
Dear Editor,  
 
Thank you for your comments and suggestions. Please find below our responses in blue.  
 
1. The first refers to the original comments to L80-81 (#referee #1) and L78-79 (referee #2): 
both referees point out that work by other modellers are incompletely or wrongly 
explained/cited. As a consequence you remove these references completely. However, I think 
this is not an adequate solution of this issue. Given that your manuscript should be published 
in GMD (i.e., in particular addressing model developers and users), I think it is quite essential 
that approaches of other models must be described and cited appropriately. Therefore, I kindly 
ask you to re-introduce a short paragraph with an improved (still short!) review of alternative 
model studies and model developments (i.e. based on others than your own model).   
 
Response: We now have improved the paragraph (Line 74-97) with a review of other model 
studies and included the references (e.g., Spiegl et al., 2022; Sukhodolov et al., 2017) suggested 
by the reviewers.  
 
“The ability of general circulation models (GCMs, e.g., GISS ModelE, ECHAM5-HAM 
and EMAC) and chemical transport models (CTMs, e.g., GEOS-Chem and GMI ) to 
capture the main characteristics in 7Be and 10Be transport and deposition has been 
demonstrated in previous studies (e.g., Brattich et al., 2021; Field et al., 2006; Heikkilä et 
al., 2008; Koch & Rind, 1998; Liu et al., 2016; Spiegl et al., 2022; Sukhodolov et al., 2017; 
Usoskin et al., 2009). For example, Usoskin et al. (2009) found that the influence of the 
solar proton-induced 7Be production peak at the surface in early 2005 is small through 
the comparison of GISS ModelE simulations and surface air measurements. Heikkilä et 
al. (2009) showed that stratospheric 10Be contribution is dominant in the global 10Be 
deposition by tracing tropospheric and stratospheric 10Be separately in the aerosol-
climate model ECHAM5-HAM. Spiegl et al. (2022) used the EMAC climate model to 
investigate the transport and deposition process of 10Be produced by the extreme solar 
proton event in 774/5 A.D. They suggested that the downward transport of 10Be from the 
stratosphere is mainly controlled by the Brewer-Dobson circulation in the stratosphere 
and cross-tropopause transport. By comparing the measurements with GEOS-Chem 
simulations over January-March 2003, Brattich et al. (2021) found that increased 7Be 
values in surface air samples in Northern Europe in early 2003 were associated with the 
instability of the Arctic polar vortex. They also showed that, while the model generally 
simulates well the month-to-month variation in surface 7Be concentrations, it tends to 
underestimate the observations (see their Table 2) partly due to the use of the default 
LP67 production rate for a solar maximum year (1958) in the GEOS-Chem model (Liu 
et al., 2001). By using the GMI CTM driven with four different meteorological datasets, 
Liu et al. (2016) showed that the observational constraints for 7Be and observed 7Be total 
deposition fluxes can be used to provide a first-order assessment of cross-tropopause 
transport in global models. In comparison to GCMs with or without nudged winds (e.g., 
Golubenko et al., 2021; Heikkilä et al., 2008; Spiegl et al., 2022) which involve simulating 
the entire global circulation and climate, the “offline” CTMs are driven by archived 
meteorological data sets, either from output of GCMs or from atmospheric data 
assimilation systems. For example, GEOS-Chem can be driven by the GEOS assimilated 



meteorology (e.g., MERRA-2 reanalysis data; Gelaro et al., 2017) or output from the 
GISS GCM (e.g., Murray et al., 2021)” 
   
 
2. The second refers to the original comment to L327 (#referee #1): I think, this is an important 
information and should be added to the text. In particular you need to explain how the simulated 
stratospheric fraction of the 10Be deposition flux can be 
different from the simulated fraction of the 10Be concentration in the lowest model layer.  
 
Response: Thank you for the comment. This was explained in the discussion of Fig. S4 (see 
line 364-367). We have added the reference Liu et al. (2016) to the sentence. Heikkilä et al. 
(2009) did not compare stratospheric fractions in total deposition fluxes vs surface 
concentrations and is thus not cited here. It has been cited elsewhere (see our response above).  
 
"Since the total deposition flux reflects precipitation scavenging through the tropospheric 
column, it tends to be more sensitive to 7Be air concentrations at higher altitudes and 
downward transport of 7Be from the stratosphere. Indeed, model results suggest that 
deposition fluxes have a higher stratospheric fraction compared to surface air 
concentrations (Fig. S4), as previously shown by Liu et al. (2016). "  
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