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Abstract. Biochar (BC) application in croplands aims to sequester carbon and improve soil quality, but its impact on soil 

organic carbon (SOC) dynamics is not represented in most land models used for assessing land-based climate mitigation, 

therefore we are unable to quantify the effect of biochar applications under different climate conditions or land management. 

To fill this gap, here we implemented a submodel to represent biochar into a microbial decomposition model named MIMICS 30 

(MIcrobial-MIneral Carbon Stabilization). We first calibrate MIMICS with new representations of density-dependent 

microbial turnover rate, adsorption of available organic carbon on mineral soil particles, and soil moisture effects on 

decomposition using global field measured cropland SOC at 58 285 sites. We further integrate biochar in MIMICS resolving its 

effect on microbial decomposition and SOC sorption/desorption and optimize two biochar-related parameters in these 

processes using 134 paired SOC measurements with and without biochar addition. The MIMICS-biochar version can generally 35 

reproduce the short-term (≤ 6 yr) and long-term (8 yr) SOC changes after adding biochar (mean addition rate: 25.6 t ha-1) (R2 = 

0.650.79 and 0.840.97) with a low root mean square error (RMSE = 3.613.73 and 3.316.08 g kg-1). Our study incorporates 
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sorption and soil moisture processes into MIMICS and extends its capacity to simulate biochar decomposition, providing a 

useful tool to couple with dynamic land models to evaluate the effectiveness of biochar applications on removing CO2 from the 

atmosphere.  40 

1. Introduction 

Soil organic carbon (SOC) is the largest terrestrial carbon pool, and increasing soil respiration in response to global warming 

can cause large carbon emissions to the atmosphere (Bond-Lamberty et al., 2018), therefore add further constraint to stabilize 

future warming under 2 ℃. On the other hand, SOC sequestration through improved land management practices has a potential 

to mitigate climate change by increasing soil carbon accumulation, such as the “4 per mille” project (Minasny et al., 2017).  45 

 

Due to the limited temporal and spatial coverage of field SOC measurements, soil biogeochemical models have been widely 

applied to simulate SOC and its response to climate change and human activities (Eglin et al., 2010). Soil carbon models are 

evolving from first-order kinetics-based models with simple representation of pool sizes and their turnover rates to microbial 

models with explicit representation of microbial roles in SOC decomposition and stabilization (Manzoni & Porporato, 2009; 50 

Sulman et al., 2018). For example, the MIcrobial-MIneral Carbon Stabilization (MIMICS) model is a process-based soil 

carbon model with explicit representations of nonlinear SOC decomposition dynamics related to microbial physiology, 

substrate quality, and physical protection of SOC (Wieder et al., 2014; Wieder et al., 2015). This model has been calibrated 

with global SOC data and can well represent current understanding of SOC decomposition and formation (Wieder et al., 2015), 

and outperforms conventional first-order decomposition model in simulating spatial variation in SOC stocks in forest 55 

ecosystems on continental scale (Zhang et al., 2020). However, the model has not been evaluated for agricultural sites or 

misses processes that theoretically should influence SOC dynamics, such as density-dependent microbial processes, 

adsorption of available organic carbon or soil moisture effects. 

 

The microbial interactions at the community level (e.g., competition) play a crucial role in controlling SOC dynamics, but 60 

they are not considered in many microbial models (Georgiou et al., 2017), resulting in unrestricted growth of microbial 

community size with more carbon input which is unrealistic (Buchkowski et al., 2017; Wieder et al., 2013). In addition, field 

experiments show that physicochemical adsorption plays a more important role in controlling DOC fluxes than the 

biodegradation process (Kalbitz et al., 2005). Although the adsorption mechanism is complex, depending on various factors 

such as pH, clay content, destruction and formation of soil aggregates (Mayes et al., 2012), some soil carbon models 65 

implemented dynamic adsorption and desorption processes controlled by DOC concentration and available mineral surface 

sites for binding (Wang et al., 2020; Wang et al., 2013). The availability of SOC is influenced by the adsorption process 

(Michalzik et al., 2003). Some adsorption kinetic equations, such as the Langmuir isotherm, have commonly been employed to 
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depict the adsorption/desorption process. However, the MIMICS model lacks consideration of the adsorption process, thus not 

effectively elucidating its role in stabilizing SOC. Furthermore, the effect of soil moisture on SOC cannot be ignored because it 70 

controls microbial activity, substrate availability and further influences soil respiration and nitrogen mineralization (Manzoni 

et al., 2012; Schimel et al., 2007). A set of empirical functions for the soil moisture effects were proposed for the use in earth 

system models (ESMs) (Moyano et al., 2013; Camino-Serrano et al., 2018), and a mechanistic moisture function that 

incorporates physicochemical and biological processes was also developed recently (Yan et al., 2018). In previous MIMICS 

versions, an implicit or explicit density dependent turnover was introduced (Wieder et al. 2015; Kyker-Snowman et al. 2020; 75 

Zhang et al., 2020; Georgiou et al. 2017), which cause an increase in biomass turnover with increasing microbial community 

size reflecting increasing pressure from competition for other resource other than carbon (e.g. space) and virus infections 

(Jansson and Wu, 2023), and a water scalar was used to represent the soil moisture effects (Wieder et al. 2019). The inclusion 

of density-dependent microbial turnover rate improved the accuracy of predicting SOC at the global scale compared to 

MIMICS without it and eliminated the correlation between simulated biases and input of annual litterfall (Zhang et al., 2020). 80 

MIMICS with soil water modifications showed comparable predicted global soil carbon stocks compared to other models, 

but to what extent soil water influences SOC turnover remains uncertain (Wieder et al., 2019). Therefore, based on these 

theories and model limitations, it is necessary to integrate the three aspects (density-dependent microbial turnover rate, 

adsorption/desorption processes, and soil moisture impacts) into one model version to improve the prediction accuracy of 

SOC dynamics. For agricultural lands, modeling the SOC decomposition processes is more challenging due to management 85 

practices such as tillage and fertilization, which can significantly interrupt carbon cycle and need specific parameterizations.  

 

Biochar application in croplands as a soil amendment can improve the soil quality and increase the crop production (Smith, 

2016; Woolf et al., 2010). Meanwhile, because biochar is produced from biomass through pyrolysis processes and is 

recalcitrant to be decomposed, it is also considered as a promising negative emission technology (NET) for climate mitigation 90 

(Fuss et al., 2018; Minx et al., 2018). The carbon dioxide removal (CDR) potential of biochar is estimated to be 0.5~2 GtCO2e 

year-1 (CO2 equivalent) (Fuss et al., 2018; Minx et al., 2018). However, biochar application affects SOC mineralization through 

various processes (Palansooriya et al., 2019; Luo et al., 2017), resulting in positive or negative priming effects (PEs, changes of 

native SOC mineralization) (Zimmerman et al., 2011). A recent meta-analysis showed that biochar induced negative priming 

effects on average (-3.8%), but the 95% confidence interval (CI) of -8.1% to 0.8% also covers positive values (Wang et al., 95 

2016a). Biochar may induce positive PEs through stimulating microbial activity by providing additional nutrients for soil 

microbes (El-Naggar et al., 2019; Li et al., 2019). Positive PEs usually occurred in shorter term (< 2 year), then decreased or 

changed to being negative over longer term (Luo et al., 2011; Singh & Cowie, 2014; Ding et al., 2017). For example, biochar 

can reduce SOC available for microbes by enhancing soil aggregate stability through associations between soil minerals and 

biochar (Zheng et al., 2018). Its porous structure and high surface area with strong adsorption affinity for SOC can thus cause 100 
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negative PEs (Zimmerman et al., 2011; Lehmann et al., 2021). PEs are also impacted by the properties of biochar (e.g., 

feedstock type, pyrolysis temperature) and soil climate (e.g., soil moisture) (Ding et al., 2017). Therefore, soil moisture could 

be closely related to the adsorption capacity of biochar, and needs to be included in the model for predicting PEs of biochar on 

SOC changes. The biochar decomposition and impacts on native SOC through priming effects are important for the CDR 

potential of biochar, but these processes are not represented in most land carbon models (Lehmann et al., 2021), precluding the 105 

model capacity of fully assessing the effectiveness of large-scale application of biochar as a NET and its environmental 

impacts. 

 

In this study, we aim to improve the MIMICS model, one of few microbial-based soil carbon models that have been applied 

globally, by adding new processes controlling SOC dynamics, especially for cropland and develop a biochar model version that 110 

incorporates our current understanding of biochar effects on SOC for future predictions at the regional or global scale. We first 

added density-dependent microbial turnover rate, adsorption of available organic carbon, and soil moisture effects on 

microbial decomposition rate into MIMICS which are needed to simulate the response of SOC to biochar addition. The 

updated model versions were calibrated and validated using 285 field measured cropland SOC concentrations without biochar 

addition. We then accounted for biochar effects on SOC in MIMICS by calibrating two parameters related to biochar, using 134 115 

paired field SOC measurements in short- and long-term with and without biochar addition.  

2. Materials and methods 

2.1 Observational data collection 

We collected 387 paired field measurements of SOC concentrations (g kg-1) in croplands with or without biochar addition from 

58 locations (see the site map in Fig. S1) from published literatures. Soil properties (clay content (Clay), bulk density (BD), soil 120 

moisture (SM)), climatic conditions (mean annual temperature (MAT), mean annual precipitation (MAP)), biological variable 

(net primary productivity (NPP)) and biochar-related characteristics: application rate (Rate_BC), the interval between biochar 

application and soil sampling (Age_BC), feedstock type (Feedstock_BC), pyrolysis temperature (Temp_BC) were also 

collected when available. Auxiliary information (e.g., location, and managements, crop cover types) and more detailed 

information can be found in Han et al. (2021).  125 

 

Because some sites have multiple biochar addition experiments (e.g., pyrolysis temperature × aging time of biochar), the 

control SOC concentrations at the same site were averaged, and the SOC concentrations with biochar addition for a given rate 

(Rate_BC) were also averaged, omitting other characteristics of the BC (like pyrolysis temperature). In total, 134 paired SOC 

data were used for model calibration (Fig. S1). The depth of soil sampled varies among sites, but is less than 30 cm in general. 130 
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The biochar application rate has a wide range of 0.9~120 t ha-1 with a median value of 20 t ha-1 (Fig. S2a). Most biochar 

addition experiments are short-term with the median Age_BC of 1.2 year (Fig. S2b). The main types of cultivated crop are 

maize, rice and wheat. 

We also used three published global SOC datasets for croplands without biochar addition (Sun et al., 2020; Geisseler et al., 

2017; Zhou et al., 2017b) as independent datasets to evaluate the model performance for simulating cropland SOC in general. 135 

There are 227 sites in total in these three datasets (Fig. S1).  

 

Soil properties that were not reported in the literature were extracted from gridded datasets using the coordinates of the sites: 

clay content from Global Soil Dataset for use in Earth System Models (GSDE, Shangguan et al., 2014) and SM from the 

satellite observations of Soil Moisture Active Passive (SMAP, Entekhabi et al., 2010). Missing soil BD in control treatments 140 

were filled according to the relationship between SOC and bulk density based on 4765 cultivated soil data from the 2nd 

national soil survey (Song et al., 2005), and a decrease of 7.6% (Omondi et al., 2016) from the control soil BD was assumed to 

fill the missing BD values in the biochar addition experiments. The climate variable MAT is extracted from WorldClim (Fick & 

Hijmans, 2017), and the mean annual aridity index (AI, i.e., precipitation/potential evapotranspiration) used in the soil 

moisture equation (Eq. 10) was obtained from the Global Aridity Index and Potential Evapotranspiration Database (Zomer et 145 

al., 2022). The biological variable (i.e., NPP) is from the MODIS NPP dataset (Zhao & Running, 2010). 

2.2 1 Modifications of the MIMICS model 

2.21.1 The default version of MIMICS (MIMICS-def)  

The MIMICS model (Wieder et al., 2014; Wieder et al., 2015) includes two microbial functional groups, i.e. copiotrophic 

(r-strategy) and oligotrophic (k-strategy), and physiological tradeoffs between these two groups. The model explicitly 150 

considers the impacts of litter chemical quality by the partitioning of litter input into metabolic and structural litter carbon 

pools, and stable SOC formation through physical and physicochemical protection of microbial byproducts and leached litter 

carbon.  

 

There are seven carbon pools in MIMICS including two litter pools, two microbial biomass pools and three SOC pools (Fig. 1). 155 

The litter inputs (LIT) are divided into metabolic (LITm) and structural pools (LITs) according to the litter quality (fmet, i.e., 

fraction of litter to LITm), which is linearly related to the ratio of lignin to nitrogen (lignin:N, Table S1). Microbial growth 

efficiency (MGE) determines the carbon fluxes from the two litter pools and the available SOC pool (SOCa) for microbial 

biomass pools and heterotrophic respiration. The turnover of microbial biomass (τ) depends on the microbes functional types 

(MICr and MICk for r- and k-strategy, respectively). Three SOC pools represent the available (SOCa), physically protected 160 
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(SOCp) and chemically recalcitrant SOC (SOCc). SOC in the protected pools (i.e., SOCp and SOCc) are released to the 

available SOC pool (SOCa) over time. More detailed description of the model parameters and carbon fluxes can be found in 

Table S1 and Wieder et al. (2015). The carbon decomposition rate (mg C cm−3 hr−1) of the litter and SOC pools is based on a 

temperature-sensitive Michaelis–Menten kinetics (Allison et al., 2010; Schimel & Weintraub, 2003): 

𝑑𝐶𝑠

𝑑𝑡
= 𝑀𝐼𝐶 ×  

𝑉𝑚𝑎𝑥×𝐶𝑠

𝐾𝑚+ 𝐶𝑠
                                                                               (1) 165 

where Cs (mg C cm-3) is the size of a substrate carbon pool (LIT or SOC), and MIC (mg C cm-3) is the size of the microbial 

carbon pool (MICr or MICk). Vmax and Km are the microbial maximum reaction velocity (mg C (mg MIC)−1 hr−1) and the 

half-saturation constant (mg C cm-3), respectively, which depend on temperature, T, in °C. 

𝑉𝑚𝑎𝑥 = 𝑒𝑉𝑠𝑙𝑜𝑝𝑒𝑇+𝑉𝑖𝑛𝑡 × 𝑎𝑣 × 𝑉𝑚𝑜𝑑                                                                      (2) 

𝐾𝑚   = 𝑒𝐾𝑠𝑙𝑜𝑝𝑒𝑇+𝐾𝑖𝑛𝑡 × 𝑎𝑘 × 𝐾𝑚𝑜𝑑                                                                      (3) 170 

where Vmod and Kmod represent the modifications of Vmax and Km based on their dependence on litter quality, microbial 

functional types, and soil texture. av and ak are the tuning coefficients of Vmax and Km, respectively. Vslope and Kslope are the 

regression coefficients, and Vint and Kint are the regression intercepts. 

 

The turnover of MICr and MICk (MICτ, mg C cm−3 hr−1) at each time step depends on their specific turnover rate (kmic, hr−1), 175 

annual total litter input (LITtot, g C m−2 year−1) and fmet: 

𝑀𝐼𝐶𝜏 = 𝑎𝜏 × 𝑘𝑚𝑖𝑐 × 𝑒𝑐𝑓𝑚𝑒𝑡 × 𝑚𝑎𝑥 (𝑚𝑖𝑛(√𝐿𝐼𝑇𝑡𝑜𝑡 , 1.2 √𝐿𝐼𝑇𝑡𝑜𝑡 , 1.2) ,0.8) × 𝑀𝐼𝐶                                           

(4) 

where aτ (=1.0, dimensionless) is the tuning coefficient of kmic. c is the regression coefficient of MICr (0.3) and MICk (0.1). The 

carbon inputs from microbial biomass to SOC pools are determined by the microbial biomass turnover. 180 

 

The carbon transfer from SOCp to SOCa (D, mg C cm−3 hr−1) represents the deprotectiondesorption of SOCp from mineral 

surfaces or the breakdown of aggregates, calculated as a function of soil clay content (fclay): 

𝐷 = 1.5 × 10−5 × 𝑘𝑑 × 𝑒−1.5𝑓𝑐𝑙𝑎𝑦                                                                     (5) 

where kd (=1.0, dimensionless) is a tuning coefficient of the deprotectiondesorption rate. The parameter values of the default 185 

MIMICS version can be found in Table S1. 

2.21.2 MIMICS considering density-dependent microbial turnover rate (MIMICS-T) 

Similar to the logistic growth model in population ecology, various regulatory mechanisms (e.g., competition, virus) can 
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limit microbial population size (Buchkowski et al., 2017, Jansson and Wu, 2023). The absence of restrictions on population 

size other than carbon result in predictions of microbial biomass increasing indefinitely with carbon inputs. Consequently, 190 

the response of predicted SOC to changes in carbon inputs is close to zero which contradicts field observations (Georgiou et 

al., 2017). A density dependent turnover rate with  >1 was adopted to regulate the responses of soil microbial biomass to 

external environment variations, such as carbon input, thereby SOC dynamics in previous microbial models (Georgiou et al., 

2017, Zhang et al., 2017). We incorporated the density-dependent microbial turnover rate into MIMICS following Georgiou et 

al. (2017) and Zhang et al. (2020). In the MIMICS-T version, we modified Eq. 4 to represent the increased microbial turnover 195 

rate with growing microbial biomass density (MIC, mg C cm-3): 

𝑀𝐼𝐶𝜏 = 𝑎𝜏 × 𝑘𝑚𝑖𝑐 × 𝑒𝑐×𝑓𝑚𝑒𝑡 × 𝑚𝑎𝑥 (𝑚𝑖𝑛(√𝐿𝐼𝑇𝑡𝑜𝑡 , 1.2√𝐿𝐼𝑇𝑡𝑜𝑡 , 1.2) ,0.8) × 𝑀𝐼𝐶𝛽                                

(6) 

where β is the density-dependence exponent.  

2.21.3 MIMICS-T with additional representation of sorption (MIMICS-TS) 200 

Although the MIMICS model can simulate the desorption process (the yellow arrow from SOCp to SOCa,, Fig. 1), the 

adsorption process is still missing. In the original version of MIMICS, fixed fractions of litter and microbial turnover are 

transferred to the physically protected SOC pool (SOCp, Fig. 1), the SOCp is then deprotected from mineral surfaces or 

breakdown of aggregates using a desorption rate which is a function of clay fraction. Therefore, we do not think that the 

original MIMICS actually simulate sorption as a process, as sorption is dependent on substrate concentration, therefore the 205 

sorption rate should vary with dissolved organic carbon concentration, rather than being proportional to microbial carbon 

turnover rate as assumed in the original MIMICS. Therefore, We thenwe further added the adsorption of available SOC into 

MIMICS following Wang et al. (2013) and Mayes et al. (2012). The MIMICS-TS version includes a new sorption process (the 

purple arrow from SOCa to SOCp in Fig. S31) but keeps the original desorption process (i.e., the yellow arrow from SOCp to 

SOCa in Fig. S31) unchanged. The sorption capacity of SOCa (Qmax) increases with increasing clay content, and the carbon flux 210 

of the sorption process is calculated as follows: 

𝐹𝑎𝑑𝑠 = 𝐾𝑎𝑑𝑠 × (1 −
𝑆𝑂𝐶𝑝

𝑄𝑚𝑎𝑥
) × 𝑆𝑂𝐶𝑎                                                                    (7) 

𝐾𝑎𝑑𝑠 = 𝑘𝑑 × 𝑘𝑏𝑎                                                                                  (8) 

𝑄𝑚𝑎𝑥 = 10(𝑐1×𝑙𝑜𝑔(%𝑐𝑙𝑎𝑦)+𝑐2)                                                                        (9) 

where Fads is the carbon flux from SOCa to SOCp (mg C cm−3 hr−1). kba is the binding affinity, and Kads is the sorption rate of 215 

SOCp which is associated with the deprotectiondesorption rate (kd). Qmax is the maximum sorption capacity of SOCp (mg C cm-3 

soil). c1 and c2 are the coefficient for estimating Qmax from Mayes et al. (2012).  
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2.21.4 MIMICS-TS with soil moisture effects (MIMICS-TSM) 

Finally, based on MIMICS-TS, we added soil moisture effects on decomposition into MIMICS. We tested two empirical 

functions for soil moisture used respectively in the Century model (Parton et al., 2000, Eq. 10) and the ORCHIDEE-SOM 220 

model (Camino-Serrano et al., 2018, Eq. 11). We also attempted to implement one mechanism-based function that captures the 

main physicochemical and biological processes of soil moisture in regulating soil respiration from Yan et al. (2018) (Eq. 12). 

The three functions of soil moisture are illustrated in Fig. S4S1. 

𝑓𝑚1(𝑤) =
1

1+𝑝1×𝑒(𝑝2×𝑤)                                                                          (10) 

𝑓𝑚2(𝜃) = 𝑚𝑎𝑥(0.25, 𝑚𝑖𝑛(1, 𝑘1 × 𝜃2 + 𝑘2 × 𝜃 + 𝑘3)                                                 (11) 225 

𝑓𝑚3 (
θ

φ
) = {

𝐾𝜃+𝜃𝑜𝑝

𝐾𝜃+𝜃
× (

𝜃

𝜃𝑜𝑝
)(1+𝑎𝑛𝑠),      𝜃 < 𝜃𝑜𝑝

(
𝜑−𝜃

𝜑−𝜃𝑜𝑝
)𝑏 ,                           𝜃 ≥ 𝜃𝑜𝑝

                                                        (12) 

where fmi (i=1, 2, 3, unitless value in range from 0 to 1) is the response factor to soil moisture. w is the soil moisture indicator 

(AI, mm mm-1). p1 and p2 are empirical parameters of soil moisture scalar with p1 = 30 and p2= -8.5 (Parton et al., 2000). θ is 

soil moisture (m3 m-3). k1, k2 and k3 are soil moist coefficients with 1.1, 2.4 and 0.29, respectively (Camino-Serrano et al., 

2018). φ is the soil porosity related to soil bulk density, and θ/φ is the relative water content in soil pores. θop is an optimum soil 230 

moisture content parameter at which the heterotrophic respiration rate peaks. Kθ is moisture constant depending on 

organic-mineral associations. ns is saturation exponent depending on soil structure and texture. a and b are SOC-microbial 

collocation factor and oxygen supply restriction factor, respectively (Yan et al., 2018).  

 

We assumed that the kinetic parameters Vmax and Km respond to soil moisture, similarly to temperature in Michaelis-Menten 235 

equation by affecting enzyme activity and enzyme-substrate affinity, respectively. The soil enzyme-substrate affinity was 

found to increase with soil moisture due to the increased diffusion and movement of substrate, but the affinity may also 

decrease due to decreased substrate concentrations (Zhang et al., 2009). Thus, we translated the impacts of soil moisture on the 

enzyme-substrate affinity to changes in Km. In MIMICS-TSM, the effects of soil moisture on SOC decomposition rate are 

represented through multiplying the response factor by Vmax and Km as follows (Eq. 13, 14).  240 

𝑉𝑚𝑎𝑥 = 𝑒𝑉𝑠𝑙𝑜𝑝𝑒∙𝑇+𝑉𝑖𝑛𝑡 ∙ 𝑎𝑣  ∙ 𝑉𝑚𝑜𝑑 × 𝑓𝑚𝑖                                                            (13) 

𝐾𝑚    = 𝑒𝐾𝑠𝑙𝑜𝑝𝑒∙𝑇+𝐾𝑖𝑛𝑡 ∙ 𝑎𝑘  ∙ 𝐾𝑚𝑜𝑑 × 𝑓𝑚𝑖                                                           (14) 

The MIMICS models with three soil moisture functions of fm1 (Eq. 10), fm2 (Eq. 11) and fm3 (Eq. 12) are indicated as 

MIMICS-TSMa, MIMICS-TSMb and MIMICS-TSMc, respectively. The modifications of all MIMICS versions are 

summarized in Table S21. There are only minor differences in the accuracy of reproducing SOC observation among the three 245 
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versions (Fig. S11).  

 

Because the MIMICS-TSMb version with the sorption process and soil moist effects has the best accuracy in reproducing the 

observations (see Section 3.1 and Fig. 2), this version was used for further implementation of biochar effects on SOC. 

2.21.5 Adjusted parameters for cropland SOC 250 

Crop NPP at each site was used as the litter input to soil, but different crop types (e.g., maize, rice and wheat) were not 

specified in the model. The leaf, root and stem litter were assumed as a fixed fraction of crop NPP. The ratio of carbon to 

nitrogen (C: N) and the ratio of lignin to carbon (lignin: C) of leaf, root, and stem (Table S2) were used to calculate the 

metabolic fraction in the total crop litter (fmet). The metabolic fraction in the total crop litter (fmet)It is calculated as the mean 

metabolic fractions in leaf, root and woodstem, weighted by NPP in the three parts. In order to adapt MIMICS for simulating 255 

cropland SOC, we modified  the ratio of carbon to nitrogen (C:N) and the ratio of lignin to carbon (lignin:C) in the three parts 

based on field measurements of main crop types (Abiven et al., 2005, Table S3S2). The derived ratio of lignin to nitrogen 

(Lignin:N) is used to determine fmet (Table S1). A harvest index (HI) of 0.45 (Hicke & Lobell, 2004) was also applied to 

remove the harvested part of crop and obtain the litter input to soil (= crop aboveground NPP × (1-HI)).  

2.3 2 Implementing biochar modeling in MIMICS 260 

When applying biochar in croplands, a fraction of biochar (floss = 2%, Archontoulis et al., 2016) is assumed to be lost during 

application. Although biochar is recalcitrant to decompose with a long turnover time (556 ± 484 yr) in general, it contains 

some labile fraction (108 ± 196 day), and its stability varies with different biochar feedstocks, pyrolysis temperatures and 

soil properties (Wang et al., 2016a). Because the sizes of SOCp and SOCc pools in MIMICS were not measured directly in 

the field studies, the 98 % remaining fraction is partitioned into three MIMICS SOC pools by assuming 60% goes to SOCp 265 

based on the measured proportions of added biochar within aggregates (Yoo et al., 2017), 20% goes to SOCa according to the 

labile C portion in biochar (Roberts et al., 2010) and 20% goes to SOCc, respectively (Fig. 1). Note that biochar is not treated as 

a separate carbon pool but assumed to mix with other carbon in existing pool (Fig. 1). In addition to the increase of total SOC, 

some important processes controlling SOC accumulation and decomposition are affected by biochar addition. We thus 

modified the parameters related to decomposition and deprotectiondesorption of SOC (Fig. 1). The associated rationales, 270 

equations and parameters are described in the following sections. 
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Fig. 1 Framework of the MIMICS model with biochar addition (MIMICS-BC; adapted from Wieder et al. (2015)). The 

turnover of microbial biomass (τ, blue arrows) is modified with density-dependent microbial turnover rate (Eq. 6, MIMICS-T). 275 

The adsorption process of SOCp to SOCa (purple arrow) is newly added and is associated with the adsorption rate (Kads) and the 

maximum sorption capacity (Qmax) (Eq. 7-9, MIMICS-TS). The carbon decomposition processes (red arrows) are modified 

further with three soil moisture scalers that are applied to microbial maximum reaction velocity (Vmax) and the half-saturation 

constant (Km) (Eq. 10-12, MIMICS-TSMa, MIMICS-TSMb, MIMICS-TSMc). When biochar is added to soil, the biochar (BC) 

carbon with an assumed fraction loss (floss) is partitioned into SOCp, SOCa and SOCc based on fbp, fba and fbc, respectively 280 

(purple arrows from BC to SOC pools). The desorption process (orange arrow from SOCp to SOCa) is modified through 

changes in the desorption rate of SOCp (D’) with biochar addition. The carbon decomposition processes (red arrows) are 

modified by adjusting the microbial maximum reaction velocity (V’max) with biochar addition. 

 

Fig. 1 Framework of the MIMICS model with biochar addition (MIMICS-BC; adapted from Wieder et al. (2015)). The biochar 285 

(BC) carbon with a fraction loss (floss) is partitioned into SOCp, SOCa and SOCc based on fbp, fba and fbc, respectively. The 

modified processes with biochar addition are marked with colors, and the purple arrows represent the newly added processes. 

The deprotection process (orange arrow) is modified through changes in the deprotection rate of SOCp (D’) with biochar 

addition. The adsorption process (purple arrow) is associated with the adsorption rate (Kads) and the maximum sorption 

capacity (Qmax). The carbon decomposition processes (red arrows) are modified by adjusting the microbial maximum reaction 290 

velocity (V’
max) with biochar addition. The description of other unmodified processes in the default MIMICS model version 

can be found in Fig. S3. 
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The negative priming effects of biochar addition on SOC may be caused by the inhibition of microbial activity due to 

changes in the soil environments by biochar, or by the SOC protection against microbial utilization through mineral 295 

adsorption or aggregates (Zimmerman et al., 2011). We assumed that biochar addition decreased the mineralization of native 

SOC (negative PE) because of its porous structure and strong adsorption affinity to organic matter (Kasozi et al., 2010), 

which was reported to have significantly contributed to the negative PE mechanism from biochar addition (Zheng et al., 

2018; Zimmerman et al., 2011). We assumed that biochar addition decreases the mineralization of native SOC (negative PE) 

because of its strong adsorption affinity for organic matter (Lehmann et al., 2021). A deprotectiondesorption coefficient (fd, ha 300 

t-1 Rate_BC) was defined as a function of the biochar application rate (Rate_BC) based on Woolf & Lehmann (2012) and 

Archontoulis et al. (2016), and Eq. 5 was thus modified as: 

𝐷′ = 𝐷 × (1 + 𝑓𝑑 × 𝑅𝑎𝑡𝑒𝐵𝐶 × 𝐵𝐶_𝐶)                                                                     

(15) 

where 𝐷′ (mg C cm−3 hr−1) is the new deprotectiondesorption rate of SOCp with biochar addition, and a negative value of fd 305 

indicates a negative priming effect. The Rate_BC is the application rate of biochar (t BC ha-1) and BC_C is the carbon 

content in biochar (t C t-1BC). Because the adsorption and desorption of SOC are interrelated dynamic process, modification 

of the desorption process with biochar addition also impacts the adsorption process. Therefore, we only modified fd in Eq. 

(15) to represent the negative PE of biochar. 

 310 

We also assumed that biochar provides nutrients (e.g., nitrogen and phosphorus) to microbes and stimulate microbial growth 

and activity, inducing a positive PE to SOC (El-Naggar et al., 2019). We defined a new decomposition rate coefficient (fv, ha t-1 

Rate_BC) that is a function of Rate_BC, and included it in MIMICS by modifying Eq. 2: 

𝑉𝑚𝑎𝑥
′ = 𝑉𝑚𝑎𝑥 × (1 + 𝑓𝑣 × 𝑅𝑎𝑡𝑒𝐵𝐶 × 𝐵𝐶_𝐶)                                                                 

(16) 315 

where 𝑉𝑚𝑎𝑥
′  is the new microbial maximum reaction velocity (mg C (mg MIC)−1 hr−1) with biochar addition. 

 

Biochar may also have a positive priming effect on SOC by increasing the degradation rate of available SOC by microbes 

(i.e., SOCa in MIMICS). Therefore, we added a test through modifying the Vmax as a function of biochar addition rate only in 

the fluxes from SOCa to MICr and MICk, instead of in all fluxes of decomposition (Eq. 16, red arrows in Fig. 1). 320 

2.4 3 Parameter optimization and model evaluationModel calibration and evaluation 

2.3.1 Observational data collection 
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We collected 387 paired field measurements of SOC concentrations (g kg-1) in croplands with or without biochar addition from 

58 locations (see the site map in Fig. 2) from published literatures. Soil properties (clay content (Clay), bulk density (BD), soil 

moisture (SM)), climatic conditions (mean annual temperature (MAT), mean annual precipitation (MAP)), biological variable 325 

(net primary productivity (NPP)) and biochar-related characteristics: application rate (Rate_BC), the interval between biochar 

application and soil sampling (Age_BC), feedstock type (Feedstock_BC), pyrolysis temperature (Temp_BC) were also 

collected when available. Auxiliary information (e.g., location, and managements, crop types) and more detailed information 

can be found in Han et al. (2021).  

 330 

Because some sites have multiple biochar addition experiments (e.g., pyrolysis temperature × aging time of biochar), the 

control SOC concentrations at the same site were averaged, and the SOC concentrations with biochar addition for a given rate 

(Rate_BC) were also averaged, omitting other characteristics of the BC (like pyrolysis temperature). In total, 134 paired SOC 

data were used for model calibration (Fig. 2). The depth of soil sampled varies among sites, but is less than 30 cm in general. 

The biochar application rate has a wide range of 0.9~120 t ha-1 with a median value of 20 t ha-1 (Fig. S2a). Most biochar 335 

addition experiments are short-term with the median Age_BC of 1.2 year (Fig. S2b). The main types of cultivated crop are 

maize, rice and wheat. 

 

There are SOC measurements on cropland sites from 58 control treatments (no BC application) and 134 measurements from 

biochar treatments at the 58 sites. One control treatment may correspond to multiple biochar treatments with different applied 340 

biochar rates at a single site. Considering the 58 site observations may be inadequate to constrain all the new features in the 

revised model, we also collected SOC data on croplands (no biochar addition) from other three published global datasets (227 

sites in total, Sun et al., 2020; Geisseler et al., 2017; Zhou et al., 2017b). Therefore, 285 sites in total were used to calibrate and 

evaluate the model performance for simulating cropland SOC without biochar addition (Fig. 2). 

 345 

Soil properties that were not reported in the literature were extracted from gridded datasets using the coordinates of the sites: 

clay content from Global Soil Dataset for use in Earth System Models (GSDE, Shangguan et al., 2014) and SM from the 

satellite observations of Soil Moisture Active Passive (SMAP, Entekhabi et al., 2010). Missing soil BD in control treatments 

were filled according to the relationship between SOC and bulk density based on 4765 cultivated soil data from the 2nd 

national soil survey (Song et al., 2005), and a decrease of 7.6% (Omondi et al., 2016) from the control soil BD was assumed to 350 

fill the missing BD values in the biochar addition experiments. The climate variable MAT is extracted from WorldClim (Fick & 

Hijmans, 2017), and the mean annual aridity index (AI, i.e., precipitation/potential evapotranspiration) used in the soil 

moisture equation (Eq. 10) was obtained from the Global Aridity Index and Potential Evapotranspiration Database (Zomer et 

al., 2022). The biological variable (i.e., NPP) is from the MODIS NPP dataset (Zhao & Running, 2010). 
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 355 

Fig. 2 Locations of field cropland SOC measurements with or without biochar addition collected in this study and SOC 

measurements without biochar addition from Sun et al, (2020), Geisseler et al., (2017) and Zhou et al., (2017b). Number of 

sites is also shown in the legend. Note that one site may have multiple paired SOC data due to various experimental 

conditions of biochar addition in our collected 58 sites. The cropland area percentage in each 10 km × 10 km grid cell is 

derived from EarthStat (http://www.earthstat.org; Ramankutty et al., 2008).  360 

2.3.2 Calibration and validation for MIMICS versions without biochar 

All field SOC observations in the control treatments (without biochar) from the paired measurements and SOC from the other 

three global datasets (Fig. 2) were assumed at a steady state, which is under present climate and continuous input of crop NPP 

after 45% removal of grain with a specific crop litter quality (Section 2.1.5, Table S2)All field SOC observations in control 

plots were assumed at a steady state. SOC pools in MIMICS reached an equilibrium state after about 200 years of model run 365 

(Fig. S3). To accelerate this process, we used New-Ralphson method (Press et al., 2007) to obtain the steady SOC state with 

the site-level inputs of annual mean crop NPP, MAT, Clay, SM and BD in the parameter optimization. This approach is 

constructed based on the fundamental principles governing biogeochemical cycle processes in terrestrial ecosystems (e.g., 

respiration, carbon distribution). A set of first-order ordinary differential equations were built to express the dynamics of 

carbon flows in soil over time and it can be solved numerically to obtain steady carbon pool sizes (see codes for further details 370 

in Code availability). The Shuffled Complex Evolution Algorithm (SCE-UA) has been proven to be a robust method for 

parameter optimization (Duan et al., 1994; Muttil & Jayawardena, 2008), and the SCE-UA method from the spotpy package in 

python (Houska et al., 2015; https://pypi.org/project/spotpy/) was applied here. Parameters are optimal when the root mean 

square error (RMSE, Eq. 17) between simulated SOC and observed SOC concentrations is minimized. The Akaike information 

http://www.earthstat.org/
https://pypi.org/project/spotpy/
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criterion (AIC, Eq. 18, Akaike, 1974), which considers both model error and the number the model parameters, was also 375 

calculated to evaluate different MIMICS versions. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑆𝑂𝐶𝑜𝑏𝑠,𝑖−𝑆𝑂𝐶𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

𝑛
                                                                (17) 

𝐴𝐼𝐶 = 𝑛 ×𝑙𝑛 (
∑ (𝑆𝑂𝐶𝑜𝑏𝑠,𝑖−𝑆𝑂𝐶𝑠𝑖𝑚,𝑖)2𝑛

𝑖=1

𝑛
)  + 2𝑝                                                       (18) 

Where SOCobs,i and SOCsim,i are the observed and simulated SOC at each i site. n is the number of observations, and p is the 

number of model parameters to be optimized. 380 

  

The parameters optimized in different MIMICS versions using the entire SOC dataset (i.e., 58 285 sites) are shown in Table 

S4S3. Soil depth was not explicitly considered in this study, and we assumed that the soil carbon concentrations (g kg-1) are 

similar within the top 30 cm. Note that the parameters of soil moisture functions (Eq. 10-12) are directly derived from the 

original literature (Parton et al., 2000; Camino-Serrano et al., 2018; Yan et al., 2018) and not optimized in MIMICS-TM. We 385 

validated the models against our datasets including SOC and auxiliary information (Fig. S12) for the main crop types (maize, 

rice, and wheat), and the relationships between SOC in these crop types and model input variables (i.e., NPP, MAT, Clay) were 

analyzed. The MIMICS model can run for each site, but to be consistent with the model input resolution of daily temperature in 

the transient simulation, the resolution of 0.5º was used for site aggregation. In detail, all sites within a given grid cell of 0.5º × 

0.5º were aggregated on average, and the averaged value was used to compare the model result in this grid cell..In addition, all 390 

the site SOC data within 0.5° × 0.5° grid cell were aggregated to match the resolution of model simulations. We also conducted 

a sensitivity test of MIMICS input variables (i.e., MAT, Clay, NPP, SM and BD) with four perturbation levels of -50%, -25%, 

25% and 50% to explore the effects of possible underrepresented processes on the cropland steady SOC. 

 

We randomly separated 80% of all the 285 sites for parameter optimization, and 20% for MIMICS versions (MIMICS-def, 395 

MIMICS-T, MIMICS-TS and MIMICS-TSMb) validation. The R2, RMSE and AIC were calculated by comparing simulated 

SOC with the observed SOC in training and test datasets. The cross-validation was also used to evaluate each model version 

(i.e., MIMICS-def, MIMICS-T, MIMICS-TS, MIMICS-TSMb) by randomly selecting 80% data for parameter optimization, 

and the remaining 20% data for model evaluation. The random selection is repeated for 10 times, and the mean R2, RMSE and 

AIC were calculated by comparing simulated SOC with the observed SOC in test datasets.  400 

2.3.3 Calibration and validation for MIMICS versions with biochar (MIMICS-BC) 

For the version of MIMICS with biochar addition, we run for each siteparallel simulations with control (without biochar 

addition) and experimental simulation (with biochar addition) for Age_BC year at hourly time steps, restarted from the 
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previous SOC equilibrium. Not that these simulations for biochar addition are transient runs and thus SOC is not in a steady 

state. In order to meet the daily time step of transient runs required by MIMICS, the two model runs were forced by 6-hour 405 

surface temperature at a grid box where the site was located from Climatic Research Unit and Japanese reanalysis data 

(CRU-JRA, Kobayashi et al., 2015; Harris et al., 2014), which can differ from WordClim (time resolution: year) used in 

Section 2.3.1 The two model runs are forced by site-level 6-hour temperature data from Climatic Research Unit and Japanese 

reanalysis data (CRU-JRA, Kobayashi et al., 2015; Harris et al., 2014) and NPP derived from MODIS (Zhao & Running, 2010). 

The soil-related inputs of Clay, SM and BD are assumed invariant in time and consistent with input data for the steady SOC 410 

runs. The absolute SOC changes (ΔSOC, g kg-1, Eq. 19) in the simulated and observed SOC concentrations were compared 

after BC addition. The RMSE between simulated and observed ΔSOC was minimized using SCE-UA for parameter 

optimization. AIC and the slopes of regression lines between the simulated and observed SOC changes were analyzed.  

𝛥𝑆𝑂𝐶 = 𝑋𝑡 − 𝑋𝑐                                                                                 (19) 

where Xt and Xc is the observed (or simulated) SOC concentrations with and without biochar addition, respectively.  415 

 

The 134 paired observations were randomly split into training samples for parameter optimization (80% data) and test samples 

for model validation (20% data). Four tests were conducted to evaluate the performance of MIMICSTSMb-BC on simulating 

SOC changes after biochar addition using the optimized parameters values in MIMICS-TSMb (i.e., av, ak, kd, β, kba, c1, c2; Table 

S3): 1) without biochar-related parameters; 2) with only one new biochar-related parameter (i.e., the desorption coefficient, fd, 420 

Eq. 15) optimized (MIMICSTSMb-BCD); 3) with two new biochar-related parameters (i.e., fd and the decomposition rate 

coefficient, fv, Eq. 16) optimized in all decomposition processes (MIMICSTSMb-BCDV); 4) with two new biochar-related 

parameter (i.e., fd and fv) optimized only in the fluxes from SOCa to MIC pools (MIMICSTSMb-BCDV-SOCa). Although 

MIMICS-TSMb is not the model with the highest R2 and lowest RMSE and AIC, the differences of R2, RMSE and AIC among 

various versions are relatively small (Fig. S5). The new processes (density dependent processes, sorption, and soil moisture 425 

scalars) are based on theoretical understanding and have shown to improve predictions of soil carbon in previous studies 

(Zhang et al., 2020, Liang et al., 2019, Abramoff et al. 2022). Thus, this version was used for further development of biochar 

processes in MIMICS. As an alternative model version, we also tested implementation of biochar processes in MIMICS-T that 

have a highest R2 and lowest RMSE and AIC in model validation (Fig. S5b). The model versions and simulation settings are 

shown in Table 1 and Fig. 3, and the optimized parameters values in these tests are shown in Table S3.Three tests were 430 

conducted to evaluate the performance of MIMICS-BC on simulating SOC changes after biochar addition using the optimized 

parameters values in MIMICS-TSMb (i.e., av, ak, kd, β, kba, c1, c2; Table 1): 1) without biochar-related parameters; 2) with only 

one new biochar-related parameter (i.e., the deprotection coefficient, fd, Eq. 15) optimized (MIMICS-BCD); 3) with two new 

biochar-related parameters (i.e., fd and the decomposition rate coefficient, fv, Eq. 16) optimized (MIMICS-BCDV). The 
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optimized parameters values in these three tests are shown in Table 1. 435 

 

Considering the uncertainties in the MIMICS-BC parameters, we conducted a sensitivity test of biochar-related parameters 

(i.e., fd, fv, fbp, fba) and input variables (i.e., Rate_BC, Age_BC, NPP, Clay, SM) with four perturbation levels of -50%, -25%, 

25% and 50% for each site. Because the duration of most biochar addition experiments is short (74.2% data < 3 years), we 

also extracted data with Age_BC ≥ 3yr (4 yr, 5 yr and 6 yr) and tested the model performance on them separately. Due to 440 

lack of field measured data for a longer period, we extended our collected control SOC data to 8 years according to the 

decomposition curve of biochar in soil fitted by a double first-order exponential decay model (Fig. S6S4; Wang et al., 2016a). 

Note that the double exponential decay function is only applied to the observational records of measurement data, and the 

function itself is not used in the MIMICS model. Specifically, the 8-yr SOC data with biochar addition is the sum of field 

control SOC observations and the residual biochar carbon in soil after 8 years. These extended long-term data were also used 445 

for parameter optimization and model evaluation. The relationships between observed ΔSOC and model input variables and 

the partial correlations between biases (simulated minus observed ΔSOC) from the three tests and model input variables (soil-, 

climate-, biological-, and biochar-related variables) were also analyzed to detect the possible missing processes. 

 

Table 1 Modifications in various MIMICS versions. 450 

Model Model version Description 

MIMICS 

MIMICS-def 
The default model version with modified parameters related to crop properties (Section 

2.1.5). 

MIMICS-T Considering the density-dependent microbial turnover rate (denoted as “T”, Eq. 6). 

MIMICS-TS Adding the sorption process of SOCp based on MIMICS-T (“S”, Eq. 7-9). 

MIMICS-TSMa Including soil moisture effects from CENTURY model (“Ma”) based on MIMICS-TS. 

MIMICS-TSMb 
Including soil moisture effects from ORCHIDEE-SOM model (“Mb”) based on 

MIMICS-TS. 

MIMICS-TSMc Including soil moisture effects from Yan et al. (2018) (“Mc”) based on MIMICS-TS. 

MIMICST-BC 

MIMICS-T 
Including the density-dependent microbial turnover rate but without biochar-related 

parameters for biochar addition. 

MIMICST-BCD 
Including biochar effects on SOC by modifying desorption rate of SOCp in MIMICS-T 

(Eq. 15). 

MIMICST-BCDV 
Including further biochar effects on SOC by modifying the microbial maximum reaction 

velocity in all decomposition processes in MIMICS-T (Eq. 16). 

MIMICST-BCDV-SOCa 
Including further biochar effects on SOC by modifying the microbial maximum reaction 

velocity only in microbial decomposition of SOCa in MIMICS-T (Eq. 16). 

MIMICSTSMb-BC 

MIMICS-TSMb 
Including the density-dependent microbial turnover rate, the sorption process and soil 

moisture effects but without biochar related parameters for biochar addition. 

MIMICSTMSb-BCD Similar to MIMICST-BCD but biochar is added in MIMICS-TSMb. 
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MIMICSTSMb-BCDV Similar to MIMICST-BCDV but biochar is added in MIMICS-TSMb. 

MIMICSTSMb-BCDV-SOCa Similar to MIMICST-BCDV-SOCa but biochar is added in MIMICS-TSMb. 

 

Table 1 Parameters for optimization in MIMICS versions. 

Datasets Model versions 
Optimized 

parameters 

Prior 

value 
Optimized value Units 

Cropland SOC 

(58 sites) 
MIMICS-TSMb 

av 10 15.91 - 

ak 5 13.10 - 

kd 0.5 1.60 - 

β 1 1.47 - 

kba 6 2.95 - 

c1 0.3 0.51 - 

c2 3 3.86 - 

Cropland SOC 

changes with biochar 

addition  

(134 paired data) 

MIMICS-TSMb - - - - 

MIMICS-BCD fd -0.002 -0.0038a (-0.0131b) ha t-1 C 

MIMICS-BCDV 

fd -0.002 -0.0083a (-0.0095b) ha t-1 C 

fv 0.05 0.008a (-0.0097b) ha t-1 C 

Note: av and ak are the tuning coefficients for microbial maximum reaction velocity (Eq. 2) and half-saturation constant (Eq. 3). 

kd is the tuning coefficient for deprotection rate of SOCp (Eq. 5). β is the density-dependent microbial turnover rate (Eq. 6). kba 

is binding affinity (Eq. 8), and c1, c2 are fitted values for estimating maximum sorption capacity of SOCp (Eq. 9). fd and fv are 455 

coefficients for adjusting the deprotection rate of SOCp (Eq. 15) and microbial decomposition velocity (Eq. 16), respectively 

when adding biochar. Superscripts a and b are for the optimized parameter values using the short-term and long-term (extended 

to 8 yr) SOC data, respectively. 
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Fig. 3 Diagram of field measurement SOC data and the model simulation settings. The simulated or observed ΔSOC is equal 460 

to SOC with the biochar addition treatment minus that in the control treatment (without biochar addition). Note that one 

control treatment may correspond to multiple BC treatments with different applied BC rates at one single site. 

 

3. Results of model calibration and validation 

3.1 Performance of different MIMICS versions for simulating cropland SOC 465 

Among the MIMICS versions without biochar optimized parameters, MIMICS-TSMb has the highest correlation (R2=0.5245, 

Fig. 2, Fig. S7) and, the lowest RMSE (RMSE=4.415.81 g kg-1,) and lowest AIC (AIC=810.0) between the observed and 

simulated cropland SOC concentrations in calibration (Fig. 4, Fig. S5a). Compared to MIMICS-def (R2=0.3843, 

RMSE=4.965.89 g kg-1, AIC=191.8814.8, Fig. S7S5a), all other MIMICS versions show better performances in calibration 

with a higher R2 and lower RMSE of 0.47~0.52except for MIMICS-TSMa (Fig. S7S5a). After considering the 470 

density-dependent microbial turnover rate, MIMICS-T can better capture the observed spatial variation of SOC (R2=0.47, 

RMSE=4.61 g kg-1, AIC=185.3, Fig. 2e4, Fig. S7S5a). MIMICS-TS with alternative implementation of SOCp adsorption 

explains 5144% SOC spatial variation with a smaller RMSE (4.455.81 g kg-1), but a larger AIC (187.2816.6) (Fig. 2e4, Fig. 

S7S5a). As cCompared with MIMICS-TS, for the MIMICS-TSM versions that accounts for the effects of soil moisture, R2 

(0.50~0.52) does do not show significantly improvement (Fig. 4, Fig. S5a).  with RMSE and AIC of 4.41~4.53 g kg-1 and 475 
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186.0~189.2, respectively (Fig. 2; Fig. S7).  

 

When using 20% data for the independent model evaluation, MIMICS-TS also predicted SOCperforms better best with the 

highest accuracy (R2=0.3856) and, the lowest RMSE (4.964.82 g kg-1), but and the a lowesthigher AIC (52.14187.2) among all 

different model versions (Table S5Fig. 4, Fig. S5). MIMICS-TS and MIMICS-TSMb also have the better correlation (R2=0.52 480 

and 0.52), but higher RMSE (RMSE=5.01 g kg-1 and 5.05 g kg-1) and AIC (AIC=197.7 and 198.6) between the observed and 

simulated cropland SOC concentration than MIMICS-def (R2=0.51, RMSE=4.97 g kg-1, AIC=188.8) (Fig. 4e, Fig. S7b). R2 of 

MIMICS-TSM versions ranges from 0.46 to 0.52, and R2 of MIMICS-TSMb is highest among them. We also evaluated the 

performances of the different MIMICS MIMICS-TSMb versions using calibrate with cropland SOC data under different crop 

typesnot used in the calibration (Sun et al., 2020; Geisseler et al., 2017; Zhou et al., 2017b). MIMICS performs comparably 485 

well on these SOC datasets. R2 of different MIMICS versions that were evaluated using the three SOC datasets from Sun et al. 

(2020), Geisseier et al. (2017) and Zhou et al. (2017b) ranges from 0.38 to 0.80, and R2 of MIMICS-TSMb is highest among all 

MIMICS versions (Fig. S8). The model performance varies among different cover crop types (i.e., maize, rice and wheat). R2 

between the simulated SOC concentrations by MIMICS-TSMb and observations is higher for maize and wheat (0.84 and 0.74, 

respectively, Fig. S9a, c) but lowest for rice (0.38, Fig. S9b). It is probably because the flooded condition in the paddy field 490 

limited SOC decomposition, which is partly supported by the weaker correlation between SOC and NPP for rice (R2=0.06, Fig. 

S10d) than that for maize and wheat (R2=0.77 and 0.54, Fig. S10aS7a, g). 
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Fig. 4 Comparison between the observed and simulated SOC concentrations by (a) MIMICS-def, (b) MIMICS-T, (c) 495 

MIMICS-TS and (d) MIMICS-TSMb. Blue and red dots in (a-d) represent observation sites for model calibration (80% sites) 

and validation (20% sites). (e) R2, root mean square error (RMSE) and Akaike information criterion (AIC) from the model 

calibration (left panel) and validation (right panel) for the four MIMICS versions. Relationships for the other MIMICS 

versions can be found in Fig. S8. 

Fig. 2 Relationships between observed and simulated SOC concentrations by various MIMICS versions at cropland sites. 500 

MIMICS-def (a) is the default model version with modified parameters related to crop properties (Section 2.2.5); MIMICS-T 

(b) considers the density-dependent microbial turnover rate; MIMICS-TS (c) also includes the sorption process of SOCp; 

MIMICS-TSMb (d) considers further moisture effects on SOC turnover from the ORCHIDEE-SOM model (Camino-Serrano et 

al., 2018). (e) R2 and root mean square error (RMSE) of the four MIMICS versions. Relationships for the other MIMICS 

versions can be found in Fig. S11. 505 

3.2 Calibration and eEvaluation of the MIMICS-BC model  

3.2.1 Model calibration and validation Evaluation 

For the calibration of short-term SOC changes after biochar addition, MIMICST-BC and MIMICSTSMb-BC versions with new 

biochar processes show a better performance with higher R2, lower RMSE and AIC than MIMICS-T and MIMICS-TSMb, 

respectively (Fig. S9-10). For the model validation using observation data that are not used for calibration, the performance 510 

of MIMICST-BCDV-SOCa (R2=0.80, RMSE=3.38 g kg-1, AIC=69.8, Fig. 5e-g) is slightly better than MIMICST-BCD (R2=0.79, 

RMSE=3.43 g kg-1, AIC=68.5) and MIMICST-BCDV (R2=0.76, RMSE=3.66 g kg-1, AIC=74.1), except for the AIC (69.8) is 

higher than that of MIMICST-BCD (68.5) (Fig. 5). By comparison, the performance of MIMICS-T is poorer than these three 

versions. Among the MIMICSTSMb-BC versions, MIMICSTSMb-BCDV performs best in reproducing SOC changes with biochar 

addition with the highest R2 (0.79), the lowest RMSE (3.73 g kg-1) and AIC (75.0) (Fig. 6e-f). We further calibrated the model 515 

at sites with a relatively longer biochar addition period of observations (Age_BC ≥ 3 yr). The corresponding R2 between 

observed and simulated SOC changes after biochar addition by MIMICSTSMb-BCDV (0.20~0.67, Fig. S11c, g, k, o) are lower 

than that R2 for all sites (0.63, Fig. S10c, e), except for sites with Age_BC ≥ 3 yr (0.67, Fig. S11c). 

For short-term SOC changes after biochar addition, the performance of MIMICS-BCDV (R2 =0.65, RMSE=3.61 g kg-1, Fig. 3d, 

e) is slightly better than MIMICS-TSMb (R2=0.63, RMSE=3.67 g kg-1, Fig. 3) and MIMICS-BCD (R2=0.64, RMSE=3.64 g kg-1, 520 

Fig. 3d, e), but the AIC (352.57) is higher than that of MIMICS-TSMb (348.57) and MIMICS-BCD (350.57) (Fig. 3f). The 

slope of SOC changes after biochar addition between observations and simulations from MIMICS-BCD (= 0.77), 

MIMICS-BCDV (= 0.76) is also closer to 1 than the MIMICS-TSMb (= 0.71, Fig. 3a-c). We further evaluated the model 

performance at sites with a relatively longer biochar addition period of observations (Age_BC ≥ 3 yr). The corresponding R2 
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between observed and simulated SOC changes after biochar addition by MIMICS-BCDV (0.09~0.70, Fig. S12c, f, i, l) are 525 

lower than that R2 for all sites (0.65, Fig. 3d), except for sites with Age_BC ≥ 3 yr (0.70, Fig. S12c).  

 

For the long-term (extended to 8 yr based on biochar decomposition curve, Wang et al., 2016a) SOC changes after biochar 

addition, MIMICST-BCDV and MIMICSTSMb-BCDV show the best performance among all versions in the model calibration (Fig. 

S9-10). In the model validation, MIMICS-T and MIMICS-TSMb underestimate the extrapolated observations of SOC change 530 

(Fig. 5a, Fig. 6a). MIMICST-BCD shows the best performance with the lowest RMSE (3.84 g kg-1) and AIC (74.7) among all 

the MIMICST-BC versions (Fig. 5). Compared to MIMICS-TSMb (R2 =0.88, RMSE=9.35 g kg-1, slope=0.08, AIC=120.7, Fig. 

6a, e, f, g), predictions of MIMICSTSMb-BCD, MIMICSTSMb-BCDV and MIMICSTSMb-BCDV-SOCa are more accurate with a 

smaller RMSE (8.12 g kg-1, 6.08 g kg-1 and 6.78 g kg-1, Fig. 6f), a smaller AIC (115.1, 101.5 and 107.4, Fig. 6g), a linear slope 

closer to 1 (0.29, 1.68 and 1.74, Fig. 6a-d), and a reasonable accuracy of R2 (0.45, 0.97 and 0.94, Fig. 6e). Among the different 535 

MIMICSTSMb-BC versions, MIMICSTSMb-BCDV shows the best performance (Fig. 6). When assuming that biochar produces a 

priming effect only through affecting the utilization rate of SOCa by microbes (MIMICSTSMb-BCDV-SOCa), the model accuracy 

is slightly decreased with lower R2 (=0.94), higher RMSE (=6.78 g kg-1) and higher AIC (=107.4) than MIMICSTSMb-BCDV 

that assumes all decomposition processes were affected (Fig. 6). 

For the long-term (extended to 8 yr based on biochar decomposition curve, Wang et al., 2016a) SOC changes after biochar 540 

addition, MIMICS-TSMb underestimates the exptrapolated observations of SOC change (Fig. 3a). Compared to 

MIMICS-TSMb (R2 =0.89, RMSE=5.62 g kg-1, slope=0.38, AIC=462.76, Fig. 3a, d, e, Fig. 3f), predictions of MIMICS-BCD 

and MIMICS-BCDV are more accurate with a smaller RMSE (3.57 g kg-1 and 3.31 g kg-1, Fig. 3e), a linear slope closer to 1 

(0.87 and 1.00, Fig. 3a-c),  a reasonable accuracy of R2 (0.83 and 0.84, Fig. 3d), but an increase in AIC (464.76 and 466.76, 

Fig. 3f).  545 
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Fig. 5 Relationships of short-term (≤ 6 yr; black) and long-term (i.e., extended to 8 yr; red) SOC changes after biochar 

addition (ΔSOC) between observations and models in validation dataset. The MIMICS versions are used, including 

MIMICS-T (a), MIMICST-BCD (b), MIMICST-BCDV (c) and MIMICST-BCDV-SOCa (d). Comparisons of R2 (e), the root mean 550 

square error (RMSE, f) and the Akaike information criterion (AIC, g) among the four MIMICST-BC versions are shown 

separately. See model versions in Table 1. 
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Fig. 6 Relationships of short-term (≤ 6 yr; black) and long-term (i.e., extended to 8 yr; red) SOC changes after biochar 555 

addition (ΔSOC) between observations and models in validation dataset. The MIMICS versions are used, including 

MIMICS-TSMb (a), MIMICSTSMb-BCD (b), MIMICSTSMb-BCDV (c) and MIMICSTSMb-BCDV-SOCa (d). Comparisons of R2 (e), 

the root mean square error (RMSE, f) and the Akaike information criterion (AIC, g) among the four MIMICSTSMb-BC 

versions are shown separately. See model versions in Table 1.Relationships of short-term (≤ 6 yr; pink) and long-term (i.e., 

extended to 8 yr; light blue) SOC changes after biochar addition (ΔSOC) between observations and models. The MIMICS 560 

versions are used, including MIMICS-TSMb (a), MIMICS-BCD (b) and MIMICS-BCDV (c). Comparisons of R2 (d), the root 

mean square error (RMSE, e) and the Akaike information criterion (AIC, f) among the three MIMICS-BC versions are shown 

separately. MIMICS-TSMb considers both the sorption process and soil moisture effects but without parameterizations for 

biochar addition; MIMICS-BCD includes biochar effects on SOC by modifying deprotection rate of SOCp in the 

MIMICS-TSMb (Eq. 15); MIMICS-BCDV considers further biochar effects on SOC by modifying the microbial maximum 565 

reaction velocity (Eq. 16). 

3.2.2 Error analysis 

The biases between the simulated and observed SOC changes with biochar addition in short-term are significantly correlated 

to with Clay and MAT Rate_BC (p < 0.05), but and decrease only marginally with SM, MAT and NPP whenas additional 

parameters are optimized (Fig. S13S12). For the long-term SOC changes after biochar addition, the best model version, i.e., 570 

MIMICSTSMb-BCDV, can explain 8497% of the variations of observed long-term SOC changes after biochar addition (Fig. 
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3c6e). The biases between long-term observations and simulations by MIMICS-TSMb are significantly correlated to Rate_BC 

(r = -0.82-0.81), Age_BC (r = -0.22), Clay (r = 0.32) and BD (r = 0.20, Fig. 47), suggesting that the model may underrepresent 

processes related to those Rate_BCvariables. By considering biochar effects on the SOC deprotectiondesorption 

(MIMICSTSMb-BCD), the correlations of model biases with Rate_BC, Age_BC, Clay (p < 0.05), BD, SM and NPP become 575 

weaker (Fig. 47). MIMICSTSMb-BCDV incorporating the biochar impacts on microbial decomposition velocity further reduced 

reduces the correlations between model biases and variables of Rate_BC, Age_BC and, BD,. MIMICSTSMb-BCDV-SOCa 

including the impacts on microbial decomposition velocity only in the flux from SOCa to MIC pools can also reduce the 

correlations between model biases and variables of Rate_BC and BD, but the correlations changed little for Clay and 

NPPAge_BC (Fig. 7). 580 

 

Fig. 7 Correlations between the MIMICS-BC biases (i.e., simulated long-term ΔSOC - observed ΔSOC) and input soil- (Clay, 

BD, SM), climate- (MAT), biological- (NPP) and biochar-related (Rate_BC, Age_BC) variables for MIMICS-TSMb, 

MIMICSTSMb-BCD and, MIMICSTSMb-BCDV and MIMICSTSMb-BCDV-SOCa. Asterisks indicate significant correlations (p < 

0.05). 585 

4. Sensitivity tests and dDiscussion 

4.1 Sensitivity tests of MIMICS for simulating cropland SOC 

MIMICS versions with adsorption and soil moisture effects perform well in comparison with site-level SOC concentrations on 

croplands collected in this study and other datasets (Fig. 24; Fig. S8S5), although the soil moisture effects are not notable. We 

also tried a test by assuming that soil moisture affects the microbial growth rate through mediating microbial growth (Vmax) and 590 

turnover (τ) of MICr and MICk (Wieder et al., 2019) and thus added the soil moisture factor (i.e., f(θ) in Eq. 11) on Vmax and τ. 

But the model does not predict SOC concentrations more accurately (R2=0.450.46, RMSE=4.75.06 g kg-1, AIC=194189.9, Fig. 

S14S13b) than the MIMICS-TSMb version where Vmax and Km were affected in (R2=0.52, RMSE=4.45.05 g kg-1, 

AIC=186198.6, Fig. 2d4d, Fig. S5b). Annual mean crop NPP, as the input of SOC pools, is also optimized within the range of 
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site-level crop NPP values similarly to other variables to test model performance in MIMICS-TSMb, but it shows little 595 

improvement (R2=0.450.48, RMSE=4.75.12 g kg-1, AIC=196200.2, Fig. S15S14b), compared to MIMICS-TSMb without NPP 

optimized (Fig. 2d4d). Decomposition equations of SOC were constructed based on a wide variety of ecological assumptions, 

resulting in many forms (Buchkowski et al., 2017). The inverse Michaelis-Menten kinetics of soil carbon decomposition 

assume that the SOC decomposition rate depends nonlinearly on the enzyme concentration, but linearly on the substrate 

concentration (Wang et al., 2016b). We also tested MIMICS based on the inverse Michaelis-Menten kinetics in the carbon 600 

degradation processes to explore the fundamental mechanisms of SOC decomposition, but the results are similar to the forward 

Michael-Menten kinetics (Fig. 24; Fig. S16aS15a-d). In addition, we tested MIMICS for different spatial resolutions after 

aggregating cropland SOC sites within each 0.5° × 0.5° grid cell, and the model also performs well and can reproduce about 

45%~5055% of the SOC spatial variation (Fig. S16eS15e-h). We also evaluated the response of MIMICS model to idealized 

warming, and the MIMICS-TSMb version shows a slightly better performance for reproducing observed changes in soil 605 

heterotrophic respiration with warming than other versions (Text S1). 

 

SOC dynamics is influenced by many complex factors (e.g., pH, mineral content). In clay- or Fe-rich mineral soils, physically 

protected SOC might increase due to the large adsorption capacity of dissolved organic carbon onto soil mineral particles 

(Mayes et al., 2012). Adding the sorption process into MIMICS (MIMICS-TS) doesn’t improved the model performance 610 

(R2=0.5144, Fig. 2c4c, Fig. S5a), compared to the MIMICS-T version (R2=0.470.45, Fig. 2b4b, Fig. S5a). In addition, 

management (e.g., irrigation, fertilization) are important factors that affect SOC decomposition and accumulation in croplands. 

The poor performance of MIMICS for rice is probably due to inability of MIMICS to simulate SOC dynamics under anaerobic 

condition from the irrigation practice (Fig. S9-10S6-7). Tillage may disrupt soil aggregates and release physically protected 

SOC, which is more susceptible to decomposition than that protected by soil aggregates (Six et al., 1999). Juice et al. (2022) 615 

modeled tillage effects on SOC loss through transferring protected SOC into unprotected pools, i.e., from SOCp to SOCa in this 

study. Although lacking sufficient tillage information at the sites we studies here, we attempted to include tillage disturbance 

effects in MIMICS by assuming a fixed 30% increase of deprotectiondesorption rate of SOCp according to Juice et al. (2022) 

(i.e., D × (1+30%), Eq. 5), but R2 between observations and simulations (0.46~0.510.57, Fig. S16iS15i-l) is similar to that from 

the version without tillage (R2 = 0.470.51~0.520.56, Fig. 24, Fig. S5b). By considering more plausible mechanisms, the 620 

performance of MIMICS model changes little with a slightly higher AIC. It is possible that the model is still not fully 

constrained. With more emerging technologies and observation data available, the parameters related to these processes can 

be further calibrated. 

 

In addition, cropland management disturbs soils frequently, and the assumed equilibrium state of SOC may not be realistic, 625 

which also partly explains the mismatch between simulated and observed SOC. We thus added sensitivity tests by perturbing 
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the input variables (MAT, Clay, NPP, SM and BD) to evaluate the steady SOC changes and the possible impacts of non-steady 

states on the results. The size of SOC pool is positively correlated with NPP and Clay, but negatively correlated with MAT and 

BD. The responses of steady SOC to the perturbation of BD, MAT and NPP are relatively large (Fig. S17S16), indicating that 

processes related to these variables have a great effect on the steady SOC. The soil BD was found to be affected by tillage 630 

practices (Osunbitan et al., 2005), and crop NPP may vary due to crop rotation, fallow or fertilization. Therefore, agricultural 

management practices, such as fertilization and crop rotation, need to be incorporated in soil carbon models in future to reduce 

the uncertainty of simulating cropland SOC dynamics (Campbell et al., 2007; Congreves et al., 2015). 

4.2 Sensitivity tests and uncertainty for MIMICS-BC 

The MIMICS-BC versions have a good performance in reproducing the observed short-term SOC changes with biochar 635 

addition (R2 = 0.63~0.650.57~0.79 for MIMICSTSMb-BC versions, Fig. 36). It is probably due to the high correlation between 

Rate_BC and ΔSOC (r = 0.740.71, Fig. S13S12), indicating that the biochar application rate dominates changes in SOC 

concentrations over a short period. For the long-term changes (extended to 8 yr), MIMICSTSMb-BC versions show a greater 

improvement than the MIMICS-TSMb version (Fig. 36). Biochar can absorb SOC due to its large specific surface area, high 

porosity and further promotion of soil macro-aggregates formation (Han et al., 2020; Huang et al., 2018). Consistently, the 640 

optimized deprotectiondesorption coefficient (fd = -0.0038-0.0121 and -0.0131-0.0122 for short- and long-term, Table 1S3) in 

MIMICS-BCD is negative, indicating the carbon deprotectiondesorption from SOCp to SOCa is reduced with biochar addition, 

and the biochar effect on SOC sorption/desorption over long term is stronger than that in short term. Incorporating the biochar 

impacts on microbial decomposition velocity in the MIMICSTSMb-BCDV further improved model with biochar addition in long 

term (decomposition rate coefficient (fv) = -0.0097-0.0253, Table S3). The correlations between model-observation biases and 645 

input variables become weaker for MIMICS-BCDV, but the correlation with clay is still significant (p < 0.05, Fig. 7), implying 

that some processes related to the variable are not well represented in the model.MIMICS-BCDV further reduced the 

correlations between model-observation biases and input variables, but the correlation with Clay is still significant (p < 0.05, 

Fig. 4), implying that some processes related to the variable are not well represented in the model. The responses of ΔSOC to 

parameter perturbations show that fv and fd affect ΔSOC changes with biochar addition in opposite directions, and ΔSOC is 650 

more sensitive to the partition coefficient from biochar carbon to SOCp (fbp) than fd, fv and the partition coefficient from biochar 

carbon to SOCa (fba) (Fig. 58). Among the input variables, ΔSOC is more sensitive to Rate_BC than Age_BC. 

 

Biochar stability, which could affect priming effects, varies with biochar feedstock types and pyrolysis temperature (Wang et 

al., 2016a). Using wood and straw as biochar feedstock, 0.3% and 0.8% of biochar carbon is lost at a pyrolysis temperature of 655 

800 ℃ (wood) and 350 ℃ (straw), respectively (Hamer et al., 2004). 2% of biochar carbon was assumed to distribute into 

active/metabolic pool in the EPIC model (The Environmental Policy Integrated Climate, Lychuk et al., 2014), and thus we 
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tested the MIMICSTSMb-BC model with the partition coefficient from biochar carbon to SOCa (fba) =2%, and the model shows 

a lower similar R2 (0.60.35~0.79, Fig. S18S17) than to that fba = 20% in short-term (0.650.25~0.79, Fig. 36). We further 

optimized the partition coefficient from biochar carbon to SOCp (fbp) and fba based on MIMICSTSMb-BCDV to test the parameter 660 

uncertainties. The optimized version (MIMICSTSMb-BCDV*) shows a better performance (R2=0.670.80, RMSE=3.63.44 g kg-1, 

AIC=35066.7, Fig. S19S18) than MIMICSTSMb-BCDV, and the optimized fbp, fba and the partition coefficient from biochar 

carbon to SOCc (fbc) are 59.658.1%, 29.18.2% and 11.333.7%, respectively. Compared to MIMICSTSMb-BCDV, Correlations 

correlations of MIMICSTSMb-BCDV* model errors with Clay, BD, SM and NPP reduced, but the correlations with Rate_BC and 

BD Age_BC increased (Fig. S13S12). We also added a test to evaluate the performance of the MIMICS-BC versions in 665 

simulating the changes of SOC, MIC and soil respiration fluxes after biochar addition in our collected paired sites. Results 

show that MIMICSTSMb-BCDV and MIMICSTSMb-BCDV-SOCa are the better versions for reproducing the observed changes in 

SOC, MIC and respiration among the four MIMICSTSMb-BC versions (Text S2). 

 

Fig. 8 Sensitivity analysis of MIMICS-BC model parameters of (a) fd (deprotectiondesorption coefficient, Eq. 15), (b) fv 670 

(decomposition rate coefficient, Eq. 16), (c) fbp (partition coefficient from biochar carbon to SOCp, Fig. 1), (d) fba (partition 
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coefficient from biochar carbon to SOCa, Fig. 1), and the biochar-related input variables, (e) Rate_BC and (f) Age_BC. The 

yellow line and green dotted line in boxplots are median and mean values of the changes in model output (i.e., change of ΔSOC, 

Eq. 19). The mean values of change of output ΔSOC in all sites are shown in (g). 

 675 

The effects of biochar on SOC are controlled by various factors, such as soil physicochemical and biological properties (e.g., 

clay, pH, microbial activity), biochar properties (e.g., feedstock, pyrolysis temperature) and incubation conditions (e.g., 

periods, cover crop types) (Ding et al., 2017; Han et al., 2020). Some of these effects are not explicitly considered in the 

MIMICS biochar version. Microbial carbon use efficiency (CUE) determines the relation proportions of microbial carbon 

uptake between growth and respiration (Zhou et al., 2017a), and increased CUE and reduced turnover time (1/τ) of microbial 680 

biomass were found with biochar addition, although the changes depend on the soil texture (Pei et al., 2021). We conducted 

additional sensitivity tests with assumed perturbation levels in these parameters (MGE and τ) and input variables (NPP, Clay 

and SM) in the simulations with biochar addition. MGE and τ are very important parameters to the model outputs, while the 

impacts of NPP, Clay and SM are relatively small (Fig. S20S19). Therefore, processes and parameters related to MGE and τ 

need to be accounted for in future with more evidence.  685 

 

Biochar addition may also change the composition of microbial community, and a previous study reported increased 

copiotrophic bacteria with a higher growth rate and decreased oligotrophic bacteria in acid soils with biochar addition (Sheng 

& Zhu, 2018). This is related to the competition between r- and k-strategy microbes in MIMICS. In the MIMICS-BC version, 

we assumed that biochar, with a longer turnover time (about 1000 yr, Schmidt et al., 2002) than SOC, are evenly mixed with 690 

SOC and are treated as a homogenous pool without an explicit vertical profile, which may also bring uncertainties. In addition, 

due to lack of long-term biochar addition experiments, the extended long-term SOC concentrations with biochar addition is 

calculated as the sum of SOC in the control site without biochar addition and the remaining biochar carbon based on the 

biochar degradation curve (Fig. S6S4; Wang et al., 2016a). Although they are not direct observations and may induce 

uncertainty, the long-term model validation is important to assess the model ability of simulating the SOC stability with 695 

biochar addition. Long-term and comprehensive field measurements of SOC and other soil and microbe properties after 

biochar addition are therefore urgently needed to understand the underlying mechanisms of biochar impacts on SOC changes, 

all of which will help improve the model performance.  

5. Conclusion  

In this study, we developed several updated MIMICS versions with new processes (e.g., adsorption and soil moisture) and 700 

attempted to incorporate biochar into MIMICS to simulate the effects of biochar on SOC dynamics. We further validated 

MIMICS against field measurements on global croplands without and with biochar addition. However, management practices 
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such as tillage, fertilization and irrigation on croplands are intensive, raising challenges in representing these processes in the 

soil carbon models due to lack of spatially explicit input data and poor understanding of the mechanisms. Therefore, more 

long-term field experiments for biochar addition will help better represent biochar processes in the soil carbon model and 705 

evaluate the model performance. Biochar is believed to have a large CDR potential, and its application on soils would affect the 

soil carbon and nutrient cycles. These impacts need to be incorporated ESMs to accurately simulate the mitigation potential of 

biochar under future climate change.  

Our study shows that the updated MIMICS versions with new processes (e.g., adsorption and soil moisture) improves the 

model performance on simulating SOC dynamics on croplands. The model versions implemented with biochar processes can 710 

generally capture the SOC changes after biochar application from observations. Biochar is believed to have a large CDR 

potential, and its application on soils would affect the soil carbon and nutrient cycles. These impacts need to be incorporated 

ESMs to accurately simulate the mitigation potential of biochar under future climate change. 

 

Code availability. The codes of this model version are available at https://doi.org/10.5281/zenodo.8112967 (Han et al., 715 

2023). 
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