
Dear editors and reviewers, 

Thank you for all the comments on our manuscript entitled “Parameter estimation 
for ocean background vertical diffusivity coefficients in the Community Earth System 
Model (v1.2.1) and its impact on ENSO forecast”. We greatly appreciate the interests 
that the editors and the reviewers have taken in our manuscript and the constructive 
comments they have given. 

All the comments and suggestions were very helpful for revising and improving our 
paper. We have studied these comments carefully and have made corresponding 
corrections that we hope will meet with your approval. More specifically, we have 
made the following significant changes in this revision: 

1. We have rewritten the parameterisation scheme and the parameter section of the model, 
emphasising the motivation for choosing the background diffusion parameterisation process 
and clarifying the meaning and form of the parameters. 

2. We draw a schematic diagram (figure 2) for the sensitivity experiment, the state estimation 
experiment and the parameter estimation experiment to better explain the experimental 
setup 

3. Original Figures 8 and 9 were redrawn and used to better illustrate the reasons for the 
advantage of the PE results relative to the SE results in the tropical and Atlantic regions. 

We have taken on board the reviewers' comments and added many details. A point-
by-point response to the reviewers’ comments is included in the Reply (the 
reviewer’s comments are in italics). Changes in the revised manuscript are tracked 
and highlighted. 

Thank you again for your consideration of our revised manuscript. If you have 
further queries, please do not hesitate to contact us. 

Sincerely,  

Zheqi Shen  

Corresponding Author,  

Hohai University, Nanjing,China 

 

 

** reviewer’s comments in black and italics Author’s comments in red 

 

Reviewer 1: 

This study presents parameter estimation experiments utilizing the CESM model to 
assimilate Sea Surface Temperature (SST) and Temperature/Salinity (T/S) profiles for 
initializing ENSO prediction. The results demonstrate the potential of parameter 
estimation over state estimation, revealing enhanced ENSO prediction skills achieved 



through more accurate parameter estimates. This work is interesting and worthy of 
publication. However, some minor revisions are necessary before acceptance. 

Reply:  

We sincerely thank the reviewer for the suggestions and comments that help us 
improve the quality of our manuscripts.  

 
Major Comments: 

Starting from line 141, the authors conducted sensitivity experiments by perturbing 
multiple parameters to assess the model's temperature and salinity variables' sensitivity 
to those parameters. It is noted that parameters were perturbed simultaneously. Have the 
authors considered perturbing these parameters individually? Could the sensitivity of 
variables to different parameters differ? 

Reply:  
That's a good question. In fact, we have done previous experiments where we 
perturbed a single parameter and calculated the average ensemble spread of the 
results of the sensitivity experiments with the following results:  

In these experiments, we still used the same initial field, and perturbed parameters to 
integrate the model. In these experiments, we perturbed only one parameter at a time, 
while keeping the other parameters constant. Thus, calculating the ensemble spread 
of the integration results allows us to assess the sensitivity of the model variables to 
this perturbed parameter. 

 

 
Figure 1. Evolution of ensemble dispersion obtained after slightly perturbing different 
parameters and integrating the model for a period of time. 
 
Figure 1 shows the global average of the ensemble spread of the SST with integration 
time, and the different coloured lines represent the integration results of perturbing 
different parameters. It is not difficult to find that the dispersion of the integration 
results of perturbing the four parameters is not much different, which indicates that 
the sensitivity of the temperature variables to the four BVDCs is not much different. 
The situation is similar for salinity. So we chose the scheme of simultaneous 
perturbation in the sensitivity experiment. 
 
We put this conclusion in the discussion section of the sensitivity experiment results. 



 
Thanks for the suggestion and comments. 
 
From line 188, the authors mention that during the first phase of Parameter Estimation 
(PE), parameters were perturbed but only State Estimation (SE) was used, lasting for a year. 
The state variables employed for PE and the motivation for this approach need clarification. 

Reply:  
 
The motivation of this strategy is indicated by section 2.4 (experimental design and 
verification data). Zhang et al. (2012) showed that the signal-to-noise ratio of the 
state-parameter error covariance in a coupled model can be significantly improved 
after the state estimation reaches quasi-equilibrium. Thus, using the observation-
constrained states that have reached equilibrium can effectively improve the accuracy 
of CPE (Zhang 2011a, b). In the PE experiment, we utilized perturbed parameters to 
perform state estimation in the beginning. After about 1 year, the model's errors in 
the state variables, especially temperature and salinity, were significantly reduced, 
and we assumed that the state estimation process had roughly reached equilibrium, 
and then enabled the parameter changes.  
 
We have indicated this in the lines in section 3.2 as you pointed out. 
 
Thanks. 
 
In Figure 8, the authors present Root Mean Square Error (RMSE) without specifying the 
reanalysis data it pertains to. Despite earlier indications of similar results from different 
reanalysis datasets, it is advisable to explicitly mention the data used.  

Reply:  
We have calculated the RMSE for the analysed field and EN4 data in figure 8 and figure 
9, which we have pointed out in the revised manuscript. 
Thanks. 
 

Additionally, line 219 asserts that the maximum error occurs at the depth most sensitive 
to parameters, which is not immediately apparent. It is recommended to include a 
subfigure depicting parameter sensitivity along the equatorial range, using a logarithmic 
depth coordinate. Similar concerns are noted in Figure 9. 

Reply:  
It is a very good suggestion, and we have modified figure 8 accordingly. Inside the new 
figure, we find a high degree of matching between the error of the SE results and the  
ensemble spred of the sensitivity experiment results, which highlights our conclusions 
even more.  
 
As for Figure 9, we have revised the whole figure based on another reviewer's 
comments. Since the improvement in Atlantic is not due to parameter sensitivity but 
based on other mechanisms, we do not include the sensitivity results in this figure. 



Thank you for your suggestion. 
 
 
Minor Suggestions: 

In lines 56-58, apart from the atmosphere, ocean, land, and sea ice, CESM encompasses 
other modules as well. The authors should use "as well as other modules" to accurately 
depict the model. 

Reply:  
Changes have been made as you suggested, thanks. 
 
Is Equation (1) valid outside the Banda Sea region, using a value of 1.0 within the Banda 
Sea? Clarify this description for improved understanding. 

Reply:  
Yes, the default background vertical diffusivity parameter is 1.0 in the Banda sea. We 
have re-written this part and clarified the description, thanks. 
 
Regarding line 108, the authors mentioned "daily profiles were merged and assigned to 
the final day of each sequence". Is there any other references employed the same 
approach to process the data? 
Reply:  
 
In our previous study, e.g., Chen et al. (2022,2023), In our previous study, we used the 
above methodology to process the profile data. The main reason for this is that the 
EN4 profile data are unevenly distributed in both space and time, and if they are not 
processed using the appropriate method, overfitting may have occurred due to the 
assimilation of too much data. Previous studies have shown that this processing 
method can produce effective state estimation results. 
 
We have cited these papers in the manuscript. Thanks. 
 
l Chen, Y., Shen, Z., & Tang, Y. (2022). On Oceanic Initial State Errors in the 

Ensemble Data Assimilation for a Coupled General Circulation Model. Journal of 
Advances in Modeling Earth Systems, 14(12). 
https://doi.org/10.1029/2022MS003106 

l Chen, Y., Shen, Z., Tang, Y., & Song, X. (2023). Ocean data assimilation for the 
initialization of seasonal prediction with the Community Earth System Model. 
Ocean Modelling, 183(102194). 

 
Line 109 mentions interpolation to 31 layers. Could the specific depths of these layers be 
provided? 
Reply:  
 
Specific vertical depths were obtained from the EN4 analysis data. We've added that 
to the draft, thank you. 
 



 
Review 2:  

This study investigates parameter estimation (PE) in improving climate forecasts of a 
coupled general circulation model by adjusting the background vertical diffusivity 
coefficients in its ocean component. Comparing the model states between the PE 
experiment and a state estimation (SE) experiment reveals that PE can significantly 
reduce the uncertainty of these parameters and improve the quality of analysis. The 
forecasts obtained from PE and SE experiments further validate that PE has the 
potential to improve the forecast skill of ENSO. The work is interesting and may has 
potential application in practice. However, there are some issues unclear in the 
manuscript. I would suggest that it should be published in GMD, subject to major 
revisions.  

Reply:  

We sincerely thank the reviewer for the suggestions and comments that help us 
improve the quality of our manuscripts.  

1. Major concerns:  

(1) The manuscript focuses on improving the background vertical diffusivity and its 
impact on ENSO forecast. However, the background vertical diffusivity is only 
important in the deep ocean and the coefficients of the KPP dominate the mixing 
process of the upper ocean. Therefore, results show that the main differences 
between PE and SE are in the deep ocean, and the improvement on the upper ocean 
is not significant as the authors mentioned. From the text, the author pays more 
attention to the process of ENSO which is mainly associated with the upper ocean 
process. So why do the authors not adjust and optimize the parameters of KPP?  

Reply:  

Thanks to the reviewer for the comment, it is a very good one. We have revisited the 
motivation of this paper and emphasised the importance of parameter estimation of 
background vertical diffusivity coefficients within the ocean. 

In many OGCMs, vertical mixing can be parameterized separately by region, including 
upper boundary layer schemes and a diapycnal mixing scheme for the ocean interior. 
The K-profile parameterization (Large, 1994) is widely used to parameterize vertical 
mixing in ocean models. It includes a background diffusivity parameter that 
determines the diapycnal mixing in the thermocline. It is critical to the heat transfer 
between the upper boundary layer and the ocean interior. The background diffusivity 
is typically set to a constant value, and its magnitude is determined by fitting the 
model to observations or theoretical considerations. As identified by much of the 
previous work, the background diffusivity parameterization is a key factor in vertical 
mixing parameterizations that have significant uncertainties and contribute to a 
large bias in SST simulations (e.g., Jochum et al., 2013; Melet et al., 2013; Zhang & 



Zebiak, 2002, 2004; Zhang & Gao, 2016; Zhu & Zhang, 2017). Zhu et al. (2018) have 
shown a better background diffusivity parameterization leads to more realistic 
simulations of the cold tongue and equatorial thermocline, which has the potential to 
affect the fidelity of simulated seasonal to interannual variability in the tropical 
Pacific, such as the ENSO phenomenon.  
 
We have put that previous paragraph in the revised paper to illustrate the 
motivation for this paper. However, according to Large (2003) and related studies, 
background diffusivity coefficients are parameters of the K-profile parameterization, 
which is also reflected in the namelist of CESM/POP. In this paper, we have focused 
on the parameter estimation of the background vertical diffusivity coefficients 
without including the upper boundary layer parameterization. The latter of course 
has some uncertainties and may be able to improve the simulation, which we will 
discuss in a future study. 
 
Thanks for the comments. 
 

(2) The key issue of adjusting model parameters with real data is how to ensure the 
physical meaning of the parameters. The manuscript does not explain how to avoid 
the parameters from exceeding their physical values, specially for the spatial varying 
parameters.  

Reply:  
Thank you for your question, which is very important for implementing parameter 
estimation experiments.  
 
We apologize for the lack of precision in describing the parameters in the draft, 
which may have led to some misunderstandings. We have made major changes to 
this section, see section 2.1. Specifically, the parameters we estimate are just four 
constants that constitute the background diffusion parameters for latitudinal 
variations through Eq. (1). This latitudinally varying background diffusivity parameter 
can also be seen in Figure 6a. 

 



In our experiments, we use the observations to update these four constants. We first 
perturb the parameters to conform to a Gaussian distribution using a standard 
deviation of 30% of their values, which adds uncertainty to the parameters and is 
practically unlikely to result in unphysical values. The parameter estimation process 
is then used to reduce the uncertainty in the parameters, and it will adjust the 
ensemble of parameters based on real observations and essentially not run out of 
reasonable ranges: i.e., the values of the four parameters all match their 
magnitudes. We examined the data assimilation results, which turned out to be the 
case.  
 
Of course, for the sake of the integrity of the algorithm, we need to use certain 
control conditions to avoid unphysical parameter values for a certain ensemble 
member (although very rare). So, we added the following statements in the 
description of the method.  
 
It is worth noting that in order to avoid unphysical parameter values, after each 
parameter estimation, if an abnormal parameter value (e.g., negative value) occurs 
for an ensemble member, we remove the parameter and use the parameter of a 
neighbouring member to integrate the model.  

(3) It is unclear how the adaptive spatial averaging is calculated. How big is the 
specific average bin? Does it cause spatially discontinuous?  

Reply:  

We apologise for missing some details. We have added the details of the method in 
the revised version, see section 3.2. 

In each data assimilation step, we transformed each parameter from a single scalar 
value into a two-dimensional field, considering spatial dependence and localization 
during the assimilation. Afterward, we use the adaptive algorithm to average the 
two-dimensional parameter fields, to produce a scalar value incorporated in 
subsequent model integration. This algorithm calculates the ratio of the a posteriori 
standard deviation to the a priori standard deviation at each grid point after each 
update of the two-dimensional parameters, which implies the strength of the effect 
of assimilation, and then averages the parameter values at grid points where the 
ratio exceeds a certain threshold. This threshold is chosen using an adaptive 
algorithm to ensure that a certain number of grid points (in this experiment 10,000 
out of a total of 80,000 grids) are included in the calculation of the averaged 
parameters. More details refers to Shen and Tang (2022).  

No spatial discontinuity occurs because the four constant-valued parameters are still 
obtained after applying spatial averaging to the two-dimensional parameters. 

  



(4) Table 1 involves 4 parameters and the use of parameters is regional. Do you only 
adjust the corresponding parameters in specific regions such as the equator and the 
Banda Sea?  

Reply:  

We have answered this questions in the response to Major concerns (2). Once again, 
we apologise for the misunderstanding caused by inappropriate descriptions. 
 

(5) How are the 20 sensitivity experiments and other experiments set up and 
operated? A figure regarding this should be added. Based on Table 2, the parameter 
adjustment is quite small, and the parameters tend to reach a certain equilibrium 
state. However, the observations (number and locations) used each year are different. 
Why do the adjustment of parameters not change year by year?  

Reply:  

Thanks to your suggestion, we have drawn a schematic to illustrate the experimental 
framework for the sensitivity experiment, the state estimation experiment and the 
parameter estimation experiment. 

The schematics in Figures 2a-c show the sensitivity experiment, the SE experiment, 
and the PE experiment, respectively. It can be seen that the sensitivity experiment is a 
free integration experiment using the same initial condition and different 
parameters. The SE experiment uses the ensemble of state variables and the same 
default parameters. At the same time, the PE experiment uses ensembles for both 
state variables and parameters. PE experiments are divided into three phases, which 
we will specify in the Results and Discussions section. Moreover, it also shows that 
the state and parameter estimation results are used in the later hindcast 
experiments. 

 



 
Figure 2. The schematic diagrams of the sensitivity experiment (a), SE experiment (b) 
and PE experiment. 
 

For the second problem, since we use the spatial averaging scheme described above, 
the parameter values changed per assimilation are very small. And data assimilation 
is a process that reduces ensemble spread, which is inevitably reduced even if we 
use the covariance inflation method described earlier. Moreover, since the ensemble 
spread of the state variables grows with model integration, and the parameters are 
generally assumed to be constant during integration, the parameter ensemble must 
eventually degenerate - the spread becomes 0, and all observations are rejected. In 
practical assimilation, the conditional covariance inflation (CCI) method can ensure 



that the ensemble spread does not fall below a lower bound (Liu et al. 2014).  The 
CCI is designed to inflate the parameter ensemble spread back to a predefined 
threshold value when it is smaller than the threshold. Details on this method can 
also be found in our previous work (Shen and Tang, 2022), which is an ideal 
experiment using the same CESM model. 

However, in this work, we intentionally do not use the CCI method and let the 
parameter ensemble degenerate. At this point, all ensemble members can use the 
same improved parameters to carry out the ensemble forecast, which makes the 
ensemble forecast easier to carry out and compare with other schemes. This may 
not be the optimal solution for parameter estimation, but it is the most convenient 
solution for carrying out realistic forecasts.  

The experiment in Figure 3 also assimilates synthetic TS profiles and SST 
observations to estimate the vdc1 parameter in the same CESM model. As shown in 
the figure below, the amount of change in the parameter values after a period of 
assimilation is very small as long as the proper parameter covariance expansion 
coefficients are used (scenarios a - c), so we believe that switching off the CCI also 
yields relatively improved parameters. 

Thanks for the questions and suggestions. 



 
 

(6) Line 215: “The highest error is observed in the sea surface layer, ....” I can't see 
the relevant results in Fig.7. The main differences are still at the depths of 600m-
1200m in the Atlantic and tropical regions.  

Reply:  

Sorry for the lack of clarity in the sentence.  

For the original Figure 7 (Figure 8 in the revision), we refer to the fact that the largest 
salinity errors in both SE and PE analysis fields occur at the sea surface, as can be 
seen from the larger RMSE in the surface layer in Figure 7. It is certainly true, as you 
say, that the most significant improvements in PE over SE are in the deep tropics as 
well as in the deep Atlantic. The reasons are explained in the next two figures. 
 



 
 

(7) Based on the sensitivity experiments, the main impact is in the upper 100m. 
However, from the assimilation results, the main differences are still at the depths 
over 600m in the tropical and Atlantic regions. Why is this?  

Reply:  

Referring to another reviewer's comment, we redrew the original Fig. 8 to show the 
correspondence between parameter sensitivity and SE analysis error. 

 
 
As Figure 9a shown, the most considerable temperature errors appear in all oceans 
around the depth of 100 meters, which matches the sensitivity analysis result for 



temperature depicted in Figure 9c. Figure 9e denotes an improvement in PE for these 
errors, implying its usefulness throughout the tropics. It is noted there is 
improvement in areas where the temperature are sensitive to the uncertainty of 
those parameters. And the temperature error in the deeper layers of the tropical 
oceans has also been reduced, especially in the deeper Atlantic Ocean. Figures 9b, 9d 
and 9f show the results for salinity. Although not as significant as temperature, the 
depths and areas where salinity errors emerge in the SE analysis align with those 
sensitive to parameters.  
 
The story for the Atlantic is quite different. Danabasoglu et al. (2012) show the 
zonal-mean potential temperature 𝜃 and salinity 𝑆 of CCSM4 (which uses the same 
ocean model as CESM) minus climatology from obseravation in the following figure. 
They noted that the deep Atlantic Ocean remains generally warmer than observed 
by about 0.58C in the mean. The local 𝜃 and 𝑆 maxima between 20o and 30oN at a 
depth of about 1000 m are associated with the warmer and saltier than observed 
Mediterranean outflow through the Strait of Gibraltar. The largest salty biases occur 
in the deep Atlantic Ocean. The upper-ocean Atlantic north of 15 o N remains mostly 
saltier than the climatology. 
 

 
 
We draw a similar climatology bias for temperature and salinity in Figure 9. Although 
compared to different observations, similar results are demonstrated, especially as 
the deep ocean also has a warm and salty bias caused by systematic biases in the 
model. By comparing the climatology bias of the results from two experiments, it is 
seen that the most significant improvement of the PE on the SE lies in the Atlantic 
Ocean at a depth of 1000 m between 20° and 30° N latitude. It strongly suggests the 
contribution of improved background diffusivity parameters to reducing model 
systematic biases. 
 
It can be inferred from the conclusions of Danabasoglu et al. (2012) that this 
improvement also stems from the improvement of the outward flow in the Strait of 
Gibraltar. Although the sensitivity and analytical errors in this region cannot be 
demonstrated directly due to resolution, the effect is demonstrated by affecting the 
1000m Atlantic Ocean between 20° and 30° N latitude.  
 



We have revised the disscussion in section 3.3, thanks for the comments. 

 
 

(8) Line 221: “It is noted there is substantial improvement in areas where the errors 
are significant, except for the deep Atlantic Ocean”. Estimated from the magnitude of 
SE-PE, the proportion of error reduction is less than 5%. It can't be said 
“substantial improvement”.  

Reply:  

We agree with the reviewer's comments, and since we have revised this part of the 
discussion, this statement has been amended, thanks. 
 
 

(9) Fig.9 only mentions the differences in the Atlantic Ocean. How about the tropical 
ocean?  

Reply:  

The original Figure 8 (Figure 9 in the revision) displays the RMSEs of the SE 
experiment and EN4 data in the tropics while emphasizing the disparity with the PE 
experiment. We have shown the temperature and salinity RMSE of the SE results and 
EN4 data in the tropics; the mean temperature and salinity spreads of the sensitivity 
experiment results in the tropics; the difference between the temperatureand 
salinity  RMSE of the SE results and that of the PE results, respectively. 

Please see the response to Major concerns (7). 

(10) The forecast of ENSO does improve to a certain extent, but the improvement is 
not significant (The change of RMSE is less than 0.1°). Shown From Fig.11, it seems 
that most differences locate in the equatorial region. It may connect to the reduction 
of diffusivity in the region (smaller mixing and higher SST?). The authors should give 
more explanations regarding this issue.  



Reply:  

This is a very good commet and is important for the application of the results in this 
paper. 

In response to the major concern (1),  we have re-emphasised the significance of 
parameter estimation for BVDCs in the revised version. Specifically, Zhu and Zhang 
(2018) have demonstrated that an enhanced background diffusivity 
parameterization results in more realistic simulations of the cold tongue and 
equatorial thermocline. This improvement holds the potential to impact the accuracy 
of simulated seasonal to interannual variability in the tropical Pacific, including 
phenomena like ENSO. 
  
The outcomes of our data assimilation experiments reveal a notable reduction in 
analysis error within the thermocline of the equatorial Pacific due to parameter 
estimation, as illustrated in Figure 9. This, in turn, yields improved initial conditions 
for ensemble prediction. Simultaneously, the refined parameters contribute to 
enhanced global vertical mixing. Consequently, the SSTA in the tropical Pacific, 
derived from our forecasts incorporating parameter estimation, exhibit a higher ACC 
with observational data, as depicted in Figure 12. 
 
In addition, since the advantage of the PE analysis field in the subsurface layer takes 
some time to affect the SST, the forecast skill based on the PE results is only 
significantly greater than that of the SE results at longer forecast times. 
 
Of course, as the reviewer points out, the correlation coefficients between the nino 
indices computed with the PE forecast results and the indices computed with 
observations are only slightly larger than in the SE case. It can be concluded that PE 
only slightly improves the prediction skill of this coupled prediction system. 
However, the prediction skill of ENSO is affected by many factors, such as 
predictability, in addition to the initial conditions and model errors (Liu et al. 2021). 
Therefore every bit of improvement of the ENSO dynamical prediction skill is of 
some practical significance. Nevertheless, we will also pursue higher dynamical 
prediction skill in the future research. 
 
We have added the assertion about the advantages of PE in prediction and the 
reasons for it in the Results and Discussion section, and added the last part of the 
discussion in the Conclusions section. 
 
Thanks for the suggestion. 
 

2. Minor Concerns:  

(1) The assimilation just involves the ocean component. It seems not a couple 
assimilation system.  

Reply:  



I'm sorry we didn't go into all the details of the data assimilation system. The CESM 
model of our application enabled all the components, i.e., it is a fully coupled earth 
system model.  
A recent review by Zhang et al.(2020) gives the definition of coupled data 
assimilation (CDA). That is, the DA process is performed within the coupled model 
directly in CDA. So, although we assimilate only ocean observations in order to focus 
on the ocean parameterisation scheme, this also falls within the framework of 
coupled assimilation as we integrate the fully coupled model. This is often referred 
to as weakly coupled data assimilation (WCDA). 
 
We have pointed out this in section 2.2. Thanks. 
 
Zhang, S., Liu, Z., Zhang, X., Wu, X., & Deng, X. (2020). Coupled data assimilation and 
parameter estimation in coupled ocean–atmosphere models: A review. Climate 
Dynamics, 54(11). 

 

(2) In Fig.7, is it the ORAS5 or ORAS4?  

Reply:  

It is ORAS4, we have made changes in the revision. Thanks for pointing that out. 

(3)Line 116: “These factors were determined empirically and verified in prior 
studies.” References should be added here.  

Reply:  

We added our previous paper as a reference.  

(4) Units should be added in Figs.6, 7 and 10.  

Reply:  

Changes have been made as suggested. Thank you. 


