport and water age statistics of a three-year period

To demonstrate the capabilities of RoGeR, we present a simple application example. We simulate the soil water

balance and fluxes and 18O fluxes of the Eberbaechle catchment (1.54 km2 with a resolution of 25 m x 25 m) for a

time period of three years. The input data was retrieved from the database WeatherDB, which provides data from

stations operated by Deutscher Wetterdienst (DWD) tailored to the required format of RoGeR (Schmit, 2022). We 285

Figure 5 The Eberbaechle catchment used for the application example. The Further catchment properties used as model parameters

are shown in Figs. S28 – S39. The coordinates of the catchment outlet are 47°57’24”N 7°49’48”E.

selected the DWD station at Freiburg airport (station ID: 1443) to obtain precipitation, air temperature and potential 290

evapotranspiration data from November 2019 to October 2022. Since DWD stations do not measure solute

concentrations in precipitation, data for 18O in precipitation has been generated by a sinusoidal function with random

variation for amplitude and offset (Allen et al., 2018; amplitude=4.3±0.5 [‰], offset=-10±0.5 [‰] and phase=60

[days]). In order to set the values for the model parameters listed in Table 3, we used the soil map BK50

(Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau), LIDAR data 295

(Landesvermessungsamt Baden-Würrtemberg), ATKIS DLM25 (Landesvermessungsamt Baden-Würrtemberg).

Additionally, we assumed a deep groundwater table implemented through a high hydraulic conductivity of the

bedrock (see Table 3). SAS parameters for the selected power law distribution function are assumed to be spatially

and temporally constant for each hydrological process and grid cell. We assigned k=0.2 to soil evaporation and

15

capillary rise, k=0.5 to transpiration, k=1.5 to percolation of root zone and k=1.5 to percolation of subsoil. Thus, soil 300

evaporation capillary rise, and transpiration have a preference for younger water, while percolation processes have a

preference for older water (see Fig. 2a).

Table 3 Model parameters for the Eberbaechle catchment

Hydrological model parameter Symbol Unit Range of parameter values

Land use/Land cover lu_id -
Grass, forest, sealed surface,

agriculture

Surface sealing sealing - 0 - 1

Soil depth zsoil mm 200 - 1000

Length of vertical macropores lmpv mm 0 - 800

Density of vertical macropores mpv m-2 0 - 200

Air capacity of soil θac - 0.06 - 0.14

Plant available field capacity of soil θufc - 0.1 - 0.2

Permanent wilting point of soil θpwp - 0.09 - 0.18

Saturated hydraulic conductivity of soil ks mm h-1 10.4 - 125

Hydraulic conductivity of bedrock kf mm h-1 2500a

Offset for air temperature TAoffset °C -2.5 - -0.4

Weighting factor for potential evapotranspiration PETweight - 0.73 - 1.06

Weighting factor for precipitation PRECIPweight - 1.0 - 1.27
a results in free drainage

In Figure 6, we display the time series of hydrologic fluxes and soil water content with the corresponding 18O signature

and water age distributions of a single grid cell. The temporal pattern exhibits that soil water content and travel times

of hydrologic fluxes can be related. This pattern emphasizes the interlinkage between hydrologic states and transport

velocities of solutes (Hrachowitz et al., 2016). Figure 7 shows the cumulative distributions of soil hydrologic fluxes,

soil water content, 18O signals and average water ages at four different dates with different soil water content 310

conditions. Soil water content is wetter at 10th February 2021 and drier at 13th August 2022 while the other two dates

represent the transition between drier and wetter conditions. The cumulative distributions of 18O signals and average

water ages reveal differences for these different soil water content conditions. The 18O signals display distinct

differences between the considered fluxes and soil water storage. The average water age exposes a more general

pattern. For drier conditions, average water age is older, whereas for wetter conditions median water age decreases. 315

The primary objective of the example is to demonstrate the capabilities of RoGeR. Therefore, we kept the complexity

of the example at a simple level. Although a comparison between simulations and observations is important to

evaluate the fidelity of the model, we do not provide such a comparison here. Instead, we refer to Schwemmle and

16

Weiler (2023) for an in-depth evaluation of RoGeR using measurements from a grassland lysimeter site. Since the

development of RoGeR as scientific software started recently and is still ongoing, further evaluation of RoGeR will 320

be addressed in the future.

Figure 6 Simulated fluxes and soil water content (a-d), corresponding 18O signal (e-h) and corresponding 10th, 50th and 10th

percentile of water ages (i-k) of a single grid cell. Vertical red lines indicate the four different dates from Figure 6. Power law 325
distribution function serves as SAS function (SAS parameters: kevap-soil=0.2, ktransp=0.5, kperc-rz=1.5, kperc-ss=1.5; see Figure 2)

17

Figure 7 Cumulative distributions of simulated fluxes and soil water content (a-d), corresponding 18O signal (e-h) and the

corresponding average travel time and average residence time (i-k) of the Eberbaechle catchment (1.54 km2) at four different dates

(transition to dry, dry, transition to wet and wet conditions) 330

The simple application example demonstrates the potential of RoGeR for a combined quantification of the water

balance and solute mass balance. The example focusses on vertical soil hydrological processes and a conservative

tracer, but this is just an excerpt of the toolbox. Other processes (e.g. lateral subsurface runoff, different SAS function;

see Sect. 2.2 and 2.3) or other tracers (e.g. bromide; see Sect. 2.3) could also be considered and implemented.

5 Summary and outlook 335

The development of the process-based hydrological toolbox RoGeR followed open-source software guidelines (Sect.

2.1). We believe that such guidelines improve the reproducibility in computational hydrology. With the modular code

18

structure (Sect. 2.1.1) and the good readability of Python code, RoGeR is intended to be easy to use (i.e. usable by

programmers with little experience) and to be easy to modify (i.e. modification and extension of the code). With using

different computational back-ends, we maintained code readability without hampering computational performance 340

(Sect. 2.1.2). The five back-ends provide the opportunity to simulate anything between plot scale and the catchment

scale with reasonable computation times. Especially, the GPU back-end has great potential to reduce computation

time and energy usage of catchment scale modelling experiments (Sect. 3).

In comparison to the publicly available hydrological models written in Python, we combined hydrological processes

(Sect. 2.2) and solute transport based on SAS (Sect. 2.3). The combined representation enables the prediction of 345

hydrologic states and fluxes and their corresponding solute concentrations including travel times. The simple

application example considering the water balance and 18O transport through the soil of the Eberbaechle catchment

showed plausible results. The RoGeR toolbox contains many processes to describe one dimensional hydrological

processes (i.e. no lateral transfer between grid cells). The implementation of the lateral transfer between grid cells

(i.e. routing schemes for surface and subsurface runoff) will be addressed in future releases. Surface runoff routing 350

will be implemented using a hydraulic scheme. Subsurface runoff routing will use the approach of Steinbrich et al.

(2016) which is based on the topographic slope and corresponding flow velocities. Moreover, we suggest that future

work may improve or extend the currently available process representations (e.g. gravity-driven infiltration and

percolation; Demand and Weiler, 2021; Germann and Prasuhn, 2018) and further evaluation of RoGeR with measured

data may provide insights on the strengths and weaknesses. 355

RoGeR contributes to a further diversification of the hydrological model landscape and the disagreement about

process representation in the hydrological modelling community will continue (Weiler and Beven, 2015). In general,

an advantage of this diversification and disagreement is that many different approaches are available and, hence, a

great flexibility to address different problems. On the other hand, the theoretical diversification is accompanied by

technical diversification (e.g. different programming languages or different data formats) that lead to inconsistencies 360

in the application. We suggest that the diverse hydrological model landscape might benefit from focussing on

constrained data interfaces of the models following common data conventions (Hallouin et al., 2022) and

implementing standardized model interfaces (Hut et al., 2022; Hutton et al., 2020). This would facilitate the

integration of hydrological models in earth science models. Another advantage would be that multiple hydrological

models could be compared more easily. Such a model comparison of RoGeR with other models, for example, with 365

tRIBS (Ivanov et al., 2004a, b; Vivoni et al., 2004), VIC (Hamman et al., 2018) or mHM (Samaniego et al., 2010)

may be useful to highlight advantages and disadvantages of using RoGeR compared to other models.

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/gmd-2023-118-

supplement 370

https://doi.org/10.5194/gmd-2023-118-supplement
https://doi.org/10.5194/gmd-2023-118-supplement

19

Code availability. The code is open-source and publicly available https://doi.org/10.5281/zenodo.10479343 and

https://doi.org/10.5281/zenodo.8095094.

Data availability. The meteorological input data used in the application example has been retrieved from 375

https://weather.hydro.intra.uni-freiburg.de/ (Schmit, 2022) and is available at https://github.com/Hydrology-

IFH/roger/tree/main/examples/hillslope_scale/svat_distributed_tutorial.

Author contributions. MW conceived the idea of the hydrological model RoGeR. MW, HL, AS and RS

conceptualized RoGeR. HL and AS developed the first model suites of RoGeR in Python. RS developed RoGeR as a 380

software package with support from HL translating python code into a software package. RS wrote the first draft of

the manuscript with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

 385

Acknowledgements. The authors acknowledge support by the High Performance and Cloud Computing Group at the

Zentrum für Datenverarbeitung of the University of Tübingen, the state of Baden-Württemberg through bwHPC and

the German Research Foundation (DFG) through grant no INST 37/935-1 FUGG. We are grateful to the Veros

development team for providing their software architecture, to the Python community for providing the useful tools

and to everyone involved in the development of RoGeR. 390

Financial support. This research has been supported by Helmholtz Association of German Research Centres (grant

no 42-2017). The article processing charge was funded by the Baden-Wuerttemberg Ministry of Science, Research

and Art and the University of Freiburg in the funding programme Open Access Publishing.

References 395

Abrahamsen, P. and Hansen, S.: Daisy: an open soil-crop-atmosphere system model, Environmental Modelling & Software, 15,

313-330, https://doi.org/10.1016/S1364-8152(00)00003-7, 2000.

Allen, S. T., Kirchner, J. W., and Goldsmith, G. R.: Predicting Spatial Patterns in Precipitation Isotope (δ2H and δ18O) Seasonality

Using Sinusoidal Isoscapes, Geophysical Research Letters, 45, 4859-4868, https://doi.org/10.1029/2018GL077458, 2018.

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., and Fienen, M. N.: Scripting MODFLOW Model 400
Development Using Python and FloPy, Groundwater, 54, 733-739, https://doi.org/10.1111/gwat.12413, 2016.

Bartos, M.: pysheds: simple and fast watershed delineation in python, https://doi.org/10.5281/zenodo.3822494, 2020.

Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and Rinaldo, A.: Using SAS functions and high-resolution isotope

data to unravel travel time distributions in headwater catchments, Water Resources Research, 53, 1864-1878,

https://doi.org/10.1002/2016WR020117, 2017. 405
Beven, K. J.: Rainfall-Runoff Modelling. The Primer., John Wiley & Sons, Chichester, England, 2011.

https://doi.org/10.5281/zenodo.10479343
https://doi.org/10.5281/zenodo.8095094
https://doi.org/10.1016/S1364-8152(00)00003-7
https://doi.org/10.1029/2018GL077458
https://doi.org/10.1111/gwat.12413
https://doi.org/10.5281/zenodo.3822494
https://doi.org/10.1002/2016WR020117

20

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,

Wanderman-Milne, S., and Zhang, Q.: JAX: composable transformations of Python+NumPy programs, available at:

http://github.com/google/jax, (last access: 20 January 2023).

Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., Guillaumot, L., Zhao, F., and Wada, Y.: Development of the 410
Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of

integrated water resources management, Geosci. Model Dev., 13, 3267-3298, https://doi.org/10.5194/gmd-13-3267-2020, 2020.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time

stepping schemes, Water Resources Research, 46, https://doi.org/10.1029/2009wr008894, 2010.

Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and Schaars, F.: Pastas: Open Source Software for the Analysis of 415
Groundwater Time Series, Groundwater, 57, 877-885, https://doi.org/10.1111/gwat.12925, 2019.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy 1.3.0: an open-source Python framework for building, testing, and

improving conceptual hydrological models, Geosci. Model Dev., 14, 7047-7072, https://doi.org/10.5194/gmd-14-7047-2021,

2021.

Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A.: Parallel distributed computing using Python, Advances in Water Resources, 420
34, 1124-1139, https://doi.org/10.1016/j.advwatres.2011.04.013, 2011.

Demand, D. and Weiler, M.: Potential of a Gravity-Driven Film Flow Model to Predict Infiltration in a Catchment for Diverse Soil

and Land Cover Combinations, Water Resources Research, 57, e2019WR026988, https://doi.org/10.1029/2019WR026988,

2021.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. 425
Motivation and theoretical development, Water Resources Research, 47, https://doi.org/10.1029/2010WR010174, 2011.

Förster, K., Hanzer, F., Winter, B., Marke, T., and Strasser, U.: An open-source MEteoroLOgical observation time series

DISaggregation Tool (MELODIST v0.1.1), Geosci. Model Dev., 9, 2315-2333, 10.5194/gmd-9-2315-2016, 2016.

Germann, P. F. and Prasuhn, V.: Viscous Flow Approach to Rapid Infiltration and Drainage in a Weighing Lysimeter, Vadose

Zone Journal, 17, 170020, https://doi.org/10.2136/vzj2017.01.0020, 2018. 430
Häfner, D., Jacobsen, R. L., Eden, C., Kristensen, M. R. B., Jochum, M., Nuterman, R., and Vinter, B.: Veros v0.1 – a fast and

versatile ocean simulator in pure Python, Geosci. Model Dev., 11, 3299-3312, https://doi.org/10.5194/gmd-11-3299-2018, 2018.

Häfner, D., Nuterman, R., and Jochum, M.: Fast, Cheap, and Turbulent—Global Ocean Modeling With GPU Acceleration in

Python, Journal of Advances in Modeling Earth Systems, 13, e2021MS002717, https://doi.org/10.1029/2021MS002717, 2021.

Häfner, D. and Vicentini, F.: mpi4jax: Zero-copy MPI communication of JAX arrays, Journal of Open Source Software, 6, 3419, 435
https://doi.org/10.21105/joss.03419, 2021.

Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski, S. J., Drost, N., van Emmerik, T., and Hut, R.: A hydrologist's

guide to open science, Hydrol. Earth Syst. Sci., 26, 647-664, https://doi.org/10.5194/hess-26-647-2022, 2022.

Hallouin, T., Ellis, R. J., Clark, D. B., Dadson, S. J., Hughes, A. G., Lawrence, B. N., Lister, G. M. S., and Polcher, J.: UniFHy

v0.1.1: a community modelling framework for the terrestrial water cycle in Python, Geosci. Model Dev., 15, 9177-9196, 440
https://doi.org/10.5194/gmd-15-9177-2022, 2022.

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 (VIC-5):

infrastructure improvements for new applications and reproducibility, Geosci. Model Dev., 11, 3481-3496, 10.5194/gmd-11-

3481-2018, 2018.

Harman, C. J.: Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of 445
chloride in a watershed, Water Resources Research, 51, 1-30, https://doi.org/10.1002/2014WR015707, 2015.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,

Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P.,

Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming

with NumPy, Nature, 585, 357-362, https://doi.org/10.1038/s41586-020-2649-2, 2020. 450
Helmus, J. J. and Collis, S. M.: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the

Python programming language, Journal of Open Research Software, 4, https://doi.org/10.5334/jors.119, 2016.

Heße, F., Zink, M., Kumar, R., Samaniego, L., and Attinger, S.: Spatially distributed characterization of soil-moisture dynamics

using travel-time distributions, Hydrol. Earth Syst. Sci., 21, 549-570, https://doi.org/10.5194/hess-21-549-2017, 2017.

Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J. K., Ruiz, L., van der Velde, Y., and Wade, A. J.: 455
Transit times—the link between hydrology and water quality at the catchment scale, Wiley Interdisciplinary Reviews: Water, 3,

629-657, https://doi.org/10.1002/wat2.1155, 2016.

Hut, R., Drost, N., van de Giesen, N., van Werkhoven, B., Abdollahi, B., Aerts, J., Albers, T., Alidoost, F., Andela, B.,

Camphuijsen, J., Dzigan, Y., van Haren, R., Hutton, E., Kalverla, P., van Meersbergen, M., van den Oord, G., Pelupessy, I.,

Smeets, S., Verhoeven, S., de Vos, M., and Weel, B.: The eWaterCycle platform for open and FAIR hydrological collaboration, 460
Geosci. Model Dev., 15, 5371-5390, https://doi.org/10.5194/gmd-15-5371-2022, 2022.

http://github.com/google/jax
https://doi.org/10.5194/gmd-13-3267-2020
https://doi.org/10.1029/2009wr008894
https://doi.org/10.1111/gwat.12925
https://doi.org/10.5194/gmd-14-7047-2021
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1029/2019WR026988
https://doi.org/10.1029/2010WR010174
https://doi.org/10.2136/vzj2017.01.0020
https://doi.org/10.5194/gmd-11-3299-2018
https://doi.org/10.1029/2021MS002717
https://doi.org/10.21105/joss.03419
https://doi.org/10.5194/hess-26-647-2022
https://doi.org/10.5194/gmd-15-9177-2022
https://doi.org/10.1002/2014WR015707
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5334/jors.119
https://doi.org/10.5194/hess-21-549-2017
https://doi.org/10.1002/wat2.1155
https://doi.org/10.5194/gmd-15-5371-2022

21

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible, so is

it really science?, Water Resources Research, 52, 7548-7555, https://doi.org/10.1002/2016WR019285, 2016.

Hutton, E. W., Piper, M. D., and Tucker, G. E.: The Basic Model Interface 2.0: A standard interface for coupling numer ical models

in the geosciences, Journal of Open Source Software, 5, 2317, https://doi.org/10.21105/joss.02317, 2020. 465
IEEE Spectrum: Top Programming Languages 2022, available at: https://spectrum.ieee.org/top-programming-languages-2022,

(last access: 12 January 2023).

Ivanov, V. Y., Vivoni, E. R., Bras, R. L., and Entekhabi, D.: Catchment hydrologic response with a fully distributed triangulated

irregular network model, Water Resources Research, 40, https://doi.org/10.1029/2004WR003218, 2004a.

Ivanov, V. Y., Vivoni, E. R., Bras, R. L., and Entekhabi, D.: Preserving high-resolution surface and rainfall data in operational-470
scale basin hydrology: a fully-distributed physically-based approach, Journal of Hydrology, 298, 80-111,

https://doi.org/10.1016/j.jhydrol.2004.03.041, 2004b.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular Assessment of Rainfall–Runoff Models

Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic

models as continuous state-space formulations, Geosci. Model Dev., 12, 2463-2480, 10.5194/gmd-12-2463-2019, 2019. 475
Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation using adjusting procedures on a Poisson cluster model, Journal of

Hydrology, 246, 109-122, https://doi.org/10.1016/S0022-1694(01)00363-8, 2001.

Kratzert, F., Gauch, M., Nearing, G., and Klotz, D.: NeuralHydrology — A Python library for Deep Learning research in hydro

logy, Journal of Open Source Software, 7, 4050, https://doi.org/10.21105/joss.04050, 2022.

Kumar, R., Heße, F., Rao, P. S. C., Musolff, A., Jawitz, J. W., Sarrazin, F., Samaniego, L., Fleckenstein, J. H., Rakovec, O., 480
Thober, S., and Attinger, S.: Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe,

Nature Communications, 11, 6302, https://doi.org/10.1038/s41467-020-19955-8, 2020.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at

multiple scales and locations, Water Resources Research, 49, 360-379, https://doi.org/10.1029/2012WR012195, 2013.

Kumaraswamy, P.: A generalized probability density function for double-bounded random processes, Journal of Hydrology, 46, 485
79-88, https://doi.org/10.1016/0022-1694(80)90036-0, 1980.

Kunkel, R. and Wendland, F.: Diffuse Nitrateinträge in die Grund- und Oberflächengewässer von Rhein und Ems - Ist-Zustands-

und Maßnahmenanalysen, Forschungszentrum Jülich, Jülich, Germany, 143 pp., 2012.

Kuppel, S., Tetzlaff, D., Maneta, M. P., and Soulsby, C.: EcH2O-iso 1.0: water isotopes and age tracking in a process-based,

distributed ecohydrological model, Geosci. Model Dev., 11, 3045-3069, https://doi.org/10.5194/gmd-11-3045-2018, 2018. 490
Lam, S. K., Pitrou, A., Florisson, M., Seibert, S., Markall, G., Anderson, T. A., Leobas, G., Collison, M., Bourque, J., Meurer, A.,

Oliphant, T. E., Riasanovsky, N., Wang, M., Pronovost, E., Totoni, E., Wieser, E., Seefeld, S., Grecco, H., Peterson, P., Virshup,

I., Matty, G., Turner-Trauring, I., and Bourbeau, J.: numba/numba: Version 0.56.4, available at:

https://doi.org/10.5281/zenodo.7289231, (last access: 20 January 2023).

Lannelongue, L., Grealey, J., and Inouye, M.: Green Algorithms: Quantifying the Carbon Footprint of Computation, Advanced 495
Science, 8, 2100707, https://doi.org/10.1002/advs.202100707, 2021.

LARSIM-Entwicklergemeinschaft: Das Wasserhaushaltsmodell LARSIM: Modellgrundlagen und Anwendungsbeispiele,

LARSIM-Entwicklergemeinschaft - Hochwasserzentralen LUBW, BLfU, LfU RP, HLNUG, BAFU, 258 pp., 2021.

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological

Predictions for the Environment) water quality model for different spatial scales, Hydrology Research, 41, 295-319, 500
https://doi.org/10.2166/nh.2010.007, 2010.

Mälicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python, Geosci. Model

Dev., 15, 2505-2532, https://doi.org/10.5194/gmd-15-2505-2022, 2022.

May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S.

C., and Marsh, P. T.: MetPy: A Meteorological Python Library for Data Analysis and Visualization, Bulletin of the American 505
Meteorological Society, 103, E2273-E2284, https://doi.org/10.1175/bams-d-21-0125.1, 2022.

Or, D., Lehmann, P., Shahraeeni, E., and Shokri, N.: Advances in Soil Evaporation Physics—A Review, Vadose Zone Journal,

12, vzj2012.0163, https://doi.org/10.2136/vzj2012.0163, 2013.

PYPL: PYPL PopularitY of Programming Language index, available at: https://pypl.github.io/PYPL.html, (last access: 12 January

2023). 510
Reinecke, R., Trautmann, T., Wagener, T., and Schüler, K.: The critical need to foster computational reproducibility,

Environmental Research Letters, 17, 041005, https://doi.org/10.1088/1748-9326/ac5cf8, 2022.

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., van der Velde, Y., Bertuzzo, E., and Botter, G.: Storage

selection functions: A coherent framework for quantifying how catchments store and release water and solutes, Water Resources

Research, 51, 4840-4847, https://doi.org/10.1002/2015WR017273, 2015. 515
Rose, B. E.: CLIMLAB: a Python toolkit for interactive, process-oriented climate modeling, Journal of Open Source Software, 3,

659, https://doi.org/10.21105/joss.00659, 2018.

https://doi.org/10.1002/2016WR019285
https://doi.org/10.21105/joss.02317
https://spectrum.ieee.org/top-programming-languages-2022
https://doi.org/10.1029/2004WR003218
https://doi.org/10.1016/j.jhydrol.2004.03.041
https://doi.org/10.1016/S0022-1694(01)00363-8
https://doi.org/10.21105/joss.04050
https://doi.org/10.1038/s41467-020-19955-8
https://doi.org/10.1029/2012WR012195
https://doi.org/10.1016/0022-1694(80)90036-0
https://doi.org/10.5194/gmd-11-3045-2018
https://doi.org/10.5281/zenodo.7289231
https://doi.org/10.1002/advs.202100707
https://doi.org/10.2166/nh.2010.007
https://doi.org/10.5194/gmd-15-2505-2022
https://doi.org/10.1175/bams-d-21-0125.1
https://doi.org/10.2136/vzj2012.0163
https://pypl.github.io/PYPL.html
https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.1002/2015WR017273
https://doi.org/10.21105/joss.00659

22

Salvucci, G. D.: An approximate solution for steady vertical flux of moisture through an unsaturated homogeneous soil, Water

Resources Research, 29, 3749-3753, https://doi.org/10.1029/93wr02068, 1993.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the 520
mesoscale, Water Resources Research, 46, https://doi.org/10.1029/2008WR007327, 2010.

Schmit, M.: WeatherDB, available at: https://weather.hydro.intra.uni-freiburg.de, (last access: 20 January 2023).

Schwemmle, R.: RoGeR - a process-based hydrological toolbox model in Python, available at:

https://doi.org/10.5281/zenodo.7633362 and https://github.com/Hydrology-IFH/roger, (last access: 9 March 2023).

Schwemmle, R., Demand, D., and Weiler, M.: Technical note: Diagnostic efficiency – specific evaluation of model performance, 525
Hydrol. Earth Syst. Sci., 25, 2187-2198, https://doi.org/10.5194/hess-25-2187-2021, 2021.

Schwemmle, R. and Weiler, M.: Consistent modelling of transport processes and travel times - coupling soil hydrologic processes

with StorAge Selection functions (in review), submitted to Water Resources Research,

https://doi.org/10.22541/essoar.167751575.55537069/v1, 2023.

Šimůnek, J., van Genuchten, M. T., and Šejna, M.: Recent Developments and Applications of the HYDRUS Computer Software 530
Packages, Vadose Zone Journal, 15, vzj2016.2004.0033, https://doi.org/10.2136/vzj2016.04.0033, 2016.

Stack Overflow: Stack Overflow Developer Survey, available at: https://insights.stackoverflow.com/survey/2021#technology-

most-popular-technologies, (last access: 12 January 2023).

Steduto, P., Hsiao, T. C., Raes, D., and Fereres, E.: AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I.

Concepts and Underlying Principles, Agronomy Journal, 101, 426-437, https://doi.org/10.2134/agronj2008.0139s, 2009. 535
Steinbrich, A., Leistert, H., and Weiler, M.: Model-based quantification of runoff generation processes at high spatial and temporal

resolution, Environmental Earth Sciences, 75, 1423, https://doi.org/10.1007/s12665-016-6234-9, 2016.

Steinbrich, A., Leistert, H., and Weiler, M.: RoGeR – ein bodenhydrologisches Modell für die Beantwortung einer Vielzahl

hydrologischer Fragen, Korrespondenz Wasserwirtschaft, 14, https://doi.org/10.3243/kwe2021.02.004, 2021.

Stoll, S. and Weiler, M.: Explicit simulations of stream networks to guide hydrological modelling in ungauged basins, Hydrol. 540
Earth Syst. Sci., 14, 1435-1448, https://doi.org/10.5194/hess-14-1435-2010, 2010.

van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and Uijlenhoet, R.: Quantifying catchment-scale mixing and its

effect on time-varying travel time distributions, Water Resources Research, 48, https://doi.org/10.1029/2011WR011310, 2012.

van Gompel, M., Noordzij, J., de Valk, R., and Scharnhorst, A.: Guidelines for Software Quality, Common Lab Research

Infrastructure for the Arts and Humanities, Amsterdam, Netherlands, 1-42 pp., 2016. 545
Vivoni, E. R., Ivanov, V. Y., Bras, R. L., and Entekhabi, D.: Generation of Triangulated Irregular Networks Based on Hydrological

Similarity, Journal of Hydrologic Engineering, 9, 288-302, doi:10.1061/(ASCE)1084-0699(2004)9:4(288), 2004.

Wagener, T. and Gupta, H. V.: Model identification for hydrological forecasting under uncertainty, Stochastic Environmental

Research and Risk Assessment, 19, 378-387, https://doi.org/10.1007/s00477-005-0006-5, 2005.

Weiler, M.: An infiltration model based on flow variability in macropores: development, sensitivity analysis and applications, 550
Journal of Hydrology, 310, 294-315, https://doi.org/10.1016/j.jhydrol.2005.01.010, 2005.

Weiler, M. and Beven, K.: Do we need a Community Hydrological Model?, Water Resources Research, 51, 7777-7784,

https://doi.org/10.1002/2014WR016731, 2015.

Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., and Stewart, A.: Understanding uncertainty

in distributed flash flood forecasting for semiarid regions, Water Resources Research, 44, W05S19, 555
https://doi.org/10.1029/2007wr005940, 2008.

https://doi.org/10.1029/93wr02068
https://doi.org/10.1029/2008WR007327
https://weather.hydro.intra.uni-freiburg.de/
https://doi.org/10.5281/zenodo.7633362
https://github.com/Hydrology-IFH/roger
https://doi.org/10.5194/hess-25-2187-2021
https://doi.org/10.22541/essoar.167751575.55537069/v1
https://doi.org/10.2136/vzj2016.04.0033
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.1007/s12665-016-6234-9
https://doi.org/10.3243/kwe2021.02.004
https://doi.org/10.5194/hess-14-1435-2010
https://doi.org/10.1029/2011WR011310
https://doi.org/10.1007/s00477-005-0006-5
https://doi.org/10.1016/j.jhydrol.2005.01.010
https://doi.org/10.1002/2014WR016731
https://doi.org/10.1029/2007wr005940

	1 Introduction
	2 Implementation
	2.1 RoGeR as a scientific open-source software
	2.1.1 Software architecture
	2.1.2 Computational back-ends
	2.1.3 Discretization and data handling
	2.2 Hydrological model
	2.3 Solute transport model

	3 Test cases for continuous development, computational performance and energy usage
	4 Application: Soil water balance, 18O transport and water age statistics of a three-year period
	5 Summary and outlook
	References

