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Abstract. This study investigates parameter estimation (PE) to enhance climate forecasts of a coupled general circulation model
by adjusting the background vertical diffusivity coefficients in its ocean component. These parameters were initially identi-
fied through sensitivity experiments and subsequently estimated by assimilating the sea surface temperature and temperature-
salinity profiles. This study expands the coupled data assimilation system of the Community Earth System Model (CESM) and
the ensemble adjustment Kalman filter (EAKF) to enable parameter estimation. PE experiments were performed to establish
balanced initial states and adjusted parameters for forecasting the El Nifio-Southern Oscillation (ENSO). Comparing the model
states between the PE experiment and a state estimation (SE) experiment revealed that PE can significantly reduce the uncer-
tainty of these parameters and improve the quality of analysis. The forecasts obtained from PE and SE experiments further

validate that PE has the potential to improve the forecast skill of ENSO.

1 Introduction

The Coupled General Circulation Model (CGCM) is a prominent tool widely utilized for predicting future climate. However,
limitations arise in simulations and forecasts derived from CGCMs due to imperfections in model physics, numerical schemes,
and initial conditions. Coupled data assimilation, referred to as state estimation (SE), can enhance the accuracy and consistency
of initial conditions in CGCMs by integrating coupled models with available observation data. SE is commonly employed
in current operational forecasting systems (Stammer et al., 2016; Balmaseda et al., 2009). In addition to SE, researchers
have developed parameter estimation (PE) or parameter optimization (PO) methods to mitigate model errors arising from
uncertainties in empirical parameters of diverse physical parameterization schemes. These methods optimize model parameters
using observation data, leading to a substantial reduction in model errors (Evensen et al., 1998; Zhang et al., 2020).

Recent studies have shown the potential of PE to enhance forecast accuracy (Wu et al., 2012; Zhang et al., 2012) by reducing
model biases (Tong and Xue, 2008a, b). For instance, PE experiments have been performed using conceptual models (Han et al.,
2013), intermediate complexity models (ICM) (Wu et al., 2016), and CGCMs (Liu et al., 2014a) to illustrate the capacity of



25

30

35

40

45

50

https://doi.org/10.5194/gmd-2023-113
Preprint. Discussion started: 31 July 2023
(© Author(s) 2023. CC BY 4.0 License.

PE to address model errors and enhance the predictability of climate and weather events. However, most of these studies
were carried out under perfect model scenarios, and only a limited number of studies have estimated parameters using real
observation data. PE encounters various challenges in real-world scenarios, including inconsistencies in initial conditions,
biases in numerical models compared to reality, and difficulties in determining the ideal value of unknown parameters (Zhao
et al., 2019).

Despite these challenges, several examples of PE in actual forecast models exist. For example, Menemenlis et al. (2005) used
Green’s function approach to estimate parameters in an ocean general circulation model, demonstrating improved estimations
compared to the prior values. Hu et al. (2010) performed parameter estimation in a weather model, confirming that optimized
parameters can improve the model’s forecast accuracy for real-world weather events. Kondrashov et al. (2008) used observation
data to estimate parameters in a simplified ICM, verifying that optimized parameters can better match observation results.
Similarly, Zhao et al. (2019) and Gao et al. (2021) performed parameter estimation in the Zebiak-Cane model, another ICM,
using real observations. And they both revealed that prediction skills for ENSO were improved with the estimated parameters.

There is still challenges utilizing PE with observation data in CGCM:s for the purpose of improving forecasts and reanalysis
(Zhang et al., 2020). To overcome these challenges, we employed the improved PE method proposed by Shen and Tang (2022)
in this study to estimate background vertical diffusivity coefficients in the ocean model via PE experiments. A coupled data
assimilation system that is built upon the Community Earth System Model (CESM) and the ensemble adjustment Kalman filter
(EAKF) method (Anderson, 2003) is used in this study. Specifically, we assimilated various ocean observation data, such as
satellite sea surface temperature (SST) and temperature-salinity (T-S) profile data, to provide optimal parameters for seasonal
forecasting. Additionally, we used the results obtained from PE to initialize ENSO forecasting, which were subsequently
compared to SE initialization results to illustrate the advantages of PE in enhancing the CGCM’s ENSO forecasting ability.

The paper is organized as follows: Section 2 introduces the data assimilation system, observation data, PE method, and
experimental settings. Section 3 presents the results of the sensitivity experiment while comparing the analyses and forecasts

using PE and SE. Lastly, Section 4 concludes the study.

2 Data assimilation system and PE methods

It has been demonstrated that coupled models can provide more compatible initial conditions via coupled data assimilation
(Fujii et al., 2009; Mulholland et al., 2015; Penny and Hamill, 2017), which, in turn, improves seasonal predictions (Jin et al.,
2008; Kug et al., 2008). In a previous study, we developed a coupled assimilation and ensemble forecasting system based on
the fully coupled model CESM (Chen et al., 2022). The system employed the EAKF method to assimilate ocean observations
from various sources and adjust the state variables of the ocean model, thereby influencing other model components through
flux exchanges in the coupled process. Notably, the assimilation results has been demonstrated significant improvement for
ENSO forecast skill (Chen et al., 2023). In the current study, we extended this system by incorporating a parameter estimation

function, which enabled the estimation of several critical parameters in the ocean model.
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2.1 The CESM model and the background vertical diffusivity coefficients

The study utilized version 1.2.1 of the open-source global coupled model, CESM, developed by the National Center for Atmo-
spheric Research (NCAR). This integrated model includes the Community Atmospheric Model version 4 (CAM4) (Neale et al.,
2010), the Parallel Ocean Program version 2 (POP2) (Danabasoglu et al., 2012), the Community Ice Code version 4 (CICE4),
and the Community Land Model version 4 (CLM4). The atmospheric component has a horizontal resolution of 0.9° x 1.25°
with 26 vertical levels, while the ocean component was integrated at a nominal resolution of 1° with an enhanced meridional
resolution of 0.5° in the equatorial region and 60 vertical levels.

The ocean model, POP2, was initially proposed by Smith et al. (1992) to solve three-dimensional ocean dynamic primitive
equations on a global grid under the assumptions of Boussinesq and hydrostatic approximation. The present study focused on
the uncertainty of the background vertical diffusivity coefficients (BVDCs) in the K-profile parameterization (KPP) for vertical
mixing in POP2. The KPP, introduced by Large et al. (1994), is a parameterization scheme used in ocean models to describe the
interaction between physical processes. The basic idea behind KPP is to partition physical processes in the vertical direction
into several discrete fluid layers, and use empirical equations that describe turbulent mixing and diffusion within each layer.
These equations are typically referred to as vertical mixing parameterization schemes.

The internal mixing processes in the ocean below the boundary layer are primarily driven by shear instability, double dif-
fusion, and breaking of internal waves. Therefore, the vertical mixing coefficient can be generally represented as the sum of
these three effects. The BVDC, denoted as k,,, is mainly used to characterize mixing processes resulting from the breaking of
inertial internal waves (Smith et al., 2010). However, due to the uncertain propagation and dissipation behavior of these waves,
the parameter value of k,, has significant uncertainty. Observations by Gregg et al. (2003) revealed a decrease in mixing and
dissipation resulting from internal wave breaking towards the equator, providing evidence to support the adoption of a latitudi-
nally varying BVDC to reduce systematic biases in ocean models. Jochum (2009) adopted a latitudinal structure of &, in the
POP2 model and found that it simulated the ocean state better, which has been subsequently accepted by follow-up studies.
Specifically, POP2 utilizes four independent coefficients to simulate the latitudinal structure of the BVDC. Table 1 lists each

coefficient’s default values and descriptions (Smith et al., 2010).

Table 1. Background vertical diffusivity coefficients (BVDCs) of KPP parameterization in POP2.

name list variable parameter description default value(cr?/s)  notations
bckgrnd_vdcl Background diffusivity 0.16 v1
bckgrnd_vde_eq Equatorial diffusivity 0.01 Ve
bckgrnd_vde_psim  Maximum PSI-induced diffusivity 0.13 Up
bckgrnd_vde_ban Banda Sea diffusivity 1 Vp

For the sake of convenience, we still use the nomenclature BVDCs to address these four coefficients. Table 1 shows that

the background diffusivity is denoted as v; (Ledwell et al., 1993), the equatorial diffusivity as v. (Gregg et al., 2003), and
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the maximum PSI-induced diffusivity, which represents the parametric subharmonic instability (PSI) of the M2 tide, as v,
(MacKinnon and Winters, 2005). In POP2, the k,, value has been modified from its typically constant value of 0.1cm?/s to
0.17em? /s (v1 + ve = 0.17) almost everywhere. However, there are regions where different values are used: 1.0cm? /s in the
Banda Sea (vp), O.3cm2/s in the latitude bands around 28.9°N/S (v1 +ve +vp), and 0.Olcm2/s at the equator (v.). According
to the latest POP2 manual (Smith et al., 2010), the vertical diffusivity at a location with latitude 6 can be calculated from the

background vertical diffusivity coefficients (BVDCs) using the following equation:

0
ke = v, +U1(E)2 n Upe—0.4(9+28.9) n vpe_0'4(9_28'9) )

It is important to note that in the Banda Sea, the value of k,, is replaced by vy, as indicated earlier.
2.2 The data assimilation and ensemble prediction system

The Data Assimilation Research Testbed (DART) was employed in this study to implement the data assimilation system (An-
derson et al., 2009; Karspeck et al., 2018). DART, an open-source software, offers various filter methods’ implementations.
Previously, this data assimilation system was used to study the impact of initial state errors on assimilation quality by assimi-
lating ocean observations within a quasi-weakly coupled data assimilation framework (Chen et al., 2022). The EAKF method
yielded the analysis ensemble, serving as the initial condition for climate variability forecasting. Notably, the system’s ini-
tial conditions facilitated the forecasting of significant climate variability such as ENSO and IOD, and consequently directed
toward a demonstrable improvement of forecasting skill (Chen et al., 2023).

The description of the assimilation system is presented in detail by Chen et al. (2022). In brief, this study utilizes the
ensemble adjustment Kalman filter approach with 20 ensemble members. The ensemble members are constructed using long-
term spin-up integration results and then repeatedly assimilating the WOA18 (Garcia et al., 2019) climatology data over 4
years to correct the climatological bias. This approach is essential to ensure the initial ensemble can effectively incorporate all
observations during the data assimilation procedure.

Two sets of observation data are assimilated every ten days. One dataset is the optimum interpolation sea surface temperature
(OISST) dataset version 2.1 retrieved from the National Oceanic and Atmospheric Administration (NOAA). The other is the
EN4 profile dataset version 4.2.1 of the UK Met Office. The OISST dataset has a daily 0.25° resolution and was constructed by
combining observations from different platforms (satellites, ships, buoys, and Argo floats) on a regular global grid. The EN4
profile dataset is a collection of ocean temperature and salinity (T-S) profiles obtained across global oceans from 1900 to the
present. Quality control methods ensure good quality (Gouretski and Reseghetti, 2010).

The datasets were pre-processed before being assimilated into the system. Regarding the data assimilation system that
assimilates SST and T-S profiles every ten days, daily profiles were merged and assigned to the final day of each sequence. To
prevent overfitting due to assimilating excessive profile observations, the data at different depths were first interpolated to 31

layers from 5 m to approximately 2100 m and then averaged horizontally. The mean value of all data in each 1° x 1° cell at
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each level was regarded as the observation value. Moreover, the OISST data were thinned such that only data on the 1° x 1°
grids were assimilated every ten days.

Localization was employed using the Gaspari and Cohn function (Gaspari and Cohn, 1999), which employed a cutoff half-
width of 0.1 rad (approximately 600 km) for both observations. The SST and T-S profiles had vertical localization half-widths
of 250 m and 1000 m, respectively. Additionally, the application of covariance inflation involved utilizing a constant inflation

factor with a = 1.02 for model states. These factors were determined empirically and verified in prior studies.
2.3 Parameter estimation method

One approach to achieving PE is the state vector augmentation method, in which parameters are treated as specific model
variables and included in the state vectors. By updating the augmented state vector with observations, the model state and
parameters can be estimated concurrently (Kivman, 2003; Annan and Hargreaves, 2004; Annan, 2005). Applying PE in a
CGCM encounters several technical challenges. Firstly, many parameters in the GCM emanate from simplifying underlying
physical processes, which may display globally uniform values. Updating a few global parameters with numerous data may
accumulate sample errors, leading to PE failure. To overcome this hurdle, we used the adaptive spatial averaging (ASA) method
designed by Liu et al. (2014b) for CGCM. We transformed each parameter from a single scalar value into a two-dimensional
field in each analysis step, considering spatial dependence and localization during the assimilation. Afterward, we adaptively
averaged the two-dimensional parameter fields to produce a scalar value incorporated in subsequent model integration.

A further challenge arises from covariance inflation. Studies have noted that the parameter ensemble’s spread (standard
deviation) is generally relatively lower than that of the state ensemble, primarily because parameters remain constant for
the mode integration. Consequently, ensemble Kalman filter-based PE requires a larger covariance inflation factor for the
parameter ensemble. In a previous study, we employed twin experiments to demonstrate the necessity of covariance inflation
for PE of BVDCs in CESM and developed a two-stage covariance inflation approach (Shen and Tang, 2022). Specifically, the
conventional covariance inflation was applied to the augmented vector of the model states and the 2-D parameter fields, using a
fixed inflation factor of o = 1.02 before assimilation. Afterward, we average the analysis data of 2-D parameter fields to obtain
global scalars and utilize a covariance inflation factor of o, = 1.25 solely for the parameter ensemble. This factor is deduced
by calculating the average growth rate of the state variables in the model integration. Figure 1 provides a schematic diagram

illustrating the PE process described above.
2.4 Experimental design and verification data

Conducting sensitivity analyses (Navon, 1998) before PE is necessary to ensure the parameters have significant impact on
the observed variables . In this study, the sensitivity experiment was initially conducted to show the sensitivity of model
temperature and salinity to the BVDCs. An ensemble of size 20 was integrated using the same initial states but with perturbed
parameters. We perturbed each BVDC by adding noise generated from a Gaussian distribution with a mean value of 0 and a
standard deviation of 30 percent of its default value. We measured the variable sensitivity to the perturbed parameters by using

the ensemble spread of each variable.
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Figure 1. Schematic diagram of the parameter estimation process in the CESM model.

Subsequently, we conducted separate SE and PE experiments using the initial ensemble introduced earlier. The assimilation
time window started in January 2005 and continued until December 2017. In the SE experiment, the SST and T-S profiles were
assimilated every 10 days to update the model state variables that include temperature, salinity, sea surface pressure, and surface
current velocity. The BVDC:s listed in Table 1 were used in model integration during the entire period. The PE experiment used
the same observations to update the model state variables and the BVDCs concurrently. As Zhang et al. (2012) showed, the
signal-to-noise ratio of the state-parameter error covariance in the coupled model can be significantly improved after the state
estimation reaches quasi-equilibrium. Therefore, we performed only pure state estimation in the first year of the PE experiment
and activate the PE function from the beginning of the second year. That is, the parameter values change gradually from 2006
onwards. At this point, the observation-constrained states can improve the parameter estimates more effectively.

We compared the results of SE and PE experiments with validation data to demonstrate the impact of PE on reducing analysis
errors. The temperature and salinity from the objective analysis data of EN4.2.1 (Good et al., 2013) are used for validation. It
should be noted that the EN4 profile dataset for assimilation is a collection of profiles, and the EN4 objective analysis dataset is
processed and gridded data. To ensure impartiality in the validation data, we also incorporated high-quality reanalysis products
such as ORASS by Zuo et al. (2019) and GFDL/ECDA by Zhang et al. (2007).

The EAKEF can provide initial conditions for ensemble prediction by running an ensemble of members. The analysis ensem-
bles of SE and PE experiments were utilized as initial conditions for climate forecast with the coupled model. We conducted
ensemble forecast experiments from 2008 to 2017, using the analysis ensembles derived from both SE and PE. The parameters

obtained by PE were also employed in the latter case. Predictions were issued at the beginning of each January, April, July, and
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October, extending for 12 months. The Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) (Rayner et al.,

2003) served as a reference dataset to compare the produced prediction products.

3 Results and discussions

3.1 Sensitivity experiment
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104 ‘ ‘ 0.12
% 100- 0.08 5
(0] Q
a
0.04
10001
0.00
10 0.24
'%_ 10018 0.16 5
[0 Q
[a)]
0.08
1000
0.00

Months Months

Figure 2. The global averaged (between 60°S and 60°N) ensemble spread of temperature (a) and salinity (b); (c) and (d) are the same as (a)

and (b), but were averaged over the equator (between 5°S and 5°N)

Twenty identical ensemble members were utilized for the parameter sensitivity experiment in the CESM integration, which
persisted for five years, with parameters perturbed. The ensemble spreads of temperature and salinity variables, which measures
their sensitivity to the perturbed parameters, are shown in Figure 2. The global (66.5°S - 66.5°N) and equatorial (5°S - 5°N)
averaged temperature and salinity ensemble spreads were demonstrated accordingly. Perturbing BVDCs in the model leads to a
rapid increase in temperature and salinity ensemble spread within the first year, followed by relative stability in the succeeding
years. Figure 2 displays that temperature variables have the maximum sensitivity to BVDCs at approximately 100 meters depth,
with salinity variables being most sensitive to these parameters at the sea surface. The influence of parameter’s uncertainty can
extend up to a depth of approximately 400 meters. Additionally, the equatorial area is highly sensitive to BVDC parameters
in temperature at a depth of 50-100 meters and in salinity at the sea surface. The surface temperature variability in Figure 2a
shows a conspicuous seasonal cycle which can possibly be related to the diverse rates of change in mean temperature instigated
by distinct ocean areas between the northern and southern hemispheres.

The last three years’ outcomes were used to computed the mean spread and analyze its spatial distribution. Figure 3 provides

additional validation that temperature variability is highest within the equatorial range and most pronounced at a depth of
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100m. In deeper layers, the parameters affect the temperature more significantly in western Pacific. Additionally, salinity is
180 highly sensitive to the parameters in the warm pool region of the tropical western Pacific, and the sensitivity of salinity to
parameters is highest in the shallow layers, less than 50m depth. Furthermore, in extratropics, the temperature and salinity in

the Kuroshio extention and Gulf Stream regions are also sensitive to these parameters to some extent.

Temperature

Salinity

psu

o° BOE 7206 I180° II0W S0 o° UL 720  I180° II0W S0

Figure 3. Spatial distribution of the ensemble spread of sea temperature (left) and salinity (right) at different depths.

The sensitivity experiment shows that the model temperature and salinity are sensitive to the uncertainty in the BVDCs,

strongly indicating that assimilating SST and T-S profiles can potentially reducing the uncertainty.
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185 3.2 [Estimated parameters

We conducted separate SE and PE experiments, assimilating observations during the period between January 2005 and De-

cember 2017. In the SE experiment, default values of the BVDCs were consistently used in all ensemble members throughout

the entire period. However, the PE experiment comprised three distinct phases. During the initial phase, we utilized perturbed

parameters to perform state estimation, where observations were assimilated to constrain uncertainties arising from initial

190 conditions. This stage significantly enhanced the signal-to-noise ratio of the state-parameter covariance. In the second phase,

spanning from 2006 to 2007, we activated the PE function illustrated in Figure 1. This function facilitated continuous correction

of the parameter ensemble through observations. Finally, during the third phase, spanning from 2008 to 2017, these parameters
remained unchanged.

Figure 4 depicts a graphical representation of the 20 ensemble members of the four BVDCs over time, with the ensemble

195 mean represented by the red solid line. Observations gradually decreased the spread of the parameter ensemble, resulting in

less uncertainty. After approximately two years, the parameter ensemble degenerated, and the spread reached 0. Consequently,

assimilating observations could no longer adjust the parameters.
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Figure 4. Evolution of each parameter since 2006, in which the red solid lines indicate the ensemble mean.
Table 2 presents the final values of BVDCs. Notably, v; and v, values are 20% higher than the default values, while vy, is

10% higher (except for v., which is slightly lower than the default value). It’s also worth noting the almost globally increasing

200 value of the background vertical diffusivity, k,,, as calculated through Eq. 1 and depicted in Figure 5. The left-hand side of
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Table 2. PE final BVDC values.

Parameters V1 Ve Up Vp
Default value(cm?/s) 0.16 0.01 0.13 1.0
PE final value(cm?/s)  0.195  0.0091 0.161 1.10

Ratio of increase 21.9% -9% 23.8% 10%

(a) ®)

VDC - def_atﬂt value PE inc&ments

02 04 0.6 0.8 10 0.00 0.02 0.04 0.06 0.08 0.10
cm?fs s

Figure 5. (a) Default latitudinal structure of background vertical diffusivity; (b) the increment of the background vertical diffusivity from

PE.

Figure 5 displays the band structure of the default background diffusivity, while the increment obtained by PE is shown on the

right-hand side, further validating the achieved results.
3.3 Quality of the analysis

As previously mentioned, the parameters have remained unchanged since 2008. Consequently, the third phase of the PE ex-
periment can be considered a distinct SE experiment using the estimated parameters listed in Table 2. This study focuses
specifically on evaluating the analyses obtained from the third phase by comparing the results of the PE and SE experiments.
we compare our analysis fields with the gridded objective analysis data from EN4 and other reanalysis products to demon-
strate the validity of our results. Figure 6 displays the root mean squared error (RMSE) of the temperature in the analysis fields
for the period of 2008-2017 by region. We compared the results with EN4, ORAS4, and ECDA. The regions are Global (within
66.5°N-S), Pacific, Indian Ocean, Atlantic, and intra-tropical (within 30°N-S). Similar findings can be observed globally and
in most regions using different datasets. When examining the global mean temperature, the depths with significant analysis

errors are consistent with the parameter-sensitive depths, indicating that parameter uncertainty can impact the analysis accu-

10
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racy. Moreover, the reduced RMSEs of the PE experiment indicates that PE improves the quality of the analysis. In particular,
noticeable improvements are observed below a depth of 100 m. The most pronounced improvement is observed in the Atlantic
Ocean and in tropical regions. Figure 7 illustrates the salinity errors in the analysis. The highest error is observed in the sea
surface layer, which is consistent with the most sensitive depth to parameters (Figure 2b and d). In contrast to temperature, PE

primarily enhances salinity accuracy in tropical regions and in the Indian Ocean.

Global Pacific Indian Ocean Atlantic Tropical

EN4 reanalsys
depth

ORAS4
depth

ECDA
depth

04 08 04 08
RMSE (degC)

Figure 6. The temperature RMSE of the data assimilation results with EN4 (top), ORAS4 (middle), and ECDA (bottom) for the period
of 2008-2017 by region. The regions are - Global (within 66.5°N-S), Pacific, Indian Ocean, Atlantic, and intra-tropical (within 30°N-S),

respectively, from left to right.

Figure 8 displays the RMSEs of the SE experiment in the tropics while emphasizing the disparity with the PE experiment.
As Figure 8a shown, the most considerable temperature errors appear in all oceans around the depth of 100 meters, which
matches the sensitivity analysis result for temperature depicted in Figure 3 . Figure 8b denotes an improvement in PE for these
errors, implying its usefulness throughout the tropics. It is noted there is substantial improvement in areas where the errors are
significant, except for the deep Atlantic Ocean. Figures 8c and 8d show the results for salinity. Once more, the depths and areas
where salinity errors emerge in the SE analysis align with those sensitive to parameters (Figure 3). Unsurprisingly, PE partially
mitigates these errors, most significantly around the Andaman Sea, waters near Indonesia, and the coastal West African waters

where vertical mixing is intensive.

11
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Figure 7. The same with Figure 6 but for salinity RMSE.

Figure 9 displays the RMSE of the SE experimental results, the difference RMSE between SE and PE results at different
latitudes in the Atlantic Ocean, to highlight the PE effect on the deep ocean. The temperature and salinity errors in the Atlantic
Ocean are similar to that identified by Danabasoglu et al. (2012), where the deep Atlantic Ocean is about 0.58 Celsius warmer
than observed. Furthermore, a local maximum is visible at 1000 m depth in the 20 °N to 30°N regional zone, associated with
the warmer and saltier Mediterranean outflow through the Strait of Gibraltar than observed. As illustrated in Figure 5b, PE
considerably ameliorated the vertical mixing, particularly at 28.9°S and 28.9°N latitudes via the coefficient v.. Consequently,
PE markedly decreased the temperature and salinity errors, including those in deeper layers beyond the 1000 meters, at these

latitudes, as Figures 9b and 9d demonstrate.
3.4 ENSO forecast experiment

This study utilized analysis ensembles from the coupled data assimilation system to conduct ENSO forecast experiments be-
tween 2008 and 2017. The Nino-3.4 index, calculated as the averaged sea surface temperature anomalies between the latitudes
of 5°S to 5°N and longitudes of 190°E to 120°W was employed to illustrate the variability of ENSO. The Nino-3.4 indices

of the SE and PE forecasts were computed against various lead times. The anomaly correlation coefficients (ACC) of these

12
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Figure 8. (a) the temperature RMSE of the SE result in the tropics; (b) difference between the temperature RMSE of the SE results and that
of the PE results; (c) the salinity RMSE of the SE result in the tropics; (d) difference between the salinity RMSE of the SE results and that of
the PE results.

outcomes with the index derived from HadISST data were employed to measure the prediction skills, as shown in Figure 10a.
Moreover, Figure 10b depicts the RMSE of the forecasts against HadISST.

The prediction skills of both SE and PE cases were significantly superior to those of the persistence skills represented by
a black dotted line. For lead times exceeding five months, the PE case exhibited higher ACCs compared to the SE case. By
setting the threshold value of an effective prediction as a ACC of 0.5, which is equivalent to the 99% statistical confidence
level with an independent sample size of 30, it was observed that the SE case effective predict ENSO at a lead time of up to 9-
month which is 1 month in advance compared to the PE case. To demonstrate the significance of the PE advantage, ACCs were
computed for each ensemble member using HadISST. The shaded areas represent the ACCs of the ensemble mean plus/minus
the standard deviation of the ACCs of each member, further confirming the superior prediction ability of the PE case.

The root mean square errors (RMSEs) of the PE case were also lower than those of the SE case, particularly after a lead time

of 5 months. Additionally, the ensemble spreads (colorful dashed lines in Figure 10b) of the PE results were larger compared
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Figure 9. The same with figure 8 but in the Atlantic and against the latitudes.

to those of the SE predictions. Since the spreads of the PE results were closer to the RMSE than those of the SE results, it
indicates that the PE initial conditions are more consistent.

Figure 11 illustrates the spatial correlation coefficient pattern between the predicted sea surface temperature (SST) anomaly
and the corresponding HadISST data over the tropical Pacific for the SE and PE cases. The SE and PE results showed no
significant difference for lead times of one or four months. However, for longer lead times, the initial conditions and parameters
obtained through PE significantly improved the SST anomaly in the tropical Pacific. At a ten-month lead time, the correlation
coefficient of SST anomaly in the entire equatorial Pacific (5°S—5°N, 190°E-90°W) for the PE results was higher than that of
the SE results, indicating improved forecast skills for the ENSO indices.

The improvement in PE for ENSO forecasts is likely attributed to better simulations of subsurface temperatures. Previous
studies have consistently shown that the accuracy of initial subsurface conditions is crucial for ENSO event prediction (Tang
et al., 2003; Song et al., 2022). The PE method not only enhances the accuracy of the initial subsurface conditions (as demon-
strated in Figure 6 and Figure 7), but also provides constrained parameters that more accurately represent the background

diffusivity process in the ocean model, leading to improved forecast skills.
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Figure 10. Correlation coefficients (a) and root-mean-square errors (RMSEs) and mean spreads (b) of the observed and forecasted Nifio-3.4

index as a function of lead time.

4 Conclusions

Errors in the coupled model can arise from uncertainties in the dynamic cores, numerical schemes, physical parameterization
schemes, and empirical parameters. PE is the process of adjusting or optimizing model parameters using observations, the
method of PE is very similar to SE. However, PE has additional complexity since parameters are indirectly related to model
states, and the state-parameter covariance is challenging to estimate.

In this study, the fully coupled CESM was used to perform the SE and PE experiments, in which satellite SST and subsurface
T/S profiles were assimilated using an ensemble Kalman filter to estimate the model states and critical parameters in vertical
mixing parameterization. The SE system was established and comprehensively evaluated by Chen et al. (2022), and PE methods
were developed using a new solution to deal with constant parameter evolution (Shen and Tang, 2022). In this work, we used
these systems to conduct experiments to compare the SE and PE in the CGCM.

The parameter sensitivity experiments were first conducted to evaluate the sensitivity of the model variables to the parame-

ters, which were measured by the ensemble spread for the temperature and salinity variables significantly. Figure 2 and figure
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Figure 11. Spatial pattern of the correlation coefficients between the predicted and observed SST anomalies (SSTA) with SE initialization

(left column) and PE initialization (right column) at the 1-month, 4-month, 7-month, and 10-month lead times.

3 show that the BVDCs impact the model temperature and salinity variables significantly. Therefore, the PE is theoretically
feasible using SST and T/S observations.

The data assimilation results, using either SE or PE, were assessed against the EN4 objective analysis dataset and the other
reanalysis datasets. The DA analyses errors (Figure 6 - Figure 9) and the parameter sensitivity results have similar patterns,
ultimately revealing that the model errors were partly caused by uncertainties in these parameters. PE can reduce analysis
errors in sensitive domains by considering the parameter uncertainties during assimilation.

One key challenge of using PE with real observations is the verification of the parameters, which cannot be observed. In
this study, the estimated parameters and PE-derived initial conditions are employed to perform ensemble ENSO prediction.
The prediction outcomes provide evidence of the benefits of using PE. Figures 10 and 11 present evidence that using more
accurate initial conditions and better parameters through the PE method increases the prediction skill of ENSO, further verifies
our conclusions.

This study brings forward the advancement of PE studies, from the perfect model Observing System Simulation Experiment
(OSSE) scenario to real-world observations assimilation in CGCMs. The comparison between PE and SE highlights the po-
tential of PE to improve coupled model reanalysis and prediction. To reduce the complexity of the problem, we only estimated
four parameters in the vertical mixing parameterization in this study. However, many parameters in various physical processes

exist that have impacts on the simulation and prediction of ENSO (Gao and Zhang, 2017; Zhao et al., 2019), which should be
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considered in future studies. Moreover, the spatial distribution of the parameter sensitivity, as shown in figure 2, has not been
used in the PE algorithm. This may serve as a potential strategy (Shen et al., 2022) to improve the efficiency of PE methods in
CGCMs.

Code and data availability. The data used for assimilation and validation in this study can be accessed online from the following sources:
World Ocean Atlas 2018 (WOA18) (https://www.ncei.noaa.gov/access/world-ocean-atlas-2018), Optimum Interpolation Sea Surface Tem-
perature (OISST) (ftp://eclipse.ncdc.noaa.gov/pub/Ol-daily-v2/NetCDF-uncompress), EN4 (https://www.metoffice.gov.uk/hadobs/en4/download-
en4-2-1.html), Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) (https://www.metoffice.gov.uk/hadobs/hadisst),
Geophysical Fluid Dynamics Laboratory’s Ensemble Coupled Data Assimilation (GFDL/ECDA) (https://www.gfdl.noaa.gov/ocean-data-
assimilation-model-output/), and Ocean Reanalysis System 4 (ORAS4) (https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis).
The Community Earth System Model (CESM v1.2.1) and the Data Assimilation Research Testbed (DART), both utilized and modified
in this study for parameter estimation, are archived on Zenodo under the DOI: 10.5281/zenodo.8115394. The repository also includes the

experiment results and the scripts for plotting.
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