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Abstract. Biochar (BC) application in croplands aims to sequester carbon and improve soil quality, but its impact on soil 

organic carbon (SOC) dynamics is not represented in most land models used for assessing land-based climate mitigation, 

therefore we are unable to quantify the effects of biochar applications under different climate conditions or land management. 

To fill this gap, here we implement a submodel to represent biochar into a microbial decomposition model named MIMICS 

(MIcrobial-MIneral Carbon Stabilization). We first calibrate and validate MIMICS with new representations of 30 

density-dependent microbial turnover rate, adsorption of available organic carbon on mineral soil particles, and soil moisture 

effects on decomposition using global field measured cropland SOC at 285 sites. We further integrate biochar in MIMICS by 

accounting for its effect on microbial decomposition and SOC sorption/desorption and optimize two biochar-related 

parameters in these processes using 134 paired SOC measurements with and without biochar addition. The MIMICS-biochar 

version can generally reproduce the short-term (≤ 6 yr) and long-term (8 yr) SOC changes after adding biochar (mean addition 35 

rate: 25.6 t ha-1) (R2 = 0.79 and 0.97) with a low root mean square error (RMSE = 3.73 and 6.08 g kg-1). Our study incorporates 

sorption and soil moisture processes into MIMICS and extends its capacity to simulate biochar decomposition, providing a 
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useful tool to couple with dynamic land models to evaluate the effectiveness of biochar applications on removing CO2 from the 

atmosphere.  

1. Introduction 40 

Soil organic carbon (SOC) is the largest terrestrial carbon pool, and increasing soil respiration in response to global warming 

can cause large carbon emissions to the atmosphere (Bond-Lamberty et al., 2018). On the other hand, SOC sequestration 

through improved land management practices has a potential to mitigate climate change by increasing soil carbon 

accumulation, such as the “4 per mille” project (Minasny et al., 2017). Due to the limited temporal and spatial coverage of field 

SOC measurements, soil biogeochemical models have been widely applied to simulate SOC and its response to climate change 45 

and human activities (Eglin et al., 2010). Soil carbon models are evolving from first-order kinetics-based models with simple 

representation of pool sizes and their turnover rates to microbial models with explicit representation of microbial roles in SOC 

decomposition and stabilization (Manzoni and Porporato, 2009; Sulman et al., 2018). For example, the MIcrobial-MIneral 

Carbon Stabilization (MIMICS) model is a process-based soil carbon model with explicit representations of nonlinear SOC 

decomposition dynamics related to microbial physiology, substrate quality, and physical protection of SOC (Wieder et al., 50 

2014; Wieder et al., 2015). This model has been calibrated with global SOC data and can well represent current understanding 

of SOC decomposition and formation (Wieder et al., 2015), and outperforms conventional first-order decomposition model in 

simulating spatial variation in SOC stocks in forest ecosystems on continental scale (Zhang et al., 2020). However, the model 

has not been evaluated for agricultural sites or misses processes that theoretically should influence SOC dynamics.  

 55 

The microbial interactions at the community level (e.g., competition) play a crucial role in controlling SOC dynamics, but they 

are usually omitted in microbial models (Georgiou et al., 2017), resulting in unrestricted growth of microbial community size 

with more carbon input which is unrealistic (Buchkowski et al., 2017; Wieder et al., 2013). In addition, field experiments show 

that physicochemical adsorption plays a more important role in controlling DOC fluxes than the biodegradation process 

(Kalbitz et al., 2005). Although the adsorption mechanism is complex, depending on various factors such as pH, clay content, 60 

destruction and formation of soil aggregates (Mayes et al., 2012), some soil carbon models implemented dynamic adsorption 

and desorption processes controlled by DOC concentration and available mineral surface sites for binding (Wang et al., 2020; 

Wang et al., 2013). The availability of SOC is influenced by the adsorption process (Michalzik et al., 2003). Some adsorption 

kinetic equations, such as the Langmuir isotherm, have commonly been employed to depict the adsorption/desorption process. 

However, the MIMICS model lacks consideration of the adsorption process, thus not effectively elucidating its role in 65 

stabilizing SOC. Furthermore, the effect of soil moisture on SOC cannot be ignored because it controls microbial activity, 

substrate availability and further influences soil respiration and nitrogen mineralization (Manzoni et al., 2012; Schimel et al., 

2007). A set of empirical functions for the soil moisture effects were proposed for the use in earth system models (ESMs) 
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(Moyano et al., 2013; Camino-Serrano et al., 2018), and a mechanistic moisture function that incorporates physicochemical 

and biological processes was also developed recently (Yan et al., 2018). In previous MIMICS versions, an implicit or explicit 70 

microbial density dependent turnover was introduced (Wieder et al. 2015; Kyker-Snowman et al. 2020; Zhang et al., 2020; 

Georgiou et al. 2017), which cause an increase in microbial biomass turnover with increasing microbial community size 

reflecting increasing pressure from competition for other resource other than carbon (e.g. space) and virus infections (Jansson 

and Wu, 2023), and a water scalar was used to represent the soil moisture effects (Wieder et al. 2019). The inclusion of 

density-dependent microbial turnover rate improved the accuracy of predicting SOC at the global scale compared to MIMICS 75 

without it and eliminated the correlation between simulated biases and input of annual litterfall (Zhang et al., 2020). MIMICS 

with soil water modifications showed comparable predicted global soil carbon stocks compared to other models, but to what 

extent soil water influences SOC turnover remains uncertain (Wieder et al., 2019). Therefore, based on these theories and 

model limitations, it is necessary to integrate the three aspects (density-dependent microbial turnover rate, 

adsorption/desorption processes, and soil moisture impacts) into one model version to improve the prediction accuracy of SOC 80 

dynamics. For agricultural lands, modeling the SOC decomposition processes is more challenging due to management 

practices such as tillage and fertilization, which can significantly interrupt carbon cycle and need specific parameterizations.  

 

Biochar application in croplands as a soil amendment can improve the soil quality and increase the crop production (Smith, 

2016; Woolf et al., 2010). Meanwhile, because biochar is produced from biomass through pyrolysis processes and is 85 

recalcitrant to be decomposed, it is also considered as a promising negative emission technology (NET) for climate mitigation 

(Fuss et al., 2018; Minx et al., 2018). The carbon dioxide removal (CDR) potential of biochar is estimated to be 0.5~2 GtCO2e 

year-1 (CO2 equivalent) (Fuss et al., 2018; Minx et al., 2018). However, biochar application affects SOC mineralization through 

various processes (Palansooriya et al., 2019; Luo et al., 2017), resulting in positive or negative priming effects (PEs, changes of 

native SOC mineralization) (Zimmerman et al., 2011). A recent meta-analysis showed that biochar induced negative priming 90 

effects on average (-3.8%), but the 95% confidence interval (CI) of -8.1% to 0.8% also covers positive values (Wang et al., 

2016a). Biochar may induce positive PEs through stimulating microbial activity by providing additional nutrients for soil 

microbes (El-Naggar et al., 2019; Li et al., 2019). Positive PEs usually occurred in shorter term (< 2 year), then decreased or 

changed to being negative over longer term (Luo et al., 2011; Singh and Cowie, 2014; Ding et al., 2017). For example, biochar 

can reduce SOC available for microbes by enhancing soil aggregate stability through associations between soil minerals and 95 

biochar (Zheng et al., 2018). Its porous structure and high surface area with strong adsorption affinity for SOC can thus cause 

negative PEs (Zimmerman et al., 2011; Lehmann et al., 2021). PEs are also impacted by the properties of biochar (e.g., 

feedstock type, pyrolysis temperature) and soil climate (e.g., soil moisture) (Ding et al., 2017). Therefore, soil moisture could 

be closely related to the adsorption capacity of biochar, and needs to be included in the model for predicting PEs of biochar on 

SOC changes. The biochar decomposition and impacts on native SOC through priming effects are important for the CDR 100 
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potential of biochar, but these processes are not represented in most land carbon models (Lehmann et al., 2021), precluding the 

model capacity of fully assessing the effectiveness of large-scale application of biochar as a NET and its environmental 

impacts. 

2. Materials and methods 

2.1 Modifications of the MIMICS model 105 

2.1.1 The default version of MIMICS (MIMICS-def)  

There are seven carbon pools in MIMICS: two litter pools, two microbial biomass pools and three SOC pools (Fig. 1). The 

litter inputs (LIT) are divided into metabolic (LITm) and structural pools (LITs) according to the litter quality (fmet, i.e., fraction 

of litter to LITm), which is linearly related to the ratio of lignin to nitrogen (lignin:N, Table S1). Microbial growth efficiency 

(MGE) determines the carbon fluxes from the two litter pools and the available SOC pool (SOCa) for microbial biomass pools 110 

and heterotrophic respiration. The turnover of microbial biomass (τ) depends on the functional types of soil microbes (MICr 

and MICk for r- and k-strategy, respectively). Three SOC pools represent the available (SOCa), physically protected (SOCp) 

and chemically recalcitrant SOC (SOCc). SOC in the protected pools (i.e., SOCp and SOCc) are released to the available SOC 

pool (SOCa) over time. More detailed description of the model parameters and carbon fluxes can be found in Table S1 and 

Wieder et al. (2015). The carbon decomposition rate (mg C cm−3 hr−1) of the litter and SOC pools is based on a 115 

temperature-sensitive Michaelis–Menten kinetics (Allison et al., 2010; Schimel and Weintraub, 2003): 

𝑑𝐶𝑠

𝑑𝑡
= 𝑀𝐼𝐶 ×  

𝑉𝑚𝑎𝑥×𝐶𝑠

𝐾𝑚+ 𝐶𝑠
                                                                               (1) 

where Cs (mg C cm-3) is the size of a substrate carbon pool (LIT or SOC), and MIC (mg C cm-3) is the size of the microbial 

carbon pool (MICr or MICk). Vmax and Km are the microbial maximum reaction velocity (mg C (mg MIC)−1 hr−1) and the 

half-saturation constant (mg C cm-3), respectively, which depend on temperature, T, in °C. 120 

𝑉𝑚𝑎𝑥 = 𝑒𝑉𝑠𝑙𝑜𝑝𝑒𝑇+𝑉𝑖𝑛𝑡 × 𝑎𝑣 × 𝑉𝑚𝑜𝑑                                                                      (2) 

𝐾𝑚   = 𝑒𝐾𝑠𝑙𝑜𝑝𝑒𝑇+𝐾𝑖𝑛𝑡 × 𝑎𝑘 × 𝐾𝑚𝑜𝑑                                                                      (3) 

where Vmod and Kmod represent the modifications of Vmax and Km based on their dependence on litter quality, microbial 

functional types, and soil texture. av and ak are the tuning coefficients of Vmax and Km, respectively. Vslope and Kslope are the 

regression coefficients, and Vint and Kint are the regression intercepts. 125 

 

The turnover of MICr and MICk (MICτ, mg C cm−3 hr−1) at each time step depends on their specific turnover rate (kmic, hr−1), 

annual total litter input (LITtot, g C m−2 year−1) and fmet: 
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𝑀𝐼𝐶𝜏 = 𝑎𝜏 × 𝑘𝑚𝑖𝑐 × 𝑒𝑐𝑓𝑚𝑒𝑡 × 𝑚𝑎𝑥 (𝑚𝑖𝑛(√𝐿𝐼𝑇𝑡𝑜𝑡 , 1.2 ) ,0.8) × 𝑀𝐼𝐶                                        (4) 

where aτ (=1.0, dimensionless) is the tuning coefficient of kmic. c is the regression coefficient of MICr (0.3) and MICk (0.1). The 130 

carbon inputs from microbial biomass to SOC pools are determined by the microbial biomass turnover. 

 

The carbon transfer from SOCp to SOCa (D, mg C cm−3 hr−1) represents the desorption of SOCp from mineral surfaces or the 

breakdown of aggregates, calculated as a function of soil clay content (fclay): 

𝐷 = 1.5 × 10−5 × 𝑘𝑑 × 𝑒−1.5𝑓𝑐𝑙𝑎𝑦                                                                    (5) 135 

where kd (=1.0, dimensionless) is a tuning coefficient of the desorption rate. The parameter values of the default MIMICS 

version can be found in Table S1. 

2.1.2 MIMICS considering density-dependent microbial turnover rate (MIMICS-T) 

Similar to the logistic growth model in population ecology, various regulatory mechanisms (e.g., competition, virus) can limit 

microbial population size (Buchkowski et al., 2017, Jansson and Wu, 2023). The absence of restrictions on population size 140 

other than carbon results in predictions of microbial biomass increasing indefinitely with carbon inputs. Consequently, the 

response of predicted SOC to changes in carbon inputs is close to zero which contradicts field observations (Georgiou et al., 

2017). A density-dependent microbial turnover rate with >1 was adopted to regulate the responses of soil microbial biomass 

to external environment variations, such as carbon input, thereby SOC dynamics in previous microbial models (Georgiou et al., 

2017, Zhang et al., 2017). We incorporated the density-dependent microbial turnover rate into MIMICS following Zhang et al. 145 

(2020). In the MIMICS-T version, we modified Eq. 4 to represent the increased microbial turnover rate with growing microbial 

biomass density (MIC, mg C cm-3): 

𝑀𝐼𝐶𝜏 = 𝑎𝜏 × 𝑘𝑚𝑖𝑐 × 𝑒𝑐×𝑓𝑚𝑒𝑡 × 𝑚𝑎𝑥 (𝑚𝑖𝑛(√𝐿𝐼𝑇𝑡𝑜𝑡 , 1.2) ,0.8) × 𝑀𝐼𝐶𝛽                                       (6) 

where β is the density-dependence exponent.  

2.1.3 MIMICS-T with additional representation of sorption (MIMICS-TS) 150 

Although the MIMICS model can simulate the desorption process (the yellow arrow from SOCp to SOCa, Fig. 1), the 

adsorption process is still missing. In the original version of MIMICS, fixed fractions of litter and microbial turnover are 

transferred to the physically protected SOC pool (SOCp, Fig. 1), the SOCp is then deprotected from mineral surfaces or 

breakdown of aggregates using a desorption rate which is a function of clay fraction. Therefore, we do not think that the 

original MIMICS actually simulates sorption as a process, as sorption is dependent on substrate concentration, therefore the 155 

sorption rate should vary with dissolved organic carbon concentration, rather than being proportional to microbial carbon 
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turnover rate as assumed in the original MIMICS. Therefore, we further added the adsorption of available SOC into MIMICS 

following Wang et al. (2013) and Mayes et al. (2012). The MIMICS-TS version includes a new sorption process (the purple 

arrow from SOCa to SOCp in Fig. 1) but keeps the original desorption process (i.e., the yellow arrow from SOCp to SOCa in Fig. 

1) unchanged. The sorption capacity of SOCa (Qmax) increases with increasing clay content, and the carbon flux of the sorption 160 

process is calculated as follows: 

𝐹𝑎𝑑𝑠 = 𝐾𝑎𝑑𝑠 × (1 −
𝑆𝑂𝐶𝑝

𝑄𝑚𝑎𝑥
) × 𝑆𝑂𝐶𝑎                                                                    (7) 

𝐾𝑎𝑑𝑠 = 𝑘𝑑 × 𝑘𝑏𝑎                                                                                  (8) 

𝑄𝑚𝑎𝑥 = 10(𝑐1×𝑙𝑜𝑔(%𝑐𝑙𝑎𝑦)+𝑐2)                                                                        (9) 

where Fads is the carbon flux from SOCa to SOCp (mg C cm−3 hr−1). kba is the binding affinity, and Kads is the sorption rate of 165 

SOCp which is associated with the desorption rate (kd). Qmax is the maximum sorption capacity of SOCp (mg C cm-3 soil). c1 and 

c2 are the coefficient for estimating Qmax from Mayes et al. (2012).  

2.1.4 MIMICS-TS with soil moisture effects (MIMICS-TSM) 

Finally, based on MIMICS-TS, we added soil moisture effects on decomposition into MIMICS. We tested two empirical 

functions for soil moisture used respectively in the Century model (Parton et al., 2000, Eq. 10) and the ORCHIDEE-SOM 170 

model (Camino-Serrano et al., 2018, Eq. 11). We also attempted to implement one mechanism-based function that captures the 

main physicochemical and biological processes of soil moisture in regulating soil respiration from Yan et al. (2018) (Eq. 12). 

The three functions of soil moisture are illustrated in Fig. S1. 

𝑓𝑚1(𝑤) =
1

1+𝑝1×𝑒(𝑝2×𝑤)                                                                          (10) 

𝑓𝑚2(𝜃) = 𝑚𝑎𝑥(0.25, 𝑚𝑖𝑛(1, 𝑘1 × 𝜃2 + 𝑘2 × 𝜃 + 𝑘3)                                                 (11) 175 

𝑓𝑚3 (
θ

φ
) = {

𝐾𝜃+𝜃𝑜𝑝

𝐾𝜃+𝜃
× (

𝜃

𝜃𝑜𝑝
)(1+𝑎𝑛𝑠),      𝜃 < 𝜃𝑜𝑝

(
𝜑−𝜃

𝜑−𝜃𝑜𝑝
)𝑏 ,                           𝜃 ≥ 𝜃𝑜𝑝

                                                        (12) 

where fmi (i=1, 2, 3, unitless value in range from 0 to 1) is the response factor to soil moisture. w is the soil moisture indicator 

(AI, mm mm-1). p1 and p2 are empirical parameters of soil moisture scalar with p1 = 30 and p2= -8.5 (Parton et al., 2000). θ is 

soil moisture (m3 m-3). k1, k2 and k3 are soil moist coefficients with 1.1, 2.4 and 0.29, respectively (Camino-Serrano et al., 

2018). φ is the soil porosity related to soil bulk density, and θ/φ is the relative water content in soil pores. θop is an optimum soil 180 

moisture content parameter at which the heterotrophic respiration rate peaks. Kθ is moisture constant depending on 

organic-mineral associations. ns is saturation exponent depending on soil structure and texture. a and b are SOC-microbial 

collocation factor and oxygen supply restriction factor, respectively (Yan et al., 2018).  
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We assumed that the kinetic parameters Vmax and Km respond to soil moisture, similarly to temperature in Michaelis-Menten 185 

equation by affecting enzyme activity and enzyme-substrate affinity, respectively. The soil enzyme-substrate affinity was 

found to increase with soil moisture due to the increased diffusion and movement of substrate, but the affinity may also 

decrease due to decreased substrate concentrations (Zhang et al., 2009). Thus, we translated the impacts of soil moisture on the 

enzyme-substrate affinity to changes in Km. In MIMICS-TSM, the effects of soil moisture on SOC decomposition rate are 

represented through multiplying the response factor by Vmax and Km as follows (Eq. 13, 14).  190 

𝑉𝑚𝑎𝑥 = 𝑒𝑉𝑠𝑙𝑜𝑝𝑒∙𝑇+𝑉𝑖𝑛𝑡 ∙ 𝑎𝑣  ∙ 𝑉𝑚𝑜𝑑 × 𝑓𝑚𝑖                                                            (13) 

𝐾𝑚    = 𝑒𝐾𝑠𝑙𝑜𝑝𝑒∙𝑇+𝐾𝑖𝑛𝑡 ∙ 𝑎𝑘  ∙ 𝐾𝑚𝑜𝑑 × 𝑓𝑚𝑖                                                           (14) 

The MIMICS models with three soil moisture functions of fm1 (Eq. 10), fm2 (Eq. 11) and fm3 (Eq. 12) are indicated as 

MIMICS-TSMa, MIMICS-TSMb and MIMICS-TSMc, respectively. The modifications of all MIMICS versions are 

summarized in Table 1.  195 

2.1.5 Adjusted parameters for cropland SOC 

Crop NPP at each site was used as the litter input to soil, but different crop types (e.g., maize, rice and wheat) were not 

specified in the model. The leaf, root and stem litter were assumed as a fixed fraction of crop NPP. The ratio of carbon to 

nitrogen (C: N) and the ratio of lignin to carbon (lignin: C) of leaf, root, and stem (Table S2) were used to calculate the 

metabolic fraction in the total crop litter (fmet). It was calculated as the mean metabolic fractions in leaf, root and stem, 200 

weighted by NPP in the three parts. In order to adapt MIMICS for simulating cropland SOC, we modified C:N and lignin:C 

in the three parts based on field measurements of main crop types (Abiven et al., 2005, Table S2). A harvest index (HI) of 0.45 

(Hicke and Lobell, 2004) was also applied to remove the harvested part of crop and obtain the litter input to soil (= crop 

aboveground NPP × (1-HI)).  

2.2 Implementing biochar modeling in MIMICS 205 

When applying biochar in croplands, a fraction of biochar (floss = 2%, Archontoulis et al., 2016) was assumed to be lost during 

application. Although biochar is recalcitrant to decompose with a long turnover time (556 ± 484 yr) in general, it contains 

some labile fraction (108 ± 196 day), and its stability varies with different biochar feedstocks, pyrolysis temperatures and 

soil properties (Wang et al., 2016a). Because the sizes of SOCp and SOCc pools in MIMICS are not measured directly in the 

field studies, the 98 % remaining fraction of added biochar is partitioned into three MIMICS SOC pools by assuming that 60% 210 

goes to SOCp based on the measured proportions of added biochar within aggregates (Yoo et al., 2017), 20% goes to SOCa 

according to the labile C portion in biochar (Roberts et al., 2010) and 20% goes to SOCc, respectively (Fig. 1). Note that 
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biochar is not treated as a separate carbon pool but is assumed to mix with other carbon in the existing pools (Fig. 1). In 

addition to the increase of total SOC, some important processes controlling SOC accumulation and decomposition are affected 

by biochar addition. We thus modified the parameters related to decomposition and desorption of SOC (Fig. 1). The associated 215 

rationales, equations and parameters are described in the following sections. 

 

 

Fig. 1 Framework of the MIMICS model with biochar addition (MIMICS-BC; adapted from Wieder et al. (2015)). The 

turnover of microbial biomass (τ, blue arrows) is modified with density-dependent microbial turnover rate (Eq. 6, MIMICS-T). 220 

The adsorption process of SOCp to SOCa (purple arrow) is newly added and is associated with the adsorption rate (Kads) and the 

maximum sorption capacity (Qmax) (Eq. 7-9, MIMICS-TS). The carbon decomposition processes (red arrows) are modified 

further with three soil moisture scalers that are applied to microbial maximum reaction velocity (Vmax) and the half-saturation 

constant (Km) (Eq. 10-12, MIMICS-TSMa, MIMICS-TSMb, MIMICS-TSMc). When biochar is added to soil, the biochar (BC) 

carbon with an assumed fraction loss (floss) is partitioned into SOCp, SOCa and SOCc based on fbp, fba and fbc, respectively 225 

(purple arrows from BC to SOC pools). The desorption process (orange arrow from SOCp to SOCa) is modified through 

changes in the desorption rate of SOCp (D’) with biochar addition. The carbon decomposition processes (red arrows) are 

modified by adjusting the microbial maximum reaction velocity (V’max) with biochar addition. 

 

The negative priming effects of biochar addition on SOC may be caused by the inhibition of microbial activity due to 230 

changes in the soil environments by biochar, or by the SOC protection against microbial utilization through mineral 

adsorption or aggregates (Zimmerman et al., 2011). We assumed that biochar addition decreased the mineralization of native 

SOC (negative PE) because of its porous structure and strong adsorption affinity to organic matter (Kasozi et al., 2010), 
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which was reported to have significantly contributed to the negative PE mechanism from biochar addition (Zheng et al., 

2018; Zimmerman et al., 2011). A desorption coefficient (fd, ha t-1 Rate_BC) was defined as a function of the biochar 235 

application rate (Rate_BC) based on Woolf & Lehmann (2012) and Archontoulis et al. (2016), and Eq. 5 was thus modified as: 

𝐷′ = 𝐷 × (1 + 𝑓𝑑 × 𝑅𝑎𝑡𝑒_𝐵𝐶 × 𝐵𝐶_𝐶)                                                               (15) 

where 𝐷′ (mg C cm−3 hr−1) is the new desorption rate of SOCp with biochar addition, and a negative value of fd indicates a 

negative priming effect. The Rate_BC is the application rate of biochar (t BC ha-1) and BC_C is the carbon content in 

biochar (t C t-1BC). Because the adsorption and desorption of SOC are interrelated dynamic process, modification of the 240 

desorption process with biochar addition also impacts the adsorption process. Therefore, we only modified fd in Eq. (15) to 

represent the negative PE of biochar. 

 

We also assumed that biochar stimulated microbial growth and activity through its nutrient input, inducing a positive PE to 

SOC (El-Naggar et al., 2019). We defined a new decomposition rate coefficient (fv, ha t-1 Rate_BC) that is a function of 245 

Rate_BC, and included it in MIMICS by modifying Eq. 2: 

𝑉𝑚𝑎𝑥
′ = 𝑉𝑚𝑎𝑥 × (1 + 𝑓𝑣 × 𝑅𝑎𝑡𝑒_𝐵𝐶 × 𝐵𝐶_𝐶)                                                          (16) 

where 𝑉𝑚𝑎𝑥
′  is the new microbial maximum reaction velocity (mg C (mg MIC)−1 hr−1) with biochar addition. 

 

Biochar may also have a positive priming effect on SOC by increasing the degradation rate of available SOC by microbes 250 

(i.e., SOCa in MIMICS). Therefore, we added a test through modifying the Vmax as a function of biochar addition rate only in 

the fluxes from SOCa to MICr and MICk, instead of in all fluxes of decomposition (Eq. 16, red arrows in Fig. 1). 

2.3 Model calibration and evaluation 

2.3.1 Observational data collection 

We collected 387 paired field measurements of SOC concentrations (g kg-1) in croplands with or without biochar (BC) addition 255 

from 58 locations (see the site map in Fig. 2) from published literatures. Soil properties (clay content (Clay), bulk density (BD), 

soil moisture (SM)), climatic conditions (mean annual temperature (MAT), mean annual precipitation (MAP)), biological 

variable (net primary productivity (NPP)) and biochar-related characteristics: application rate (Rate_BC), the interval between 

biochar application and soil sampling (Age_BC), feedstock type (Feedstock_BC), pyrolysis temperature (Temp_BC) were also 

collected when available. Auxiliary information (e.g., location, and managements, crop types) and more detailed information 260 

can be found in Han et al. (2021).  
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Because some sites have multiple biochar addition experiments (e.g., pyrolysis temperature × aging time of biochar), the 

control SOC concentrations at the same site were averaged, and the SOC concentrations with biochar addition for a given rate 

(Rate_BC) were also averaged, omitting other characteristics of the biochar (like pyrolysis temperature). In total, 134 paired 265 

SOC data were used for model calibration and validation (Fig. 2). The depth of soil sampled varies among sites, but is less 

than 30 cm in general. The biochar application rate varies from 0.9 to 120 t ha-1 with a median value of 20 t ha-1 (Fig. S2a). 

Most biochar addition experiments are short-term with the median Age_BC of 1.2 year (Fig. S2b). The main types of 

cultivated crop are maize, rice and wheat. 

 270 

There are SOC measurements on cropland sites from 58 control treatments (no BC application) and 134 measurements from 

biochar treatments at the 58 sites. One control treatment may correspond to multiple biochar treatments with different applied 

biochar rates at a single site. Considering the 58 site observations may be inadequate to constrain all the new features in the 

revised model, we also collected SOC data on croplands (no biochar addition) from other three published global datasets (227 

sites in total, Sun et al., 2020; Geisseler et al., 2017; Zhou et al., 2017b). Therefore, 285 sites in total were used to calibrate and 275 

evaluate the model performance for simulating cropland SOC without biochar addition (Fig. 2). 

 

Soil properties that are not reported in the literature were extracted from gridded datasets using the coordinates of the sites: clay 

content from Global Soil Dataset for use in Earth System Models (GSDE, Shangguan et al., 2014) and SM from the satellite 

observations of Soil Moisture Active Passive (SMAP, Entekhabi et al., 2010). Missing soil BD in control treatments were filled 280 

according to the relationship between SOC and bulk density based on 4765 cultivated soil data from the 2nd national soil 

survey (Song et al., 2005), and a decrease of 7.6% (Omondi et al., 2016) from the control soil BD was assumed to fill the 

missing BD values in the biochar addition experiments. The climate variable MAT was extracted from WorldClim (Fick and 

Hijmans, 2017), and the mean annual aridity index (AI, i.e., precipitation/potential evapotranspiration) used in the soil 

moisture equation (Eq. 10) was obtained from the Global Aridity Index and Potential Evapotranspiration Database (Zomer et 285 

al., 2022). The biological variable (i.e., NPP) was from the MODIS NPP dataset (Zhao and Running, 2010). 
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Fig. 2 Locations of field cropland SOC measurements with or without biochar addition collected in this study and SOC 

measurements without biochar addition from Sun et al, (2020), Geisseler et al., (2017) and Zhou et al., (2017b). Number of 

sites is also shown in the legend. Note that one site may have multiple paired SOC data due to various experimental 290 

conditions of biochar addition at our collected 58 sites. The cropland area percentage in each 10 km × 10 km grid cell is 

derived from EarthStat (http://www.earthstat.org; Ramankutty et al., 2008).  

2.3.2 Calibration and validation for MIMICS versions without biochar 

All field SOC observations in the control treatments (without biochar) from the paired measurements and SOC from the other 

three global datasets (Fig. 2) were assumed at a steady state, which is under present climate and continuous input of crop NPP 295 

after 45% removal of grain with a specific crop litter quality (Section 2.1.5, Table S2). SOC pools in MIMICS reached an 

equilibrium state after about 200 years of model run (Fig. S3). To accelerate this process, we used New-Ralphson method 

(Press et al., 2007) to obtain the steady SOC state with the site-level inputs of annual mean crop NPP, MAT, Clay, SM and 

BD in the parameter optimization. This approach is constructed based on the fundamental principles governing 

biogeochemical cycle processes in terrestrial ecosystems (e.g., respiration, carbon distribution). A set of first-order ordinary 300 

differential equations were built to express the dynamics of carbon flows in soil over time and it can be solved numerically to 

obtain steady carbon pool sizes. The solver of “mnewt” is used to solve equations by iteratively calculating the values of 

model function “modelx” and its Jacobian matrix “modeljacx” (see codes for details in Code availability). The Shuffled 

Complex Evolution Algorithm (SCE-UA) has been proven to be a robust method for parameter optimization (Duan et al., 1994; 

Muttil and Jayawardena, 2008), and the SCE-UA method from the spotpy package in python (Houska et al., 2015; 305 

https://pypi.org/project/spotpy/) was applied here. Parameters are optimal when the root mean square error (RMSE, Eq. 17) 

between simulated SOC and observed SOC concentrations is minimized. The Akaike information criterion (AIC, Eq. 18, 

http://www.earthstat.org/
https://pypi.org/project/spotpy/
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Akaike, 1974), which considers both model error and the number the model parameters, was also calculated to evaluate 

different MIMICS versions. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑂𝐶𝑜𝑏𝑠,𝑖−𝑆𝑂𝐶𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

𝑛
                                                                (17) 310 

𝐴𝐼𝐶 = 𝑛 ×𝑙𝑛 (
∑ (𝑆𝑂𝐶𝑜𝑏𝑠,𝑖−𝑆𝑂𝐶𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

𝑛
)  + 2𝑝                                                       (18) 

 

Where SOCobs,i and SOCsim,i are the observed and simulated SOC at each i site. n is the number of observations, and p is the 

number of model parameters to be optimized. 

  315 

We randomly separated 80% of all the 285 sites for the MIMICS versions (MIMICS-def, MIMICS-T, MIMICS-TS and 

MIMICS-TSMb) calibration, and 20% for model validation. The R2, RMSE and AIC were calculated by comparing 

simulated SOC with the observed SOC in training and test datasets. The parameters optimized in different MIMICS versions 

are shown in Table S3. Soil depth was not explicitly considered in this study, and we assumed that the soil carbon 

concentrations (g kg-1) are similar within the top 30 cm. Note that the parameters of soil moisture functions (Eq. 10-12) are 320 

directly derived from the original literature (Parton et al., 2000; Camino-Serrano et al., 2018; Yan et al., 2018) and not 

optimized in MIMICS-TSM. We calibrated the models against our datasets including SOC and auxiliary information (Fig. 2) 

for the main crop types (maize, rice, and wheat), and the relationships between SOC in these crop types and model input 

variables (i.e., NPP, MAT, Clay) were analyzed.  

 325 

To explore possible soil moisture effects on SOC, we also tried a test by assuming that soil moisture affects the microbial 

growth rate through regulating microbial growth (Vmax) and turnover (τ) of MICr and MICk (Wieder et al., 2019) and thus 

added the soil moisture factor (i.e., f(θ) in Eq. 11) on Vmax and τ. The MIMICS model can run for each site, but to be consistent 

with the model input resolution of daily temperature in the transient simulation, the resolution of 0.5º was used for site 

aggregation. In detail, all sites within a given grid cell of 0.5º × 0.5º were aggregated on average, and the averaged value was 330 

used to compare the model result in this grid cell. We also conducted a sensitivity test of MIMICS input variables (i.e., MAT, 

Clay, NPP, SM and BD) with four perturbation levels of -50%, -25%, 25% and 50% to explore the effects of possible 

underrepresented processes on the cropland steady SOC. 

 

We randomly separated 80% of all the 285 sites for the MIMICS versions (MIMICS-def, MIMICS-T, MIMICS-TS and 335 

MIMICS-TSMb) calibration, and 20% for model validation. The R2, RMSE and AIC were calculated by comparing 

simulated SOC with the observed SOC in training and test datasets.  



13 
 

2.3.3 Calibration and validation for MIMICS versions with biochar (MIMICS-BC) 

For the version of MIMICS with biochar addition, we run for each site simulations with control (without biochar addition) and 

experimental simulation (with biochar addition) for Age_BC year at hourly time steps, restarted from the previous SOC 340 

equilibrium. Note that these simulations for biochar addition are transient runs and thus SOC is not at a steady state. In order to 

meet the daily time step of transient runs required by MIMICS, the two model runs are forced by 6-hour surface temperature 

from Climatic Research Unit and Japanese reanalysis data (CRU-JRA, Kobayashi et al., 2015; Harris et al., 2014). The climate 

forcing data is thus different from the one from WorldClim used for the steady runs (Section 2.3.2) because hourly climate 

data is not available in WorldClim, which can differ from WordClim (time resolution: year) used in Section 2.3.1. The 345 

soil-related inputs of Clay, SM and BD were assumed invariant in time and consistent with input data for the steady SOC 

runs. The absolute SOC changes (ΔSOC, g kg-1, Eq. 19) in the simulated and observed SOC concentrations were compared 

after BC addition. The RMSE between simulated and observed ΔSOC was minimized using SCE-UA for parameter 

optimization. AIC and the slopes of regression lines between the simulated and observed SOC changes were analyzed.  

𝛥𝑆𝑂𝐶 = 𝑋𝑡 − 𝑋𝑐                                                                                 (19) 350 

where Xt and Xc is the observed (or simulated) SOC concentrations with and without biochar addition, respectively.  

 

The 134 paired observations were randomly split into training samples for parameter optimization (80% data) and test samples 

for model validation (20% data). One control simulation without any biochar process and three experimental simulations with 

different biochar processes (Section 2.2) were set to test the possible mechanisms of biochar impacting SOC dynamics. Four 355 

tests were conducted to evaluate the performance of MIMICSTSMb-BC on simulating SOC changes after biochar addition using 

the optimized parameters values in MIMICS-TSMb (i.e., av, ak, kd, β, kba, c1, c2; Table S3): 1) without biochar-related 

parameters (MIMICSTSMb-BCdef); 2) with only one new biochar-related parameter (i.e., the desorption coefficient, fd, Eq. 15) 

optimized (MIMICSTSMb-BCD); 3) with two new biochar-related parameters (i.e., fd and the decomposition rate coefficient, fv, 

Eq. 16) optimized and fv included in all decomposition processes (MIMICSTSMb-BCDV); 4) with two new biochar-related 360 

parameters (i.e., fd and fv) optimized and fv only included only in the fluxes from SOCa to MIC pools (MIMICSTSMb-BCDV-SOCa). 

Although MIMICS-TSMb is not the model with the highest R2 and lowest RMSE and AIC, the differences of R2, RMSE and 

AIC among various versions are relatively small (Fig. S5). The new processes (density dependent processes, sorption, and soil 

moisture scalars) are based on theoretical understanding and have shown to improve predictions of soil carbon in previous 

studies (Zhang et al., 2020, Liang et al., 2019, Abramoff et al. 2022). Thus, this version was used for further development of 365 

biochar processes in MIMICS. As an alternative model version, we also tested implementation of biochar processes in 

MIMICS-T that have a highest R2 and lowest RMSE and AIC in model validation (Fig. S5b). The model versions and 

simulation settings are shown in Table 1 and Fig. 3, and the optimized parameters values in these tests are shown in Table S3. 
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Considering the uncertainties in the MIMICS-BC parameters, we conducted a sensitivity test of biochar-related parameters 370 

(i.e., fd, fv, fbp, fba) and input variables (i.e., Rate_BC, Age_BC, NPP, Clay, SM) with four perturbation levels of -50%, -25%, 

25% and 50% for each site. Because the duration of most biochar addition experiments is short (74.2% data < 3 years), we 

also extracted data with Age_BC ≥ 3yr (4 yr, 5 yr and 6 yr) and tested the model performance on them separately. Due to 

lack of field measured data for a longer period, we extended our collected control SOC data to 8 years according to the 

decomposition curve of biochar in soil fitted by a double first-order exponential decay model (Fig. S4; Wang et al., 2016a). 375 

Note that the double exponential decay function is only applied to the observational records of measurement data, and this 

function is not used in the MIMICS model. Specifically, the 8-yr SOC data with biochar addition is the sum of field control 

SOC observations (short-term) and the residual biochar carbon in soil after 8 years. These extended long-term data were also 

used for model calibration and model evaluation.  

 380 

The relationships between observed ΔSOC and model input variables and the partial correlations between biases (simulated 

minus observed ΔSOC) from the four tests and model input variables (soil-, climate-, biological-, and biochar-related variables) 

were also analyzed to detect the possible missing processes. The availability carbon in biochar may affect the magnitude of 

priming effects. We thus tested the MIMICSTSMb-BC versions with the partitioning coefficient from biochar carbon to SOCa 

(fba) equal to 2% (Lychuk et al., 2014), and the partitioning coefficient of fbp and fba were optimized to evaluate the model 385 

performance. Considering the uncertainties in the MIMICS-BC parameters, we conducted a sensitivity test of biochar-related 

parameters (i.e., fd, fv, fbp, fba), microbial-related parameters (MGE, τ) and input variables (i.e., Rate_BC, Age_BC, NPP, Clay, 

SM) with four perturbation levels of -50%, -25%, 25% and 50% for each site.  

 

Table 1 Modifications in various MIMICS versions. 390 

Model Model version Description 

MIMICS 

MIMICS-def 
The default model version with modified parameters related to crop properties 

(Section 2.1.5). 

MIMICS-T 
Considering the density-dependent microbial turnover rate (denoted as “T”, Eq. 

6). 

MIMICS-TS Adding the sorption process of SOCp based on MIMICS-T (“S”, Eq. 7-9). 

MIMICS-TSMa 
Including soil moisture effects from CENTURY model (“Ma”) based on 

MIMICS-TS. 

MIMICS-TSMb 
Including soil moisture effects from ORCHIDEE-SOM model (“Mb”) based on 

MIMICS-TS. 

MIMICS-TSMc 
Including soil moisture effects from Yan et al. (2018) (“Mc”) based on 

MIMICS-TS. 
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MIMICST-BC 

MIMICS-TMIMICST-BCdef 
Including the density-dependent microbial turnover rate but without 

biochar-related parameters for biochar addition. 

MIMICST-BCD 
Including biochar effects on SOC by modifying desorption rate of SOCp in 

MIMICS-T (Eq. 15). 

MIMICST-BCDV 
Including further biochar effects on SOC by modifying the microbial maximum 

reaction velocity in all decomposition processes in MIMICS-T (Eq. 16). 

MIMICST-BCDV-SOCa 

Including further biochar effects on SOC by modifying the microbial maximum 

reaction velocity only in microbial decomposition of SOCa in MIMICS-T (Eq. 

16). 

MIMICSTSMb-BC 

MIMICS-TSMbMIMICSTSMb-BCdef 
Including the density-dependent microbial turnover rate, sorption process and 

soil moisture effects but without biochar related parameters for biochar addition. 

MIMICSTSMb-BCD Similar to MIMICST-BCD but biochar is added in MIMICS-TSMb. 

MIMICSTSMb-BCDV Similar to MIMICST-BCDV but biochar is added in MIMICS-TSMb. 

MIMICSTSMb-BCDV-SOCa Similar to MIMICST-BCDV-SOCa but biochar is added in MIMICS-TSMb. 

 

 

Fig. 3 Diagram of field measurement SOC data and the model simulation settings. The simulated or observed ΔSOC is equal 

to SOC with the biochar addition treatment minus that in the control treatment (without biochar addition). Note that one 

control treatment may correspond to multiple BC treatments with different applied BC rates at one single site. 395 

3. Results of model calibration and validation 



16 
 

3.1 Performance of different MIMICS versions for simulating cropland SOC 

3.1.1 Calibration and validation for MIMICS versions without biochar 

Among the MIMICS versions without biochar related processes, MIMICS-T has the highest correlation (R2=0.45), the lowest 

RMSE (RMSE=5.81 g kg-1) and lowest AIC (AIC=810.0) between the observed and simulated cropland SOC concentrations 400 

in the model calibration (Fig. 4, Fig. S5a). Compared to MIMICS-def (R2=0.43, RMSE=5.89 g kg-1, AIC=814.8, Fig. S5a), 

other MIMICS versions show better performances in calibration with a higher R2 and lower RMSE except for MIMICS-TSMa 

(Fig. S5a). After considering the density-dependent microbial turnover rate, MIMICS-T can better capture the observed spatial 

variation of SOC (Fig. 4, Fig. S5a). MIMICS-TS with alternative implementation of SOCp adsorption explains 44% SOC 

spatial variation with a smaller RMSE (5.81 g kg-1), but a larger AIC (816.6) (Fig. 4, Fig. S5a). Compared with MIMICS-TS, 405 

the MIMICS-TSM versions that account for the effects of soil moisture do not show significantly improvement (Fig. 4; Fig. 

S5a).  

 

When using 20% data for the independent model validation, MIMICS-T also performs best with the highest accuracy 

(R2=0.56), the lowest RMSE (4.82 g kg-1) and the lowest AIC (187.2) among all model versions (Fig. 4, Fig. S5). MIMICS-TS 410 

and MIMICS-TSMb have the better correlation (R2=0.52 and 0.52), but higher RMSE (RMSE=5.01 g kg-1 and 5.05 g kg-1) and 

AIC (AIC=197.7 and 198.6) between the observed and simulated cropland SOC concentration than MIMICS-def (R2=0.51, 

RMSE=4.97 g kg-1, AIC=188.8) (Fig. 4e, Fig. S5b). R2 of the MIMICS-TSM versions ranges from 0.46 to 0.52, and R2 of 

MIMICS-TSMb is highest among them. We also evaluated performances of the MIMICS-TSMb version calibrated with 

cropland SOC data under different crop types. The model performance varies among different crop types (i.e., maize, rice and 415 

wheat). R2 between the simulated SOC concentrations by MIMICS-TSMb and observations is higher for maize and wheat (0.84 

and 0.74, respectively, Fig. S6a, c) but lowest for rice (0.38, Fig. S6b). It is probably because the flooded condition in the paddy 

field limits SOC decomposition, which is partly supported by the weaker correlation between SOC and NPP for rice (R2=0.06, 

Fig. S7d) than that for maize and wheat (R2=0.77 and 0.54, Fig. S7a, g). 
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 420 

Fig. 4 Comparison between the observed and simulated SOC concentrations by (a) MIMICS-def, (b) MIMICS-T, (c) 

MIMICS-TS and (d) MIMICS-TSMb. Blue and red dots in (a-d) represent observation sites for model calibration (80% sites) 

and validation (20% sites), respectively. (e) R2, root mean square error (RMSE) and Akaike information criterion (AIC) from 

the model calibration (left panel) and validation (right panel) for the four MIMICS versions. Relationships for the other 

MIMICS versions can be found in Fig. S8. 425 

3.1.2 Sensitivity analysis for MIMICS versions without biochar 

Assuming that the microbial reaction velocity (Vmax) and turnover (τ) were affected by soil moisture, the model with the soil 

moisture effects does not predict SOC concentrations more accurately (R2=0.46, RMSE=5.06 g kg-1, AIC=198.9, Fig. S9b) 

than the MIMICS-TSMb version where Vmax and Km are affected (R2=0.52, RMSE=5.05 g kg-1, AIC=198.6, Fig. 4d, Fig. S5b). 

In addition, we tested MIMICS after aggregating cropland SOC sites within each 0.5° × 0.5° grid cell instead of using each site 430 

directly, and the model can reproduce about 45%~55% of the SOC spatial variation, slightly lower than that (R2=0.51~0.56, 

Fig.4e) using site-specific data (Fig. S10). The perturbation for input variables of MIMICS shows that the size of steady SOC 

pool is positively correlated with NPP and Clay, but negatively correlated with MAT and BD. The responses of steady SOC to 

the perturbation of BD, MAT and NPP are relatively large (Fig. 5). 

 435 
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Fig. 5 Sensitivity analysis of responses of the steady SOC simulated by MIMICS to input variables of (a) MAT, (b) Clay, (c) 

NPP, (d) SM and (e) BD with different perturbation levels. The yellow line and green dotted line in the boxplot are median 

and mean values of the output steady SOC changes in calibrated sites. The average SOC changes in calibrated sites for the 

four perturbation levels are shown in (f). 440 

3.2 Calibration and evaluation of MIMICS-BC  

3.2.1 Model cCalibration and validation for MIMICS-BC versions 

For the calibration of short-term SOC changes after biochar addition, MIMICST-BC and MIMICSTSMb-BC versions with new 

biochar processes show a better performance with higher R2, lower RMSE and AIC than MIMICS-TMIMICST-BCdef and 

MIMICS-TSMbMIMICSTSMb-BCdef, respectively (Fig. S9-1011-12). For the model validation using observation data that are 445 

not used for calibration, the performance of MIMICST-BCDV-SOCa (R2=0.80, RMSE=3.38 g kg-1, AIC=69.8, Fig. 5e6e-g) is 

slightly better than MIMICST-BCD (R2=0.79, RMSE=3.43 g kg-1, AIC=68.5) and MIMICST-BCDV (R2=0.76, RMSE=3.66 g 

kg-1, AIC=74.1), except for the AIC (69.8) is higher than that of MIMICST-BCD (68.5) (Fig. 56). By comparison, the 

performance of MIMICST-BCdefMIMICS-T is poorer than these three versions. Among the MIMICSTSMb-BC versions, 

MIMICSTSMb-BCDV performs best in reproducing SOC changes with biochar addition with the highest R2 (0.79), the lowest 450 

RMSE (3.73 g kg-1) and AIC (75.0) (Fig. 6e7e-f). We further calibrated the model at sites with a relatively longer biochar 

addition period of observations (Age_BC ≥ 3 yr). The corresponding R2 between observed and simulated SOC changes after 
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biochar addition by MIMICSTSMb-BCDV (0.20~0.67, Fig. S11cS13c, g, k, o) are lower than that R2 for all sites (0.63, Fig. 

S10cS12c, e), except for sites with Age_BC ≥ 3 yr (0.67, Fig. S11cS13c). 

 455 

For the long-term (extended to 8 yr based on biochar decomposition curve, Wang et al., 2016a) SOC changes after biochar 

addition, MIMICST-BCDV and MIMICSTSMb-BCDV show the best performance among all versions in the model calibration (Fig. 

S9-1011-12). In the model validation, MIMICST-BCdefMIMICS-T and MIMICSTSMb-BCdefMIMICS-TSMb underestimate the 

extrapolated observations of SOC change (Fig. 5a6a, Fig. 6a7a). MIMICST-BCD shows the best performance with the lowest 

RMSE (3.84 g kg-1) and AIC (74.7) among all the MIMICST-BC versions (Fig. 56). Compared to 460 

MIMICSTMSb-BCdefMIMICS-TSMb (R2 =0.88, RMSE=9.35 g kg-1, slope=0.08, AIC=120.7, Fig. 6a7a, e, f, g), predictions of 

MIMICSTSMb-BCD, MIMICSTSMb-BCDV and MIMICSTSMb-BCDV-SOCa are more accurate with a smaller RMSE (8.12 g kg-1, 

6.08 g kg-1 and 6.78 g kg-1, Fig. 6f7f), a smaller AIC (115.1, 101.5 and 107.4, Fig. 6g7g), a linear slope closer to 1 (0.29, 1.68 

and 1.74, Fig. 6a7a-d), and a reasonable accuracy of R2 (0.45, 0.97 and 0.94, Fig. 6e7e). Among the different MIMICSTSMb-BC 

versions, MIMICSTSMb-BCDV shows the best performance (Fig. 67). When assuming that biochar produces a priming effect 465 

only through affecting the utilization rate of SOCa by microbes (MIMICSTSMb-BCDV-SOCa), the model accuracy is slightly 

decreased with lower R2 (=0.94), higher RMSE (=6.78 g kg-1) and higher AIC (=107.4) than MIMICSTSMb-BCDV that 

assumes all decomposition processes were affected (Fig. 67). 

 

Fig. 5 6 Relationships of short-term (≤ 6 yr; black) and long-term (i.e., extended to 8 yr; red) SOC changes after biochar 470 

addition (ΔSOC) between observations and models in validation dataset. The MIMICS versions are used, including 
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MIMICST-BCdefMIMICS-T (a), MIMICST-BCD (b), MIMICST-BCDV (c) and MIMICST-BCDV-SOCa (d). Comparisons of R2 (e), 

the root mean square error (RMSE, f) and the Akaike information criterion (AIC, g) among the four MIMICST-BC versions 

are shown separately. See model versions in Table 1. 

 475 

Fig. 6 7 Relationships of short-term (≤ 6 yr; black) and long-term (i.e., extended to 8 yr; red) SOC changes after biochar 

addition (ΔSOC) between observations and models in validation dataset. The MIMICS versions are used, including 

MIMICSTSMb-BCdefMIMICS-TSMb (a), MIMICSTSMb-BCD (b), MIMICSTSMb-BCDV (c) and MIMICSTSMb-BCDV-SOCa (d). 

Comparisons of R2 (e), the root mean square error (RMSE, f) and the Akaike information criterion (AIC, g) among the four 

MIMICSTSMb-BC versions are shown separately. See model versions in Table 1.  480 

3.2.2 Error analysis for MIMICS-BC versions  

The biases between the simulated and observed short-term SOC changes with biochar addition are significantly correlated 

with Rate_BC or Clay (p < 0.05), but only vary marginally with SM, MAT and NPP when additional parameters are 

optimized (Fig. S12S14). For the long-term SOC changes after biochar addition, the best model version, i.e., 

MIMICSTSMb-BCDV, can explain 97% of the variations of the observed long-term SOC changes after biochar addition (Fig. 6e). 485 

The biases between long-term observations and simulations by MIMICSTSMb-BCdefMIMICS-TSMb are significantly correlated 

with Rate_BC (r = -0.81) (Fig. 78), suggesting that the model may underrepresent processes related to Rate_BC. By 

considering biochar effects on the SOC desorption (MIMICSTSMb-BCD), the correlations of model biases with Rate_BC, BD, 
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SM and NPP become weaker (Fig. 78). MIMICSTSMb-BCDV incorporating the biochar impacts on microbial decomposition rate 

further reduces the correlations between model biases and variables of Rate_BC, Age_BC and BD. MIMICSTSMb-BCDV-SOCa 490 

including the impacts on microbial decomposition rate only in the fluxes from SOCa to MIC pools can also reduce the 

correlations between model biases and variables of Rate_BC and BD, but the correlations change little with Clay and Age_BC 

(Fig. 78). 

 

Fig. 7 8 Correlations between the MIMICSTSMb-BC biases (i.e., simulated long-term ΔSOC minus observed ΔSOC) and input 495 

soil- (Clay, BD, SM), climate- (MAT), biological- (NPP) and biochar-related (Rate_BC, Age_BC) variables for 

MIMICSTSMb-BCdefMIMICS-TSMb, MIMICSTSMb-BCD, MIMICSTSMb-BCDV and MIMICSTSMb-BCDV-SOCa. Asterisks indicate 

significant correlations (p < 0.05). 

3.2.3 Sensitivity analysis for MIMICS-BC versions 

The test of the partitioning coefficient from biochar to SOCa (fba) with 2% for the MIMICSTSMb-BC model (see Section 2.3.3) 500 

shows a similar R2 (0.35~0.79, Fig. S15) to that from fba = 20% in short-term (0.25~0.79, Fig. 7). The optimization 

(MIMICSTSMb-BCDV*) of the partitioning coefficient from biochar carbon to SOCp (fbp) and fba shows a better performance 

(R2=0.80, RMSE=3.44 g kg-1, AIC=66.7, Fig. S16) than MIMICSTSMb-BCDV that without these two parameters optimized. The 

responses of ΔSOC to parameter perturbations show that fv and fd affect ΔSOC with biochar addition in the opposite directions, 

and ΔSOC is more sensitive to the partition coefficient fbp than fd, fv and fba (Fig. 9). ΔSOC is more sensitive to Rate_BC than 505 

Age_BC. The sensitivity of the ΔSOC to τ is greater than that to MGE (Fig. S17), and the two parameters may be influenced by 

biochar but are not considered in the current MIMICS-BC versions. The sensitivity tests for the model input variables, i.e., crop 

net primary productivity (NPP), soil clay content (Clay) and soil moisture (SM), show that Clay is very important to the model 

outputs, while the impacts of NPP and SM are relatively smaller (Fig. S17).  

 510 
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Fig. 89 Sensitivity analysis of MIMICS-BC model parameters of (a) fd (desorption coefficient, Eq. 15), (b) fv (decomposition 

rate coefficient, Eq. 16), (c) fbp (partition coefficient from biochar carbon to SOCp, Fig. 1), (d) fba (partition coefficient from 

biochar carbon to SOCa, Fig. 1), and the biochar-related input variables of, (e) Rate_BC and (f) Age_BC. The yellow line and 

green dotted line in boxplots are median and mean values of the changes in model output (i.e., change of ΔSOC, Eq. 19). The 515 

mean values of change of output ΔSOC in calibrated sites are shown in (g). 

 

4. Sensitivity tests and dDiscussion 

4.1 Sensitivity tests of MIMICS for simulating cropland Cropland SOC related processes 

MIMICS versions with adsorption and soil moisture effects perform well in comparison with site-level SOC concentrations on 520 

croplands collected in this study (Fig. 4; Fig. S5), although the soil moisture effects are not notable. We also tried a test by 

assuming that soil moisture affects the microbial growth rate through mediating microbial growth (Vmax) and turnover (τ) of 
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MICr and MICk (Wieder et al., 2019) and thus added the soil moisture factor (i.e., f(θ) in Eq. 11) on Vmax and τ. But the model 

does not predict SOC concentrations more accurately (R2=0.46, RMSE=5.06 g kg-1, AIC=198.9, Fig. S13b) than the 

MIMICS-TSMb version where Vmax and Km are affected (R2=0.52, RMSE=5.05 g kg-1, AIC=198.6, Fig. 4d, Fig. S5b). Annual 525 

mean crop NPP, as the input of SOC pools, was also optimized within the range of site-level crop NPP values similarly to 

other variables to test model performance in MIMICS-TSMb, but it shows little improvement (R2=0.48, RMSE=5.12 g kg-1, 

AIC=200.2, Fig. S14b), compared to MIMICS-TSMb without NPP optimized (Fig. 4d). Decomposition equations of SOC were 

constructed based on a wide variety of ecological assumptions, resulting in many forms (Buchkowski et al., 2017). The inverse 

Michaelis-Menten kinetics of soil carbon decomposition assume that the SOC decomposition rate depends nonlinearly on the 530 

enzyme concentration, but linearly on the substrate concentration (Wang et al., 2016b). We also tested MIMICS based on the 

inverse Michaelis-Menten kinetics in the carbon degradation processes to explore the fundamental mechanisms of SOC 

decomposition, but the results are similar to the forward Michael-Menten kinetics (Fig. 4; Fig. S15a-d). In addition, we tested 

MIMICS for different spatial resolutions after aggregating cropland SOC sites within each 0.5° × 0.5° grid cell, and the model 

also performs well and can reproduce about 45%~55% of the SOC spatial variation (Fig. S15e-h). We also evaluated the 535 

response of MIMICS model to idealized warming, and the MIMICS-TSMb version shows a slightly better performance for 

reproducing observed changes in soil heterotrophic respiration with warming than other versions (Text S1).  

4.1.1 Missing processes in the MIMICS model 

We presented a framework to quantify the impact of microbial density-dependent turnover, sorption, and soil moisture 

effects on cropland SOC dynamics. Regulatory mechanisms (e.g., competition) may limit microbial population sizes, and 540 

neglecting this process could lead to indefinite microbial biomass growth with increasing litter inputs (Georgiou et al., 2017). 

Our analysis demonstrates that restricting microbial biomass size through density-dependent microbial turnover (MIMICS-T) 

slightly improves the model performance (Fig. 4), but further including sorption and soil moisture effects (MIMICS-TS and 

MIMICS-TSM) has negligible contribution to the model performance. One possible reason is that the inclusion of these new 

processes greatly increases model complexity, but in the parameter calibrations, SOC is still the only observational variable 545 

to constrain all the newly added processes. Therefore, the model parameters may not be fully constrained due to the lack of 

direct observations on these new processes.  

 

Another reason is that some other possibly important processes are missing from the model. For example, the MIMICS-TS 

version considers the impacts of soil clay on the adsorption capacity of SOCa, but soil pH, ionic strength and mineral content 550 

are also found important to the sorption-desorption of SOC (Kothawala et al., 2009, Mayes et al., 2012). The metal ion Ca2+ 

can form bonds between negatively charged clay minerals and available SOC via cation bridging, enhancing the adsorption 

of available SOC by soil clay minerals (Roychand and Marschner, 2014; Setia et al., 2013). Soil pH can also impact SOC 
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sorption by altering the ionization degree and the surface change of SOC molecules (Shen., 1999). Moreover, the iron 

minerals can preferentially bind to lignin components through sorption and coprecipitation, protecting it from microbial 555 

degradation and consequently increasing SOC (Liao et al., 2022). In addition to the sorption-desorption process that is 

associated with microbial accessibility to SOC, other factors that influence microbial activity are also underrepresented in 

MIMICS, such as the soil nutrient availability (e.g., nitrogen), which greatly impacts microbial use efficiency and growth 

rate (Manzoni et al., 2017). These processes improve our understanding of the mechanisms of SOC dynamics and should be 

incorporated in the model to represent the microbial-mineral processes realistically and mechanistically.  560 

 

However, as shown in our results, without further observational constraints on each process separately, the model 

performance only relying on calibrations against total SOC contents may not improve. Therefore, various versions of 

MIMICS, representing different levels of our understanding on microbial-mineral processes, are retained in our study for 

further calibrations when sufficient observations emerge. 565 

 

SOC dynamics can be influenced by many factors (e.g., pH, mineral content). In clay- or Fe-rich mineral soils, physically 

protected SOC might increase due to the large adsorption capacity of dissolved organic carbon onto soil mineral particles 

(Mayes et al., 2012). However, adding the sorption process into MIMICS (MIMICS-TS) doesn't improve the model 

performance, but the difference is small (R2=0.44, Fig. 4c, Fig. S5a), compared to the MIMICS-T version (R2=0.45, Fig. 4b, 570 

Fig. S5a). In addition, management (e.g., irrigation, tillage) are important factors that affect SOC decomposition and 

accumulation in croplands. The poor performance of MIMICS for rice is probably due to inability of MIMICS to simulate SOC 

dynamics under anaerobic condition from the irrigation practice (Fig. S6-7). Tillage may disrupt soil aggregates and release 

physically protected SOC, which is more susceptible to decomposition than that protected by soil aggregates (Six et al., 1999). 

Juice et al. (2022) modeled tillage effects on SOC loss through transferring protected SOC into unprotected pools, i.e., from 575 

SOCp to SOCa in this study. Although lacking sufficient tillage information at the sites we studies here, we attempted to 

include tillage disturbance effects in MIMICS by assuming a fixed 30% increase of desorption rate of SOCp according to Juice 

et al. (2022) (i.e., D × (1+30%), Eq. 5), but R2 between observations and simulations (0.46~0.57, Fig. S15i-l) is similar to that 

from the version without tillage (R2 = 0.51~0.56, Fig. 4, Fig. S5b). By considering more plausible mechanisms, the 

performance of MIMICS model changes little with a slightly higher AIC. It is possible that the model is still not fully 580 

constrained. With more emerging technologies and observation data available, the parameters related to these processes can 

be further calibrated. 

4.1.2 Cropland management impacts 

In addition, cCropland management disturbs soils frequently, and the assumed equilibrium state of SOC may not be realistic, 
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which also partly explains the mismatch between simulated and observed SOC. Agriculture management (e.g., irrigation, 585 

tillage) are important factors that affect SOC decomposition and accumulation in croplands. The poor performance of MIMICS 

for rice is probably due to inability of MIMICS to simulate SOC dynamics under anaerobic condition from the irrigation 

practice (Fig. S6-7). Tillage may disrupt soil aggregates and release physically protected SOC, which is more susceptible to 

decomposition than that protected by soil aggregates (Six et al., 1999). Juice et al. (2022) modeled tillage effects on SOC loss 

through transferring protected SOC into unprotected pools, i.e., from SOCp to SOCa in this study. Our results from variable 590 

perturbation suggest that the BD is the key driver to SOC changes, followed by MAT and crop NPP (Fig. 5), suggesting that 

processes related to these variables have a great effect on the SOC. The soil BD was found to be affected by tillage practices 

(Osunbitan et al., 2005), and crop NPP may vary due to crop rotation, fallow practice, which are missing in the model.  

 

In addition, managements such as fertilizer application and possible residue retention can increase SOC stock. Previous 595 

evidence indicates that the SOC is increased by 11.3% with residue return (Wang et al., 2020b) and by 13.3% with straw 

return and balanced NPK fertilizer (Islam et al., 2023) compared to residue removal. However, these management processes 

of fertilization and residue retention are not represented in the MIMICS model due to the absence of quantitative 

management data and the poor understanding of the mechanisms. It may explain the underestimation of SOC at sites with a 

high carbon density by the calibrated MIMICS models (Fig. 4). Therefore, field measurements on the effects of agricultural 600 

practices on SOC dynamic are urgently needed to further improve the model processes (Campbell et al., 2007; Congreves et 

al., 2015).  

 

We thus added sensitivity tests by perturbing the input variables (MAT, Clay, NPP, SM and BD) to evaluate the steady SOC 

changes and the possible impacts of non-steady states on the results. The size of SOC pool is positively correlated with NPP 605 

and Clay, but negatively correlated with MAT and BD. The responses of steady SOC to the perturbation of BD, MAT and NPP 

are relatively large (Fig. S16), indicating that processes related to these variables have a great effect on the steady SOC. The 

soil BD was found to be affected by tillage practices (Osunbitan et al., 2005), and crop NPP may vary due to crop rotation, 

fallow or fertilization. Therefore, agricultural management practices, such as fertilization and crop rotation, need to be 

incorporated in soil carbon models in future to reduce the uncertainty of simulating cropland SOC dynamics (Campbell et al., 610 

2007; Congreves et al., 2015). 

4.2 Sensitivity tests and uncertainty for MIMICS-BC Biochar-related processes 

4.2.1 Tested processes in the MIMICS-BC model 

The MIMICSTSMb-BC versions have a good performance in reproducing the observed short-term SOC changes with biochar 
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addition (R2 = 0.57~0.79, Fig. 6). It is probably due to the high correlation between Rate_BC and ΔSOC (r = 0.71, Fig. S12), 615 

indicating that the biochar application rate dominates changes in SOC concentrations over a short period. For the long-term 

changes (extended to 8 yr), MIMICSTSMb-BC versions show a greater improvement than the MIMICS-TSMb version (Fig. 6). 

Biochar can absorb SOC due to its large specific surface area, high porosity and further promotion of soil macro-aggregates 

formation (Han et al., 2020; Huang et al., 2018). Consistently, the optimized desorption coefficient (fd = -0.0121 and -0.0122 

for short- and long-term, Table S3) in MIMICSTSMb-BCD is negative, indicating the carbon desorption from SOCp to SOCa is 620 

reduced with biochar addition. Incorporating the biochar impacts on microbial decomposition velocity in the 

MIMICSTSMb-BCDV further improved model with biochar addition in long term (decomposition rate coefficient (fv) = -0.0253, 

Table S3). The correlations between model-observation biases and input variables become weaker for MIMICS-BCDV, but the 

correlations between model-observation biases and input variables of with biochar application (Rate_BC) and soil moisture 

(SM) is are still significant in long term (p < 0.05, Fig. 78), implying that some processes related to these variables are not well 625 

represented in the model. The responses of ΔSOC to parameter perturbations show that fv and fd affect ΔSOC changes with 

biochar addition in opposite directions, and ΔSOC is more sensitive to the partition coefficient from biochar carbon to SOCp 

(fbp) than fd, fv and the partition coefficient from biochar carbon to SOCa (fba) (Fig. 8). Among the input variables, ΔSOC is more 

sensitive to Rate_BC than Age_BC. For example, biochar addition could increase soil moisture (Razzaghi et al. 2020), and 

further alter the composition and activities of soil microbial communities (Lehmann et al. 2011). Moreover, the direction and 630 

magnitude of biochar effects on SOC are dependent on biochar addition rate and incubation times (Ding et al., 2017). 

Compared to MIMICST-BCDV, MIMICST-BCDV-SOCa performed better in the short-term SOC response to biochar addition but 

worse in the long-term response (Fig. 6). When biochar is applied, the labile carbon fraction may be immediately utilized by 

microbes, and thus adding biochar effects on the SOCa process is important for the short-term response. In the long term, the 

SOC mineralization may be gradually suppressed via physical protection (Zimmerman et al., 2011), but both MIMICST-BCDV 635 

and MIMICST-BCDV-SOCa do not include the adsorption process. In the MIMICSTSMb-BC versions that include the adsorption 

process, the available SOC may be partly adsorbed by minerals and become physically protected. This could lead to the 

positive priming effect of biochar on SOC being less evident (Fig. 7). 

 

Biochar stability, which could affect priming effects, varies with biochar feedstock types and pyrolysis temperature (Wang et 640 

al., 2016a). Using wood and straw as biochar feedstock, 0.3% and 0.8% of biochar carbon is lost at a pyrolysis temperature of 

800 ℃ (wood) and 350 ℃ (straw), respectively (Hamer et al., 2004). 2% of biochar carbon was assumed to distribute into 

active/metabolic pool in the EPIC model (The Environmental Policy Integrated Climate, Lychuk et al., 2014), and thus we 

tested the MIMICSTSMb-BC model with the partitioning coefficient from biochar carbon to SOCa (fba) =2%, and the model 

shows a similar R2 (0.35~0.79, Fig. S17) to that fba = 20% in short-term (0.25~0.79, Fig. 6). We further optimized the 645 

partitioning coefficient from biochar carbon to SOCp (fbp) and fba based on MIMICSTSMb-BCDV to test the parameter 
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uncertainties. The optimized version (MIMICSTSMb-BCDV*) shows a better performance (R2=0.80, RMSE=3.44 g kg-1, 

AIC=66.7, Fig. S18) than MIMICSTSMb-BCDV, and the optimized fbp, fba and the partitioning coefficient from biochar carbon to 

SOCc (fbc) are 58.1%, 8.2% and 33.7%, respectively. Compared to MIMICSTSMb-BCDV, correlations of MIMICSTSMb-BCDV* 

model biases with Clay, BD, SM and NPP reduced, but the correlations with Rate_BC and Age_BC increased (Fig. S12). We 650 

also added a test to evaluate the performance of the MIMICS-BC versions in simulating the changes of SOC, MIC and soil 

respiration fluxes after biochar addition in our collected paired sites. Results show that MIMICSTSMb-BCDV and 

MIMICSTSMb-BCDV-SOCa are the better versions for reproducing the observed changes in SOC, MIC and respiration among 

the four MIMICSTSMb-BC versions (Text S2). 

 655 

 

Fig. 8 Sensitivity analysis of MIMICS-BC model parameters of (a) fd (desorption coefficient, Eq. 15), (b) fv (decomposition 

rate coefficient, Eq. 16), (c) fbp (partition coefficient from biochar carbon to SOCp, Fig. 1), (d) fba (partition coefficient from 

biochar carbon to SOCa, Fig. 1), and the biochar-related input variables, (e) Rate_BC and (f) Age_BC. The yellow line and 

green dotted line in boxplots are median and mean values of the changes in model output (i.e., change of ΔSOC, Eq. 19). The 660 
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mean values of change of output ΔSOC in calibrated sites are shown in (g). 

4.2.2 Missing processes in current MIMICS-BC model 

The effects of biochar on SOC are controlled by various factors, such as soil physicochemical and biological properties (e.g., 

clay, pH, microbial activity), biochar properties (e.g., feedstock, pyrolysis temperature) and incubation conditions (e.g., 

periods, crop types) (Ding et al., 2017; Han et al., 2020). Some of these effects are not explicitly considered in the MIMICS 665 

biochar version. Biochar addition may also change the composition of microbial community, and a previous study reported 

increased copiotrophic bacteria with a higher growth rate and decreased oligotrophic bacteria in acid soils with biochar 

addition (Sheng and Zhu, 2018). This is related to the competition between r- and k-strategy microbes in MIMICS. Microbial 

carbon use efficiency (CUE) determines the relation proportions of microbial carbon uptake between growth and respiration 

(Zhou et al., 2017a), and increased CUE and reduced turnover time (1/τ) of microbial biomass were found with biochar 670 

addition, although the changes depend on the soil texture (Pei et al., 2021). It is consistent with our results that the ΔSOC is 

more sensitive to changes of τ and soil clay than other parameters and variables (Fig. S17). We conducted additional sensitivity 

tests with assumed perturbation levels in these parameters (MGE and τ) and input variables (NPP, Clay and SM) in the 

simulations with biochar addition. τ and soil clay are very important parameters and variable to the model outputs, while the 

impacts of NPP and SM are relatively small (Fig. S19). Therefore, processes and parameters related to τ and soil clay need to 675 

be accounted for in future with additional evidence.  

 

Biochar addition may also change the composition of microbial community, and a previous study reported increased 

copiotrophic bacteria with a higher growth rate and decreased oligotrophic bacteria in acid soils with biochar addition (Sheng 

and Zhu, 2018). This is related to the competition between r- and k-strategy microbes in MIMICS. In the MIMICS-BC version, 680 

we assumed that biochar, with a longer turnover time (about 1000 yr, Schmidt et al., 2002) than SOC, are evenly mixed with 

SOC and are treated as a homogenous pool without an explicit vertical profile, which may also bring uncertainties. In addition, 

due to lack of long-term biochar addition experiments, the extended long-term SOC concentrations with biochar addition is 

calculated as the sum of SOC in the control site without biochar addition and the remaining biochar carbon based on the 

biochar degradation curve (Fig. S4; Wang et al., 2016a). Although they are not direct observations and may induce uncertainty, 685 

the long-term model validation is important to assess the model ability of simulating the SOC stability with biochar addition. 

Long-term and comprehensive field measurements of SOC and other soil and microbe properties after biochar addition are 

therefore urgently needed to understand the underlying mechanisms of biochar impacts on SOC changes, all of which will help 

improve the model performance.  

5. Conclusion  690 
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Our study shows that the updated MIMICS versions with new processes (e.g., adsorption and soil moisture) improves the 

model performance on simulating SOC dynamics on croplands. The model versions implemented with biochar processes can 

generally capture the SOC changes after biochar application from observations. Biochar is believed to have a large CDR 

potential, and its application on soils would affect the soil carbon and nutrient cycles. These impacts need to be incorporated 

ESMs to accurately simulate the mitigation potential of biochar under future climate change. 695 
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