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Review 2:  

This study investigates parameter estimation (PE) in improving climate forecasts of a 
coupled general circulation model by adjusting the background vertical diffusivity 
coefficients in its ocean component. Comparing the model states between the PE 
experiment and a state estimation (SE) experiment reveals that PE can significantly 
reduce the uncertainty of these parameters and improve the quality of analysis. The 
forecasts obtained from PE and SE experiments further validate that PE has the 
potential to improve the forecast skill of ENSO. The work is interesting and may has 
potential application in practice. However, there are some issues unclear in the 
manuscript. I would suggest that it should be published in GMD, subject to major 
revisions.  

Reply:  

We sincerely thank the reviewer for the suggestions and comments that help us 
improve the quality of our manuscripts.  

1. Major concerns:  

(1) The manuscript focuses on improving the background vertical diffusivity and its 
impact on ENSO forecast. However, the background vertical diffusivity is only 
important in the deep ocean and the coefficients of the KPP dominate the mixing 
process of the upper ocean. Therefore, results show that the main differences 
between PE and SE are in the deep ocean, and the improvement on the upper ocean 
is not significant as the authors mentioned. From the text, the author pays more 
attention to the process of ENSO which is mainly associated with the upper ocean 
process. So why do the authors not adjust and optimize the parameters of KPP?  

Reply:  

Thanks to the reviewer for the comment, it is a very good one. We have revisited the 
motivation of this paper and emphasised the importance of parameter estimation of 
background vertical diffusivity coefficients within the ocean. 

In many OGCMs, vertical mixing can be parameterized separately by region, 
including upper boundary layer schemes and a diapycnal mixing scheme for the 
ocean interior. The K-profile parameterization (Large, 1994) is widely used to 
parameterize vertical mixing in ocean models. It includes a background diffusivity 
parameter that determines the diapycnal mixing in the thermocline. It is critical to 
the heat transfer between the upper boundary layer and the ocean interior. The 



background diffusivity is typically set to a constant value, and its magnitude is 
determined by fitting the model to observations or theoretical considerations. As 
identified by much of the previous work, the background diffusivity parameterization 
is a key factor in vertical mixing parameterizations that have significant uncertainties 
and contribute to a large bias in SST simulations (e.g., Jochum et al., 2013; Melet et 
al., 2013; Zhang & Zebiak, 2002, 2004; Zhang & Gao, 2016; Zhu & Zhang, 2017). Zhu 
et al. (2018) have shown a better background diffusivity parameterization leads to 
more realistic simulations of the cold tongue and equatorial thermocline, which has 
the potential to affect the fidelity of simulated seasonal to interannual variability in 
the tropical Pacific, such as the ENSO phenomenon.  
 

We have put that previous paragraph in the revised paper to illustrate the 
motivation for this paper. However, according to Large (2003) and related studies, 
background diffusivity coefficients are parameters of the K-profile parameterization, 
which is also reflected in the namelist of CESM/POP. In this paper, we have focused 
on the parameter estimation of the background vertical diffusivity coefficients 
without including the upper boundary layer parameterization. The latter of course 
has some uncertainties and may be able to improve the simulation, which we will 
discuss in a future study. 
 
Thanks for the comments. 
 

(2) The key issue of adjusting model parameters with real data is how to ensure the 
physical meaning of the parameters. The manuscript does not explain how to avoid 
the parameters from exceeding their physical values, specially for the spatial varying 
parameters.  

Reply:  
Thank you for your question, which is very important for implementing parameter 
estimation experiments.  
 
We apologize for the lack of precision in describing the parameters in the draft, 
which may have led to some misunderstandings. We have made major changes to 
this section, see section 2.1. Specifically, the parameters we estimate are just four 
constants that constitute the background diffusion parameters for latitudinal 
variations through Eq. (1). This latitudinally varying background diffusivity parameter 
can also be seen in Figure 6a. 



 
Figure 6 (a) Default latitudinal structure of background vertical diffusivity. 
 
In our experiments, we use the observations to update these four constants. We first 
perturb the parameters to conform to a Gaussian distribution using a standard 
deviation of 30% of their values, which adds uncertainty to the parameters and is 
practically unlikely to result in unphysical values. The parameter estimation process 
is then used to reduce the uncertainty in the parameters, and it will adjust the 
ensemble of parameters based on real observations and essentially not run out of 
reasonable ranges: i.e., the values of the four parameters all match their 
magnitudes. We examined the data assimilation results, which turned out to be the 
case.  
 
Of course, for the sake of the integrity of the algorithm, we need to use certain 
control conditions to avoid unphysical parameter values for a certain ensemble 
member (although very rare). So, we added the following statements in the 
description of the method.  
 
It is worth noting that in order to avoid unphysical parameter values, after each 
parameter estimation, if an abnormal parameter value (e.g., negative value) occurs 
for an ensemble member, we remove the parameter and use the parameter of a 
neighbouring member to integrate the model.  

(3) It is unclear how the adaptive spatial averaging is calculated. How big is the 
specific average bin? Does it cause spatially discontinuous?  

Reply:  

We apologise for missing some details. We have added the details of the method in 
the revised version, see section 3.2. 



In each data assimilation step, we transformed each parameter from a single scalar 
value into a two-dimensional field, considering spatial dependence and localization 
during the assimilation. Afterward, we use the adaptive algorithm to average the 
two-dimensional parameter fields, to produce a scalar value incorporated in 
subsequent model integration. This algorithm calculates the ratio of the a posteriori 
standard deviation to the a priori standard deviation at each grid point after each 
update of the two-dimensional parameters, which implies the strength of the effect 
of assimilation, and then averages the parameter values at grid points where the 
ratio exceeds a certain threshold. This threshold is chosen using an adaptive 
algorithm to ensure that a certain number of grid points (in this experiment 10,000 
out of a total of 80,000 grids) are included in the calculation of the averaged 
parameters. More details refers to Shen and Tang (2022).  

No spatial discontinuity occurs because the four constant-valued parameters are still 
obtained after applying spatial averaging to the two-dimensional parameters. 

  

(4) Table 1 involves 4 parameters and the use of parameters is regional. Do you only 
adjust the corresponding parameters in specific regions such as the equator and the 
Banda Sea?  

Reply:  

We have answered this questions in the response to Major concerns (2). Once again, 
we apologise for the misunderstanding caused by inappropriate descriptions. 
 

(5) How are the 20 sensitivity experiments and other experiments set up and 
operated? A figure regarding this should be added. Based on Table 2, the parameter 
adjustment is quite small, and the parameters tend to reach a certain equilibrium 
state. However, the observations (number and locations) used each year are different. 
Why do the adjustment of parameters not change year by year?  

Reply:  

Thanks to your suggestion, we have drawn a schematic to illustrate the experimental 
framework for the sensitivity experiment, the state estimation experiment and the 
parameter estimation experiment. 

The schematics in Figures 2a-c show the sensitivity experiment, the SE experiment, 
and the PE experiment, respectively. It can be seen that the sensitivity experiment is a 
free integration experiment using the same initial condition and different 
parameters. The SE experiment uses the ensemble of state variables and the same 
default parameters. At the same time, the PE experiment uses ensembles for both 



state variables and parameters. PE experiments are divided into three phases, which 
we will specify in the Results and Discussions section. Moreover, it also shows that 
the state and parameter estimation results are used in the later hindcast 
experiments. 

 

 
Figure 2. The schematic diagrams of the sensitivity experiment (a), SE experiment (b) and PE 
experiment. 
 



For the second problem, since we use the spatial averaging scheme described above, 
the parameter values changed per assimilation are very small. And data assimilation 
is a process that reduces ensemble spread, which is inevitably reduced even if we 
use the covariance inflation method described earlier. Moreover, since the ensemble 
spread of the state variables grows with model integration, and the parameters are 
generally assumed to be constant during integration, the parameter ensemble must 
eventually degenerate - the spread becomes 0, and all observations are rejected. In 
practical assimilation, the conditional covariance inflation (CCI) method can ensure 
that the ensemble spread does not fall below a lower bound (Liu et al. 2014).  The 
CCI is designed to inflate the parameter ensemble spread back to a predefined 
threshold value when it is smaller than the threshold. Details on this method can 
also be found in our previous work (Shen and Tang, 2022), which is an ideal 
experiment using the same CESM model. 

However, in this work, we intentionally do not use the CCI method and let the 
parameter ensemble degenerate. At this point, all ensemble members can use the 
same improved parameters to carry out the ensemble forecast, which makes the 
ensemble forecast easier to carry out and compare with other schemes. This may 
not be the optimal solution for parameter estimation, but it is the most convenient 
solution for carrying out realistic forecasts.  

The experiment in Figure 3 also assimilates synthetic TS profiles and SST 
observations to estimate the vdc1 parameter in the same CESM model. As shown in 
the figure below, the amount of change in the parameter values after a period of 
assimilation is very small as long as the proper parameter covariance expansion 
coefficients are used (scenarios a - c), so we believe that switching off the CCI also 
yields relatively improved parameters. 

Thanks for the questions and suggestions. 



 
Figure. The evolution of the parameter mean (red solid line) and spread (red dotted lines) 
over the data assimilation period using extra parameter inflation with (a), 1.2 (b), 1.3 (c), and 
1.5 (d), respectively.(Shen and Tang, 2022) 

(6) Line 215: “The highest error is observed in the sea surface layer, ....” I can't see 
the relevant results in Fig.7. The main differences are still at the depths of 600m-
1200m in the Atlantic and tropical regions.  

Reply:  

Sorry for the lack of clarity in the sentence.  

For the original Figure 7 (Figure 8 in the revision), we refer to the fact that the largest 
salinity errors in both SE and PE analysis fields occur at the sea surface, as can be 
seen from the larger RMSE in the surface layer in Figure 7. It is certainly true, as you 
say, that the most significant improvements in PE over SE are in the deep tropics as 
well as in the deep Atlantic. The reasons are explained in the next two figures. 
 



 

Figure 7. The salinity RMSE of the data assimilation results with EN4 (top), ORAS4 (middle), 
and ECDA (bottom) for the period of 2008-2017 by region. The regions are - Global (within 
66.5oN-S, Pacific, Indian Ocean, Atlantic, and intra-tropical (within 30oN-S), respectively, 
from left to right. 

(7) Based on the sensitivity experiments, the main impact is in the upper 100m. 
However, from the assimilation results, the main differences are still at the depths 
over 600m in the tropical and Atlantic regions. Why is this?  

Reply:  

Referring to another reviewer's comment, we redrew the original Fig. 8 to show the 
correspondence between parameter sensitivity and SE analysis error. 

 



Figure 9. The temperature (a) and salinity (b) RMSE of the SE results and EN4 data in the 
tropics; the mean temperature (c) and salinity (d) spreads of the sensitivity experiment 
results in the tropics; the difference between the temperature (e) and salinity (f) RMSE of 
the SE results and that of the PE results, respectively. 
 
As Figure 9a shown, the most considerable temperature errors appear in all oceans 
around the depth of 100 meters, which matches the sensitivity analysis result for 
temperature depicted in Figure 9c. Figure 9e denotes an improvement in PE for these 
errors, implying its usefulness throughout the tropics. It is noted there is 
improvement in areas where the temperature are sensitive to the uncertainty of 
those parameters. And the temperature error in the deeper layers of the tropical 
oceans has also been reduced, especially in the deeper Atlantic Ocean. Figures 9b, 9d 
and 9f show the results for salinity. Although not as significant as temperature, the 
depths and areas where salinity errors emerge in the SE analysis align with those 
sensitive to parameters.  
 
The story for the Atlantic is quite different. Danabasoglu et al. (2012) show the 
zonal-mean potential temperature 𝜃 and salinity 𝑆 of CCSM4 (which uses the 
same ocean model as CESM) minus climatology from obseravation in the following 
figure. They noted that the deep Atlantic Ocean remains generally warmer than 
observed by about 0.58C in the mean. The local 𝜃 and 𝑆 maxima between 20o and 
30oN at a depth of about 1000 m are associated with the warmer and saltier than 
observed Mediterranean outflow through the Strait of Gibraltar. The largest salty 
biases occur in the deep Atlantic Ocean. The upper-ocean Atlantic north of 15 o N 
remains mostly saltier than the climatology. 
 

 
Figure (Danabasoglu, 2012) Zonal-mean (left) potential temperature (oC) and (right) 
salinity (psu) CCSM4 minus PHC2 observations difference distributions. (top to 
bottom) The global, Pacific, Indian, and Atlantic Ocean differences are shown. 
 
We draw a similar climatology bias for temperature and salinity in Figure 10. 
Although compared to different observations, similar results are demonstrated, 



especially as the deep ocean also has a warm and salty bias caused by systematic 
biases in the model. By comparing the climatology bias of the results from two 
experiments, it is seen that the most significant improvement of the PE on the SE lies 
in the Atlantic Ocean at a depth of 1000 m between 20° and 30° N latitude. It 
strongly suggests the contribution of improved background diffusivity parameters to 
reducing model systematic biases. 
 
It can be inferred from the conclusions of Danabasoglu et al. (2012) that this 
improvement also stems from the improvement of the outward flow in the Strait of 
Gibraltar. Although the sensitivity and analytical errors in this region cannot be 
demonstrated directly due to resolution, the effect is demonstrated by affecting the 
1000m Atlantic Ocean between 20° and 30° N latitude.  
 
We have revised the disscussion in section 3.3, thanks for the comments. 

 
Figure 10. The zonal-mean temperature (a) and salinity (b) minus the climatology calculated 
from EN4 data using t SE results, and The zonal-mean temperature (c) and salinity (d) bias 
using the PE results. 

(8) Line 221: “It is noted there is substantial improvement in areas where the errors 
are significant, except for the deep Atlantic Ocean”. Estimated from the magnitude of 
SE-PE, the proportion of error reduction is less than 5%. It can't be said 
“substantial improvement”.  

Reply:  

We agree with the reviewer's comments, and since we have revised this part of the 
discussion, this statement has been amended, thanks. 
 
 

(9) Fig.9 only mentions the differences in the Atlantic Ocean. How about the tropical 
ocean?  



Reply:  

The original Figure 8 (Figure 9 in the revision) displays the RMSEs of the SE 
experiment and EN4 data in the tropics while emphasizing the disparity with the PE 
experiment. We have shown the temperature and salinity RMSE of the SE results 
and EN4 data in the tropics; the mean temperature and salinity spreads of the 
sensitivity experiment results in the tropics; the difference between the 
temperatureand salinity  RMSE of the SE results and that of the PE results, 
respectively. 

Please see the response to Major concerns (7). 

(10) The forecast of ENSO does improve to a certain extent, but the improvement is 
not significant (The change of RMSE is less than 0.1°). Shown From Fig.11, it seems 
that most differences locate in the equatorial region. It may connect to the reduction 
of diffusivity in the region (smaller mixing and higher SST?). The authors should give 
more explanations regarding this issue.  

Reply:  

This is a very good commet and is important for the application of the results in this 
paper. 

In response to the major concern (1),  we have re-emphasised the significance of 
parameter estimation for BVDCs in the revised version. Specifically, Zhu and Zhang 
(2018) have demonstrated that an enhanced background diffusivity 
parameterization results in more realistic simulations of the cold tongue and 
equatorial thermocline. This improvement holds the potential to impact the 
accuracy of simulated seasonal to interannual variability in the tropical Pacific, 
including phenomena like ENSO. 
  
The outcomes of our data assimilation experiments reveal a notable reduction in 
analysis error within the thermocline of the equatorial Pacific due to parameter 
estimation, as illustrated in Figure 9. This, in turn, yields improved initial conditions 
for ensemble prediction. Simultaneously, the refined parameters contribute to 
enhanced global vertical mixing. Consequently, the SSTA in the tropical Pacific, 
derived from our forecasts incorporating parameter estimation, exhibit a higher ACC 
with observational data, as depicted in Figure 12. 
 
In addition, since the advantage of the PE analysis field in the subsurface layer takes 
some time to affect the SST, the forecast skill based on the PE results is only 
significantly greater than that of the SE results at longer forecast times. 
 
Of course, as the reviewer points out, the correlation coefficients between the nino 
indices computed with the PE forecast results and the indices computed with 



observations are only slightly larger than in the SE case. It can be concluded that PE 
only slightly improves the prediction skill of this coupled prediction system. 
However, the prediction skill of ENSO is affected by many factors, such as 
predictability, in addition to the initial conditions and model errors (Liu et al. 2021). 
Therefore every bit of improvement of the ENSO dynamical prediction skill is of 
some practical significance. Nevertheless, we will also pursue higher dynamical 
prediction skill in the future research. 
 
We have added the assertion about the advantages of PE in prediction and the 
reasons for it in the Results and Discussion section, and added the last part of the 
discussion in the Conclusions section. 
 
Thanks for the suggestion. 
 

2. Minor Concerns:  

(1) The assimilation just involves the ocean component. It seems not a couple 
assimilation system.  

Reply:  

I'm sorry we didn't go into all the details of the data assimilation system. The CESM 
model of our application enabled all the components, i.e., it is a fully coupled earth 
system model.  
A recent review by Zhang et al.(2020) gives the definition of coupled data 
assimilation (CDA). That is, the DA process is performed within the coupled model 
directly in CDA. So, although we assimilate only ocean observations in order to focus 
on the ocean parameterisation scheme, this also falls within the framework of 
coupled assimilation as we integrate the fully coupled model. This is often referred 
to as weakly coupled data assimilation (WCDA). 
 
We have pointed out this in section 2.2. Thanks. 
 
Zhang, S., Liu, Z., Zhang, X., Wu, X., & Deng, X. (2020). Coupled data assimilation and 
parameter estimation in coupled ocean–atmosphere models: A review. Climate 
Dynamics, 54(11). 

 

(2) In Fig.7, is it the ORAS5 or ORAS4?  

Reply:  

It is ORAS4, we have made changes in the revision. Thanks for pointing that out. 



(3)Line 116: “These factors were determined empirically and verified in prior 
studies.” References should be added here.  

Reply:  

We added our previous paper as a reference.  

(4) Units should be added in Figs.6, 7 and 10.  

Reply:  

Changes have been made as suggested. Thank you. 
 

 

Finally, we are very grateful to the reviewers for their comments and suggestions, 
which were very meaningful in refining the details of the paper and explaining its 
results. 


