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Abstract. This study investigates parameter estimation (PE) to enhance climate forecasts of a coupled general circulation model

by adjusting the background vertical diffusivity coefficients in its ocean component. These parameters were initially identi-

fied through sensitivity experiments and subsequently estimated by assimilating the sea surface temperature and temperature-

salinity profiles. This study expands the coupled data assimilation system of the Community Earth System Model (CESM) and

the ensemble adjustment Kalman filter (EAKF) to enable parameter estimation. PE experiments were performed to establish5

balanced initial states and adjusted parameters for forecasting the El Niño-Southern Oscillation (ENSO). Comparing the model

states between the PE experiment and a state estimation (SE) experiment revealed that PE can significantly reduce the uncer-

tainty of these parameters and improve the quality of analysis. The forecasts obtained from PE and SE experiments further

validate that PE has the potential to improve the forecast skill of ENSO.

1 Introduction10

The Coupled General Circulation Model (CGCM) is a prominent tool widely utilized for predicting future climate. However,

limitations arise in simulations and forecasts derived from CGCMs due to imperfections in model physics, numerical schemes,

and initial conditions. Coupled data assimilation, referred to as state estimation (SE), can enhance the accuracy and consistency

of initial conditions in CGCMs by integrating coupled models with available observation data. SE is commonly employed

in current operational forecasting systems (Stammer et al., 2016; Balmaseda et al., 2009). In addition to SE, researchers15

have developed parameter estimation (PE) or parameter optimization (PO) methods to mitigate model errors arising from

uncertainties in empirical parameters of diverse physical parameterization schemes. These methods optimize model parameters

using observation data, leading to a substantial reduction in model errors (Evensen et al., 1998; Zhang et al., 2020).

Recent studies have shown the potential of PE to enhance forecast accuracy (Wu et al., 2012; Zhang et al., 2012) by reducing

model biases (Tong and Xue, 2008a, b). For instance, PE experiments have been performed using conceptual models (Han et al.,20

2013), intermediate complexity models (ICM) (Wu et al., 2016), and CGCMs (Liu et al., 2014a) to illustrate the capacity of

1



PE to address model errors and enhance the predictability of climate and weather events. However, most of these studies

were carried out under perfect model scenarios, and only a limited number of studies have estimated parameters using real

observation data. PE encounters various challenges in real-world scenarios, including inconsistencies in initial conditions,

biases in numerical models compared to reality, and difficulties in determining the ideal value of unknown parameters (Zhao25

et al., 2019).

Despite these challenges, several examples of PE in actual forecast models exist. For example, Menemenlis et al. (2005) used

Green’s function approach to estimate parameters in an ocean general circulation model, demonstrating improved estimations

compared to the prior values. Hu et al. (2010) performed parameter estimation in a weather model, confirming that optimized

parameters can improve the model’s forecast accuracy for real-world weather events. Kondrashov et al. (2008) used observation30

data to estimate parameters in a simplified ICM, verifying that optimized parameters can better match observation results.

Similarly, Zhao et al. (2019) and Gao et al. (2021) performed parameter estimation in the Zebiak-Cane model, another ICM,

using real observations. And they both revealed that prediction skills for ENSO were improved with the estimated parameters.

There is still challenges utilizing PE with observation data in CGCMs for the purpose of improving forecasts and reanalysis

(Zhang et al., 2020). To overcome these challenges, we employed the improved PE method proposed by Shen and Tang (2022)35

in this study to estimate background vertical diffusivity coefficients in the ocean model via PE experiments. A coupled data

assimilation system that is built upon the Community Earth System Model (CESM) and the ensemble adjustment Kalman filter

(EAKF) method (Anderson, 2003) is used in this study. Specifically, we assimilated various ocean observation data, such as

satellite sea surface temperature (SST) and temperature-salinity (T-S) profile data, to provide optimal parameters for seasonal

forecasting. Additionally, we used the results obtained from PE to initialize ENSO forecasting, which were subsequently40

compared to SE initialization results to illustrate the advantages of PE in enhancing the CGCM’s ENSO forecasting ability.

The paper is organized as follows: Section 2 introduces the data assimilation system, observation data, PE method, and

experimental settings. Section 3 presents the results of the sensitivity experiment while comparing the analyses and forecasts

using PE and SE. Lastly, Section 4 concludes the study.

2 Data assimilation system and PE methods45

It has been demonstrated that coupled models can provide more compatible initial conditions via coupled data assimilation

(Fujii et al., 2009; Mulholland et al., 2015; Penny and Hamill, 2017), which, in turn, improves seasonal predictions (Jin et al.,

2008; Kug et al., 2008). In a previous study, we developed a coupled assimilation and ensemble forecasting system based on

the fully coupled model CESM (Chen et al., 2022). The system employed the EAKF method to assimilate ocean observations

from various sources and adjust the state variables of the ocean model, thereby influencing other model components through50

flux exchanges in the coupled process. Notably, the assimilation results has been demonstrated significant improvement for

ENSO forecast skill (Chen et al., 2023). In the current study, we extended this system by incorporating a parameter estimation

function, which enabled the estimation of several critical parameters in the ocean model.
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2.1 The CESM model and the background vertical diffusivity coefficients

The study utilized version 1.2.1 of the open-source global coupled model, CESM, developed by the National Center for At-55

mospheric Research (NCAR). This integrated model includes the Community Atmospheric Model version 4 (CAM4) (Neale

et al., 2010), the Parallel Ocean Program version 2 (POP2) (Danabasoglu et al., 2012), the Community Ice Code version 4

(CICE4), the Community Land Model version 4 (CLM4), as well as other modules. The atmospheric component has a hori-

zontal resolution of 0.9◦ × 1.25◦ with 26 vertical levels, while the ocean component was integrated at a nominal resolution of

1◦ with an enhanced meridional resolution of 0.5◦ in the equatorial region and 60 vertical levels.60

In many OGCMs, vertical mixing can be parameterized separately by region, including upper boundary layer schemes and

a diapycnal mixing scheme for the ocean interior. The K-profile parameterization (Large et al., 1994) is widely used to param-

eterize vertical mixing in ocean models. It includes a background diffusivity parameter that determines the diapycnal mixing

in the thermocline. It is critical to the heat transfer between the upper boundary layer and the ocean interior. The background

diffusivity parameter is typically set to a constant value, and its magnitude is determined by fitting the model to observations65

or theoretical considerations. As identified by much of the previous work, the background diffusivity parameterization is a key

factor in vertical mixing parameterizations, and it has significant uncertainties and contributes to a large bias in SST simula-

tions (Jochum, 2009). Zhu and Zhang (2018) have shown that a better background diffusivity parameterization leads to more

realistic simulations of the cold tongue and equatorial thermocline, which has the potential to affect the fidelity of simulated

seasonal to interannual variability in the tropical Pacific, such as the ENSO phenomenon. Therefore, the present study focused70

on estimating the parameters in background diffusivity parameterization.

The ocean model of CESM, POP2, was initially proposed by Smith et al. (1992) to solve three-dimensional ocean dynamic

primitive equations on a global grid under the assumptions of Boussinesq and hydrostatic approximation. The background

diffusivity parameter,The present study focused on the uncertainty of the background vertical diffusivity coefficients (BVDCs)

in the K-profile parameterization (KPP) for vertical mixing in POP2. The KPP, introduced by Large(1994), is a parameterization75

scheme used in ocean models to describe the interaction between physical processes. The basic idea behind KPP is to partition

physical processes in the vertical direction into several discrete fluid layers, and use empirical equations that describe turbulent

mixing and diffusion within each layer. These equations are typically referred to as vertical mixing parameterization schemes.

The internal mixing processes in the ocean below the boundary layer are primarily driven by shear instability, double diffusion,

and breaking of internal waves. Therefore, the vertical mixing coefficient can be generally represented as the sum of these80

three effects. The BVDC denoted as kw, is mainly used to characterize mixing processes resulting from the breaking of inertial

internal waves (Smith et al., 2010). However, due to the uncertain propagation and dissipation behavior of these waves, the

parameter value of kw has significant uncertainty. Munk (1966) first estimated the averaged diapycnal diffusivity of 10−4m2/s

based on the advective-diffusive balance, thus requiring a background diffusivity of O(10−4m2/s) to realistically produce the

pycnocline in numerical models (F., 1987). However, microstructure measurements generally give estimates that can be an85

order of magnitude reduced (Gregg, 1977; Ledwell et al., 1998). Hence, a constant background diffusivity of O(10−5m2/s)

has been typically applied in many ocean and climate modeling. Recently, observational evidence indicates that the assumed
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constant background diffusivity is not uniform but is spatially varying (Huussen et al., 2012; Kunze et al., 2006). In particular,

microstructure measurements suggest that background diffusivity should be reduced near the equator, with a magnitude of

O(10−6m2/s) (Cheng and Kitade, 2014; Gregg et al., 2003) Gregg(2003) revealed a decrease in mixing and dissipation90

resulting from internal wave breaking towards the equator, providing evidence to support the adoption of a latitudinally varying

BVDC to reduce systematic biases in ocean models. Jochum (2009) adopted a latitudinal structure of kw in the POP2 model

and found that it simulated the ocean state better, which has been subsequently accepted by follow-up studies. Specifically,

POP2 utilizes four independent background vertical diffusivity coefficients (BVDCs) to simulate the latitudinal structure of the

background diffusivityBVDC. Table 1 lists each coefficient’s default values and descriptions (Smith et al., 2010).95

Table 1. Background vertical diffusivity coefficients (BVDCs) of KPP parameterization in POP2.

Name list variable parameter description default value(cm2/s) notations

bckgrnd_vdc1 Background diffusivity 0.16 v1

bckgrnd_vdc_eq Equatorial diffusivity 0.01 ve

bckgrnd_vdc_psim Maximum PSI-induced diffusivity 0.13 vp

bckgrnd_vdc_ban Banda Sea diffusivity 1.0 vb

The BVDCs have a total of four constants, comprising a coefficient v1 describing global diffusivity, a coefficient ve de-

scribing equatorial diffusivity (Gregg et al., 2003), a coefficient vp describing the diffusivity near 28.9°S and 28.9°N latitudes,

and a coefficient vb describing diffusivity in the Banda Sea region alone(M. and J., 2008). Among them, vp is also known

as the maximum PSI-induced diffusivity, representing the result of the parametric subharmonic instability (PSI) of the M2

tide (MacKinnon and Winters, 2005). Therefore, in POP2, the background diffusivity parameter kw has only a fixed form100

of spatial variation (Smith et al., 2010). Except for the Banda Sea, which takes on a specific value, kw globally varies only

latitudinally and can be expressed as followsFor the sake of convenience, we still use the nomenclature BVDCs to address

these four coefficients. Table 1 shows that the background diffusivity is denoted as v1 , the equatorial diffusivity as ve , and

the maximum PSI-induced diffusivity, which represents the parametric subharmonic instability (PSI) of the M2 tide, as vp . In

POP2, the kw value has been modified from its typically constant value of 0.1cm2/s to 0.17cm2/s (v1 + ve = 0.17) almost105

everywhere. However, there are regions where different values are used: 1.0cm2/s in the Banda Sea (vb), 0.3cm2/s in the

latitude bands around 28.9◦N/S (v1 + ve + vp), and 0.01cm2/s at the equator (ve). According to the latest POP2 manual, the

vertical diffusivity at a location with latitude θ can be calculated from the background vertical diffusivity coefficients (BVDCs)

using the following equation:

kw = ve + v1(
θ

10
)2 + vpe

−0.4(θ+28.9) + vpe
−0.4(θ−28.9) (1)110

where θ is the latitude.
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Therefore, the kw value has been modified from its typically constant value of 0.1cm2/s to 0.17cm2/s (v1 + ve = 0.17)

almost everywhere in POP2. And there are regions where different values are used: 1.0cm2/s in the Banda Sea (vb), 0.3cm2/s

in the latitude bands around 28.9◦N/S (v1 + ve + vp), and 0.01cm2/s at the equator (ve).It is important to note that in the

Banda Sea, the value of kw is replaced by vb, as indicated earlier.115

2.2 The data assimilation and ensemble prediction system

The Data Assimilation Research Testbed (DART) was employed in this study to implement the data assimilation system (An-

derson et al., 2009; Karspeck et al., 2018). DART, an open-source software, offers various filter methods’ implementations.

Previously, this data assimilation system was used to study the impact of initial state errors on assimilation quality by assimi-

lating ocean observations within a quasi-weakly coupled data assimilation framework (Chen et al., 2022). The EAKF method120

yielded the analysis ensemble, serving as the initial condition for climate variability forecasting. Notably, the system’s ini-

tial conditions facilitated the forecasting of significant climate variability such as ENSO and IOD, and consequently directed

toward a demonstrable improvement of forecasting skill (Chen et al., 2023).

The description of the assimilation system is presented in detail by Chen et al. (2022). In brief, it is a weakly coupled data

assimilation system since only ocean observations are assimilated and the coupled model in used for integration. This study125

utilizes the ensemble adjustment Kalman filter approach with 20 ensemble members. The ensemble members are constructed

using long-term spin-up integration results and then repeatedly assimilating the WOA18 (Garcia et al., 2019) climatology

data over 4 years to correct the climatological bias. This approach is essential to ensure the initial ensemble can effectively

incorporate all observations during the data assimilation procedure.

Two sets of observation data are assimilated every ten days. One dataset is the optimum interpolation sea surface temperature130

(OISST) dataset version 2.1 retrieved from the National Oceanic and Atmospheric Administration (NOAA). The other is the

EN4 profile dataset version 4.2.1 of the UK Met Office. The OISST dataset has a daily 0.25◦ resolution and was constructed by

combining observations from different platforms (satellites, ships, buoys, and Argo floats) on a regular global grid. The EN4

profile dataset is a collection of ocean temperature and salinity (T-S) profiles obtained across global oceans from 1900 to the

present. Quality control methods ensure good quality (Gouretski and Reseghetti, 2010).135

The datasets were pre-processed before being assimilated into the system. Regarding the data assimilation system that

assimilates SST and T-S profiles every ten days, daily profiles were merged and assigned to the final day of each sequence.

To prevent overfitting due to assimilating excessive profile observations, the data at different depths were first interpolated

to 31 layers from 5 m to approximately 2100 m and then averaged horizontally. Specific vertical depths were obtained from

the EN4 analysis data (Good et al., 2013). The mean value of all data in each 1◦ × 1◦ cell at each level was regarded as the140

observation value. Moreover, the OISST data were thinned such that only data on the 1◦ × 1◦ grids were assimilated every

ten days. Previous studies have shown that this processing method can produce effective state estimation results (Chen et al.,

2022, 2023).

Localization was employed using the Gaspari and Cohn function (Gaspari and Cohn, 1999), which employed a cutoff half-

width of 0.1 rad (approximately 600 km) for both observations. The SST and T-S profiles had vertical localization half-widths145
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of 250 m and 1000 m, respectively. Additionally, the application of covariance inflation involved utilizing a constant inflation

factor with α= 1.02 for model states. These factors were determined empirically and verified in prior studies (Shen and Tang,

2022; Chen et al., 2022, 2023).

2.3 Parameter estimation method

One approach to achieving PE is the state vector augmentation method, in which parameters are treated as specific model150

variables and included in the state vectors. By updating the augmented state vector with observations, the model state and

parameters can be estimated concurrently (Kivman, 2003; Annan and Hargreaves, 2004; Annan, 2005). Applying PE in a

CGCM encounters several technical challenges. Firstly, many parameters in the GCM emanate from simplifying underlying

physical processes, which may display globally uniform values. Updating a few global parameters with numerous data may

accumulate sample errors, leading to PE failure. Since the parameters estimated in this paper are four constants, this is the main155

challenge in the experiments. To overcome this hurdle, we used the adaptive spatial averaging (ASA) method designed by Liu

et al. (2014b) for CGCM. In each data assimilation step, wWe transformed each parameter from a single scalar value into a

two-dimensional field in each analysis step, considering spatial dependence and localization during the assimilation. Afterward,

we use the adaptive algorithm to averageadaptively averaged the two-dimensional parameter fields, to produce a scalar value

incorporated in subsequent model integration. This algorithm calculates the ratio of the a posteriori standard deviation to the160

a priori standard deviation at each grid point after each update of the two-dimensional parameters, which implies the strength

of the effect of assimilation, and then averages the parameter values at grid points where the ratio exceeds a certain threshold.

This threshold is chosen using an adaptive algorithm to ensure that a certain number of grid points (in this experiment 10,000

out of a total of 80,000 grids) are included in the calculation of the averaged parameters. More details refers to Shen and Tang

(2022).165

A further challenge arises from covariance inflation. Studies have noted that the parameter ensemble’s spread (standard

deviation) is generally relatively lower than that of the state ensemble, primarily because parameters remain constant for

the mode integration. Consequently, ensemble Kalman filter-based PE requires a larger covariance inflation factor for the

parameter ensemble. In a previous study, we employed twin experiments to demonstrate the necessity of covariance inflation

for PE of BVDCs in CESM and developed a two-stage covariance inflation approach (Shen and Tang, 2022). Specifically, the170

conventional covariance inflation was applied to the augmented vector of the model states and the 2-D parameter fields, using a

fixed inflation factor of α= 1.02 before assimilation. Afterward, we average the analysis data of 2-D parameter fields to obtain

global scalars and utilize a covariance inflation factor of αp = 1.25 solely for the parameter ensemble. This factor is deduced

by calculating the average growth rate of the state variables in the model integration. Figure 1 provides a schematic diagram

illustrating the PE process described above.175

However, the conditional covariance inflation (CCI) method is usually used in practical data assimilation to ensure that the

ensemble spread does not fall below a lower bound (Aksoy et al., 2006; Liu et al., 2014a). The CCI is designed to inflate

the parameter ensemble spread back to a predefined threshold value when it is smaller than the threshold. In this work, we

intentionally do not use the CCI method and let the parameter ensemble degenerate after several data assimilation cycles.
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After that, all ensemble members use the same improved parameters that no longer changes value with the subsequent data180

assimilation. This strategy allows the parameter ensemble to converge and makes subsequent ensemble forecasting experiments

easier to implement.

It is also worth noting that in order to avoid unphysical parameter values, after each parameter estimation, if an abnormal

parameter value (e.g., negative value) occurs for an ensemble member, we remove the parameter and use the parameter of the

neighbouring member to integrate the model.185

prior

State variables:
Temperature, Salinity,
Surface pressure,
Velocity, etc

Parameters:
As listed in Table 1

2-D parameters:

Augmented state vector

Covariance Inflation with α =1.02 EAKF

SST

T-S profile

posterior

Augmented state vector

State variables:
Temperature, Salinity,
Surface pressure,
Velocity, etc

2-D parameters:

Scalar parameters:

Inflation αp=1.25

CESMmodel integration

Figure 1. Schematic diagram of the parameter estimation process in the CESM model.

2.4 Experimental design and verification data

Conducting sensitivity analyses (Navon, 1998) before PE is necessary to ensure the parameters have significant impact on

the observed variables . In this study, the sensitivity experiment was initially conducted to show the sensitivity of model

temperature and salinity to the BVDCs. An ensemble of size 20 was integrated using the same initial states but with perturbed

parameters. We perturbed each BVDC by adding noise generated from a Gaussian distribution with a mean value of 0 and a190

standard deviation of 30 percent of its default value. We measured the variable sensitivity to the perturbed parameters by using

the ensemble spread of each variable.

Subsequently, we conducted separate SE and PE experiments using the initial ensemble introduced earlier. The assimilation

time window started in January 2005 and continued until December 2017. In the SE experiment, the SST and T-S profiles were

assimilated every 10 days to update the model state variables that include temperature, salinity, sea surface pressure, and surface195

current velocity. The BVDCs listed in Table 1 were used in model integration during the entire period. The PE experiment used

the same observations to update the model state variables and the BVDCs concurrently. As Zhang et al. (2012) showed, the
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signal-to-noise ratio of the state-parameter error covariance in the coupled model can be significantly improved after the state

estimation reaches quasi-equilibrium. Therefore, we performed only pure state estimation in the first year of the PE experiment

and activate the PE function from the beginning of the second year. That is, the parameter values change gradually from 2006200

onwards. At this point, the observation-constrained states can improve the parameter estimates more effectively.

We compared the results of SE and PE experiments with validation data to demonstrate the impact of PE on reducing analysis

errors. The temperature and salinity from the objective analysis data of EN4.2.1 (Good et al., 2013) are used for validation. It

should be noted that the EN4 profile dataset for assimilation is a collection of profiles, and the EN4 objective analysis dataset is

processed and gridded data. To ensure impartiality in the validation data, we also incorporated high-quality reanalysis products205

such as ORAS4 by Balmaseda et al. (2013) and GFDL/ECDA by Zhang et al. (2007).

The EAKF can provide initial conditions for ensemble prediction by running an ensemble of members. The analysis ensem-

bles of SE and PE experiments were utilized as initial conditions for climate forecast with the coupled model. We conducted

ensemble forecast experiments from 2008 to 2017, using the analysis ensembles derived from both SE and PE. The parameters

obtained by PE were also employed in the latter case. Predictions were issued at the beginning of each January, April, July, and210

October, extending for 12 months. The Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) (Rayner et al.,

2003) served as a reference dataset to compare the produced prediction products.

The schematics in Figures 2a-c show the sensitivity experiment, the SE experiment, and the PE experiment, respectively.

It can be seen that the sensitivity experiment is a free integration experiment using the same initial condition and different

parameters. The SE experiment uses the ensemble of state variables and the same default parameters. At the same time, the PE215

experiment uses ensembles for both state variables and parameters. PE experiments are divided into three phases, which we

will specify in the Results and Discussions section. Moreover, it also shows that the state and parameter estimation results are

used in the later hindcast experiments.

3 Results and discussions

3.1 Sensitivity experiment220

Twenty identical ensemble members were utilized for the parameter sensitivity experiment in the CESM integration, which

persisted for five years, with four parameters perturbed simultenously. It is worth noting that we tried experiments where we

perturbed the parameters one by one, and the experimental results showed that perturbing the different BVDCs had a com-

parable effect (not shown here), so we used this simultaneous perturbation scheme.with parameters perturbed. The ensemble

spreads of temperature and salinity variables, which measures their sensitivity to the perturbed parameters, are shown in Figure225

2. The global (66.5◦S - 66.5◦N) and equatorial (5◦S - 5◦N) averaged temperature and salinity ensemble spreads were demon-

strated accordingly. Perturbing BVDCs in the model leads to a rapid increase in temperature and salinity ensemble spread

within the first year, followed by relative stability in the succeeding years. Figure 3 displays that temperature variables have

the maximum sensitivity to BVDCs at approximately 100 meters depth, with salinity variables being most sensitive to these

parameters at the sea surface. The influence of parameter’s uncertainty can extend up to a depth of approximately 400 meters.230
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Additionally, the equatorial area is highly sensitive to BVDC parameters in temperature at a depth of 50-100 meters and in

salinity at the sea surface. The surface temperature variability in Figure 3a shows a conspicuous seasonal cycle which can

possibly be related to the diverse rates of change in mean temperature instigated by distinct ocean areas between the northern

and southern hemispheres.

The last three years’ outcomes were used to computed the mean spread and analyze its spatial distribution. Figure 4 provides235

additional validation that temperature variability is highest within the equatorial range and most pronounced at a depth of

100m. In deeper layers, the parameters affect the temperature more significantly in western Pacific. Additionally, salinity is

highly sensitive to the parameters in the warm pool region of the tropical western Pacific, and the sensitivity of salinity to

parameters is highest in the shallow layers, less than 50m depth. Furthermore, in extratropics, the temperature and salinity in

the Kuroshio extention and Gulf Stream regions are also sensitive to these parameters to some extent.240

The sensitivity experiment shows that the model temperature and salinity are sensitive to the uncertainty in the BVDCs,

strongly indicating that assimilating SST and T-S profiles can potentially reducing the uncertainty.

3.2 Estimated parameters

We conducted separate SE and PE experiments, assimilating observations during the period between January 2005 and De-

cember 2017. In the SE experiment, default values of the BVDCs were consistently used in all ensemble members throughout245

the entire period. However, the PE experiment comprised three distinct phases. During the initial phase, we utilized perturbed

parameters to perform state estimation. It spans a period of 1 year and brings the state estimation process to approximately

quasi-equilibrium, where the uncertainty of coupled model states is sufficiently constrained by observations.where observations

were assimilated to constrain uncertainties arising from initial conditions. This stage significantly enhanced the signal-to-noise

ratio of the state-parameter covariance. In the second phase, spanning from 2006 to 2007, we activated the PE function il-250

lustrated in Figure 1. This function facilitated continuous correction of the parameter ensemble through observations. Finally,

during the third phase, spanning from 2008 to 2017, these parameters remained unchanged.

Figure 5 depicts a graphical representation of the 20 ensemble members of the four BVDCs over time, with the ensemble

mean represented by the red solid line. Observations gradually decreased the spread of the parameter ensemble, resulting in

less uncertainty. After approximately two years, the parameter ensemble degenerated, and the spread reached 0. Consequently,255

assimilating observations could no longer adjust the parameters.

Table 2. PE final BVDC values.

Parameters v1 ve vp vb

Default value(cm2/s) 0.16 0.01 0.13 1.0

PE final value(cm2/s) 0.195 0.0091 0.161 1.10

Ratio of increase 21.9% -9% 23.8% 10%
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Table 2 presents the final values of BVDCs. Notably, v1 and vp values are 20% higher than the default values, while vb is

10% higher (except for ve, which is slightly lower than the default value). It’s also worth noting the almost globally increasing

value of the background vertical diffusivity, kw, as calculated through Eq. 1 and depicted in Figure 6. The left-hand side of

Figure 6 displays the band structure of the default background diffusivity, while the increment obtained by PE is shown on the260

right-hand side, further validating the achieved results.

3.3 Quality of the analysis

As previously mentioned, the parameters have remained unchanged since 2008. Consequently, the third phase of the PE ex-

periment can be considered a distinct SE experiment using the estimated parameters listed in Table 2. This study focuses

specifically on evaluating the analyses obtained from the third phase by comparing the results of the PE and SE experiments.265

we compare our analysis fields with the gridded objective analysis data from EN4 and other reanalysis products to demon-

strate the validity of our results. Figure 7 displays the root mean squared error (RMSE) of the temperature in the analysis fields

for the period of 2008-2017 by region. We compared the results with EN4, ORAS4, and ECDA. The regions are Global (within

66.5◦N-S), Pacific, Indian Ocean, Atlantic, and intra-tropical (within 30◦N-S). Similar findings can be observed globally and

in most regions using different datasets. When examining the global mean temperature, the depths with significant analysis270

errors are consistent with the parameter-sensitive depths, indicating that parameter uncertainty can impact the analysis accu-

racy. Moreover, the reduced RMSEs of the PE experiment indicates that PE improves the quality of the analysis. In particular,

noticeable improvements are observed below a depth of 100 m. The most pronounced improvement is observed in the Atlantic

Ocean and in tropical regions. Figure 8 illustrates the salinity errors in the analysis. The highest error is observed in the sea

surface layer, which is consistent with the most sensitive depth to parameters (Figure 3b and d). In contrast to temperature, PE275

primarily enhances salinity accuracy in deep Atlantic and tropical regions tropical regions and in the Indian Ocean.

Figure 9 displays the RMSEs of the SE experiment and EN4 data in the tropics while emphasizing the disparity with the

PE experiment. As Figure 9a shown, the most considerable temperature errors appear in all oceans around the depth of 100

meters, which matches the sensitivity analysis result for temperature depicted in Figure 9cFigure 4. Figure 9eb denotes an

improvement in PE for these errors, implying its usefulness throughout the tropics. It is noted there is substantial improvement280

in areas where the temperature are sensitive to the uncertainty of those parametersthe errors are significant. And the temperature

error in the deeper layers of the tropical oceans has also been reduced, especially in the deeper Atlantic Ocean. , except for the

deep Atlantic Ocean. Figures 9b, 9d and 9fand 9d show the results for salinity. Although not as significant as temperatureOnce

more, the depths and areas where salinity errors emerge in the SE analysis align with those sensitive to parameters(Figure 4).

Unsurprisingly, PE partially mitigates these errors, most significantly around the Andaman Sea, waters near Indonesia, and the285

coastal West African waters where vertical mixing is intensive.

The model bias of CESM is relatively large in the Atlantic Ocean. Danabasoglu et al. (2012) have shown the zonal-mean

temperature and salinity of CCSM4 (which uses the same ocean model as CESM) minus climatology from observation. They

noted that the deep Atlantic Ocean remains generally warmer than observed by about 0.58oC in the mean. The local temperature

and salinity maxima between 20◦ and 30◦N at a depth of about 1000 m are associated with the warmer and saltier than290
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observed Mediterranean outflow through the Strait of Gibraltar. The largest salty biases occur in the deep Atlantic Ocean.

The upper-ocean Atlantic north of 15o N remains mostly saltier than the climatology. We show similar results in Figure 10,

which displays the zonal-mean temperature and salinity minus the climatology calculated from EN4 data using SE results

and PE results, respectively. By comparing the climatology bias of the results from two experiments, it is seen that the most

significant improvement of the PE on the SE lies in the Atlantic Ocean at a depth of 1000 m between 20◦ and 30◦ N latitude.295

It strongly suggests the contribution of improved background diffusivity parameters to reducing model systematic biases. It

can be inferred from the conclusions of Danabasoglu et al. (2012) that this improvement also stems from the improvement of

the outward flow in the Strait of Gibraltar. Although the sensitivity and analytical errors in this region cannot be demonstrated

directly in Figure 9 due to resolution, the effect of PE is demonstrated by affecting the 1000m Atlantic Ocean between 20◦

and 30◦ N latitude. This explains the smaller Deep Atlantic RMSE in the PE results presented in Figures 7 and 8.Figure 10300

displays the RMSE of the SE experimental results and EN4 data, the difference RMSE between SE and PE results at different

latitudes in the Atlantic Ocean, to highlight the PE effect on the deep ocean. The temperature and salinity errors in the Atlantic

Ocean are similar to that identified by Danabasoglu et al. (2012), where the deep Atlantic Ocean is about 0.58 Celsius warmer

than observed. Furthermore, a local maximum is visible at 1000 m depth in the 20 ◦N to 30◦N regional zone, associated with

the warmer and saltier Mediterranean outflow through the Strait of Gibraltar than observed. As illustrated in Figure 6b, PE305

considerably ameliorated the vertical mixing, particularly at 28.9◦S and 28.9◦N latitudes via the coefficient ve. Consequently,

PE markedly decreased the temperature and salinity errors, including those in deeper layers beyond the 1000 meters, at these

latitudes, as Figures 10b and 10d demonstrate.

3.4 ENSO forecast experiment

This study utilized analysis ensembles from the coupled data assimilation system to conduct ENSO forecast experiments be-310

tween 2008 and 2017. The Nino-3.4 index, calculated as the averaged sea surface temperature anomalies between the latitudes

of 5◦S to 5◦N and longitudes of 190◦E to 120◦W was employed to illustrate the variability of ENSO. The Nino-3.4 indices

of the SE and PE forecasts were computed against various lead times. The anomaly correlation coefficients (ACC) of these

outcomes with the index derived from HadISST data were employed to measure the prediction skills, as shown in Figure 11a.

Moreover, Figure 11b depicts the RMSE of the forecasts against HadISST.315

The prediction skills of both SE and PE cases were significantly superior to those of the persistence skills represented by

a black dotted line. For lead times exceeding five months, the PE case exhibited higher ACCs compared to the SE case. By

setting the threshold value of an effective prediction as a ACC of 0.5, which is equivalent to the 99% statistical confidence

level with an independent sample size of 30, it was observed that the SE case effective predict ENSO at a lead time of up to 9-

month which is 1 month in advance compared to the PE case. To demonstrate the significance of the PE advantage, ACCs were320

computed for each ensemble member using HadISST. The shaded areas represent the ACCs of the ensemble mean plus/minus

the standard deviation of the ACCs of each member, further confirming the superior prediction ability of the PE case.

The root mean square errors (RMSEs) of the PE case were also lower than those of the SE case, particularly after a lead time

of 5 months. Additionally, the ensemble spreads (colorful dashed lines in Figure 11b) of the PE results were larger compared
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to those of the SE predictions. Since the spreads of the PE results were closer to the RMSE than those of the SE results, it325

indicates that the PE initial conditions are more consistent.

Figure 12 illustrates the spatial correlation coefficient pattern between the predicted sea surface temperature (SST) anomaly

and the corresponding HadISST data over the tropical Pacific for the SE and PE cases. The SE and PE results showed no

significant difference for lead times of one or four months. However, for longer lead times, the initial conditions and parameters

obtained through PE significantly improved the SST anomaly in the tropical Pacific. As illustrated in Figure 9, the outcomes of330

our data assimilation experiments reveal a notable reduction in analysis error within the thermocline of the equatorial Pacific

due to parameter estimation. This yields improved initial conditions for ensemble prediction. Simultaneously, the refined

parameters contribute to enhanced global vertical mixing. Consequently, the SSTA in the tropical Pacific, derived from our

forecasts incorporating parameter estimation, exhibit a higher ACC with observational data. In addition, since the advantage

of the PE analysis in the subsurface layer takes some time to affect the SST, the forecast skill based on the PE results is only335

significantly greater than that of the SE results at longer lead times.

At a ten-month lead time, the correlation coefficient of SST anomaly in the entire equatorial Pacific (5◦S–5◦N, 190◦E–90◦W)

for the PE results was higher than that of the SE results, indicating improved forecast skills for the ENSO indices.

The improvement in PE for ENSO forecasts is likely attributed to better simulations of subsurface temperatures. Previous

studies have consistently shown that the accuracy of initial subsurface conditions is crucial for ENSO event prediction (Tang340

et al., 2003; Song et al., 2022). The PE method not only enhances the accuracy of the initial subsurface conditions (as demon-

strated in Figure 7 and Figure 8), but also provides constrained parameters that more accurately represent the background

diffusivity process in the ocean model, leading to improved forecast skills.

4 Conclusions

Errors in the coupled model can arise from uncertainties in the dynamic cores, numerical schemes, physical parameterization345

schemes, and empirical parameters. PE is the process of adjusting or optimizing model parameters using observations, the

method of PE is very similar to SE. However, PE has additional complexity since parameters are indirectly related to model

states, and the state-parameter covariance is challenging to estimate.

In this study, the fully coupled CESM was used to perform the SE and PE experiments, in which satellite SST and subsurface

T/S profiles were assimilated using an ensemble Kalman filter to estimate the model states and critical parameters in vertical350

mixing parameterization. The SE system was established and comprehensively evaluated by Chen et al. (2022), and PE methods

were developed using a new solution to deal with constant parameter evolution (Shen and Tang, 2022). In this work, we used

these systems to conduct experiments to compare the SE and PE in the CGCM.

The parameter sensitivity experiments were first conducted to evaluate the sensitivity of the model variables to the parame-

ters, which were measured by the ensemble spread for the temperature and salinity variables significantly. Figure 3 and figure355

4 show that the BVDCs impact the model temperature and salinity variables significantly. Therefore, the PE is theoretically

feasible using SST and T/S observations.
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The data assimilation results, using either SE or PE, were assessed against the EN4 objective analysis dataset and the other

reanalysis datasets. The DA analyses errors (Figure 7 - Figure 10) and the parameter sensitivity results have similar patterns,

ultimately revealing that the model errors were partly caused by uncertainties in these parameters. PE can reduce analysis360

errors in sensitive domains by considering the parameter uncertainties during assimilation.

One key challenge of using PE with real observations is the verification of the parameters, which cannot be observed. In

this study, the estimated parameters and PE-derived initial conditions are employed to perform ensemble ENSO prediction.

The prediction outcomes provide evidence of the benefits of using PE. Figures 11 and 12 present evidence that using more

accurate initial conditions and better parameters through the PE method increases the prediction skill of ENSO, further verifies365

our conclusions.

This study brings forward the advancement of PE studies, from the perfect model Observing System Simulation Experiment

(OSSE) scenario to real-world observations assimilation in CGCMs. The comparison between PE and SE highlights the poten-

tial of PE to improve coupled model reanalysis and prediction. However, the results in Figure 11 and Figure 12 indicate that PE

only slightly improves the prediction skill of this coupled prediction system. However, the prediction skill of ENSO is affected370

by many factors, such as predictability, in addition to the initial conditions and model errors (Liu et al., 2022). Therefore every

bit of improvement of the ENSO dynamical prediction skill is of some practical significance. Nevertheless, we will also pursue

higher dynamical prediction skill in the future research.

In addition, to reduce the complexity of the problem, we only estimated four parameters in the vertical mixing parameter-

ization in this study. However, many parameters in various physical processes exist that have impacts on the simulation and375

prediction of ENSO (Gao and Zhang, 2017; Zhao et al., 2019), which should be considered in future studies. Moreover, the

spatial distribution of the parameter sensitivity, as shown in figure 3, has not been used in the PE algorithm. This may serve as

a potential strategy (Shen et al., 2022) to improve the efficiency of PE methods in CGCMs.
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perature (OISST) (ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/NetCDF-uncompress), EN4 (https://www.metoffice.gov.uk/hadobs/en4/download-

en4-2-1.html), Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) (https://www.metoffice.gov.uk/hadobs/hadisst),

Geophysical Fluid Dynamics Laboratory’s Ensemble Coupled Data Assimilation (GFDL/ECDA) (https://www.gfdl.noaa.gov/ocean-data-

assimilation-model-output/), and Ocean Reanalysis System 4 (ORAS4) (https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis).
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in this study for parameter estimation, are archived on Zenodo under the DOI: 10.5281/zenodo.8115394. The repository also includes the

experiment results and the scripts for plotting.
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Figure 2. The schematic diagrams of the sensitivity experiment (a), SE experiment (b) and PE experiment.
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(a) (b)

(c) (d)

Figure 3. The global averaged (between 60◦S and 60◦N) ensemble spread of temperature (a) and salinity (b); (c) and (d) are the same as (a)

and (b), but were averaged over the equator (between 5◦S and 5◦N)
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Figure 4. Spatial distribution of the ensemble spread of sea temperature (left) and salinity (right) at different depths.
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(a) (b)

(c) (d)

Figure 5. Evolution of each parameter since 2006, in which the red solid lines indicate the ensemble mean.

Figure 6. (a) Default latitudinal structure of background vertical diffusivity; (b) the increment of the background vertical diffusivity from

PE.
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Figure 7. The temperature RMSE of the data assimilation results with EN4 (top), ORAS4 (middle), and ECDA (bottom) for the period

of 2008-2017 by region. The regions are - Global (within 66.5◦N-S), Pacific, Indian Ocean, Atlantic, and intra-tropical (within 30◦N-S),

respectively, from left to right.
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Figure 8. The same with Figure 6 but for salinity RMSE.
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Figure 9. The temperature (a) and salinity (b) RMSE of the SE results and EN4 data in the tropics; the mean temperature (c) and salinity (d)

spreads of the sensitivity experiment results in the tropics; the difference between the temperature (e) and salinity (f) RMSE of the SE results

and that of the PE results, respectively.

Figure 10. The zonal-mean temperature (a) and salinity (b) minus the climatology calculated from EN4 data using t SE results, and The

zonal-mean temperature (c) and salinity (d) bias using the PE results.
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Figure 11. Correlation coefficients (a) and root-mean-square errors (RMSEs) and mean spreads (b) of the observed and forecasted Niño-3.4

index as a function of lead time.
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Figure 12. Spatial pattern of the correlation coefficients between the predicted and observed SST anomalies (SSTA) with SE initialization

(left column) and PE initialization (right column) at the 1-month, 4-month, 7-month, and 10-month lead times.

27


