Table S1	Definitions,	values and	units of	parameters	in MIMIC	CS.
----------	--------------	------------	----------	------------	----------	-----

Parameter	Description	Value	Unit
Carbon neel-	Description	¥ alue	Umt
	Matabolia littar pool		$ma C am^{-3}$
	Structural litter pool	-	mg C cm ⁻³
	Microarganiam with conjutrankia growth strategy	-	$m_2 C cm^{-3}$
MIC	Microorganism with elipstrachia south strategy	-	$\operatorname{mg} C \operatorname{cm}^{-3}$
MIC _k	Physically, protected SOC pace	-	mg C cm $m_2 C \text{ cm}^{-3}$
SOC_p	Chamical protected SOC pool	-	mg C cm ⁻³
SOC	Available SOC pool	-	$mg C cm^{-3}$
50Ca		-	nig C chi
	Partitioning of litter inputs to LIT	0.85, 0.012 (lignin/N)	
Jmet f	Fraction of litter inputs transformed to SOC	0.05	-
Ji,met f	Fraction of litter inputs transferred to SOC _p	0.05	-
Ji,stru	Fraction of futer inputs transferred to SOC _c	0.05	-
	Ministrial manifestory		
V _{max}	Microbial maximum reaction velocity	-	mg C (mg MIC) n $m_{\rm S} C {\rm cm}^{-3}$
K _m	Bagrassian coefficient (Eq. 2)	-	$\lim_{t \to \infty} \int $
v slope V	Regression interport (Eq. 2)	0.003 5 47 ^a	$\ln (\log C (\log MIC)^{-1} h^{-1})$
v int	Tuning coefficient (Eq. 2)	5.47 8 \10-6 a	In (Ing C (Ing MIC) II)
uv V	Modifies V for fluxes into MIC	0 2 10 ^b	-
v mod-r V	Modifies V_{max} for fluxes into MIC.	3 3 2 °	-
v mod-k K	Regression coefficient (Eq. 3)	0.017.0.027.0.017 ^{b,c}	$\frac{1}{10}$ (mg C cm ⁻³) °C ⁻¹
K K	Regression intercent (Eq. 3)	3 10 ^a	$\ln \left(\operatorname{mg} C \operatorname{cm}^{-3} \right)$
R _{int}	Tuning coefficient (Eq. 3)	10 ^a	
uk K	Modifies K for fluxes into MIC	10 0 125 0 5 0 25 vp b	-
N _{mod-r}	Modifies K for fluxes into MIC	$0.123, 0.35, 0.23 \times F_{scalar}$	-
N _{mod-k}	Physical protection scalar used in K	$(2.0 \times (2.0 \times e^{-2\sqrt{fclav}})^{-1}$	-
¹ scalar MGF	Microbial growth efficiency	$(2.0 \times (2.0 \times e^{-\sqrt{3}}))$	- ma ma ⁻¹
k.	Microbial biomass turnover rate	$5.2 \times 10^{-4} \times a^{0.3(fmet)} \times \tau$	h ⁻¹
κ _{mic}	wichobal biomass turnover rate	$3.2 \times 10^{-4} \times e^{0.1(fmet)} \times \tau^{-6}$	11
τ.	Modifies microbial turnover rate	$0.8 < \sqrt{NPP/100} < 1.2$	_
e mod	Tuning coefficient of K	10	_
а _т	Fraction of K _{min} of MIC _n partitioned to SOC _n	$min(10, 0.13 \times e^{1.3(fclay)})^{f}$	_
fr.	Fraction of K _{mic} of MIC ₂ partitioned to SOC ₂	$min(1.0, 0.02 \times e^{0.8(fclay)})^{\text{f}}$	
Гкр f	Fraction of K _{min} of MIC _n partitioned to SOC _n	$min(1.0 - f_{min} 1.06 \times e^{-2.6(fmet)})^{\text{f}}$	_
fue	Fraction of K _{min} of MIC _k partitioned to SOC	$min(1.0 - f_{lm}, 8.93 \times e^{-2.6(fmet)})^{\text{f}}$	
f _{re}	Fraction of Kmie of MIC, partitioned to SOC	$1.0 - f_{m} - f_{rc}$	_
fka	Fraction of K_{mic} of MIC _k partitioned to SOC _a	$1.0 - f_{kn} - f_{kc}$	
B	Density-dependence exponent in Eq. 6		-
P Protected carbo	on parameters		
D	Deprotection rate from SOM, to SOM.	Eq. 5	h^{-1}
КО	Further modifies K_m for oxidation of SOM.	4. 4 ^e	-
k.	Tuning coefficient of the deprotection rate	-	-
u Kada	The sorption rate of SOC ₅ in Eq. 8	Eq. 8	h^{-1}
uus kha	The binding affinity in Eq. 8	1~16 ^g	$(mg C mg^{-3})^{-1}$
Omax	The maximum sorption capacity of SOC.	Ea. 9	$mg C cm^{-3}$
∼ max	inanimum sorphon cupacity of boop		

Parameter	Description	Value	Unit
Biochar-related	parameters		
f_{bp}	Fraction of biochar carbon partitioned into ${\rm SOC}_{\rm p}$	0.6	-
f_{ba}	Fraction of biochar carbon partitioned into ${\rm SOC}_a$	0.03-0.3 ^h	-
f_{bc}	Fraction of biochar carbon partitioned into $\ensuremath{\text{SOC}}_c$	$1.0 - f_{bp} - f_{ba}$	-
f_{loss}	Biochar fraction loss during addition		
f_d	Coefficients for adjusting the deprotection rate of $\ensuremath{\text{SOC}}_{\ensuremath{\text{p}}}$	-0.15 ~0.15 ^h	ha t ⁻¹ C
	with biochar addition in Eq. 15		
f_v	Coefficients for adjusting the microbial decomposition	-0.15 ~0.15 ^h	ha t ⁻¹ C
	velocity with biochar addition in Eq. 16		

^a From observations in German et al. (2012), as used in Wieder et al. (2014, 2015).

^b For LIT_m, LIT_s, and SOC_a, fluxes entering MIC_r, respectively.

^c For LIT_m, LIT_s, and SOC_a, fluxes entering MIC_k, respectively.

 5^{-d} 0.5 is the MGE of C fluxes from LIT_m and SOC_a to MIC_r, 0.25 is for C flux from LIT_s to MIC_r, 0.7 is for fluxes from LIT_s and

 SOC_a to MIC_k , 0.35 is for C flux from LIT_m to MIC_k .

^e For MIC_r and MIC_k, respectively.

^f Values from Zhang et al. (2020).

^g Values from Wang et al. (2020).

10 ^h Ranges from Archontoulis et al. (2016).

Table S2 The modifications for various MIMICS versions.

	Model	Description
	MIMICS-def	The default model version with modified parameters related to crop properties (Section $2, 2, 5$)
	MIMICS-T	Considering the density-dependent microbial turnover rate (denoted as "T", Eq. 6).
	MIMICS-TS	Adding the sorption process of SOC _p based on MIMICS-T ("S", Eq. 7-9).
MIMICS	MIMICS-TSM _a	Including soil moisture effects from CENTURY model ("Ma") based on MIMICS-TS.
	MIMICS-TSM _b	Including soil moisture effects from ORCHIDEE-SOM model (" M_b ") based on MIMICS-TS.
	MIMICS-TSM _c	Including soil moisture effects from Yan et al. (2018) ("M _c ") based on MIMICS-TS.
	MIMICS-TSM _b	Including both the sorption process and soil moisture effects but without biochar related parameters for biochar addition.
MIMICS-BC	MIMICS-BC _D	Including biochar effects on SOC by modifying deprotection rate of SOC_p in the MIMICS-TSM _b (Eq. 15).
	MIMICS-BC _{DV}	Including further biochar effects on SOC by modifying the microbial maximum reaction velocity in $MIMICS$ - TSM_b (Eq. 16).

Table S3 Definitions and values of modified parameters used in default MIMICS.

Parameters ^d	Description	Original values ^a	Modified values
cn_leaf	The ratio of carbon to nitrogen in leaf	30	25 ^b
cn_root	The ratio of carbon to nitrogen in root	75	45 ^b
cn_wood	The ratio of carbon to nitrogen in wood	200	50 ^b
lig_c_leaf	The ratio of lignin to carbon in leaf	0.1	0.12 ^b
lig_c_root	The ratio of lignin to carbon in root	0.1	0.40 ^b
lig_c_wood	The ratio of lignin to carbon in wood	0.15	0.15 ^b
HI	Harvest index	-	0.45 ^c

35 ^a Values based on Zhang et al. (2020).

^b Estimated values from Abiven et al. (2005).

^c From value in Hicke & Lobell (2004).

^d These parameters were assumed unchanged with biochar addition.

Table S4 Prior para	neter values, optimize	d values and ranges in	the parameter of	ptimization for	various MIMICS versions.
---------------------	------------------------	------------------------	------------------	-----------------	--------------------------

Datasets	Model	Parameter	Prior value	Optimized value	Range ^c	Units
MIMICS	MIMICS-def	a_v	10	13.05	[0,30]	-
(58 sites)		a_k	5	11.70	[0,20]	-
		k_d	0.5	0.94	[0,3]	-
	MIMICS-T	a_v	10	8.97	[0,30]	-
		a_k	5	16.43	[0,20]	-
		k_d	0.5	1.82	[0,3]	-
		β	1	1.66	[0,2]	-
	MIMICS-TS	a_v	10	16.92	[0,30]	-
		a_k	5	12.52	[0,20]	-
		k_d	0.5	1.65	[0,3]	-
		β	1	1.41	[0,2]	-
		k_{ba}	6	5.07	[1,16]	-
		C_{I}	0.3	0.52	[0,0.8]	-
		<i>C</i> ₂	3.0	3.7	[0,5]	-
	MIMICS-TSM _a	a_v	10	11.75	[0,30]	-
		a_k	5	10.07	[0,20]	-
		k_d	0.5	1.39	[0,3]	-
		β	1	1.50	[0,2]	-
		k_{ba}	6	5.17	[1,16]	-
		c_1	0.3	0.42	[0,0.8]	-
		<i>C</i> ₂	3	3.48	[0,5]	-
	MIMICS-TSM _b	a_v	10	15.91	[0,30]	-
		a_k	5	13.10	[0,20]	-
		k_d	0.5	1.60	[0,3]	-
		β	1	1.47	[0,2]	-
		k_{ba}	6	2.95	[1,16]	-
		c_1	0.3	0.51	[0,0.8]	-
		<i>C</i> ₂	3	3.86	[0,5]	-
	MIMICS-TSM _c	a_v	10	17.50	[0,30]	-
		a_k	5	13.33	[0,20]	-
		k_d	0.5	1.13	[0,3]	-
		β	1	1.41	[0,2]	-
		k_{ba}	6	4.17	[1,16]	-
		c_1	0.3	0.42	[0,0.8]	-
		<i>C</i> ₂	3	3.65	[0,5]	-
MIMICS-BC	MIMICS-TSM _b	none	none	none	none	none
(134 sites)	MIMICS-BC _D	f_d	-0.002	-0.0038 ^a (-0.0131 ^b)	[-0.15,0.15]	ha t ⁻¹ C
	MIMICS-BC _{DV}	f_d	-0.002	$-0.0083^{a} (-0.0095^{b})$	[-0.15,0.15]	ha t ⁻¹ C
		f_{v}	0.05	0.008 ^a (-0.0097 ^b)	[-0.15,0.15]	ha t ⁻¹ C

^a The optimized parameter values using the short-term SOC data.

^b The optimized parameter values using the long-term (extended to 8 yr) SOC data.

45 ^c The prescribed parameter ranges of $a_{v_i} a_{k_i} \beta$ are from Zhang et al. (2020). k_{ba} is from Wang et al. (2020). c_1 and c_2 are estimated from Mayes et al. (2012). f_d and f_v are from Archontoulis et al. (2016).

50

55

	-						
		Train 80% (46 sites)			Test 20% (12 sites)		
Dataset	Model	\mathbf{P}^2	RMSE	AIC	\mathbf{D}^2	RMSE	AIC
		ĸ	$(g kg^{-1})$	AIC	ĸ	$(g kg^{-1})$	AIC
This storday	MIMICS-def	0.39	4.96	153.33	0.34	5.06	44.76
(total 58	MIMICS-T	0.49	4.55	147.21	0.33	5.04	46.36
	MIMICS-TS	0.52	4.42	150.76	0.38	4.96	52.14
sites)	MIMICS-TSM _b	0.50	4.54	153.04	0.33	5.03	52.63

Table S5 The MIMICS model performance with cross-validation.

60 Notes: RMSE is the root mean square error, AIC is the Akaike information criterion.

Fig. S1 Locations of field cropland SOC measurements with or without biochar addition collected in this study and SOC measurements without biochar addition from Sun et al, (2020), Geisseier et al., (2017) and Zhou et al., (2017). Number of sites is also shown in the legend. Note that one site may have multiple paired SOC data due to various experimental conditions of biochar addition in our collected 58 sites. The cropland area percentage in each 10 km × 10 km grid cell is derived from EarthStat (http://www.earthstat.org; Ramankutty et al., 2008).

Fig. S2 The frequency distribution of (a) biochar application rates (Rate_BC) and (b) biochar addition periods (Age_BC). Reddotted lines indicate the median values.

Fig. S3 Framework of the MIMICS model (adapted from Wieder et al., 2015). The litter inputs (LIT) are divided into metabolic (LIT_m) and structural litter pools (LIT_s) according to the litter quality (f_{met} , i.e., fraction of litter to LIT_m). Microbial growth efficiency (MGE) determines the carbon fluxes from the two litter pools and the available SOC pool (SOC_a) into microbial biomass pools and heterotrophic respiration. The turnover of microbial biomass (τ) depends on the microbial

80 microbial biomass pools and heterotrophic respiration. The turnover of microbial biomass (τ) depends on the microbial functional types (MIC_r and MIC_k for r- and k-strategy). The three SOC pools represent the available, physically protected, and chemically recalcitrant SOC (SOC_a, SOC_p, and SOC_c, respectively). SOC in the protected pools (i.e., SOC_p and SOC_c) are released to the available SOC pool (SOC_a) over time (yellow arrow lines). The new added adsorption process associated with adsorption rate (K_{ads}) and the maximum sorption capacity (Q_{max}) from SOC_a to SOC_p are presented as the purple arrow lines.

85 Detailed description of model parameters and carbon fluxes can be found in Table S1 and Wieder et al. (2015).

Fig. S4 Soil moisture functions from (a) the Century model (Parton et al., 2000), (b) the ORCHIDEE-SOM model (Camino-Serrano et al., 2018) and (c) the mechanism-based soil moisture function from Yan et al. (2018). *w* is soil moisture indicator (AI, i.e., precipitation/potential evapotranspiration). θ is soil water content, φ is soil porosity, and θ/φ is relative water content.

Fig. S5 Temporal changes of seven SOC pools from a simulation of the MIMICS-TSM_b version for 500 years using one random site (Lat, Lon =28.1 %, 113.2 E) as an example.

Fig. S6 The biochar decomposition curve fitted with experimental data from Wang et al. (2016) using a double first-order 105 exponential decay model $(BC_{remain\%} = 3.02 \times e^{(-3.24 \times age_bc)} + 97.02 \times e^{(-0.002 \times age_bc)})$.

Fig. S7 Comparison of R², RMSE and AIC of all MIMICS versions.

Fig. S8 Relationship between observed and simulated SOC concentrations by MIMICS-def (a, e, i), MIMICS-T (b, f, j), MIMICS-TS (c, g, k) and MIMICS-TSM_b (d, h, l). The observed SOC concentrations are from (a-d) Sun et al. (2020), (e-h) Geisseler et al. (2017), (i-l) Zhou et al. (2017). The unit of RMSE is g kg⁻¹.

Fig. S9 Relationship between observed and simulated SOC concentrations by $MIMICS-TSM_b$ for (a) maize, (b) rice and (c) wheat. The unit of RMSE is g kg⁻¹.

Fig. S10 Correlation between SOC concentrations with NPP, MAT and Clay for maize (a-c), rice (d-f) and wheat (g-i).

Fig. S11 Relationships between observed and simulated SOC concentrations by (a) MIMICS-TSM_a, (b) MIMICS-TSM_b and (c) MIMICS-TSM_c, respectively.

Fig. S12 Relationship between observed and simulated SOC changes (Δ SOC) for data with Age_BC \geq 3yr (a-c), Age_BC \geq 4yr (d-f), Age_BC \geq 5yr (g-i) and Age_BC \geq 6yr (j-l) using three MIMICS versions: MIMICS-TSM_b (a, d, g, j), MIMICS-BC_D (b, e h, k) and MIMICS-BC_{DV} (c, f, i, l).

Fig. S13 Correlations between the observed short-term SOC changes after biochar addition (Δ SOC) and soil- (Clay, BD, SM), climate- (MAT), biological- (NPP) and biochar-related (Rate_BC, Age_BC) variables in first row. The other rows are for the Δ SOC biases in short-term between observations and simulations by MIMICS-TSM_b, MIMICS-BC_D, MIMICS-BC_{DV} and MIMICS-BC_{DV*}. MIMICS-BC_{DV*} is the version with four parameters optimized (i.e., *f_d*, *f_v*, *f_{bp}*, *f_{ba}*). Asterisk indicates significant correlations (p < 0.05).

Fig. S14 Relationships between observed and simulated SOC concentrations by MIMICS-TSM_b assuming that the soil moist
factor (*f_{m2}(θ)*, Eq. 11) were multiplied by V_{max} and microbial turnover (τ) of MIC_r and MIC_k, instead of by V_{max} and K_m in Section 2.2.4.

Fig. S15 Relationships between observed and simulated SOC concentrations by MIMICS-TSM_b with NPP optimized additionally (i.e., total 8 parameters: a_v , a_k , k_d , β , k_{ba} , c_1 , c_2 , f_{npp}).

Fig. S16 Relationships between observed and simulated SOC concentrations by MIMICS-def (a, e, i), MIMICS-T (b, f, j), MIMICS-TS (c, g, k) and MIMICS-TSM_b (d, h, l). The MIMICS versions in the first row (a-d) used the reverse Michaelis-Menten kinetics in SOC decomposition processes. The MIMICS versions in the second row were validated against SOC concentrations aggregated within each 0.5° grid cell. The MIMICS versions in the last row consider the tillage effects on SOC by assuming a 30% increase in the deprotection rate of SOC_p. The unit of RMSE is g kg⁻¹.

Fig. S17 Sensitivity analysis of responses of the steady SOC simulated by MIMICS to input variables of (a) MAT, (b) Clay,
(c) NPP, (d) SM and (e) BD with different perturbation levels. The yellow line and green dotted line in the boxplot are
median and mean values of the output steady SOC changes in 58 sites. The average SOC changes in all sites for the four perturbation levels are shown in (f).

Fig. S18 Relationships of short-term SOC changes after biochar addition between observations and models with (a) MIMICS-TSM_b, (b) MIMICS-BC_D and (c) MIMICS-BC_{DV}. (f_{ba} =2%)

Fig. S19 Relationships of short-term SOC changes after biochar addition between observations and models simulated with MIMICS-BC version with four parameters optimized (f_d =-0.0135, f_v =0.0196, f_{bp} =0.5957 and f_{ba} =0.2906). The unit of RMSE is g kg⁻¹.

210 Fig. S20 Sensitivity analysis of MIMICS-BC model input variables of (a) NPP, (b) Clay, (c) SM and parameters of (d) *MGE* (microbial growth efficiency, Fig. S3) and (e) τ (microbial biomass turnover, Fig. S3). The yellow line and green dotted line in boxplot are median and mean values of output variable change (i.e., change of Δ SOC, Eq. 19). The means of Δ SOC changes with perturbations in all sites are plot in (f).

References

230

- Abiven, S., Recous, S., Reyes, V., & Oliver, R.: Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality, *Biology and Fertility of Soils*, *42*, 119-128, doi:10.1007/s00374-005-0006-0, 2005.
- Archontoulis, S. V., Huber, I., Miguez, F. E., Thorburn, P. J., Rogovska, N., & Laird, D. A.: A model for mechanistic and system assessments of biochar effects on soils and crops and trade-offs, *GCB Bioenergy*, 8, 1028-1045, doi:10.1111/gcbb.12314, 2016.
- Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, V., De Vos, B., Gielen, B., Gleixner, G., Jornet-Puig, A.,
 Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J., Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., & Janssens, I. A.: ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe, *Geoscientific Model Development*, *11*, 937-957, doi:10.5194/gmd-11-937-2018, 2018.
- Geisseler, D., Linquist, B. A., & Lazicki, P. A.: Effect of fertilization on soil microorganisms in paddy rice systems A
 meta-analysis, *Soil Biology and Biochemistry*, *115*, 452-460, doi:10.1016/j.soilbio.2017.09.018, 2017.
 - German, D. P., Marcelo, K. R., Stone, M. M., & Allison, S. D.: The M ichaelis–M enten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study, *Global Change Biology*, *18*, 1468-1479. 2012.
 - Hicke, J. A., & Lobell, D. B.: Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information, *Geophysical Research Letters*, *31*. 2004.
- 245 Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., & Jardine, P. M.: Relation between Soil Order and Sorption of Dissolved Organic Carbon in Temperate Subsoils, *Soil Science Society of America Journal*, 76, 1027-1037, doi:10.2136/sssaj2011.0340, 2012.
 - Parton, W. J., Morgan, J. A., Kelly, R. H., & Ojima, D.: Modeling soil C responses to environmental change in grassland systems[M] The potential of US grazing lands to sequester carbon and mitigate the greenhouse effect. 2000.
- 250 Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A.: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000, *Global Biogeochemical Cycles*, 22, doi:10.1029/2007gb002952, 2008.
 - Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., & Huang, Y.: Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture, *Glob Chang Biol*, 26, 3325-3335, doi:10.1111/gcb.15001, 2020.
- 255 Wang, G., Huang, W., Zhou, G., Mayes, M. A., & Zhou, J.: Modeling the processes of soil moisture in regulating microbial and carbon-nitrogen cycling, *Journal of Hydrology*, 585, doi:10.1016/j.jhydrol.2020.124777, 2020.
 - Wang, J., Xiong, Z., & Kuzyakov, Y.: Biochar stability in soil: meta-analysis of decomposition and priming effects, *Global Change Biology Bioenergy*, 8, 512-523, doi:10.1111/gcbb.12266, 2016.
- Wieder, W. R., Grandy, A. S., Kallenbach, C. M., & Bonan, G. B.: Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, *Biogeosciences*, 11, 3899-3917, doi:10.5194/bg-11-3899-2014, 2014.
 - Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., & Bonan, G. B.: Representing life in the Earth system with soil microbial functional traits in the MIMICS model, *Geoscientific Model Development*, 8, 1789-1808, doi:10.5194/gmd-8-1789-2015, 2015.
- 265 Yan, Z., Bond-Lamberty, B., Todd-Brown, K. E., Bailey, V. L., Li, S., Liu, C., & Liu, C.: A moisture function of soil heterotrophic respiration that incorporates microscale processes, *Nat Commun*, 9, 2562, doi:10.1038/s41467-018-04971-6, 2018.
 - Zhang, H., Goll, D. S., Wang, Y. P., Ciais, P., Wieder, W. R., Abramoff, R., Huang, Y., Guenet, B., Prescher, A. K., Viscarra Rossel, R. A., Barre, P., Chenu, C., Zhou, G., & Tang, X.: Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon, *Glob Chang Biol*, doi:10.1111/gcb.14994, 2020.
- Zhou, M., Zhu, B., Wang, S., Zhu, X., Vereecken, H., & Bruggemann, N.: Stimulation of N₂O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis, *Glob Chang Biol, 23*, 4068-4083, doi:10.1111/gcb.13648, 2017.