Preprints
https://doi.org/10.5194/gmd-2023-111
https://doi.org/10.5194/gmd-2023-111
Submitted as: model evaluation paper
 | 
26 Jun 2023
Submitted as: model evaluation paper |  | 26 Jun 2023
Status: this preprint is currently under review for the journal GMD.

Simulations of 7Be and 10Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates

Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle

Abstract. The cosmogenic radionuclides 7Be and 10Be are useful aerosol tracers for atmospheric transport studies. Combining 7Be and 10Be measurements with an atmospheric transport model can not only improve our understanding of the radionuclide transport and deposition processes but also provide an evaluation of the transport process in the model. To simulate these aerosol tracers, it is critical to evaluate the influence of radionuclides production uncertainties on simulations. Here we use the GEOS-Chem chemical transport model driven by the MERRA-2 reanalysis to simulate 7Be and 10Be with different production scenarios: the default production rate in GEOS-Chem based on an empirical approach (denoted as LP67), and two production rates from the CRAC:Be (Cosmic Ray Atmospheric Cascade: Beryllium) model considering only geomagnetic cut-off rigidities for a geocentric axial dipole (denoted as P16) or realistic spatial geomagnetic cut-off rigidity variations due to non-dipole moments of the geomagnetic field (denoted as P16spa). The model results are comprehensively evaluated with a large number of measurements including surface air concentrations and deposition fluxes. The model with the P16spa production can reproduce the absolute values and temporal variability of 7Be and 10Be surface concentrations and deposition fluxes on annual and sub-annual scales, as well as the vertical profiles of air concentrations. Simulations with the LP67 production tend to overestimate the absolute values of 7Be and 10Be concentrations. The P16 simulations suggest less than 10 % differences compared to P16spa but tend to produce a significant positive bias (>20 %) in the 7Be deposition fluxes over East Asia. We find that the deposition fluxes are more sensitive to the production in the troposphere and downward transport from the stratosphere. Independent of the production models, surface air concentrations and deposition fluxes from all simulations show similar seasonal variations, suggesting a dominant meteorological influence. The model can also reasonably simulate the stratosphere-troposphere exchange process of 7Be and 10Be by producing stratospheric contribution and 10Be / 7Be ratio values that agree with measurements. Finally, we illustrate the importance of including the time-varying solar modulation in the production calculation, which can significantly improve the agreement between model results and measurements, especially at mid- and high- latitudes. Reduced uncertainties in the production rates, as demonstrated in this study, improve the utility of 7Be and 10Be as aerosol tracers for evaluating and testing transport and scavenging processes in global models.

Minjie Zheng et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Anonymous referee comment on gmd-2023-111', Anonymous Referee #1, 12 Jul 2023
  • RC2: 'Comment on gmd-2023-111', Tobias Spiegl, 11 Aug 2023
  • AC1: 'Comment on gmd-2023-111', Minjie Zheng, 25 Sep 2023

Minjie Zheng et al.

Data sets

data and code for "Simulations of 7Be and 10Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates" Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle https://doi.org/10.5281/zenodo.8051729

Minjie Zheng et al.

Viewed

Total article views: 378 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
289 78 11 378 28 5 5
  • HTML: 289
  • PDF: 78
  • XML: 11
  • Total: 378
  • Supplement: 28
  • BibTeX: 5
  • EndNote: 5
Views and downloads (calculated since 26 Jun 2023)
Cumulative views and downloads (calculated since 26 Jun 2023)

Viewed (geographical distribution)

Total article views: 361 (including HTML, PDF, and XML) Thereof 361 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Oct 2023
Download
Short summary
The radionuclides 7Be and 10Be are useful aerosol tracers for atmospheric studies. Here we use the GEOS-Chem model to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem based on an empirical approach, and two from the latest production model. We demonstrate that reduced uncertainties in the production rates can improve the utility of 7Be and 10Be as aerosol tracers for evaluating and testing transport and scavenging processes in global models.