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Abstract. Borehole data are essential for conducting precise urban geological surveys and large-scale geological 

investigations. Traditionally, explicit and implicit modelling have been the primary methods for visualizing borehole data 15 

and constructing 3D geological models. However, explicit modelling requires substantial manual labour, while implicit 

modelling faces challenges problems related to uncertainty analysis. Recently, machine learning approaches have emerged as 

effective solutions to addressfor address these issues in 3D geological modelling. Nevertheless, the use of machine learning 

to methods for constructing build 3D geological models is often limited by insufficient training data. In this paper, we 

propose the semisupervised deep learning using pseudolabels (SDLP) algorithm to overcome the issue of insufficient 20 

training data. Specifically, we construct the pseudolabels in the training dataset using the triangular irregular network (TIN) 

method. A Three 3D geological model is constructed using borehole data obtained from a geological survey of urban 

areasreal building engineering project in Shenyang, Liaoning Province, NE China. Additionally Then, we compare the 

results of the 3D geological model built constructed based on the SDLP with those obtained fromconstructed by a support 

vector machine (SVM) method and an implicit HRBF modelling method. The findings demonstrate that our proposed 25 

method effectively resolves issues with insufficient training data. Moreover, Ccompared to the 3D geological models 

constructed using the HRBF algorithm and SVM algorithm, the 3D geological model built constructed based on the SDLP 

algorithm better conforms to the sedimentation patterns of the region. and supports uncertainty analysis. The findings 

demonstrate that our proposed method effectively resolves the issues of insufficient training data when using machine 

learning methods and the inability to perform uncertainty analysis when using the implicit method. In conclusion, the 30 

semisupervised deep learning method with pseudolabelling proposed in this paper provides a solution for 3D geological 

modelling in engineering projectsparsely distributed areas with borehole data. 

1. Introduction 

Three-dimensional (3D) urban geological models are digital representations of subsurface strata and their associated features 

(Houlding, 1994). In recent years, the utilization of 3D geological models has expanded across various geological fields, 35 

such as mineral exploration (Zhang et al., 2021), geological storage (Thanh et al., 2019), groundwater resource estimation 

(Thibaut et al., 2021), geological disaster early warning generation (Høyer et al., 2019; Livani et al., 2022), and engineering 

geological condition evaluation (Chen et al., 2018; Guo et al., 2021; Lyu et al., 2021; Marz án et al., 2021). 
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The commonly used data for 3D geological modelling data include borehole data, geophysical data, survey and 

mapping data, and other types ofoutcrop data. Among these, borehole data provide the most accurate reflection of subsurface 40 

geological information (Guo et al.,2022). Notably, 3D geological modelling from borehole data can be divided into explicit 

modelling and implicit modelling (Jessell, 2001; Caumon et al., 2007; Wang et al., 2018). The explicit modelling approach 

can be used to directly delineate geological formations and interpret tectonics based on borehole data. Explicit 3D geologica l 

modelling methods are widely used in the 3D modelling of mines and regional geological structures, and they include the 

interactive 3D forward modelling method (Yang et al., 2011), generalized tri-prism (GTP) modelling method (Wu et al., 45 

2004; Che et al., 2009) and parametric surface method (Lyu et al., 2021). However, these approaches rely heavily relies on 

the expertise of geologists and often proves time-consuming and labour-intensive when dealing with large-scale borehole 

data. 

Implicit modelling methods are used to construct a 3D geological model by establishing the implicit equation of the 

isosurface representing the geometric shape of a geological body and using a series of implicit function visualization 50 

methods (Jessell M. et al., 2022). That isIn other words, a complex 3D geological object is represented as a continuous 

function of geological coordinates (Wang G.W. et al., 2011; Zhong D. Y. et al., 2021). This method does not require 

extensive human–computer interaction and has the advantages of high modelling accuracy, excellent smoothness and high 

spatial analysis efficiency (Sun H. et al., 2023). It is widely used in the field of geological modelling (Hillier M. J. et al., 

2014; Calcagno P. et al., 2008; Shi T. D. et al., 2021) and provides results to complement the results of most urban 55 

geological surveys (de la Varga M. et al., 2019). Common implicit modelling methods include nearest neighbour value 

interpolation (Olivier R. et al., 2012), inverse distance weighted (IDW) interpolation (Liu H. et al., 2020; Liu Z et al., 2021), 

discrete smooth interpolation (DSI) (Mallet J. 1997), kriging (Wang G.W. et al., 2011; Thanh H. V. et al., 2019), the  moving 

least squares (MLS) method (Manchuk J. G. et al., 2019), and the radial basis function (RBF) method (Caumon G. et al., 

2013; Hillier M. et al., 2014; Cuomo S. et al., 2017; Martin R. et al., 2017; Skala et al., 2017; Zhong D. Y. et al., 2019). 60 

However, tThe sparsity of borehole data, the complexity of geological bodies or geological phenomena, and the 

limitations of human cognition and expression lead to uncertainty in the relationship between the geometric form of a 3D 

geological model and the corresponding geological system (Caumon et al., 2007; Caers, 2011; Pakyuz-Charrier et al., 2018; 

Guo et al., 2022). When using the implicit modelling method to construct a 3D geological model, an implicit function can 

only correspond to one kind of geological interface expression. The construction of 3D geological models by establishing 65 

implicit equations cannot effectively address this uncertain relationship. Fortunately, the machine learning method is a kind 

of stochastic modelling method which can generate many possible geological models from one borehole dataset, and easily 

perform uncertainty analysis by using information entropy or confusion index, etc. Therefore, this paper introduces a new 

geological modelling method based on machine learning approaches to evaluate the accuracy of the generated model by 

uncertainty analysis. 70 

Machine learning methods have been widely used in 3D geological modelling, and they are generally applied in 

unsupervised or supervised 3D geological modelling (Wang et al., 2023). Unsupervised machine learning algorithms (e.g., k-

means clustering, self-organizing maps, and Gaussian mixture models) can be used to translate multisource geophysical 

datasets into 3D lithological models by measuring the similarity between properties in feature space (Hellman et al., 2017; 

Giraud et al., 2020; Whiteley et al., 2021; Zhang et al., 2022). Supervised machine learning algorithms (e.g., random forests 75 

and artificial neural networks) can be applied to construct 3D lithological models by training from labelled geophysical and 

geological datasets (Jia et al., 2021; Lysdahl et al., 2022). Despite obtaining encouraging results with supervised machine 

learning algorithms, most studies have not addressed the following critical challenges regarding supervised machine learning 

algorithms for 3D geological modelling: 

(1) In the field of 3D geological modelling, precise and adequate geological investigating data will help generate more 80 

accurate subsurface representations. However, due to the high exploration cost, borehole data which can precisely reveal 
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relationships between stratigraphy and tectonic features in a study area are usually limited. In the scope of 3D modelling, 

precise geological information, such as relationship of stratigraphy, and tectonic in study area, revealed by borehole data is 

much less than not revealed by borehole data. Utilizing the precise information obtained via boreholes as labelled data may 

not be enough to predict many unknown areas. Tthe correctness of the results predicted by machine learning in many 85 

unknown areas still requires further research. 

(2) The lLabelled geological datasets were are mainly composed of borehole data from early exploration phases (Jia et 

al., 2021; Lysdahl et al., 2022). The number of categories of lithological samples categories in drilling datasets is commonly 

imbalanced. A classification dataset with skewed class proportions can influence the performance of machine learning 

algorithms (Chawla et al., 2002; Batista et al., 2004). However, there is very little published research that has 90 

addressesaddressed the sample imbalance issue in the context of training supervised machine learning algorithms for 3D 

lithological modelling. 

Compared with machine learning methods, deep learning algorithms improve the ability to learn from mining data and 

are often combined with complex geophysical and geochemical data for modelling. Currently, there is a wealth of research 

on neural network-based deep learning methods for addressing geological issues such as tectonic recognition (Titos et al., 95 

2018), mineral identification and classification (Xu and Zhou, 2018), and seismic data inversion (Huang et al., 2020) , and 

others. Furthermore, in the realm of constructing 3D geological models, the deep learning approaches using neural networks 

has have also gradually garnered significant attention from numerous scholars (Laloy et al., 2017; Zhang et al., 2019; Ran et 

al., 2020; Zhang et al., 2018; Michael Hillier et al., 2021, 2022; S Avalos and Ortiz, 2020). However, the issue of insufficient 

training data has yet to be adequately addressed. 100 

In this paper, we propose a semisupervised deep learning using pseudolabels (SDLP) algorithm for constructing 3D 

geological models. The algorithm is usedand to overcome the problems of a lack of accurate labelled data in machine 

learning methods and the inability of implicit modelling methods to perform uncertainty analysis.. Upsampling is used to 

resolve label imbalance issues in the training dataset. The shallow borehole data obtained from the real engineering project 

Shenyang, Liaoning Province, are used to construct 3D geological models using via the proposed algorithm. To demonstrate 105 

the applicability of the SDLP algorithm, the accuracy, precision, recall, and F1 score results of the SDLP algorithm are 

compared with those of a classic support vector machine (SVM) algorithm based on a test dataset. To further assess the 

accuracy of the SDLP, the profiles of the 3D geological models constructed by the SDLP, SVM, and Hermite herite radial 

basis function (HRBF) are compared. The findings indicate that the SDLP algorithm can effectively solve problems where 

uncertainty analysis cannot be performed via the implicit modelling method, and can solve the problem that lack of training 110 

datasets by pseudolabels. Furthermore, the SDLP algorithm addresses the uncertainty limitations in the implicit HRBF 

modelling method. 

2. 3D Modelling Method Based on Deep Learning 

2.1. Borehole data preprocessing 

Table 1. The Table of average thickness, maximum thickness, minimum thickness and frequency of occurrence of the 115 

different strata 

 Frequency Average (m) Maximum (m) Minimum (m) 

fill 167 1.14 4.1 0.4 

Clay-1 128 2.21 6 0.7 

Clay-2 58 3.46 9.8 0.5 

Clay-3 107 5.94 12.8 0.5 

Clay-4 54 2.86 5.8 0.5 

Sand-1 25 3.34 8.1 1.2 
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Stone-1 71 6.30 14 1.3 

Stone-2 104 3.91 10 0.5 

Stone-3 72 6.22 12.5 1.2 

Residual-1 52 10.98 16.1 4.8 

Residual-2 50 4.77 13.8 2 

Residual-3 44 5.47 13.9 1 

A total of 167 boreholes obtained from a real engineering projects in Shenyang city were used to build the 3D geological 

model in this study. The primary objective of the project is to ensure building stability. These boreholes are distributed in a 

305×264 m area, with an average spacing of approximately 23 metres between adjacent boreholes. The average depth of the 

boreholes is 29.5 metres. The minimum thickness of the formations revealed by the boreholes is 0.4 metres, and the 120 

maximum thickness is 16.1 metres. The maximum average thickness is 10.98 metres, and the minimum average thickness is 

1.14 metres (Table 1). The original borehole data mainly include borehole coordinates (X, Y), elevation, lithological 

thickness, lithological bottom depth, borehole number, lithological ID, etc. 

This paper uses deep learning methods for 3D geological modelling, which can further simplify the modelling problem into a 

strata classification problem. In this method, the coordinate data and strata depth data obtained from boreholes are used as 125 

input vectors, and the lithological attributes of the boreholes are used as output vectors. In this study, the borehole data were 

simplified into continuous one-dimensional data when creating the dataset. However, there are significant differences in the 

lengths and frequencies of different formations within the borehole dataset (Table 1). For example, in terms of formation 

thickness, the maximum thickness is 16.1 m, while the minimum thickness is only 0.4 m. In terms of the formation 

occurrence frequency, the most frequent label, "fill," occurs 167 times, while the least frequent label, "sand-1," occurs 25 130 

times. This significant difference may lead to the overfitting of the training model and ultimately result in poor training 

performance. Therefore, preprocessing of the borehole data is needed. An upsampling method is proposed to avoid 

overfitting in the training model caused by imbalanced training datasets imbalance in this study. 

Based on the above discussion, an unequal interval sampling method is adopted in this paper (Fig. 1). In the figure, H11-

H35 represents unequal-interval sampling for each stratum in the borehole, while H11P1-H35P5 represents unequal-interval 135 

sampling for each stratum inon the deterministic section. Compared with equal-interval sampling, unequal-interval sampling 

involves changes to in the sampling interval according to the thickness of different strata, thereby ensuring the balance of the 

sampled data. Otherwise, thinner strata may be difficult to predict or deemed to be outliers due to insufficient sampling. As  

shown in Figure Fig. 1, different colours in the borehole region represent different strata attributes, and the strata data are 

displayed in strips that are continuously distributed in the vertical direction. The attributes of a single stratum are 140 

continuously unique within the corresponding depth interval, and there are no data gaps between strata. 

Due to the high reliability of borehole data, they these data can be directly or indirectly used for the generation of 

accurate models. By applying the Delaunay principle to borehole position points, a surface triangular irregular network (TIN) 

is created. The TIN is a method used for two-dimensional spatial data modelling and analysis in geography. This TIN 

encompasses the fundamental topological relationships between adjacent boreholes. If the stratum attributes of two 145 

neighbouring boreholes within each TIN are similar, they are connected to form a deterministic section. To ensure accurate 

geological predictions and eliminate the influence of distant and loosely correlated borehole connections, narrow triangles 

are removed from the TIN. The threshold for determining whether a triangle is a narrow triangle based on the measurement 

of its smallest angle is set to 20 degrees. This approach, similar to the generalized tri-prism (GTP) model, preserves the 

internal connectivity among the three corresponding boreholes and enables the simulation of various complex geological 150 

phenomena. Once the deterministic sections are connected, unequal interval sampling is conducted both horizontally and 

vertically, and the sampling density at the borehole locations is balanced to avoid overly dense sampling that may impact 

network training. The unequal interval sampling formula for borehole data is expressed as Equation (1), and the unequal 

interval sampling point coordinate formula for deterministic sections is expressed as Equation (2). 
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Zij =
(Sij−Sij−1)

n
                                                                                      (1) 155 

{

𝑃𝑖𝑗𝑥 = 𝑥1 +
𝑥2−𝑥1

𝑛
(2𝑗−1)

𝑃𝑖𝑗𝑦 = 𝑦1 +
𝑦2−𝑦1

𝑛
(2𝑗−1)

𝑃𝑖𝑗𝑧 =
𝐷1𝐶2+𝐴1𝐶2𝑃𝑖𝑗𝑥+𝐵1𝐶2𝑃𝑖𝑗𝑦−𝐷2𝐶1−𝐴2𝐶1𝑃𝑖𝑗𝑦−𝐵2𝐶1𝑃𝑖𝑗𝑦

𝐶1𝐶2𝑛
(2𝑖−1)

                                                   (2) 

where Sij is the bottom depth of the jth stratum in the ith borehole, n is the number of samples from each stratum, and Z ij is 

the sampling interval of the jth stratum in the ith borehole. Pijx, Pijy, and Pijz represent the x, y, and z coordinates of the 

sampling point in the ith row and jth column of a section, respectively. x1, y1, x2, and y2 are the coordinates of the two 

connected boreholes in a section. A1, B1, C1, D1, A2, B2, C2, and D2 are the parameters of the straight-line equations 160 

representing the top and bottom boundaries of the strata for the connected boreholes. 

 

 

Figure 1. Resampling of borehole data. Upsampling on the boreholes (left); upsampling on the deterministic sections (right). 

The difference in the number of digits between coordinate data (typically 7-8 digits with 3 decimal places) and stratum 165 

depth (typically 1-2 digits with 1 decimal place) in borehole data can lead to numerical computation issues in computer 

systems, making it difficult to train the model and adjust parameters, ultimately affecting the training results of the model. 

After performing data normalization based on the raw data, each indicator is scaled to a specific range, allowing for 

comprehensive comparative evaluation. To eliminate the influence of digit disparity among input features, ensure the equal 

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript



6 

 

impact of different features on model training, and achieve convergence, it is necessary to apply min–max normalization to 170 

the data and map the resulting values to the range of 0 to 1. For any dataset x, the mapping function is as follows: 

x′ =
x−xmin

xmax−xmin
                                                                                      (3) 

where xmax is the maximum value of the sample data and xmin is the minimum value of the sample data. x' is the normalized 

result, and x is the input of the model data. Through this normalization method, the convergence speed of the network 

training model is improved, the training accuracy is improved, and the model training becomes easier. 175 

2.2. Construction of deep neural networks 

A multilayer perceptron (MLP) is a feedforward artificial neural network that learns to form certain rules through 

training based on input and output indicators. Thus, the results closest to the expected output are obtained after inputting 

certain values. An MLP is a multilayer feedforward neural network based on the backpropagation algorithm. Each unit 

between layers in an MLP has a weight with an initial preset value, and unit training is performed using the backpropagation 180 

algorithm to adjust the weights between hidden layers. The iInput data are output after passing data through multiple hidden 

layers and compared with the expected labels to obtain the corresponding error, which is then propagated layer by layer 

backwards to adjust the weight of each layer. After multiple adjustments, suitable weights for the model are obtained. The 

relationship between layers can be expressed as shown in Equation (4). ): In the network model, the coordinates of each 

upsampled spatial point in the prediction area, x, y, and z, are used as inputs, and the geological properties of the spatial 185 

points are output. Each input represents a spatial feature dimension, and through four fully connected layers, the input data  

are processed and transformed. Each hidden layer contains multiple nodes, where each node is connected to all nodes in the 

previous layer. By multiplying by weights and applying an activation function, the input undergoes nonlinear transformation, 

resulting in expanded dimensionality. This result encompasses the deep features of the sample, and samples of different 

categories should have different high-dimensional features. The number of neurons in the hidden layer varies according to 190 

the complexity of the model, and the rectified linear unit (RELUReLU) activation function is used between hidden layers. To 

prevent overfitting, a dropout function is added to the penultimate fully connected layers of the network to randomly reduce 

the number of neurons. The dropout percentage is set to 10%. Finally, the output value of each category is normalized using 

the exponential function through a fully connected layer and a softmax layer, and the sum of the probabilities of all 

categories is 1. The predicted results of each data point are integrated to form the entire 3D geological model (Figure Fig. 2). 195 

The network model uses the Adam optimizer, and the loss function adopted is the cross-entropy loss function, which is 

commonly used in multiclassification tasks. The detailed parameters of the deep neural networks are shown in Table 2. 

Table 2. The network architecture and parameters of the deep neural networks in this paper 

Parameters Value 

Training set: Validation set: Test set 6:2:2 
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Number of hidden layers 4 

Hidden layer 1 128 

Hidden layer 2 256 

Hidden layer 3 512 

Hidden layer 4 1024 

Learning rate 0.003 

Activation function ReLU 

Number of training epochs 2000 

Loss function Cross entropy loss 

Optimizer Adam 

 

Yj = ∑ WijXi + bn
i=1                                                                                   (4) 200 

where Yj is the input of the next layer, Wij is the connection weight from cell Xi of the previous layer to cell Yj of the next 

layer, and b denotes the offset value. 
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Figure 2. Architecture of a deep neural network. Light grey nodes are input features, dark grey nodes are target outputs, and 205 

white nodes are internal network nodes. 

2.3 Semisupervised deep learning algorithm using pseudolabels 

Compared with that of data from images, point cloud data, etc., borehole data displays a clustered characteristicexhibit 

clustering characteristics with local concentrations but overall dispersion. Due to the large amount of missing point data 

between boreholes, it is difficult to accurately express the changing features of stratigraphic boundaries and inclination 210 

angles. Supervised learning depends on a large quantity of labelled data to enhance model performance. The labelled data 

used for training 3D geological models are obtained by upsampling limited borehole points and deterministic borehole 

profiles. Labelled data associated with spatial grid points in urban areas, which require high modelling precision, are scarce 

and contain very few features. To effectively solve the labelling problem, semisupervised learning is combined with deep 
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learning , and a model is constructed using a small amount of labelled data and a large amount of unlabelled data with 215 

pseudolabels for prediction. This approach is beneficial for expanding the training data. 

The attributes of strata are difficult to determine based on a single mathematical formula. Based on the topological 

relationships established with the TINs of three boreholes, three prisms are constructed using a method similar to the GTP 

approach by connecting the boreholes based on their stratigraphic properties, and the stratigraphic properties of the interior 

grid points of the prisms are obtained. For the predicted grid points within the prisms, it is assumed that their stratigraphic 220 

properties are similar to the properties of the prism, and when adding pseudolabels, it is assumed that the confidence level 

for each predicted stratigraphic property is high. Based on this approach, a semisupervised learning method based on 

pseudolabels is used to generate pseudolabels for the unlabelled data and improve learning performance. First, the model is 

trained using labelled data. When the model achieves a relatively highreaches an accuracy of 90% after being trained 

training for a certain number of rounds, the trained model is used utilized to predict the unlabelled data, and the results 225 

predicted with high confidence predictions are selected as the pseudolabels. The pseudolabelled data and labelled data are 

combined and used in training for a certain number of rounds. The above process is repeated until the proportion of newly 

added pseudolabelled data in each round is lower than a certain threshold. At this point, high-confidence labels are 

considered to be obtained, and the model has been sufficiently trained on all the data. 

 230 

Figure 3. Algorithm flow chart. 

2.4. Analysis of model uncertainty 

The last layer of the neural network classifier normalizes the probability of the output through the softmax layer, and the 

softmax normalized result can be approximated as the probability corresponding to each stratum at a given data point. 

Therefore, when analysing the uncertainty of each data point in the raster model, the normalized information entropy can be 235 

introduced to quantitatively evaluate the uncertainty of the geological model. The normalized information entropy formula is 

as follows: 



10 

 

H(X) = −
∑ p(x)ln(p(x))x∈S

Smax
                                                                 (5) 

where S is the number of possible geological attributes for each data point, Smax is equal to ln(n), and n is the number of 

possible geological attributes. The information entropy of each data point is obtained by calculating the probability p(x) of 240 

each data point over all geological attributes. The magnitude of information entropy reflects the degree of complexity at a 

certain location in the geological model. The closer the information entropy is to 0, the higher the certainty of a data point for 

a certain stratum attribute, and the closer the information entropy is to 1, the higher the uncertainty of a data point for 

multiple geological attributes. 

In addition, the data can be analysed based on an estimated confusion index (Burrough et al., 1997), and the ambiguity 245 

of classification can be evaluated by selecting the results of the two prediction categories with the highest probability for 

each data point. The confusion index formula is as follows: 

CI = [1 − (μmax − μmax−1)]                                                                   (6) 

where μmax is the probability of the class with the highest predicted probability and μmax-1 is the probability of the class with 

the second highest predicted probability. CI values range from 0-1 to indicate the degree of confusion predicted for a certain 250 

data point, with 0 indicating that a classification result with a low confusion index is not ambiguous and 1 indicating that a 

classification result with a high confusion index is highly ambiguous. 

3. Experimental method and verification 

The Shenyang city 3D geological models were built using the SDLP, SVM, and HRBF algorithms. All test experiments in 

this chapter were performed on the same device: an Intel(R) Core (TM) i7-10750H CPU @2.60 GHz with an NVIDIA 255 

GeForce RTX 2060, 16.0 GB RAM, and Windows 10 (64-bit). 

The ReLU function was used as the activation function in the SDLP algorithm, the initial learning rate was set to 0.001, 

and the training batch size for training was set to 512. When the model training accuracy reached 90% or after 500 epochs, 

the unlabelled grids were labelled with pseudolabels. When the newly added pseudolabels accounted for less than 10% of the 

number of grids lacking labels in a given epoch, the model was trained for a total of 2000 epochs more before stopping. The 260 

training accuracy and loss values are shown in Fig. 4. The accuracy, precision, recall, and F1 score of the SVM, SDLP, and 

DL (the neural networks is are the same with as the SDLP but without pseudolabels) algorithms for the test dataset are 

shown in Table 32. 

In the training process, when the labelled data and pseudolabelled data are fused, the boundaries of the stratigraphic 

categories are finely delineated, the final model training accuracy is above 95%, the loss function is close to zero, and the  265 

precision of the model for the test set is 98.16%. A confusion matrix is obtained from the test set (Fig. 5), which reflects the 

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript



11 

 

reliability of the evaluation results of the model. The classification accuracy of the model is high for all layers. Some str ata 

are more likely to be confused due to beingbecause they are thin, displaying and display similar boundaries as other strata, or 

because the influence of geological phenomena, such as depositional termination. The receiver operating characteristic (ROC) 

curve (ROC) is another performance indicator that summarizes reflects the performance of the a binary classification model 270 

in the positive class and thus can be used to evaluate the diagnostic ability of the a classifier according to the threshold 

change (Fawcett, 2006). The area under the ROC curve (AUC) (Fig. 6) represents a comprehensive measure of all possible 

classification thresholds. AUC values greater than 90%, from ranging 75-90%, from ranging 50-75% and less than 50% are 

considered to represent excellent, good, poor and unacceptable performance, respectively (Ray et al., 2010). The area under 

the curve (AUC) values of the model are all above 90%, indicating that the classification performance of the model is 275 

excellent. 

Table 32. The accuracy, precision, recall, and F1 score values for the SVM and SDLP algorithms based on the test dataset 

 Accuracy Precision Recall F1 score 

SAMSV

M 
0.955 0.948 0.940 0.944 

SDLP 0.982 0.983 0.980 0.982 

DL 0.973 0.967 0.968 0.968 

 

Figure 4. Model training accuracy and loss variation curves 
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 280 

Figure 5. Confusion matrix of the classification results when the model is applied to the test dataset 

 

 

Figure 6. ROC curve for classification 

The grid  used in modelling is 1.5 m × 1.3 m × 0.3 m. The model uses the Tin mesh constructed from the top of 285 

boreholes to restrict the surface. The modelling range is determined according to a convex hull built by the borehole data, 

and the base of the model is determined according to a convex hull built by the bottoms of borehole data. Fig. 7 shows the 

modelling results for the study area. The model reveals the coverage relationships among the strata and reproduces the 

contact relationship between the depositional termination and unconformity of the strata. 
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 290 

Figure 7. Model built using deep neural networks and the model legend. 

To test the estimation accuracy at nonborehole locations using the proposed method, the borehole data were divided 

into a training set and a test set through k-fold cross validation., learning Learning was performed with the training set of 

borehole data, and the test set accuracy was compared and analysed, where K was set to 10. 

 295 

Figure 8. Borehole distribution and experimental analysis based on different profiles. The red dotted lines are the profiles, and the 

borehole points circled in red correspond to the boreholes tested using K1  

The boreholes in the test set were sampled at equal intervals to determine the data point attributes at the boreholes, and 

the average accuracy of k-fold cross validation was calculated to be 71.65%. Due to the varying amount of geological 
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information contained in individual borehole data, the importance of different boreholes in constructing the 3D geological 300 

model also differs. For instance, the test borehole data contains valuable lens body stratigraphic information and stratigraphic 

extinction information (Fig. 9). Removing the test borehole data would significantly decrease the accuracy of the prediction 

results. Therefore, we utilize the surface irregular triangulation method generated by the Delaunay rule to determine the 

topological relationships between the boreholes. Based on this approach, we ensure that boreholes containing a significant 

amount of geological information are not excluded during K-fold validation. These operations have improved the accuracy 305 

of K-fold validation from 71.65 to 85.9. 

 

Figure 9. A situation in which too much depositional termination affects the prediction. A related borehole is a borehole that has a 

topological relationship with the predicted borehole. The red solid frame is the stratum, which is difficult to predict due to the 

excessive occurrence of depositional termination. 310 

To further analyse the influence of accuracy on the model, a model with complete borehole data and a model with 

excluded sample K1 test borehole data were established, and the sections of the models through a test borehole were 

compared (Fig. 10). The FigureFig. 10 shows the  results for a straight line thought through the S1 and S3 profiles. Most 

areas  of the sections at the boreholes in the test set are consistent with the sections built by a complete borehole. Since some 

test set boreholes are near depositional terminations, there is a certain difference between the model and the data from test 315 

boreholes, but the results are close and reasonable. In summary, the SDLP method displays a good prediction ability for the 

neighbouring boreholes and can reveal the distribution characteristics of the strata. 
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Figure 10. Comparison of the modelling results of for sample K1 with the complete drilling results. The dotted box shows the 

boreholes considered during the test. 320 

4. Discussion 

4.1 Verification of the Accuracy accuracy of the HRBF Methodmethod 

Three-dimensional geological modelling based on the Hermite radial basis function (HRBF) is one kind ofan implicit 

function modelling method, and implicit modelling methods based on the HRBF have been widely used in the modelling of 

ore bodies, regional geological surveys (Guo et al., 2016), urban geological surveys (Guo et al., 2021), tunnelling projects 325 

(Xiong et al., 2018), and volcanic formations (Guo et al., 2020). Therefore, in this paper, the HRBF method is used to build a 

3D geological model of Shenyang city, and this model is used to compare the accuracy of the SDLP and SVM algorithms. 

Before evaluating the accuracy of the two algorithms mentioned earlier, it is essential to conduct an accurate analysis of the 

3D geological model constructed using the HRBF method. To demonstrate the accuracy of this approach, we first use the 

HRBF method to build a 3D geological model of Shenyang city. S1, S2, S3, and S4 are profiles within the 3D geological 330 

model of Shenyang city, which and contain many geological strata and complex geological relationships. The accuracy of 

these profiles can effectively reflect the accuracy of the HRBF modelling method. In the S1 geological profile, the 

stratigraphic boundaries contained in the borehole dataset nearly perfectly correspond to the boundaries of the three-

dimensional geological model built based on the HRBF method (FigureFig. 11). This matching effect is also demonstrated 

for the S2, S3, and S4 geological profiles. The accurate correspondence between the borehole data and the cross-sections of 335 
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the 3D geological model indicates the precision of the HRBF modelling method in constructing the three-dimensional3D 

geological model (Fig. 11b-e). Furthermore, 3D geological models of Shenyang city built using the HRBF method have been 

verified as to be effective in engineering applications (Guo et al.,2021). In conclusion, the 3D geological model built using 

the HRBF method can serve as a standard for evaluating the quality of 3D geological models constructed with the SDLP and 

SVM algorithms. 340 

 

Figure .11 (a) the 3D geological model constructed by the HRBF algorithm (b) the S1 profile built by HRBF the algorithm,; (c) the 

S2 profile built by the HRBF algorithm,; (d) the S3 profile built by the HRBF algorithm,; and (e) the S4 profile built by the HRBF 

algorithm 

4.2 Comparison of Different Algorithms 345 

Before building the three-dimensional geological model using the SDLP and SVM algorithms, it is necessary to observe the 

performance of these two algorithms based on the test dataset. According to the prediction results for the test dataset, the 

accuracy, precision, recall, and F1 score of the SDLP algorithm are 0.982, 0.983, 0.980, and 0.982, respectively, all of which 

are higher than those of the SVM algorithm (Fig. 12). The reason for these overall results may be that the SDLP algorithm 

uses more training data, enabling the model to learn patterns with higher generalization abilitygreater generalizability. 350 

Furthermore, the accuracy, precision, recall, and F1 score of the SDLP algorithm are also higher greater than those of 

the DL algorithm (Fig.11). This phenomenon may be attributed to the increased quantity of images in the training dataset 

resulting from the use of pseudolabels constructed with the TIN method. The expanded training dataset enables the neural 

network model to achieve better generalization. 
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 355 

Figure 12. Accuracy, precision, recall, and F1 score of the SDLP and SVM algorithms. 

 4.3 Comparative Analysis analysis of Modelsmodels 

The profiles of the 3D geological model of Shenyang city are compared to further validate the generalization ability of the 

SDLP algorithm and the SVM algorithm. The implicit HRBF modelling method exhibits excellent consistency with the 

borehole data in the profiles, and; thus, the profiles constructed with the HRBF method are used as a benchmark for 360 

comparison with the profiles generated by machine learning algorithms. In Figure Fig. 13, the horizontal axis represents the 

modelling results of different algorithms for the same geological profile, and the vertical axis represents the geological 

profiling modelling results of the same algorithm for different geological profiles. 

In the S2 geological profile, the 3D geological models built with the HRBF algorithm and the SDLP algorithm 

demonstrate a high level of consistency with the borehole data. However, the 3D geological model built with the SVM 365 

algorithm shows relatively poor correspondence with the borehole data. Furthermore, the morphology of the formations in 

the 3D geological models created with different algorithms is not entirely consistent within the S2 profile. In sedimentary 

formations without fault structures, the formation boundaries typically undergo gradual changes rather than abrupt changes. 

The 3D geological models generated using the SDLP algorithm or the HRBF algorithm generally adhere to these geological 

laws. For instance, the intersection points of the stone-1, stone-2, and stone-3 strata and the residual-1, residual-2, and 370 

residual-3 strata in the 3D geological models developed using the SDLP and HRBF algorithms display exhibit smooth 

transitions, aligning well with the sedimentation patterns of sedimentary formations. Conversely, the contact relationships 

among the strata at these intersections in the 3D geological model built using the SVM algorithm do not conform to the 

actual sedimentation patterns. Additionally, at the apex of the lens-shaped sand-1 formation, the 3D geological model 

created with the SVM algorithm is less realistic than the models produced by the HRBF and SDLP algorithms. Guo et al. 375 

(2021) demonstrated through 3D geological modelling methods that there are no fault structures in the Shenyang area. This 

finding implies that the 3D geological model of the S2 profile built with the SVM method is not reasonable. Moreover, the 

HRBF method produces modelling results that are deemed unreasonable for the lower two layers, stone-3 and residual-3, due 

to constraints imposed by the implicit model. These constraints involve the stratum interface being defined based on the 
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control points of each borehole and the implicit equation. In conclusion, for the S2 profile, the SDLP algorithm exhibits the 380 

most favourable modelling performance. 

 

Figure 13. Geological profiles S2, S3, and S4 for Shenyang city built based on the SDLP, SVM, and HRBF algorithms. 

The situation results for the S3 and S4 geological profiles is are generally similar to that of those for the S2 profile. The 

3D geological models built using the HRBF algorithm and the SDLP algorithm demonstrate a high level of consistency with 385 

the borehole data, and the correspondence between the 3D geological model built with the SVM algorithm and the borehole 

data is comparatively poor. The boundaries of sedimentary formations in the 3D geological models built using the HRBF 

algorithm or the SDLP algorithm adhere more closely to the actual sedimentation patterns compared to than do the 

boundaries of the 3D geological models built using the SVM algorithm. At the lowermost layer boundary, the 3D geological 

model built using the SDLP algorithm is more reasonable than the onethat built using the HRBF algorithm. 390 

Based on aA comparison of the results of for the S2, S3, and S4 profiles,   reveal that the SDLP algorithm demonstrates 

better reflects ability to reflect the borehole data when building the 3D geological model. Additionally, the 3D geological 

model created using the SDLP algorithm better aligns with the sedimentation patterns in terms of the morphology of the 

formations. 

4.4 Analysis of Model Uncertainty 395 

For a 3D geological model, only the strata boundary information reflected by borehole data is accurate, and the strata 

boundaries in areas outside the borehole data region are either artificially inferred or based on constructed basis functions. 

Therefore, it is necessary to analyse the strata boundaries established based on borehole data in certain areas in the three-

dimensional geological model. The implicit HRBF modelling algorithm can be used to effectively visualize borehole data. 

However, because it is based on implicit basis functions for visualization, it may not effectively process the undisclosed 400 

geological information associated with borehole data. In this study, information entropy and a confusion index are 

introduced to address the HRBF algorithm's inability of the HRBF algorithm to consider uncertainty in areas without 
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borehole data. The information entropy is calculated based on the probability distribution of all the data points in the 

normalized model. A visualized information entropy model can reflect the uncertainty at different locations within the model.  

In addition, the results of the information entropy and confusion index models of the SDLP and DL algorithms are 405 

compared. These results are used to demonstrate the impact of pseudolabelling on the stability of building 3D geological 

models using constructed via neural network methods. 

 

Figure 14. Models of uncertainty: (a) information entropy model based on SDLP; (b) information entropy model based on DL; (c) 

confusion index model based on SDLP; and (d) confusion index model based on DL 410 

The information entropy and confusion index models reflect the uncertainty of the semisupervised learning method 

using pseudolabels and the supervised learning method used to build the models (Fig. 14). The In the blue part of the 

information entropy model (Fig. 14a, c), where the information entropy is close to 0, indicates that the uncertainty of the 

stratum attribute values in the region is low, and the entropy value is small, mainly between the model stratum boundaries. 

The In the red part, where the information entropy is close to 1, indicates that the region has a high probability of being 415 

influenced by stratum attribute values, and the entropy value is large, mainly distributed near the stratum boundary obtained  
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through training. In the confusion index model (Fig. 14b, d), the blue part indicates a low confusion index, and the red part 

indicates a high confusion index. 

In According to the confusion index model, the three-dimensional geological models built by the SDLP algorithm and 

DL algorithm both exhibit a confusion index indices close to 0 within strata but increases increase in the confusion index 420 

indices at the boundaries of the strata. The difference lies in the fact that at the strata boundaries of strata, the confusion 

index of the three-dimensional geological model built with the deep learning algorithm without pseudolabelling is closer to 1, 

indicating lower accuracy than that of the 3D geological model built with the deep learning algorithm with pseudolabelling. 

Additionally, the information entropy model exhibits similar characteristics similar to those of the confusion index model. 

To visually illustrate the differences between the 3D geological models constructed by the SDLP algorithm and the DL 425 

algorithm in terms of information entropy and confusion index, the number of stable grids (with information entropy ranging 

from 0 to 0.01 and confusion index ranging from 0 to 0.01, ; Fig. 15a, b) and unstable grids (with information entropy 

ranging from 0.3 to 1 and confusion index ranging from 0.3 to 1, ; Fig. 15a, b) are recorded and compared. The results show 

that, compared to those of the DL algorithm, the 3D geological model constructed by the SDLP algorithm has a higher 

greater proportion of stable grids and a lower proportion of unstable grids. The findings demonstrate that utilizing the TIN 430 

algorithm to construct pseudolabels can enhance the stability of the model. 

The information entropy and confusion index models can be used to overcome the HRBF algorithm's inability of the 

HRBF algorithm to consider uncertainty, and the results demonstrate that the SDLP algorithm is superior to the deep 

learning algorithm without pseudolabelling for constructing 3D geological models from the perspectives of information 

entropy and the confusion index. 435 

 

Figure 15. Line plot of the information entropy(a) and confusion index (b). Formatted: Font: 小五, Bold
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5. Conclusion 

In this study, we propose semisupervised deep learning using a pseudolabelling algorithm to build construct a 3D geological 

model based on borehole data. By labelling the grid data with high accuracy using the explicit TIN modelling method, we 440 

address the lack of labelled training data for building deep learning models. The original data for this study are were 

obtained from an engineering borehole dataset from Shenyang city, and 3D geological models of Shenyang city were 

constructed using the SDLP, SVM, and HRBF algorithms. The SDLP algorithm achieved an accuracy of 98.16% forOn the 

test dataset, the SDLP algorithm outperforms the classicaloutperforming a classic SVM machine learning algorithm, with an 

accuracy, precision, recall, and F1 score of 98.16%, 98.3%, 98.0%, and 98.2%, respectively. Moreover, the 3D geological 445 

model constructed using the SDLP algorithm accurately reflects the boundaries of the formations in the borehole data and 

aligns well with the real sedimentation patterns. the The 3D geological models built with constructed by the SDLP algorithm 

resolve overcome the inability of the implicit HRBF modelling algorithm to consider uncertainty. In conclusion, the 

proposed SDLP algorithm provides a solution for the lack of training data in deep learning and fills the gap that cannot 

perform uncertainty analysis of the HRBF implicit modelling method. regarding uncertainty. 450 
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