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Abstract. Borehole data are essential for conducting precise urban geological surveys and large-scale geological 

investigations. Traditionally, explicit and implicit modelling have been the primary methods for visualizing borehole data 15 

and constructing 3D geological models. However, explicit modelling requires substantial manual labour, while implicit 

modelling faces challenges related to uncertainty. Recently, machine learning approaches have emerged as effective 

solutions to address these issues in 3D geological modelling. Nevertheless, the use of machine learning to build 3D 

geological models is often limited by insufficient training data. In this paper, we propose the semisupervised deep learning 

using pseudolabels (SDLP) algorithm to overcome the issue of insufficient training data. Specifically, we construct the 20 

pseudolabels in the training dataset using the triangular irregular network (TIN) method. A 3D geological model is 

constructed using borehole data obtained from a geological survey of urban areas in Shenyang, Liaoning Province, NE China. 

Additionally, we compare the results of the 3D geological model built based on SDLP with those obtained from a support 

vector machine (SVM) method and an implicit HRBF modelling method. The findings demonstrate that our proposed 

method effectively resolves issues with insufficient training data. Moreover, compared to the 3D geological models 25 

constructed using the HRBF algorithm and SVM algorithm, the 3D geological model built based on the SDLP algorithm 

better conforms to the sedimentation patterns of the region and supports uncertainty analysis. In conclusion, the 

semisupervised deep learning method with pseudolabelling proposed in this paper provides a solution for 3D geological 

modelling in sparsely distributed areas with borehole data. 

1. Introduction 30 

Three-dimensional (3D) urban geological models are digital representations of subsurface strata and their associated features 

(Houlding, 1994). In recent years, the utilization of 3D geological models has expanded across various geological fields, 

such as mineral exploration (Zhang et al., 2021), geological storage (Thanh et al., 2019), groundwater resource estimation 

(Thibaut et al., 2021), geological disaster early warning generation (Høyer et al., 2019; Livani et al., 2022), and engineering 

geological condition evaluation (Chen et al., 2018; Guo et al., 2021; Lyu et al., 2021; Marz án et al., 2021). 35 

The commonly used data for 3D geological modelling include borehole data, geophysical data, survey and mapping 

data, and other types of data. Among these, borehole data provide the most accurate reflection of subsurface geological 

information (Guo et al.,2022). Notably, 3D geological modelling from borehole data can be divided into explicit modelling 

and implicit modelling (Jessell, 2001; Caumon et al., 2007; Wang et al., 2018). The explicit modelling approach can be used 
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to directly delineate geological formations and interpret tectonics based on borehole data. Explicit 3D geological modelling 40 

methods are widely used in the 3D modelling of mines and regional geological structures, and they include the interactive 

3D forward modelling method (Yang et al., 2011), generalized tri-prism (GTP) modelling method (Wu et al., 2004; Che et 

al., 2009) and parametric surface method (Lyu et al., 2021). However, these approaches heavily relies on the expertise of 

geologists and often proves time-consuming and labour-intensive when dealing with large-scale borehole data. 

Implicit modelling methods are used to construct a 3D geological model by establishing the implicit equation of the 45 

isosurface representing the geometric shape of a geological body and using a series of implicit function visualization 

methods (Jessell M. et al., 2022). That is, a complex 3D geological object is represented as a continuous function of 

geological coordinates (Wang G.W. et al., 2011; Zhong D. Y. et al., 2021). This method does not require extensive human–

computer interaction and has the advantages of high modelling accuracy, excellent smoothness and high spatial analysis 

efficiency (Sun H. et al., 2023). It is widely used in the field of geological modelling (Hillier M. J. et al., 2014; Calcagno P. 50 

et al., 2008; Shi T. D. et al., 2021) and provides results to complement the results of most urban geological surveys (de la 

Varga M. et al., 2019). Common implicit modelling methods include nearest neighbour value interpolation (Olivier R. et al., 

2012), inverse distance weighted (IDW) interpolation (Liu H. et al., 2020; Liu Z et al., 2021), discrete smooth interpolation 

(DSI) (Mallet J. 1997), kriging (Wang G.W. et al., 2011; Thanh H. V. et al., 2019), the MLS method (Manchuk J. G. et al., 

2019), and the radial basis function (RBF) method (Caumon G. et al., 2013; Hillier M. et al., 2014; Cuomo S. et al., 2017; 55 

Martin R. et al., 2017; Skala et al., 2017; Zhong D. Y. et al., 2019).However, the sparsity of borehole data, the complexity of 

geological bodies or geological phenomena, and the limitations of human cognition and expression lead to uncertainty in the 

relationship between the geometric form of a 3D geological model and the corresponding geological system (Caumon et al., 

2007; Caers, 2011; Pakyuz-Charrier et al., 2018). The construction of 3D geological models by establishing implicit 

equations cannot effectively address this uncertain relationship. 60 

Machine learning methods have been widely used in 3D geological modelling, and they are generally applied in 

unsupervised or supervised 3D geological modelling (Wang et al., 2023). Unsupervised machine learning algorithms (e.g., k-

means clustering, self-organizing maps, and Gaussian mixture models) can be used to translate multisource geophysical 

datasets into 3D lithological models by measuring similarity between properties in feature space (Hellman et al., 2017; 

Giraud et al., 2020; Whiteley et al., 2021; Zhang et al., 2022). Supervised machine learning algorithms (e.g., random forests 65 

and artificial neural networks) can be applied to construct 3D lithological models by training from labelled geophysical and 

geological datasets (Jia et al., 2021; Lysdahl et al., 2022). Despite obtaining encouraging results with supervised machine 

learning algorithms, most studies have not addressed the following critical challenges regarding supervised machine learning 

algorithms for 3D geological modelling: 

(1) In the scope of 3D modelling, precise geological information, such as relationship of stratigraphy, and tectonic in 70 

study area, revealed by borehole data is much less than not revealed by borehole data. Utilizing the precise information 

obtained via boreholes as labelled data to predict the correctness of the results in many unknown areas still requires further 

research. 

(2) Labelled geological datasets were mainly composed of borehole data from early exploration phases (Jia et al., 2021; 

Lysdahl et al., 2022). The number of categories of lithological samples in drilling datasets is commonly imbalanced. A 75 

classification dataset with skewed class proportions can influence the performance of machine learning algorithms (Chawla 

et al., 2002; Batista et al., 2004). However, there is very little published research that addresses the sample imbalance issue 

in the context of training supervised machine learning algorithms for 3D lithological modelling. 

Compared with machine learning methods, deep learning algorithms improve the ability to learn from mining data and 

are often combined with complex geophysical and geochemical data for modelling. Currently, there is a wealth of research 80 

on neural network-based deep learning methods for addressing geological issues such as tectonic recognition (Titos et al., 

2018), mineral identification and classification (Xu and Zhou, 2018), seismic data inversion (Huang et al., 2020), and others. 
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Furthermore, in the realm of constructing 3D geological models, the deep learning approach using neural networks has also 

gradually garnered significant attention from numerous scholars (Laloy et al., 2017; Zhang et al., 2019; Ran et al., 2020; 

Zhang et al., 2018; Michael Hillier et al., 2021, 2022; S Avalos and Ortiz, 2020). However, the issue of insufficient training 85 

data has yet to be adequately addressed. 

In this paper, we propose a semisupervised deep learning using pseudolabels (SDLP) algorithm for constructing 3D 

geological models and to overcome the lack of accurate labelled data. Upsampling is used to resolve label imbalance issues 

in the training dataset. The shallow borehole data from Shenyang, Liaoning Province, are used to construct 3D geological 

models using the proposed algorithm. To demonstrate the applicability of SDLP, the accuracy, precision, recall, and F1 score 90 

results of SDLP are compared with those of a classic support vector machine (SVM) algorithm based on a test dataset. To 

further assess the accuracy of SDLP, the profiles of the 3D geological models constructed by SDLP, SVM, and Hermite 

radial basis function (HRBF) are compared. Furthermore, the SDLP algorithm addresses the uncertainty limitations in the 

implicit HRBF modelling method. 

2. 3D Modelling Method Based on Deep Learning 95 

2.1. Borehole data preprocessing 

Table 1. Table of average thickness, maximum thickness, minimum thickness and frequency of occurrence of different 

strata 

 Frequency Average (m) Maximum (m) Minimum (m) 

fill 167 1.14 4.1 0.4 

Clay-1 128 2.21 6 0.7 

Clay-2 58 3.46 9.8 0.5 

Clay-3 107 5.94 12.8 0.5 

Clay-4 54 2.86 5.8 0.5 

Sand-1 25 3.34 8.1 1.2 

Stone-1 71 6.30 14 1.3 

Stone-2 104 3.91 10 0.5 

Stone-3 72 6.22 12.5 1.2 

Residual-1 52 10.98 16.1 4.8 

Residual-2 50 4.77 13.8 2 

Residual-3 44 5.47 13.9 1 

A total of 167 boreholes from engineering projects in Shenyang city were used to build the 3D geological model in this study. 

These boreholes are distributed in a 305×264 m area, with an average spacing of approximately 23 metres between adjacent 100 

boreholes. The average depth of the boreholes is 29.5 metres. The minimum thickness of the formations revealed by the 

boreholes is 0.4 metres, and the maximum thickness is 16.1 metres. The maximum average thickness is 10.98 metres, and 

the minimum average thickness is 1.14 metres (Table 1). The original borehole data mainly include borehole coordinates (X, 

Y), elevation, lithological thickness, lithological bottom depth, borehole number, lithological ID, etc. 

This paper uses deep learning methods for 3D geological modelling, which can further simplify the modelling problem into a 105 

strata classification problem. In this method, the coordinate data and strata depth data obtained from boreholes are used as 

input vectors, and the lithological attributes of the boreholes are used as output vectors. In this study, the borehole data were 

simplified into continuous one-dimensional data when creating the dataset. However, there are significant differences in the 

lengths and frequencies of different formations within the borehole dataset (Table 1). For example, in terms of formation 

thickness, the maximum thickness is 16.1 m, while the minimum thickness is only 0.4 m. In terms of the formation 110 

occurrence frequency, the most frequent label, "fill," occurs 167 times, while the least frequent label, "sand-1," occurs 25 

times. This significant difference may lead to the overfitting of the training model and ultimately result in poor training 
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performance. Therefore, preprocessing of the borehole data is needed. An upsampling method is proposed to avoid 

overfitting in the training model caused by training dataset imbalance in this study. 

Based on the above discussion, an unequal interval sampling method is adopted in this paper (Fig. 1). In the figure, H11-115 

H35 represents unequal-interval sampling for each stratum in the borehole, while H11P1-H35P5 represents unequal-interval 

sampling for each stratum on the deterministic section. Compared with equal-interval sampling, unequal-interval sampling 

involves changes to the sampling interval according to the thickness of different strata, thereby ensuring the balance of the 

sampled data. Otherwise, thinner strata may be difficult to predict or deemed to be outliers due to insufficient sampling. As 

shown in Figure 1, different colours in the borehole region represent different strata attributes, and the strata data are 120 

displayed in strips that are continuously distributed in the vertical direction. The attributes of a single stratum are 

continuously unique within the corresponding depth interval, and there are no data gaps between strata. 

Due to the high reliability of borehole data, they can be directly or indirectly used for the generation of accurate models. 

By applying the Delaunay principle to borehole position points, a surface triangular irregular network (TIN) is created. This 

TIN encompasses the fundamental topological relationships between adjacent boreholes. If the stratum attributes of two 125 

neighbouring boreholes within each TIN are similar, they are connected to form a deterministic section. To ensure accurate 

geological predictions and eliminate the influence of distant and loosely correlated borehole connections, narrow triangles 

are removed from the TIN. This approach, similar to the generalized tri-prism (GTP) model, preserves the internal 

connectivity among the three corresponding boreholes and enables the simulation of various complex geological phenomena. 

Once the deterministic sections are connected, unequal interval sampling is conducted both horizontally and vertically, and 130 

the sampling density at the borehole locations is balanced to avoid overly dense sampling that may impact network training. 

The unequal interval sampling formula for borehole data is expressed as Equation (1), and the unequal interval sampling 

point coordinate formula for deterministic sections is expressed as Equation (2). 

Zij =
(Sij−Sij−1)

n
                                                                                      (1) 

{

𝑃𝑖𝑗𝑥 = 𝑥1 +
𝑥2−𝑥1

𝑛
(2𝑗−1)

𝑃𝑖𝑗𝑦 = 𝑦1 +
𝑦2−𝑦1

𝑛
(2𝑗−1)

𝑃𝑖𝑗𝑧 =
𝐷1𝐶2+𝐴1𝐶2𝑃𝑖𝑗𝑥+𝐵1𝐶2𝑃𝑖𝑗𝑦−𝐷2𝐶1−𝐴2𝐶1𝑃𝑖𝑗𝑦−𝐵2𝐶1𝑃𝑖𝑗𝑦

𝐶1𝐶2𝑛
(2𝑖−1)

                                                   (2) 135 

where Sij is the bottom depth of the jth stratum in the ith borehole, n is the number of samples from each stratum, and Zij is 

the sampling interval of the jth stratum in the ith borehole. Pijx, Pijy, and Pijz represent the x, y, and z coordinates of the 

sampling point in the ith row and jth column of a section. x1, y1, x2, and y2 are the coordinates of the two connected 

boreholes in a section. A1, B1, C1, D1, A2, B2, C2, and D2 are the parameters of the straight-line equations representing the 

top and bottom boundaries of the strata for the connected boreholes. 140 
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Figure 1. Resampling of borehole data. Upsampling on the boreholes (left); upsampling on the deterministic sections (right). 

The difference in the number of digits between coordinate data (typically 7-8 digits with 3 decimal places) and stratum 

depth (typically 1-2 digits with 1 decimal place) in borehole data can lead to numerical computation issues in computer 145 

systems, making it difficult to train the model and adjust parameters, ultimately affecting the training results of the model. 

After performing data normalization based on raw data, each indicator is scaled to a specific range, allowing for 

comprehensive comparative evaluation. To eliminate the influence of digit disparity among input features, ensure the equal 

impact of different features on model training, and achieve convergence, it is necessary to apply min–max normalization to 

the data and map the resulting values to the range of 0 to 1. For any dataset x, the mapping function is as follows: 150 

x′ =
x−xmin

xmax−xmin
                                                                                      (3) 

where xmax is the maximum value of the sample data and xmin is the minimum value of the sample data. x' is the 

normalized result, and x is the input of the model data. Through this normalization method, the convergence speed of the 

network training model is improved, the training accuracy is improved, and the model training becomes easier. 
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2.2. Construction of deep neural networks 155 

A multilayer perceptron (MLP) is a feedforward artificial neural network that learns to form certain rules through 

training based on input and output indicators. Thus, results closest to the expected output are obtained after inputting certain 

values. An MLP is a multilayer feedforward neural network based on the backpropagation algorithm. Each unit between 

layers in an MLP has a weight with an initial preset value, and unit training is performed using the backpropagation 

algorithm to adjust the weights between hidden layers. Input data are output after passing data through multiple hidden 160 

layers and compared with the expected labels to obtain the corresponding error, which is then propagated layer by layer 

backwards to adjust the weight of each layer. After multiple adjustments, suitable weights for the model are obtained. The 

relationship between layers can be expressed as shown in Equation (4). In the network model, the coordinates of each 

upsampled spatial point in the prediction area, x, y, and z, are used as inputs, and the geological properties of the spatial 

points are output. Each input represents a spatial feature dimension, and through four fully connected layers, the input data 165 

are processed and transformed. Each hidden layer contains multiple nodes, where each node is connected to all nodes in the 

previous layer. By multiplying by weights and applying an activation function, the input undergoes nonlinear transformation, 

resulting in expanded dimensionality. This result encompasses the deep features of the sample, and samples of different 

categories should have different high-dimensional features. The number of neurons in the hidden layer varies according to 

the complexity of the model, and the rectified linear unit (RELU) activation function is used between hidden layers. To 170 

prevent overfitting, a dropout function is added to the penultimate fully connected layers of the network to randomly reduce 

the number of neurons. Finally, the output value of each category is normalized using the exponential function through a 

fully connected layer and a softmax layer, and the sum of the probabilities of all categories is 1. The predicted results of each 

data point are integrated to form the entire 3D geological model (Figure 2). The network model uses the Adam optimizer, 

and the loss function adopted is the cross-entropy loss function, which is commonly used in multiclassification tasks. 175 

Yj = ∑ WijXi + bn
i=1                                                                                   (4) 

where Yj is the input of the next layer, Wij is the connection weight from cell Xi of the previous layer to cell Yj of the next 

layer, and b denotes the offset value. 
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Figure 2. Architecture of a deep neural network. Light grey nodes are input features, dark grey nodes are target outputs, and 180 

white nodes are internal network nodes. 

2.3 Semisupervised deep learning algorithm using pseudolabels 

Compared with that of data from images, point cloud data, etc., borehole data displays a clustered characteristic with local 

concentrations but overall dispersion. Due to the large amount of missing point data between boreholes, it is difficult to 

accurately express the changing features of stratigraphic boundaries and inclination angles. Supervised learning depends on a 185 

large quantity of labelled data to enhance model performance. The labelled data used for training 3D geological models are 

obtained by upsampling limited borehole points and deterministic borehole profiles. Labelled data associated with spatial 

grid points in urban areas, which require high modelling precision, are scarce and contain very few features. To effectively 

solve the labelling problem, semisupervised learning is combined with deep learning , and a model is constructed using a 

small amount of labelled data and a large amount of unlabelled data with pseudolabels for prediction. This is beneficial for 190 

expanding the training data. 
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The attributes of strata are difficult to determine based on a single mathematical formula. Based on the topological 

relationships established with the TINs of three boreholes, three prisms are constructed using a method similar to the GTP 

approach by connecting the boreholes based on their stratigraphic properties, and the stratigraphic properties of the interior 

grid points of the prisms are obtained. For the predicted grid points within the prisms, it is assumed that their stratigraphic 195 

properties are similar to the properties of the prism, and when adding pseudolabels, it is assumed that the confidence level 

for each predicted stratigraphic property is high. Based on this approach, a semisupervised learning method based on 

pseudolabels is used to generate pseudolabels for the unlabelled data and improve learning performance. First, the model is 

trained using labelled data. When the model achieves a relatively high accuracy after training for a certain number of rounds, 

the trained model is used to predict the unlabelled data, and the results predicted with high confidence are selected as the 200 

pseudolabels. The pseudolabelled data and labelled data are combined and used in training for a certain number of rounds. 

The above process is repeated until the proportion of newly added pseudolabelled data in each round is lower than a certain 

threshold. At this point, high-confidence labels are considered to be obtained, and the model has been sufficiently trained on 

all data. 

 205 

Figure 3. Algorithm flow chart. 

2.4. Analysis of model uncertainty 

The last layer of the neural network classifier normalizes the probability of the output through the softmax layer, and the 

softmax normalized result can be approximated as the probability corresponding to each stratum at a given data point. 

Therefore, when analysing the uncertainty of each data point in the raster model, the normalized information entropy can be 210 

introduced to quantitatively evaluate the uncertainty of the geological model. The normalized information entropy formula is 

as follows: 

H(X) = −
∑ p(x)ln(p(x))⁡x∈S

Smax
                                                                 (5) 
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where S is the number of possible geological attributes for each data point, Smax is equal to ln(n), and n is the number of 

possible geological attributes. The information entropy of each data point is obtained by calculating the probability p(x) of 215 

each data point over all geological attributes. The magnitude of information entropy reflects the degree of complexity at a 

certain location in the geological model. The closer the information entropy is to 0, the higher the certainty of a data point for 

a certain stratum attribute, and the closer the information entropy is to 1, the higher the uncertainty of a data point for 

multiple geological attributes. 

In addition, the data can be analysed based on an estimated confusion index (Burrough et al., 1997), and the ambiguity 220 

of classification can be evaluated by selecting the results of the two prediction categories with the highest probability for 

each data point. The confusion index formula is as follows: 

CI = [1 − (μmax − μmax−1)]                                                                   (6) 

where μmax is the probability of the class with the highest predicted probability and μmax-1 is the probability of the class 

with the second highest predicted probability. CI values range from 0-1 to indicate the degree of confusion predicted for a 225 

certain data point, with 0 indicating that a classification result with a low confusion index is not ambiguous and 1 indicating 

that a classification result with a high confusion index is highly ambiguous. 

3. Experimental method and verification 

The Shenyang city 3D geological models were built using the SDLP, SVM, and HRBF algorithms. All test experiments in 

this chapter were performed on the same device: an Intel(R) Core (TM) i7-10750H CPU @2.60 GHz with an NVIDIA 230 

GeForce RTX 2060, 16.0 GB RAM, and Windows 10 (64-bit). 

The ReLU function was used as the activation function in the SDLP algorithm, the initial learning rate was set to 0.001, 

and the batch size for training was set to 512. When the model training accuracy reached 90% or after 500 epochs, the 

unlabelled grids were labelled with pseudolabels. When the newly added pseudolabels accounted for less than 10% of the 

number of grids lacking labels in a given epoch, the model was trained for a total of 2000 epochs more before stopping. The 235 

training accuracy and loss values are shown in Fig. 4. The accuracy, precision, recall, and F1 score of the SVM, SDLP, and 

DL (the neural networks is same with SDLP but without pseudolabel) algorithms for the test dataset are shown in Table 2. 

In the training process, when the labelled data and pseudolabel data are fused, the boundaries of stratigraphic categories 

are finely delineated, the final model training accuracy is above 95%, the loss function is close to zero, and the precision of 

the model for the test set is 98.16%. A confusion matrix is obtained from the test set (Fig. 5), which reflects the reliability of 240 

the evaluation results of the model. The classification accuracy of the model is high for all layers. Some strata are more 

likely to be confused due to being thin, displaying similar boundaries as other strata, or the influence of geological 

phenomena, such as depositional termination. The receiver operating characteristic curve (ROC) is another performance 
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indicator that summarizes the performance of the binary classification model in the positive class and thus can be used to 

evaluate the diagnostic ability of the classifier according to the threshold change (Fawcett, 2006). The area under the ROC 245 

curve (AUC) (Fig. 6) represents a comprehensive measure of all possible classification thresholds. AUC values greater than 

90%, from 75-90%, from 50-75% and less than 50% are considered to represent excellent, good, poor and unacceptable 

performance, respectively (Ray et al., 2010). The AUC values of the model are all above 90%, indicating that the 

classification performance of the model is excellent. 

Table 2. The accuracy, precision, recall, and F1 score values for SVM and SDLP algorithms based on the test dataset 250 

 Accuracy Precision Recall F1 score 

SAM 0.955 0.948 0.940 0.944 

SDLP 0.982 0.983 0.980 0.982 

DL 0.973 0.967 0.968 0.968 

 

Figure 4. Model training accuracy and loss variation curves 
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Figure 5. Confusion matrix of the classification results when the model is applied to the test dataset 

 255 

 

Figure 6. ROC curve for classification 

The grid  used in modelling is 1.5 m×1.3 m×0.3 m. The model uses the Tin mesh constructed from the top of boreholes 

to restrict the surface. The modelling range is determined according to a convex hull built by the borehole data, and the base 

of the model is determined according to a convex hull built by the bottoms of borehole data. Fig. 7 shows the modelling 260 

results for the study area. The model reveals the coverage relationships among the strata and reproduces the contact 

relationship between the depositional termination and unconformity of the strata. 
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Figure 7. Model built using deep neural networks and the model legend. 

To test the estimation accuracy at nonborehole locations using the proposed method, the borehole data were divided 265 

into a training set and a test set through k-fold cross validation, learning was performed with the training set of borehole data, 

and the test set accuracy was compared and analysed, where K was set to 10. 

 

Figure 8. Borehole distribution and experimental analysis based on different profiles. The red dotted line are the profile, and the 

borehole points circled in red correspond to the boreholes tested using K1  270 

The boreholes in the test set were sampled at equal intervals to determine the data point attributes at the boreholes, and 

the average accuracy of k-fold cross validation was calculated to be 71.65%. Due to the varying amount of geological 
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information contained in individual borehole data, the importance of different boreholes in constructing the 3D geological 

model also differs. For instance, the test borehole data contains valuable lens body stratigraphic information and stratigraphic 

extinction information (Fig. 9). Removing the test borehole data would significantly decrease the accuracy of the prediction 275 

results. Therefore, we utilize the surface irregular triangulation method generated by the Delaunay rule to determine the 

topological relationships between the boreholes. Based on this approach, we ensure that boreholes containing a significant 

amount of geological information are not excluded during K-fold validation. These operations have improved the accuracy 

of K-fold validation from 71.65 to 85.9. 

 280 

Figure 9. A situation in which too much depositional termination affects the prediction. A related borehole is a borehole that has a 

topological relationship with the predicted borehole. The red solid frame is the stratum, which is difficult to predict due to the 

excessive occurrence of depositional termination. 

To further analyse the influence of accuracy on the model, a model with complete borehole data and a model with 

excluded sample K1 test borehole data were established, and the sections of the models through a test borehole were 285 

compared (Fig. 10). The Figure 10 show the  results for a straight line thought the S1 and S3 profiles. Most areas of the 

sections at the boreholes in the test set are consistent with the sections built by a complete borehole. Since some test set 

boreholes are near depositional terminations, there is a certain difference between the model and the data from test boreholes, 

but the results are close and reasonable. In summary, the SDLP method display a good prediction ability for the 

neighbouring boreholes and can reveal the distribution characteristics of the strata. 290 
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Figure 10. Comparison of the modelling results of sample K1 with the complete drilling results. The dotted box shows the 

boreholes considered during the test. 

4. Discussion 

4.1 Verification of the Accuracy of the HRBF Method 295 

Three-dimensional geological modelling based on the Hermite radial basis function (HRBF) is one kind of implicit function 

modelling, and implicit modelling methods based on HRBF have been widely used in the modelling of ore bodies, regional 

geological surveys (Guo et al., 2016), urban geological surveys (Guo et al., 2021), tunnelling projects (Xiong et al., 2018), 

and volcanic formations (Guo et al., 2020). Therefore, in this paper, the HRBF method is used to build a 3D geological 

model of Shenyang city, and this model is used to compare the accuracy of the SDLP and SVM algorithms. Before 300 

evaluating the accuracy of the two algorithms mentioned earlier, it is essential to conduct an accurate analysis of the 3D 

geological model constructed using the HRBF method. To demonstrate the accuracy of this approach, we first use the HRBF 

method to build a 3D geological model of Shenyang city. S1, S2, S3, and S4 are profiles within the 3D geological model of 

Shenyang city, which contain many geological strata and complex geological relationships. The accuracy of these profiles 

can effectively reflect the accuracy of the HRBF modelling method. In the S1 geological profile, the stratigraphic boundaries 305 

contained in the borehole dataset nearly perfectly correspond to the boundaries of the three-dimensional geological model 

built based on the HRBF method (Figure. 11). This matching effect is also demonstrated for the S2, S3, and S4 geological 

profiles. The accurate correspondence between the borehole data and the cross-sections of the 3D geological model indicates 



15 

 

the precision of the HRBF modelling method in constructing the three-dimensional geological model. Furthermore, 3D 

geological models of Shenyang city built using the HRBF method have been verified as effective in engineering applications 310 

(Guo et al.,2021). In conclusion, the 3D geological model built using the HRBF method can serve as a standard for 

evaluating the quality of 3D geological models constructed with the SDLP and SVM algorithms. 

 

Figure.11 (a) the 3D geological model constructed by HRBF algorithm (b) the S1 profile built by HRBF algorithm; (c) the 

S2 profile built by HRBF algorithm; (d) the S3 profile built by HRBF algorithm; (e) the S4 profile built by HRBF algorithm 315 

4.2 Comparison of Different Algorithms 

Before building the three-dimensional geological model using the SDLP and SVM algorithms, it is necessary to observe the 

performance of these two algorithms based on the test dataset. According to the prediction results for the test dataset, the 

accuracy, precision, recall, and F1 score of the SDLP algorithm are 0.982, 0.983, 0.980, and 0.982, respectively, all of which 

are higher than those of the SVM algorithm (Fig. 12). The reason for these overall results may be that the SDLP algorithm 320 

uses more training data, enabling the model to learn patterns with higher generalization ability. 

Furthermore, the accuracy, precision, recall, and F1 score of the SDLP algorithm are also higher than those of the DL 

algorithm (Fig.11). This phenomenon may be attributed to the increased quantity of the training dataset resulting from the 

use of pseudolabels constructed with the TIN method. The expanded training dataset enables the neural network model to 

achieve better generalization. 325 
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Figure 12. Accuracy, precision, recall, and F1 score of the SDLP and SVM algorithms. 

 4.3 Comparative Analysis of Models 

The profiles of the 3D geological model of Shenyang city are compared to further validate the generalization ability of the 

SDLP algorithm and the SVM algorithm. The implicit HRBF modelling method exhibits excellent consistency with the 330 

borehole data in the profiles, and thus, the profiles constructed with the HRBF method are used as a benchmark for 

comparison with the profiles generated by machine learning algorithms. In Figure 13, the horizontal axis represents the 

modelling results of different algorithms for the same geological profile, and the vertical axis represents the geological 

profiling modelling results of the same algorithm for different geological profiles. 

In the S2 geological profile, the 3D geological models built with the HRBF algorithm and the SDLP algorithm 335 

demonstrate a high level of consistency with the borehole data. However, the 3D geological model built with the SVM 

algorithm shows relatively poor correspondence with the borehole data. Furthermore, the morphology of formations in the 

3D geological models created with different algorithms is not entirely consistent within the S2 profile. In sedimentary 

formations without fault structures, the formation boundaries typically undergo gradual changes rather than abrupt changes. 

The 3D geological models generated using the SDLP algorithm or the HRBF algorithm generally adhere to these geological 340 

laws. For instance, the intersection points of the stone-1, stone-2, and stone-3 strata and the residual-1, residual-2, and 

residual-3 strata in the 3D geological models developed using the SDLP and HRBF algorithms display smooth transitions, 

aligning well with the sedimentation patterns of sedimentary formations. Conversely, the contact relationships among the 

strata at these intersections in the 3D geological model built using the SVM algorithm do not conform to the actual 

sedimentation patterns. Additionally, at the apex of the lens-shaped sand-1 formation, the 3D geological model created with 345 

the SVM algorithm is less realistic than the models produced by the HRBF and SDLP algorithms. Guo et al. (2021) 

demonstrated through 3D geological modelling methods that there are no fault structures in the Shenyang area. This finding 

implies that the 3D geological model of the S2 profile built with the SVM method is not reasonable. Moreover, the HRBF 

method produces modelling results that are deemed unreasonable for the lower two layers, stone-3 and residual-3, due to 

constraints imposed by the implicit model. These constraints involve the stratum interface being defined based on the control 350 

points of each borehole and the implicit equation. In conclusion, for the S2 profile, the SDLP algorithm exhibits the most 

favourable modelling performance. 
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Figure 13. Geological profiles S2, S3, and S4 for Shenyang city built based on the SDLP, SVM, and HRBF algorithms. 

The situation for the S3 and S4 geological profiles is generally similar to that of the S2 profile. The 3D geological 355 

models built using the HRBF algorithm and the SDLP algorithm demonstrate a high level of consistency with the borehole 

data, and the correspondence between the 3D geological model built with the SVM algorithm and the borehole data is 

comparatively poor. The boundaries of sedimentary formations in the 3D geological models built using the HRBF algorithm 

or the SDLP algorithm adhere more closely to the actual sedimentation patterns compared to the boundaries of the 3D 

geological models built using the SVM algorithm. At the lowermost layer boundary, the 3D geological model built using the 360 

SDLP algorithm is more reasonable than the one built using the HRBF algorithm. 

Based on a comparison of the results of the S2, S3, and S4 profiles, the SDLP algorithm demonstrates better ability to 

reflect the borehole data when building the 3D geological model. Additionally, the 3D geological model created using the 

SDLP algorithm better aligns with the sedimentation patterns in terms of the morphology of the formations. 

4.4 Analysis of Model Uncertainty 365 

For a 3D geological model, only the strata boundary information reflected by borehole data is accurate, and the strata 

boundaries in areas outside the borehole data region are either artificially inferred or based on constructed basis functions. 

Therefore, it is necessary to analyse the strata boundaries established based on borehole data in certain areas in the three-

dimensional geological model. The implicit HRBF modelling algorithm can be used to effectively visualize borehole data. 

However, because it is based on implicit basis functions for visualization, it may not effectively process the undisclosed 370 

geological information associated with borehole data. In this study, information entropy and a confusion index are 

introduced to address the HRBF algorithm's inability to consider uncertainty in areas without borehole data. The information 

entropy is calculated based on the probability distribution of all data points in the normalized model. A visualized 

information entropy model can reflect the uncertainty at different locations within the model. 
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In addition, the results of the information entropy and confusion index models of SDLP and DL algorithms are 375 

compared. These results are used to demonstrate the impact of pseudolabelling on the stability of building 3D geological 

models using neural network methods. 

 

Figure 14. Models of uncertainty: (a) information entropy model based on SDLP; (b) information entropy model based 

on DL; (c) confusion index model based on SDLP; and (d) confusion index model based on DL 380 

The information entropy and confusion index models reflect the uncertainty of the semisupervised learning method 

using pseudolabels and the supervised learning method used to build the models (Fig. 14). The blue part of the information 

entropy model (Fig. 14a, c), where the information entropy is close to 0, indicates that the uncertainty of the stratum attribute 

values in the region is low, and the entropy value is small, mainly between the model stratum boundaries. The red part, 

where the information entropy is close to 1, indicates that the region has a high probability of being influenced by stratum 385 

attribute values, and the entropy value is large, mainly distributed near the stratum boundary obtained through training. In 

the confusion index model (Fig. 14b, d), the blue part indicates a low confusion index, and the red part indicates a high 

confusion index. 
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In the confusion index model, the three-dimensional geological models built by SDLP algorithm and DL algorithm both 

exhibit a confusion index close to 0 within strata but increases in the confusion index at the boundaries of the strata. The 390 

difference lies in the fact that at the boundaries of strata, the confusion index of the three-dimensional geological model built 

with the deep learning algorithm without pseudolabelling is closer to 1, indicating lower accuracy than that of the 3D 

geological model built with the deep learning algorithm with pseudolabelling. Additionally, the information entropy model 

exhibits similar characteristics to the confusion index model. To visually illustrate the differences between the 3D geological 

models constructed by the SDLP algorithm and the DL algorithm in terms of information entropy and confusion index, the 395 

number of stable grids (with information entropy ranging from 0 to 0.01 and confusion index ranging from 0 to 0.01, Fig.15a, 

b) and unstable grids (with information entropy ranging from 0.3 to 1 and confusion index ranging from 0.3 to 1, Fig.15a, b) 

are recorded and compared. The results show that compared to the DL algorithm, the 3D geological model constructed by 

the SDLP algorithm has a higher proportion of stable grids and a lower proportion of unstable grids. The findings 

demonstrate that utilizing the TIN algorithm to construct pseudolabels can enhance the stability of the model. 400 

The information entropy and confusion index models can be used to overcome the HRBF algorithm's inability to 

consider uncertainty, and the results demonstrate that the SDLP algorithm is superior to the deep learning algorithm without 

pseudolabelling for constructing 3D geological models from the perspectives of information entropy and the confusion index. 

 

Figure 15. Line plot of information entropy(a) and confusion index (b). 405 

5. Conclusion 

In this study, we propose semisupervised deep learning using a pseudolabelling algorithm to build a 3D geological model 

based on borehole data. By labelling the grid data with high accuracy using the explicit TIN modelling method, we address 

the lack of labelled training data for building deep learning models. The original data for this study are from engineering 

borehole dataset from Shenyang city, and 3D geological models of Shenyang city were constructed using the SDLP, SVM, 410 

and HRBF algorithms. The SDLP algorithm achieved an accuracy of 98.16% for the test dataset, outperforming a classic 
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SVM machine learning algorithm. Moreover, the 3D geological model constructed using the SDLP algorithm accurately 

reflects the boundaries of the formations in the borehole data and aligns well with the real sedimentation patterns. the 3D 

geological models built with the SDLP algorithm resolve the inability of the implicit HRBF modelling algorithm to consider 

uncertainty. In conclusion, the proposed SDLP algorithm provides a solution for the lack of training data in deep learning 415 

and fills the gap of the HRBF method regarding uncertainty. 
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