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Abstract. Borehole data are essential for conducting precise urban geological surveys and large-scale geological 

investigations. Traditionally, explicit and implicit modelling have been the primary methods for visualizing borehole data 

and constructing 3D geological models. However, explicit modelling requires substantial manual labour, while implicit 

modelling faces challenges related to uncertainty. Recently, machine learning approaches have emerged as effective 20 

solutions to address these issues in 3D geological modelling. Nevertheless, the use of machine learning to build 3D 

geological models is often limited by insufficient training data. In this paper, we propose the semisupervised deep learning 

using pseudolabels (SDLP) algorithm to overcome the issue of insufficient training data. Specifically, we construct the 

pseudolabels in the training dataset using the triangular irregular network (TIN) method. A 3D geological model is 

constructed using borehole data obtained from a geological survey of urban areas in Shenyang, Liaoning Province, NE China. 25 

Additionally, we compare the results of the 3D geological model built based on SDLP with those obtained from a support 

vector machine (SVM) method and an implicit HRBF modelling method. The findings demonstrate that our proposed 

method effectively resolves issues with insufficient training data. Moreover, compared to the 3D geological models 

constructed using the HRBF algorithm and SVM algorithm, the 3D geological model built based on the SDLP algorithm 

better conforms to the sedimentation patterns of the region and supports uncertainty analysis. In conclusion, the 30 

semisupervised deep learning method with pseudolabelling proposed in this paper provides a solution for 3D geological 

modelling in sparsely distributed areas with borehole data. 

Abstract. Boreholes are one of the main tools for high-precision urban geology exploration and large-scale geological 

investigations. At present, machine learning based 3D geological modelling methods for borehole data have difficulty 

building a finer and more complex model and analysing the modelling results with uncertainty. In this paper, a 35 

semisupervised learning algorithm using pseudolabels for 3D geological modelling from borehole data is proposed. We 

establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang, and the 

modelling results are compared with implicit surface modelling and traditional machine learning modelling methods. Finally, 

an uncertainty analysis of the model is made. The results show that the method effectively expands the sample space, the 
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modelling results perform well in terms of spatial morphology and geological semantics, and the proposed modelling method 40 

can achieve good modelling results for more complex geological regions. 

1. Introduction 

Three-dimensional (3D) urban geological models are digital representations of subsurface strata and their associated features 

(Houlding, 1994). In recent years, the utilization of 3D geological models has expanded across various geological fields, 

such as mineral exploration (Zhang et al., 2021), geological storage (Thanh et al., 2019), groundwater resource estimation 45 

(Thibaut et al., 2021), geological disaster early warning generation (Høyer et al., 2019; Livani et al., 2022), and engineering 

geological condition evaluation (Chen et al., 2018; Guo et al., 2021; Lyu et al., 2021; Marz án et al., 2021). 

Geological spatial distribution has complexity, fuzziness and uncertainty. To reasonably arrange urban engineering 

construction, the underground situation of each area of a city needs to be understood and a comprehensive assessment 

carried out. The establishment of a reasonable 3D geological model, intuitive expression of geological features, display of 50 

underground geological structures, and revelation of the spatial distribution law are important foundations to ensure 

engineering design and implementation. The stratum structure is the result of a long geological process, and its spatial and 

temporal distribution is uneven and irregular. At present, it is still difficult to summarize a set of reasonable mathematical 

laws to express the stratum distribution. Deep learning methods can obtain the complex mapping relationship between input 

and output by relying on the powerful computing power of computers, which has been applied in many complex fields and 55 

has increasingly attracted the attention of geological researchers, such as 3D modelling. 

The commonly used data for 3D geological modelling include borehole data, geophysical data, survey and mapping 

data, and other types of data. Among these, borehole data provide the most accurate reflection of subsurface geological 

information (Guo et al.,2022). Notably, 3D geological modelling from borehole data can be divided into explicit modelling 

and implicit modelling (Jessell, 2001; Caumon et al., 2007; Wang et al., 2018). The explicit modelling approach can be used 60 

to directly delineate geological formations and interpret tectonics based on borehole data. Explicit 3D geological modelling 

methods are widely used in the 3D modelling of mines and regional geological structures, and they include the interactive 

3D forward modelling method (Yang et al., 2011), generalized tri-prism (GTP) modelling method (Wu et al., 2004; Che et 

al., 2009) and parametric surface method (Lyu et al., 2021). However, these approaches heavily relies on the expertise of 

geologists and often proves time-consuming and labour-intensive when dealing with large-scale borehole data. 65 

Implicit modelling methods are used to construct a 3D geological model by establishing the implicit equation of the 

isosurface representing the geometric shape of a geological body and using a series of implicit function visualization 

methods (Jessell M. et al., 2022). That is, a complex 3D geological object is represented as a continuous function of 

geological coordinates (Wang G.W. et al., 2011; Zhong D. Y. et al., 2021). This method does not require extensive human–

computer interaction and has the advantages of high modelling accuracy, excellent smoothness and high spatial analysis 70 

efficiency (Sun H. et al., 2023). It is widely used in the field of geological modelling (Hillier M. J. et al., 2014; Calcagno P. 

et al., 2008; Shi T. D. et al., 2021) and provides results to complement the results of most urban geological surveys (de la 

Varga M. et al., 2019). Common implicit modelling methods include nearest neighbour value interpolation (Olivier R. et al., 

2012), inverse distance weighted (IDW) interpolation (Liu H. et al., 2020; Liu Z et al., 2021), discrete smooth interpolation  

(DSI) (Mallet J. 1997), kriging (Wang G.W. et al., 2011; Thanh H. V. et al., 2019), the MLS method (Manchuk J. G. et al., 75 

2019), and the radial basis function (RBF) method (Caumon G. et al., 2013; Hillier M. et al., 2014; Cuomo S. et al., 2017; 

Martin R. et al., 2017; Skala et al., 2017; Zhong D. Y. et al., 2019).However, At present, underground 3D data acquisition 

methods include borehole exploration technology and applied geophysical technology. Although the cost of borehole  

exploration is higher than that of geophysics, its exploration precision is high, making it the main means of high-precision 

exploration in local areas. Borehole data can intuitively and reliably obtain geological spatial information. 3D geological 80 
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modelling from borehole data can be divided into explicit modelling and implicit modelling (Wang et al., 2018). Explicit 

modelling methods more easily add geological semantic constraints during modelling, the boundary control is more accurate, 

and the modelling results are more in line with the actual geological laws. However, it is difficult to automatically model 

complex geological structures such as faults, folds and unconformities, and the modelling is not smooth. Examples include 

automatic modelling methods based on generalized tri-prism volume elements (Wu, L. X., 2004), section connection 85 

methods (Yang et al., 2011), etc. Implicit modelling (Caumon et al., 2012; Hillier et al., 2014) solves the implicit equations 

of the space surface by selecting the appropriate basis functions and using known points in the space to obtain the implicit 

surface functions and then uses a 3D surface construction algorithm to express them explicitly. Because there is a certain 

relationship between the implicit surface shape and the selected basis function form, an implicit modelling method has a 

certain degree of subjectivity for the final model expression. In addition, implicit modelling requires a high data volume, 90 

which requires a large amount of borehole data to establish an accurate model, and solving large-scale equations also 

requires high hardware requirements. Examples include the kriging method (Che et al., 2019), inverse distance weighting 

method (Liu et al., 2020), Hermite radial basis function method (Guo et al., 2021), etc. Stochastic simulation methods 

include transition probability-based (Carle and Fogg, 1997), object-based (Lantuejoul, 2002), process-based (Lancaster and 

Bras, 2002), truncated Gaussian (Matheron et al., 1987), multivariate Gaussian (Armstrong et al., 2011), implicit boundaries 95 

(Ferrer et al., 2021), and multipoint statistics (Mariethoz and Caers, 2014) simulations. At present, multipoint geostatistics 

(MPS) (Guo et al., 2022) has been developed as a method for boreholes. By establishing a grid and defining a random 

simulation path according to the simulation grid, the stratum attribute values are determined for the grid according to the 

borehole distribution of a random simulation path. 

the sparsity of borehole data, the complexity of geological bodies or geological phenomena, and the limitations of human 100 

cognition and expression lead to uncertainty in the relationship between the geometric form of a 3D geological model and 

the corresponding geological system (Caumon et al., 2007; Caers, 2011; Pakyuz-Charrier et al., 2018). The construction of 

3D geological models by establishing implicit equations cannot effectively address this uncertain relationship. 

Machine learning methods have been widely used in 3D geological modelling. Traditional machine learning methods 

include 3D geological modelling based on support vector machines (SVMs) (Smirnoff et al., 2008; Wang et al., 2014), using 105 

the kriging model-based potential field method to implicitly model geological structures (Calcagno et al. ,2008; Goncalves et 

al., 2017), using Bayesian methods to estimate the uncertainty of geological models, etc. (de la Varga et al.,  2016; Wang, H., 

2020). These methods are applied to nonimage data. 

Machine learning methods have been widely used in 3D geological modelling, and they are generally applied in 

unsupervised or supervised 3D geological modelling (Wang et al., 2023). Unsupervised machine learning algorithms (e.g., k-110 

means clustering, self-organizing maps, and Gaussian mixture models) can be used to translate multisource geophysical 

datasets into 3D lithological models by measuring similarity between properties in feature space (Hellman et al., 2017; 

Giraud et al., 2020; Whiteley et al., 2021; Zhang et al., 2022). Supervised machine learning algorithms (e.g., random forests 

and artificial neural networks) can be applied to construct 3D lithological models by training from labelled geophysical and 

geological datasets (Jia et al., 2021; Lysdahl et al., 2022). Despite obtaining encouraging results with supervised machine 115 

learning algorithms, most studies have not addressed the following critical challenges regarding supervised machine learning 

algorithms for 3D geological modelling: 

(1) In the scope of 3D modelling, precise geological information, such as relationship of stratigraphy, and tectonic in 

study area, revealed by borehole data is much less than not revealed by borehole data. Utilizing the precise information 

obtained via boreholes as labelled data to predict the correctness of the results in many unknown areas still requires further 120 

research. 

(2) Labelled geological datasets were mainly composed of borehole data from early exploration phases (Jia et al., 2021; 

Lysdahl et al., 2022). The number of categories of lithological samples in drilling datasets is commonly imbalanced. A 
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classification dataset with skewed class proportions can influence the performance of machine learning algorithms (Chawla 

et al., 2002; Batista et al., 2004). However, there is very little published research that addresses the sample imbalance issue 125 

in the context of training supervised machine learning algorithms for 3D lithological modelling. 

Compared with machine learning methods, deep learning algorithms improve the ability to learn from mining data and 

are often combined with complex geophysical and geochemical data for modelling. Currently, there is a wealth of research 

on neural network-based deep learning methods for addressing geological issues such as tectonic recognition (Titos et al., 

2018), mineral identification and classification (Xu and Zhou, 2018), seismic data inversion (Huang et al., 2020), and others . 130 

Furthermore, in the realm of constructing 3D geological models, the deep learning approach using neural networks has also 

gradually garnered significant attention from numerous scholars (Laloy et al., 2017; Zhang et al., 2019; Ran et al., 2020; 

Zhang et al., 2018; Michael Hillier et al., 2021, 2022; S Avalos and Ortiz, 2020). However, the issue of insufficient training 

data has yet to be adequately addressed. 

Compared with traditional machine learning methods, deep learning improves the ability to read mined data and is often 135 

combined with complex geophysical and geochemical data for modelling. For example, neural networks are trained to 

predict geological structures from seismic data (Titos et al., 2018), deep neural networks are used to invert complex binary 

geological media (Laloy et al., 2017) and generative adversarial networks are used to generate geological models (Zhang et 

al., 2019). Deep learning is used to comprehensively utilize geological, gravity, and aeromagnetic data to intelligently 

generate regional 3D geological models, which solves the problem of a long 3D modelling cycle and slow effect (Ran et al., 140 

2020). By designing a targeted U-Net convolutional neural network model, the automatic identification and classification of 

underground ore minerals based on a deep learning algorithm has been realized (Xu and Zhou., 2018). By designing a 

geological entity recognition model based on a deep belief network, the problem of structured and standardized processing of 

geological entity information in text data was solved (Zhang et al., 2018). When performing seismic inversion on different 

data sets, deep learning methods have the potential to obtain higher resolution results than traditional machine learning in the 145 

case of big data (Huang et al., 2020). 

Borehole data are common data in geological exploration, and the data are generally sparse. Research has been 

conducted in the field of geology using machine learning methods from borehole data, which can be divided into those based 

on spatial data from boreholes and other data from boreholes. There are mainly two kinds of modelling ideas based on 

borehole spatial data: borehole sequence simulation and borehole spatial point simulation. Borehole sequence simulation is 150 

divided into borehole sequence prediction and the prediction of each stratum thickness (Zhou et al., 2019). Borehole spatial 

point simulation simulates the lithology of the spatial points sampled by the borehole. This method is compared with the 

borehole sequence simulation method. The borehole sequence simulation method has better continuity in the vertical 

direction and is not affected by the sampling accuracy, while the lithology simulation of a borehole has higher accuracy in 

predicting the borehole lithology (Zhang et al., 2021). Models based on borehole spatial point simulation have different 155 

advantages and disadvantages due to the different input and sampling methods of the model. The borehole is upsampled 

according to a certain interval, and each sampling point is used as input (Guo et al., 2019). Strata are generated by randomly 

selecting B-spline curve functions based on boreholes, and the voxels of each stratum are used as input (Wang et al 2021). 

The constructed model is more accurate, but the model mainly relies on randomly selected B-spline curves. If the 

coordinates and starting depth of each stratum drilled are used as input (Kim et al., 2022), although the model accuracy is 160 

lower than that of upsampling, it is not easy to overthrow the order of strata. Studies based on other borehole data include 

lithology classification based on borehole core description data (Bressan et al., 2020) and 3D geological modelling based on 

described boreholes (Fuentes et al., 2020). In conclusion, among borehole data modelling methods, the lithology prediction 

method for spatial points is better, but there are still some problems, such as needing 3D geological models established by 

other methods as references, low modelling accuracy, and difficulty in modelling complex geological phenomena. 165 
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In this paper, we propose a semisupervised deep learning using pseudolabels (SDLP) algorithm for constructing 3D 

geological models and to overcome the lack of accurate labelled data. Upsampling is used to resolve label imbalance issues 

in the training dataset. The shallow borehole data from Shenyang, Liaoning Province, are used to construct 3D geological 

models using the proposed algorithm. To demonstrate the applicability of SDLP, the accuracy, precision, recall, and F1 score 

results of SDLP are compared with those of a classic support vector machine (SVM) algorithm based on a test dataset. To 170 

further assess the accuracy of SDLP, the profiles of the 3D geological models constructed by SDLP, SVM, and Hermite 

radial basis function (HRBF) are compared. Furthermore, the SDLP algorithm addresses the uncertainty limitations in the 

implicit HRBF modelling method. 

In this paper, we propose a semisupervised deep learning algorithm using pseudolabels from borehole data for urban 

engineering 3D geological modelling. Then, the trained model is used to predict the unlabelled grids, and the pseudolabel 175 

data with high confidence are added to the unlabelled grids to expand the sample data space. Finally, a final model is 

obtained by training the labelled data and the pseudolabel data. This method only uses borehole data and can establish a 

more accurate and complex 3D geological model. We establish a 3D geological model for a complex real geological project, 

compare it with the implicit HRBF method and SVM method, and analyse the uncertainty of the model. 

2. 3D Modelling Method Based on Deep Learning 180 

2.1. Borehole data preprocessing 

Table 1. Table of average thickness, maximum thickness, minimum thickness and frequency of occurrence of different 

strata 

 Frequency Average (m) Maximum (m) Minimum (m) 

fill 167 1.14 4.1 0.4 

Clay-1 128 2.21 6 0.7 

Clay-2 58 3.46 9.8 0.5 

Clay-3 107 5.94 12.8 0.5 

Clay-4 54 2.86 5.8 0.5 

Sand-1 25 3.34 8.1 1.2 

Stone-1 71 6.30 14 1.3 

Stone-2 104 3.91 10 0.5 

Stone-3 72 6.22 12.5 1.2 

Residual-1 52 10.98 16.1 4.8 

Residual-2 50 4.77 13.8 2 

Residual-3 44 5.47 13.9 1 

A total of 167 boreholes from engineering projects in Shenyang city were used to build the 3D geological model in this study. 

These boreholes are distributed in a 305×264 m area, with an average spacing of approximately 23 metres between adjacent 185 

boreholes. The average depth of the boreholes is 29.5 metres. The minimum thickness of the formations revealed by the 

boreholes is 0.4 metres, and the maximum thickness is 16.1 metres. The maximum average thickness is 10.98 metres, and 

the minimum average thickness is 1.14 metres (Table 1). The original borehole data mainly include borehole coordinates (X, 

Y), elevation, lithological thickness, lithological bottom depth, borehole number, lithological ID, etc. 

This paper uses deep learning methods for 3D geological modelling, which can further simplify the modelling problem into a 190 

strata classification problem. In this method, the coordinate data and strata depth data obtained from boreholes are used as 

input vectors, and the lithological attributes of the boreholes are used as output vectors. In this study, the borehole data were 

simplified into continuous one-dimensional data when creating the dataset. However, there are significant differences in the 

lengths and frequencies of different formations within the borehole dataset (Table 1). For example, in terms of formation 

thickness, the maximum thickness is 16.1 m, while the minimum thickness is only 0.4 m. In terms of the formation 195 

occurrence frequency, the most frequent label, "fill," occurs 167 times, while the least frequent label, "sand-1," occurs 25 
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times. This significant difference may lead to the overfitting of the training model and ultimately result in poor training 

performance. Therefore, preprocessing of the borehole data is needed. An upsampling method is proposed to avoid 

overfitting in the training model caused by training dataset imbalance in this study. 

In deep learning, the problem of classifying borehole data can be further reduced to a problem of classifying strata. We can 200 

take the coordinates of a borehole and the borehole depth as the input vector and the stratum attribute of the borehole as the 

output vector. For 3D geological modelling, the model at the borehole should be as consistent as possible with the stratum 

information revealed by the current borehole. The original borehole data include the borehole coordinates X, Y, borehole 

elevation, stratum thickness, stratum bottom depth, borehole label, borehole stratum label, etc. To increase the amount of 

data, the borehole data are upsampled. Since the thicknesses of the strata may differ greatly from each other, the data balance 205 

will be affected if an equal interval sampling method is used, and the data amount of a thick strata will be much greater than 

that of a thin strata. As a result, the thick strata will dominate the training network, resulting in the classification of unknown 

regions. The unknown area will be easier to predict as the stratum thickness attribute. The greater the difference in stratum 

thickness is, the more misclassification will occur. 

Based on the above discussion, an unequal interval sampling method is adopted in this paper (Fig. 1). In the figure, H11-210 

H35 represents unequal-interval sampling for each stratum in the borehole, while H11P1-H35P5 represents unequal-interval 

sampling for each stratum on the deterministic section. Compared with equal-interval sampling, unequal-interval sampling 

involves changes to the sampling interval according to the thickness of different strata, thereby ensuring the balance of the 

sampled data. Otherwise, thinner strata may be difficult to predict or deemed to be outliers due to insufficient sampling. As 

shown in Figure 1, different colours in the borehole region represent different strata attributes, and the strata data are 215 

displayed in strips that are continuously distributed in the vertical direction. The attributes of a single stratum are 

continuously unique within the corresponding depth interval, and there are no data gaps between strata. 

Due to the high reliability of borehole data, they can be directly or indirectly used for the generation of accurate models. 

By applying the Delaunay principle to borehole position points, a surface triangular irregular network (TIN) is created. This 

TIN encompasses the fundamental topological relationships between adjacent boreholes. If the stratum attributes of two 220 

neighbouring boreholes within each TIN are similar, they are connected to form a deterministic section. To ensure accurate 

geological predictions and eliminate the influence of distant and loosely correlated borehole connections, narrow triangles 

are removed from the TIN. This approach, similar to the generalized tri-prism (GTP) model, preserves the internal 

connectivity among the three corresponding boreholes and enables the simulation of various complex geological phenomena. 

Once the deterministic sections are connected, unequal interval sampling is conducted both horizontally and vertically, and 225 

the sampling density at the borehole locations is balanced to avoid overly dense sampling that may impact network training. 

The unequal interval sampling formula for borehole data is expressed as Equation (1), and the unequal interval sampling 

point coordinate formula for deterministic sections is expressed as Equation (2). 

Based on the above discussion, an unequal interval sampling method is adopted in this paper. Compared with equal 

interval sampling, unequal interval sampling changes the sampling interval according to the thickness of each stratum to 230 

ensure sampling data balance. At the same time, in the interior of each stratum, equal interval sampling is maintained, and 

the critical point attributes are preserved. Otherwise, the thinner strata may be difficult to predict or be considered as outliers 

due to too little sampling. The formula for unequal interval sampling can be expressed as follows: 

Zij =
(Sij−Sij−1)

n
                                                                                      (1) 

{

𝑃𝑖𝑗𝑥 = 𝑥1 +
𝑥2−𝑥1

𝑛
(2𝑗−1)

𝑃𝑖𝑗𝑦 = 𝑦1 +
𝑦2−𝑦1

𝑛
(2𝑗−1)

𝑃𝑖𝑗𝑧 =
𝐷1𝐶2+𝐴1𝐶2𝑃𝑖𝑗𝑥+𝐵1𝐶2𝑃𝑖𝑗𝑦−𝐷2𝐶1−𝐴2𝐶1𝑃𝑖𝑗𝑦−𝐵2𝐶1𝑃𝑖𝑗𝑦

𝐶1𝐶2𝑛
(2𝑖−1)

                                                   (2) 235 
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where Sij is the bottom depth of the jth stratum in the ith borehole, n is the number of samples from each stratum, and Zij i s 

the sampling interval of the jth stratum in the ith borehole. Pijx, Pijy, and Pijz represent the x, y, and z coordinates of the 

sampling point in the ith row and jth column of a section. x1, y1, x2, and y2 are the coordinates of the two connected 

boreholes in a section. A1, B1, C1, D1, A2, B2, C2, and D2 are the parameters of the straight-line equations representing the 240 

top and bottom boundaries of the strata for the connected boreholes. 

where Sij is the bottom depth of the jth stratum in the ith borehole, Hij is the thickness of the jth stratum in the ith borehole, 

n is the number of samples in each strata, and Zij is the sampling interval of the jth stratum in the ith borehole. 

In the borehole stratigraphic data (Fig. 1), different colours indicate different stratigraphic attributes, and the 

stratigraphic data are displayed in strips, distributed continuously in the vertical direction, with continuous and unique 245 

stratigraphic attributes for depth intervals of individual strata and no data gaps between strata. The unequally spaced 

sampling on the deterministic section is same as the unequally spaced sampling on the borehole, and unequally spaced 

sampling is also performed in the horizontal direction. 
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 250 

Figure 1. Resampling of borehole data. Upsampling on the boreholes (left); upsampling on the deterministic sections (right). 

Borehole data play a direct or indirect role in the generation of the model, and some geological semantic information with 

high reliability in geology can be obtained through drilling. The borehole data points are inserted point by point according to 

the Delaunay rule to generate a surface triangular irregular network (TIN), and the basic topological relationship between 

boreholes is established. Each triangulation consists of three boreholes, and pairs of boreholes with the same attributes are 255 
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connected to form a deterministic section. At the same time, long and narrow triangles in the TIN are removed to avoid the 

connection between the long and narrow triangles that are far away and not related to each other. In this way, the distance 

between boreholes generated by the Delaunay rule is small. This GTP-like section connection method can maintain the 

internal connection between the three boreholes and can simulate a variety of complex geological phenomena. At the same 

time, the modelling scope of this study is mainly for a quaternary sedimentary surface, the possibility of a large stratum 260 

inversion phenomenon is low, and the strata are deposited in chronological order. After connecting the deterministic sections, 

they are sampled at unequal intervals in the  both horizontal and vertical directions so that the sampling density is consistent 

with the borehole to avoid oversampling affecting the training of the network. 

The difference in the number of digits between coordinate data (typically 7-8 digits with 3 decimal places) and stratum 

depth (typically 1-2 digits with 1 decimal place) in borehole data can lead to numerical computation issues in computer 265 

systems, making it difficult to train the model and adjust parameters, ultimately affecting the training results of the model. 

After performing data normalization based on raw data, each indicator is scaled to a specific range, allowing for 

comprehensive comparative evaluation. To eliminate the influence of digit disparity among input features, ensure the equal 

impact of different features on model training, and achieve convergence, it is necessary to apply min–max normalization to 

the data and map the resulting values to the range of 0 to 1. For any dataset x, the mapping function is as follows: 270 

In the borehole data, the order of magnitude between the coordinates and the depth of each stratum is large. This will 

affect the results of model training, and to eliminate the dimensional influence between the indicators, data normalization is 

needed to solve the comparability between the data indicators. After the original data are standardized, each index is on the  

same order of magnitude, which is suitable for comprehensive comparative evaluation. To ensure convergence, the data need 

to be normalized by mapping the resulting values to [0-1]. For any data x, the mapping function is as follows: 275 

x′ =
x−xmin

xmax−xmin
                                                                                      (37) 

where xmax is the maximum value of the sample data and xmin is the minimum value of the sample data. x' is the 

normalized result, and x is the input of the model data. Through the this normalization method, the convergence speed of the 

network training model will be improvedis improved, the training accuracy will also beis improved, and the model will be 

easier to traintraining becomes easier. 280 

2.2. Construction of deep neural networks 

A single-layer perceptron is one of the simplest feedforward neural networks (Huang et al., 2012), which can be used to 

simulate partial logic functions and solve linearly separable problems. It cannot classify data sets that are not linearly 

separable. A multilayer perceptron, by adding N hidden layers between the input layer and the output layer, enhances the 

model's ability to solve a problem. Multilayer perceptrons have strong robustness, memory ability, and nonlinear fitting 285 
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ability, can map complex nonlinear relationships, can deal with a large number of data samples, and have simple learning 

rules that are easy to implement using computers. 

A deep neural network uses the input index and output index to form rules and provides the result closest to the 

expected output value from the input value, which is a multilayer feedforward neural network according to the error 

backpropagation algorithm. In a deep neural network, the unit output of the first hidden layer is first calculated, and then the 290 

output of the unit in the next layer is used to continue to calculate the output of the unit in the next layer until the output layer 

outputs the result; this process is called forwards propagation. There is a weight between a deep neural network layer and 

each layer unit, the initial value of the weight is preset, and the weight of the multilayer perceptron can be trained using the 

back propagation algorithm. The data in the data set are output after the multilayer perceptron, and the output is compared 

with the expected value to obtain the corresponding error. The error is backpropagated layer by layer, and the weight of each  295 

layer is adjusted accordingly. After a number of adjustments, with the result is a weight that fits the model. The relationship 

between layers can be expressed as follows:A multilayer perceptron (MLP) is a feedforward artificial neural network that 

learns to form certain rules through training based on input and output indicators. Thus, results closest to the expected output 

are obtained after inputting certain values. An MLP is a multilayer feedforward neural network based on the 

backpropagation algorithm. Each unit between layers in an MLP has a weight with an initial preset value, and unit training is  300 

performed using the backpropagation algorithm to adjust the weights between hidden layers. Input data are output after 

passing data through multiple hidden layers and compared with the expected labels to obtain the corresponding error, which 

is then propagated layer by layer backwards to adjust the weight of each layer. After multiple adjustments, suitable weights 

for the model are obtained. The relationship between layers can be expressed as shown in Equation (4). In the network model, 

the coordinates of each upsampled spatial point in the prediction area, x, y, and z, are used as inputs, and the geological 305 

properties of the spatial points are output. Each input represents a spatial feature dimension, and through four fully connected 

layers, the input data are processed and transformed. Each hidden layer contains multiple nodes, where each node is 

connected to all nodes in the previous layer. By multiplying by weights and applying an activation function, the input 

undergoes nonlinear transformation, resulting in expanded dimensionality. This result encompasses the deep features of the 

sample, and samples of different categories should have different high-dimensional features. The number of neurons in the 310 

hidden layer varies according to the complexity of the model, and the rectified linear unit (RELU) activation function is used 

between hidden layers. To prevent overfitting, a dropout function is added to the penultimate fully connected layers of the 

network to randomly reduce the number of neurons. Finally, the output value of each category is normalized using the 

exponential function through a fully connected layer and a softmax layer, and the sum of the probabilities of all categories is 

1. The predicted results of each data point are integrated to form the entire 3D geological model (Figure 2). The network 315 
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model uses the Adam optimizer, and the loss function adopted is the cross-entropy loss function, which is commonly used in 

multiclassification tasks. 

Yj = ∑ WijXi + bn
i=1                                                                                   (43) 

where Yj is the input of the next layer, Wij is the connection weight from cell Xi of the previous layer to cell Yj of the next 

layer, and b denotes the offset value. 320 

In the network model (Fig. 2), the coordinate data x, y, z of each upsampled spatial point in the prediction area are taken 

as the input, and the stratum attribute of the spatial point is the output. Each input represents a dimensional spatial feature, 

and after four fully connected layers, the result of the dimension expansion is obtained by multiplying the weight matrix. It is 

considered that the result represents the deep characteristics of the sample, and samples of different categories should have 

different high-dimensional features. Through a fully connected layer and softmax layer, the output value of the category is 325 

normalized to the probability of each class after an exponential function change, and the sum of each class is 1. Finally, the 

predicted results of each data point are integrated to form the entire 3D geological model. 
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Figure 2. Architecture of a deep neural network. Light grey nodes are input features, dark grey nodes are target outputs, and 

white nodes are internal network nodes. 330 

2.3 Semisupervised deep learning algorithm using pseudolabels 

Compared with that of data from images, point cloud data, etc., borehole data displays a clustered characteristic with local 

concentrations but overall dispersiontend to be dispersed. Due to the large amount of missing point data between boreholes, 

it is difficult to accurately express the changing features of stratigraphic boundaries and inclination angles. Supervised 

learning depends on a large quantity of labelled data to enhance model performance. The labelled data used for training 3D 335 

geological models are obtained by upsampling limited borehole points and deterministic borehole profiles. Labelled data 

associated with spatial grid points in urban areas, which require high modelling precision, are scarce and contain very few 

features.Therefore, borehole data can be approximately regarded as a large number of missing point data between points, 

which makes it difficult to accurately express the variation characteristics, such as the inclination angle of the entire stratum 

interface. Deep learning requires a large amount of labelled data to improve model performance. Only by upsampling the 340 

borehole point data and deterministic borehole section data, for the spatial raster points with high modelling accuracy,the 

data amount is very small and contains very limited features. To effectively solve the labelling problem, semisupervised 

learning is combined and with deep learning are combined, and a model is constructed using a small amount of labelled data 

and a large amount of unlabelled data with pseudolabels for predictiona small amount of labelled data and a large amount of 

unlabelled grids are used to build a model, which is conducive to expanding the sample space and making up for the lack of 345 

geological semantic information provided by single borehole data. This is beneficial for expanding the training data. 

The attributes of strata are difficult to determine based on a single mathematical formula. Based on the topological 

relationships established with the TINs of three boreholes, three prisms are constructed using a method similar to the GTP 

approach by connecting the boreholes based on their stratigraphic properties, and the stratigraphic properties of the interior 

grid points of the prisms are obtained. For the predicted grid points within the prisms, it is assumed that their stratigraphic 350 

properties are similar to the properties of the prism, and when adding pseudolabels, it is assumed that the confidence level 

for each predicted stratigraphic property is high. Based on this approach, a semisupervised learning method based on 

pseudolabels is used to generate pseudolabels for the unlabelled data and improve learning performance. First, the model is 

trained using labelled data. When the model achieves a relatively high accuracy after training for a certain number of rounds , 

the trained model is used to predict the unlabelled data, and the results predicted with high confidence are selected as the 355 

pseudolabels. The pseudolabelled data and labelled data are combined and used in training for a certain number of rounds. 

The above process is repeated until the proportion of newly added pseudolabelled data in each round is lower than a certain 

threshold. At this point, high-confidence labels are considered to be obtained, and the model has been sufficiently trained on 

all data. 

In the geological field, there is no specific mathematical law for the attribute of strata. The borehole vertex data points 360 

from the Delaunay rule of the generated surface are irregular triangle net topological relationships of three boreholes, 

according to the borehole stratum attribute, they are connected into triangular prisms ，then it is considered that the data 

points in this range have the highest confidence in the stratum attributes determined by the triangular prisms.. On this basis, a 
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semisupervised method using pseudolabels is used to enhance learning by generating pseudolabels for unlabelled grids. First, 

the model is trained using the labelled data, and when the model reaches a high accuracy after a certain number of training 365 

rounds, the trained model is used to predict the unlabelled grids, and the prediction result with higher confidence is selected 

as the pseudolabel. The pseudolabel data and label data are combined for training. After a certain round of training, the 

above process is repeated until the new pseudolabel data in each round are less than a certain proportion. At this point, it is 

considered that most of the grids with high confidence have been labelled, and the model has been trained on the data after 

data augmentation. 370 

 

Figure 3. Algorithm flow chart. 

2.4. Analysis of model uncertainty 

The last layer of the neural network classifier normalizes the probability of the output through the softmax layer, and the 

softmax normalized result can be approximated as the probability corresponding to each stratum at that a given data point. 375 

Therefore, when analysing the uncertainty of each data point of in the raster model, the normalized information entropy can 

be introduced to quantitatively evaluate the uncertainty of the geological model. The normalized information entropy 

formula is as follows: 

H(X) = −
∑ p(x)ln(p(x))x∈S

Smax
                                                                 (54) 

where S is the number of possible geological attributes for each data point, Smax is equal to ln(n), and n is the number of 380 

possible geological attributes. The information entropy of each data point is obtained by calculating the probability p(x) of 

each data point over all geological attributes. The magnitude of information entropy reflects the degree of complexity at a 

certain location in the geological model. The closer the information entropy is to 0, the higher the certainty of a data point for 

a certain stratum attribute, and the closer the information entropy is to 1, the higher the uncertainty of a data point for 

multiple geological attributes. 385 



14 

 

In addition, the data can be analysed based on an estimated confusion index (Burrough et al., 1997), and the ambiguity 

of classification can be evaluated by selecting the results of the two prediction categories with the highest probability for 

each data point. The confusion index formula is as follows: 

CI = [1 − (μmax − μmax−1)]                                                                   (65) 

where μmax is the probability of the class with the highest predicted probability and μmax-1 is the probability of the class 390 

with the second highest predicted probability. CI values range from 0-1 to indicate the degree of confusion predicted by 

thefor a certain data point, with 0 indicating that the a classification result with a low confusion index is not ambiguous and 1 

indicating that the a classification result with a high confusion index is highly ambiguous. 

3. Experimental method and verification 

To further illustrate the applicability of the proposed method, this chapter uses a practical geological case to conduct 3D 395 

geological modelling and analysis with the proposed method. To verify the rationality of the model, the neural network 

model is compared with a mature implicit modelling method (HRBF). To illustrate the improvement of the modelling effect 

of the proposed method compared with the traditional 3D modelling method based on machine learning and the relative 

reliability of the modelling method in geological semantics, the same section of the 3D geological model established using 

the proposed method and the SVM method is compared. The proposed algorithm is implemented based on the PyTorch open 400 

source machine learning library. The SVM algorithm uses the RBF convolution kernel, the parameters are determined by 

grid search, and the SVM method in the ThunderSvm library is used for training (Wen et al.,  2018). The model established 

using the algorithm mentioned in the experiment is visualized with the developed visualization platform. All test 

experiments in this chapter are performed on the same device with the following parameters: Intel(R) Core(TM) i7-10750H 

CPU @2.60 GHz, NVIDIA GeForce RTX 2060, 16.0 GB RAM, Windows 10 (64-bit). 405 

The Shenyang city 3D geological models were built using the SDLP, SVM, and HRBF algorithms. All test experiments in 

this chapter were performed on the same device: an Intel(R) Core (TM) i7-10750H CPU @2.60 GHz with an NVIDIA 

GeForce RTX 2060, 16.0 GB RAM, and Windows 10 (64-bit). 

The ReLU function was used as the activation function in the SDLP algorithm, the initial learning rate was set to 0.001, 

and the batch size for training was set to 512. When the model training accuracy reached 90% or after 500 epochs, the 410 

unlabelled grids were labelled with pseudolabels. When the newly added pseudolabels accounted for less than 10% of the 

number of grids lacking labels in a given epoch, the model was trained for a total of 2000 epochs more before stopping. The 

training accuracy and loss values are shown in Fig. 4. The accuracy, precision, recall, and F1 score of the SVM, SDLP, and 

DL (the neural networks is same with SDLP but without pseudolabel) algorithms for the test dataset are shown in Table 2. 
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In the training process, when the labelled data and pseudolabel data are fused, the boundaries of stratigraphic categories 415 

are finely delineated, the final model training accuracy is above 95%, the loss function is close to zero, and the precision of 

the model for the test set is 98.16%. A confusion matrix is obtained from the test set (Fig. 5), which reflects the reliability of 

the evaluation results of the model. The classification accuracy of the model is high for all layers. Some strata are more 

likely to be confused due to being thin, displaying similar boundaries as other strata, or the influence of geological 

phenomena, such as depositional termination. The receiver operating characteristic curve (ROC) is another performance 420 

indicator that summarizes the performance of the binary classification model in the positive class and thus can be used to 

evaluate the diagnostic ability of the classifier according to the threshold change (Fawcett, 2006). The area under the ROC 

curve (AUC) (Fig. 6) represents a comprehensive measure of all possible classification thresholds. AUC values greater than 

90%, from 75-90%, from 50-75% and less than 50% are considered to represent excellent, good, poor and unacceptable 

performance, respectively (Ray et al., 2010). The AUC values of the model are all above 90%, indicating that the 425 

classification performance of the model is excellent. 

Table 2. The accuracy, precision, recall, and F1 score values for SVM and SDLP algorithms based on the test dataset 

 Accuracy Precision Recall F1 score 

SAM 0.955 0.948 0.940 0.944 

SDLP 0.982 0.983 0.980 0.982 

DL 0.973 0.967 0.968 0.968 

3.1. Overview of the study area 

The study area is located in a region of Shenyang District, Liaoning Province, China, which is located in the middle of the 

Liaohe Plain, Liaoning Province. The region is mainly plains, mountains, and hills concentrated in the northeast, and the 430 

terrain slopes gradually from northeast to southwest. There are four large rivers running through it. This region has a 

temperate monsoon continental climate and four distinct seasons. The average annual temperature is 8°C, the average 

precipitation is 628 mm, increasing from north to south, and the precipitation is concentrated in summer. 

3.2. Modelling results and accuracy verification 

The area includes data from 167 boreholes distributed over an area of 305 m×264 m, with adjacent boreholes spaced 435 

approximately 23 m apart, an average depth of 29.5 m and a minimum thickness of 0.4 m revealed by the boreholes. The 

ReLU function is used as the activation function in the neural network, the initial learning rate is set to 0.001, and the batch 

size for training is set to 512. When the model training accuracy reaches 90% and 500 epochs, the unlabelled grids are 

labelled with a pseudolabel every 100 epochs. When the newly added pseudolabel data are less than 10% of the unlabelled 

grids evaluated in an epoch, the model continues to train for a total of 2000 epochs before stopping. 440 
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The training accuracy and losses in the method process are shown in Fig. 4. In the training process, when the labelled 

data and pseudolabel data are fused, the boundary demarcation of stratigraphic categories is more finely delineated, the final 

model training accuracy is above 95%, the loss function is poor, and the precision of the model on the test set is 98.16%. A 

confusion matrix is obtained from the test set (Fig. 5), which reflects the evaluation result reliability of the model. The 

classification accuracy of the model is high for all layers. Some strata are more likely to be confused due to thin strata, 445 

similar boundaries with other strata, or more geological phenomena, such as depositional termination. The receiver operating 

characteristic curve (ROC) is another performance indicator that summarizes the performance of the binary classification 

model in the positive class and thus evaluates the diagnostic ability of the classifier according to the threshold change 

(Fawcett, 2006). The area under the ROC curve (AUC) (Fig. 6) represents a comprehensive measure of all possible 

classification thresholds. AUC values greater than 90, 75-90%, 50-75% and less than 50% are considered to represent 450 

excellent, good, poor and unacceptable performance, respectively (Ray et al., 2010). The AUC values of the model are all 

above 90%, indicating that the classification performance of the model is excellent. 

 

Figure 4. Model training accuracy and loss variation curves. 
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 455 

Figure 5. Confusion matrix of the classification results when the model is applied to the test data setdataset. 
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Figure 6. ROC curve for classification. 

The grid accuracy used in modelling is 1.5 m×1.3 m×0.3 m. The model uses the Tin mesh constructed from the top of 460 

boreholes to restrict the surface. The modelling range is determined according to the a convex hull established built by the 

borehole datas, and the base of the model is determined according to the a convex hull established built by the bottoms of 

borehole datas. Fig. 7 shows the modelling results of for the study area. The model reveals the coverage relationships 

between among the strata and reproduces the contact relationship between the depositional  termination and unconformity of 

the strata. 465 

 

Figure 7. Model built using deep neural networks and the model legend. 

To test the estimation accuracy of at nonborehole positions locations using the proposed method, the borehole data are 

were divided into a training set and a test set through k-fold cross validation, learning was performed with the training set of 

borehole data is learned, and the test set accuracy is was compared and analysed, where K is was set to 10. 470 
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Figure 8. Borehole distribution and experimental analysis of the section line path based on different profiles. The red dotted line is 

are the profilethe section route, and the red circled borehole points circled in red correspond to the boreholes tested using K1 in 

the section. 

The boreholes in the test set were sampled at equal intervals to determine the data point attributes at the boreholes, and 475 

the average accuracy of the k-fold cross validation was calculated to be 71.65%. As there is a certain distance between the 

boreholes, eliminating an entire borehole will lead to a change in the geological semantic information of the area. When the 

geological semantic information contained in a borehole is high (Fig. 9), it will be difficult to predict the borehole through 

the surrounding boreholes, so it is inevitable to obtain poor prediction results when predicting the borehole. Therefore, 

among the boreholes in the k-fold cross validation, the boreholes that have no more than three depositional terminations 480 

between any stratum and the surrounding boreholes and are not at the unconformity boundary are selected for statistical 

analysis. Among them, the topological relationship of the surrounding boreholes is established using the surface irregular 

triangulation generated by the Delaunay rule, and the average accuracy is 85.9%.  Due to the varying amount of geological 

information contained in individual borehole data, the importance of different boreholes in constructing the 3D geological 

model also differs. For instance, the test borehole data contains valuable lens body stratigraphic information and stratigraphic 485 

extinction information (Fig. 9). Removing the test borehole data would significantly decrease the accuracy of the prediction 

results. Therefore, we utilize the surface irregular triangulation method generated by the Delaunay rule to determine the 

topological relationships between the boreholes. Based on this approach, we ensure that boreholes containing a significant 

amount of geological information are not excluded during K-fold validation. These operations have improved the accuracy 

of K-fold validation from 71.65 to 85.9. 490 
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Figure 9. A situation in which too much depositional termination affects the prediction. A related borehole is a borehole that has a 

topological relationship with the predicted borehole. The red solid line frame is the stratum, which is difficult to predict due to the 

excessive occurrence of depositional termination. 

To further analyse the influence of accuracy on the model, the a model with complete borehole data and the a model 495 

with excluded sample K1 test borehole data were established, and the sections of the models through a test borehole were 

compared (Fig. 10). The Figure 10 show the The results of straight cutting and cutting along the boreholes are shownfor a 

straight line thought the S1 and S3 profiles. Most areas of the sections at the boreholes of in the test set are consistent with 

the sections established built byusing a complete borehole. Since some test set boreholes are near the depositional 

terminations, there is a certain difference between the model and the data from test boreholes, but the results are still close to 500 

the original model and reasonable. In summary, it can be considered that the modelling SDLP method display a good 

prediction ability for has a strong prediction ability for the neighbouring  part of boreholes and can reveal the distribution 

characteristics of the stratastratum. 
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Figure 10. Comparison of the modelling results of sample K1 with the complete drilling results. The dotted box shows the boreholes 505 

eliminated considered during the test. 

 

3.3. Comparative analysis of models 

To further verify the rationality of the model, the neural network model is compared with a mature implicit modelling 

method. The modelling method compared in this study is the implicit Hermite radial basis function (HRBF) 3D geological 510 

modelling method. This method uses the implicit Hermite radial basis function to simulate the stratum interface. Since the 

implicit model is a vector model, the vector model is transformed into a grid model with the same size as the minimum grid 

cell of the neural network model for comparison. The implicit model has a thicker base than the deep learning model. 

 

Figure 11. Comparison of the model section between the deep neural network method and the HRBF implicit method. 515 
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The deep learning model and the implicit model are visually consistent along the borehole section (Fig. 11) in terms of 

the thickness and extension angle of the strata. The implicit model constrains the stratum interface through the control points 

of each borehole and the implicit equation. The deep learning model calculates the labelled and pseudolabelled data loss, 

trains the neural network through backpropagation to obtain the stratigraphic interface, and predicts the stratum data points 

in the modelling area. Therefore, when there is a depositional termination or unconformity phenomenon, the deep learning 520 

model and the implicit model have certain differences in the depositional termination angle and the thickness change of the 

stratum. At this time, the shape of the implicit model is mainly determined by the control points determined by the boreholes. 

However, the machine learning model predicts using upsampled borehole and pseudolabel data with high confidence, which 

has certain uncertainty. 

To illustrate the improvement of the modelling effect of the proposed method compared with the traditional machine 525 

learning 3D modelling method and the relative reliability of the modelling method in geological semantics, previous articles 

have proven (Guo et al., 2019) that the SVM algorithm has the best modelling effect among traditional machine learning 3D 

geological modelling methods. Therefore, the section of the 3D geological model established using the proposed method and 

the SVM method is compared along the borehole section. The proposed algorithm is implemented based on the PyTorch 

open source machine learning library. The SVM algorithm uses the RBF convolution kernel, the parameters are determined 530 

by grid search, and the SVM method in the ThunderSvm library is used for training. 

 

Figure 12. Comparison of the model section between the deep neural network method and the SVM method. 

In the study area, the modelling results of the proposed method for complex geological conditions are significantly 

improved compared with those of the SVM method. By observing the consistency of the attributes of the boreholes and 535 

sedimentary strata in Fig. 12, it can be seen that the consistency of the proposed method is higher. In addition, when there is 

a phenomenon such as depositional termination or unconformity, the variation in thickness and dip angle at the 

depositional termination or unconformity of the strata modelled using the proposed method is more consistent with the 

geological semantics. However, the SVM modelling quality decreases significantly when depositional termination or 

unconformity occurs, and there are many prediction errors or stratum mutation problems. From the model section 540 
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comparison, it can be concluded that the proposed method has significantly improved model morphology compared with the 

traditional machine learning method. 

3.4. Analysis of model uncertainty 

For each data point in the established model, the information entropy is calculated from the normalized probability 

distribution. Through 3D visualization of the information entropy model with close raster accuracy, the uncertainty of the 545 

constructed model can be quantitatively analysed, and the uncertainty of each position in the model can be clearly reflected. 

 

Figure 13. Models of uncertainty: (a) information entropy model based on semisupervised learning using pseudolabels; (b) 

confusion index model based on semisupervised learning using pseudolabels; (c) information entropy model based on supervised 

learning; and (d) confusion index model based on supervised learning. 550 

The model (Fig. 13) reflects the uncertainty of the semisupervised learning method using pseudolabels and the 

supervised learning method to build the model. The blue part of the information entropy model (Fig. 13a, c), where the 

information entropy is close to 0, means that the uncertainty of the stratum attribute values in the region is low, and the 

entropy value is small, mainly between the model stratum boundaries. The red part, where the information entropy is close to 

1, indicates that the region has a large probability for other stratum attribute values, and the entropy value is large, mainly 555 

distributed near the stratum boundary obtained through training. In the confusion index model (Fig. 13b, d), the blue part 

indicates a low confusion index, and the red part indicates a high confusion index. The overall confusion index of the model 
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is mostly low, and the confusion index increases significantly at the stratum boundary. By comparing the distribution 

proportions of the two uncertainty models established using the two learning strategies (Fig. 14 and Fig. 15), the model 

based on the semisupervised learning method using pseudolabels has lower uncertainty than the model based on the 560 

supervised learning method, and the semisupervised learning method using pseudolabels can effectively improve the sample 

space and improve the stability of the model quality. 

From the model part, it can be observed that the information entropy and confusion index increase significantly at the 

boundary of the unconformity or complex depositional termination phenomenon strata, and the stratum boundary has great 

uncertainty. The uncertainty will increase obviously only when complex geological phenomena such as stratum interface or 565 

deposition termination occur, which indicates that the modelling results are stable and the modelling method is reliable. 

 

Figure 14. Comparison of the information entropy proportion distribution. 

 

Figure 15. Comparison of the confusion index proportion distribution. 570 



25 

 

4. Discussion 

4.1 Verification of the Accuracy of the HRBF Method 

Three-dimensional geological modelling based on the Hermite radial basis function (HRBF) is one kind of implicit function 

modelling, and implicit modelling methods based on HRBF have been widely used in the modelling of ore bodies, regional 

geological surveys (Guo et al., 2016), urban geological surveys (Guo et al., 2021), tunnelling projects (Xiong et al., 2018), 575 

and volcanic formations (Guo et al., 2020). Therefore, in this paper, the HRBF method is used to build a 3D geological 

model of Shenyang city, and this model is used to compare the accuracy of the SDLP and SVM algorithms. Before 

evaluating the accuracy of the two algorithms mentioned earlier, it is essential to conduct an accurate analysis of the 3D 

geological model constructed using the HRBF method. To demonstrate the accuracy of this approach, we first use the HRBF 

method to build a 3D geological model of Shenyang city. S1, S2, S3, and S4 are profiles within the 3D geological model of 580 

Shenyang city, which contain many geological strata and complex geological relationships. The accuracy of these profiles 

can effectively reflect the accuracy of the HRBF modelling method. In the S1 geological profile, the stratigraphic boundaries 

contained in the borehole dataset nearly perfectly correspond to the boundaries of the three-dimensional geological model 

built based on the HRBF method (Figure. 11). This matching effect is also demonstrated for the S2, S3, and S4 geological 

profiles. The accurate correspondence between the borehole data and the cross-sections of the 3D geological model indicates 585 

the precision of the HRBF modelling method in constructing the three-dimensional geological model. Furthermore, 3D 

geological models of Shenyang city built using the HRBF method have been verified as effective in engineering applications 

(Guo et al.,2021). In conclusion, the 3D geological model built using the HRBF method can serve as a standard for 

evaluating the quality of 3D geological models constructed with the SDLP and SVM algorithms. 

 590 

Figure.11 (a) the 3D geological model constructed by HRBF algorithm (b) the S1 profile built by HRBF algorithm; (c) the 

S2 profile built by HRBF algorithm; (d) the S3 profile built by HRBF algorithm; (e) the S4 profile built by HRBF algorithm 
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4.2 Comparison of Different Algorithms 

Before building the three-dimensional geological model using the SDLP and SVM algorithms, it is necessary to observe the 

performance of these two algorithms based on the test dataset. According to the prediction results for the test dataset, the 595 

accuracy, precision, recall, and F1 score of the SDLP algorithm are 0.982, 0.983, 0.980, and 0.982, respectively, all of which 

are higher than those of the SVM algorithm (Fig. 12). The reason for these overall results may be that the SDLP algorithm 

uses more training data, enabling the model to learn patterns with higher generalization ability. 

Furthermore, the accuracy, precision, recall, and F1 score of the SDLP algorithm are also higher than those of the DL 

algorithm (Fig.11). This phenomenon may be attributed to the increased quantity of the training dataset resulting from the 600 

use of pseudolabels constructed with the TIN method. The expanded training dataset enables the neural network model to 

achieve better generalization. 

 

Figure 12. Accuracy, precision, recall, and F1 score of the SDLP and SVM algorithms. 

In this paper, we propose a semisupervised learning algorithm using pseudolabels for 3D geological modelling from 605 

borehole data. Because the borehole data sampling density is very sparse relative to the modelling range, it is difficult to 

obtain a stratigraphic interface with high accuracy through supervised learning. However, the modelling area and modelling 

accuracy of 3D geological modelling are artificial settings, and the distribution of spatial points that need to be predicted and 

the distribution of boreholes often lack feature connections, so it is difficult to use unsupervised learning from borehole data. 

In this paper, the accuracy of the stratigraphic interface obtained through training is improved by adding pseudolabel data 610 

with high confidence to the unlabelled grids within the modelling scope. This paper also proves that the modelling method is 

effective and reliable and can reduce the uncertainty through the 3D geological modelling of the Shenyang complex 

geological area and the uncertainty analysis, and the modelling results are good and basically in accordance with the 

geological semantics.  

Compared with the MPS method, which builds a grid, defines a random simulation path based on the simulation grid, 615 

and determines the stratum attribute values for the grid based on the borehole distribution of a random simulation path, the 

proposed method trains each stratigraphic interface according to the borehole data and the pseudolabel data predicted 

between the boreholes and determines the attribute value according to the relationship between the predicted area and the 

stratigraphic interface. It is not difficult to see from the principle of the method that the MPS method pays more attention to 
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the local borehole distribution, while the machine learning method pays more attention to the macroscopic borehole 620 

distribution. 

The limitation of the method in this paper is that unequal interval sampling is used, which prevents the problem of 

severe data imbalance leading to missing stratigraphy, but for thicker boreholes, the interval of borehole sampling increases, 

which leads to a loss of borehole information to some extent, so how to better reconstruct the borehole data is still a problem 

worth studying. 625 

Because the surface irregular triangulation network generated using Delaunay's rule is adopted in this paper to establish 

the topological relationship between three boreholes, the stratigraphic relationship is used to determine the pseudolabel 

confidence. When the depth of the borehole bottom fluctuates greatly, it is difficult to determine the pseudolabel confidence 

under a borehole with very shallow fluctuation, which leads to a decrease in local modelling accuracy. 

4.3 Comparative Analysis of Models 630 

The profiles of the 3D geological model of Shenyang city are compared to further validate the generalization ability of the 

SDLP algorithm and the SVM algorithm. The implicit HRBF modelling method exhibits excellent consistency with the 

borehole data in the profiles, and thus, the profiles constructed with the HRBF method are used as a benchmark for 

comparison with the profiles generated by machine learning algorithms. In Figure 13, the horizontal axis represents the 

modelling results of different algorithms for the same geological profile, and the vertical axis represents the geological 635 

profiling modelling results of the same algorithm for different geological profiles. 

In the S2 geological profile, the 3D geological models built with the HRBF algorithm and the SDLP algorithm 

demonstrate a high level of consistency with the borehole data. However, the 3D geological model built with the SVM 

algorithm shows relatively poor correspondence with the borehole data. Furthermore, the morphology of formations in the 

3D geological models created with different algorithms is not entirely consistent within the S2 profile. In sedimentary 640 

formations without fault structures, the formation boundaries typically undergo gradual changes rather than abrupt changes. 

The 3D geological models generated using the SDLP algorithm or the HRBF algorithm generally adhere to these geological 

laws. For instance, the intersection points of the stone-1, stone-2, and stone-3 strata and the residual-1, residual-2, and 

residual-3 strata in the 3D geological models developed using the SDLP and HRBF algorithms display smooth transitions, 

aligning well with the sedimentation patterns of sedimentary formations. Conversely, the contact relationships among the 645 

strata at these intersections in the 3D geological model built using the SVM algorithm do not conform to the actual 

sedimentation patterns. Additionally, at the apex of the lens-shaped sand-1 formation, the 3D geological model created with 

the SVM algorithm is less realistic than the models produced by the HRBF and SDLP algorithms. Guo et al. (2021) 

demonstrated through 3D geological modelling methods that there are no fault structures in the Shenyang area. This finding 

implies that the 3D geological model of the S2 profile built with the SVM method is not reasonable. Moreover, the HRBF 650 
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method produces modelling results that are deemed unreasonable for the lower two layers, stone-3 and residual-3, due to 

constraints imposed by the implicit model. These constraints involve the stratum interface being defined based on the control  

points of each borehole and the implicit equation. In conclusion, for the S2 profile, the SDLP algorithm exhibits the most 

favourable modelling performance. 

 655 

Figure 13. Geological profiles S2, S3, and S4 for Shenyang city built based on the SDLP, SVM, and HRBF algorithms. 

The situation for the S3 and S4 geological profiles is generally similar to that of the S2 profile. The 3D geological 

models built using the HRBF algorithm and the SDLP algorithm demonstrate a high level of consistency with the borehole 

data, and the correspondence between the 3D geological model built with the SVM algorithm and the borehole data is 

comparatively poor. The boundaries of sedimentary formations in the 3D geological models built using the HRBF algorithm 660 

or the SDLP algorithm adhere more closely to the actual sedimentation patterns compared to the boundaries of the 3D 

geological models built using the SVM algorithm. At the lowermost layer boundary, the 3D geological model built using the 

SDLP algorithm is more reasonable than the one built using the HRBF algorithm. 

Based on a comparison of the results of the S2, S3, and S4 profiles, the SDLP algorithm demonstrates better ability to 

reflect the borehole data when building the 3D geological model. Additionally, the 3D geological model created using the 665 

SDLP algorithm better aligns with the sedimentation patterns in terms of the morphology of the formations. 

4.4 Analysis of Model Uncertainty 

For a 3D geological model, only the strata boundary information reflected by borehole data is accurate, and the strata 

boundaries in areas outside the borehole data region are either artificially inferred or based on constructed basis functions. 

Therefore, it is necessary to analyse the strata boundaries established based on borehole data in certain areas in the three-670 

dimensional geological model. The implicit HRBF modelling algorithm can be used to effectively visualize borehole data. 

However, because it is based on implicit basis functions for visualization, it may not effectively process the undisclosed 

geological information associated with borehole data. In this study, information entropy and a confusion index are 

introduced to address the HRBF algorithm's inability to consider uncertainty in areas without borehole data. The information 
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entropy is calculated based on the probability distribution of all data points in the normalized model. A visualized 675 

information entropy model can reflect the uncertainty at different locations within the model. 

In addition, the results of the information entropy and confusion index models of SDLP and DL algorithms are 

compared. These results are used to demonstrate the impact of pseudolabelling on the stability of building 3D geological 

models using neural network methods. 

 680 

Figure 14. Models of uncertainty: (a) information entropy model based on SDLP; (b) information entropy model based 

on DL; (c) confusion index model based on SDLP; and (d) confusion index model based on DL 

The information entropy and confusion index models reflect the uncertainty of the semisupervised learning method 

using pseudolabels and the supervised learning method used to build the models (Fig. 14). The blue part of the information 

entropy model (Fig. 14a, c), where the information entropy is close to 0, indicates that the uncertainty of the stratum attribute 685 

values in the region is low, and the entropy value is small, mainly between the model stratum boundaries. The red part, 

where the information entropy is close to 1, indicates that the region has a high probability of being influenced by stratum 

attribute values, and the entropy value is large, mainly distributed near the stratum boundary obtained through training. In 
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the confusion index model (Fig. 14b, d), the blue part indicates a low confusion index, and the red part indicates a high 

confusion index. 690 

In the confusion index model, the three-dimensional geological models built by SDLP algorithm and DL algorithm both 

exhibit a confusion index close to 0 within strata but increases in the confusion index at the boundaries of the strata. The 

difference lies in the fact that at the boundaries of strata, the confusion index of the three-dimensional geological model built 

with the deep learning algorithm without pseudolabelling is closer to 1, indicating lower accuracy than that of the 3D 

geological model built with the deep learning algorithm with pseudolabelling. Additionally, the information entropy model 695 

exhibits similar characteristics to the confusion index model. To visually illustrate the differences between the 3D geological 

models constructed by the SDLP algorithm and the DL algorithm in terms of information entropy and confusion index, the 

number of stable grids (with information entropy ranging from 0 to 0.01 and confusion index ranging from 0 to 0.01 , Fig.15a, 

b) and unstable grids (with information entropy ranging from 0.3 to 1 and confusion index ranging from 0.3 to 1, Fig.15a, b) 

are recorded and compared. The results show that compared to the DL algorithm, the 3D geological model constructed by 700 

the SDLP algorithm has a higher proportion of stable grids and a lower proportion of unstable grids. The findings 

demonstrate that utilizing the TIN algorithm to construct pseudolabels can enhance the stability of the model. 

The information entropy and confusion index models can be used to overcome the HRBF algorithm's inability to 

consider uncertainty, and the results demonstrate that the SDLP algorithm is superior to the deep learning algorithm without 

pseudolabelling for constructing 3D geological models from the perspectives of information entropy and the confusion index. 705 

 

Figure 15. Line plot of information entropy(a) and confusion index (b). 

5. Conclusion 

In this study, we propose semisupervised deep learning using a pseudolabelling algorithm to build a 3D geological model 

based on borehole data. By labelling the grid data with high accuracy using the explicit TIN modelling method, we address 710 

the lack of labelled training data for building deep learning models. The original data for this study are from engineering 
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borehole dataset from Shenyang city, and 3D geological models of Shenyang city were constructed using the SDLP, SVM, 

and HRBF algorithms. The SDLP algorithm achieved an accuracy of 98.16% for the test dataset, outperforming a classic 

SVM machine learning algorithm. Moreover, the 3D geological model constructed using the SDLP algorithm accurately 

reflects the boundaries of the formations in the borehole data and aligns well with the real sedimentation patterns. the 3D 715 

geological models built with the SDLP algorithm resolve the inability of the implicit HRBF modelling algorithm to consider 

uncertainty. In conclusion, the proposed SDLP algorithm provides a solution for the lack of training data in deep learning 

and fills the gap of the HRBF method regarding uncertainty. 

In this study, we propose a semisupervised deep learning algorithm using pseudolabels for 3D geological modelling from 

borehole data. By predicting the pseudolabel for an unlabelled grid within the modelling scope, a 3D geological model is 720 

established by expanding the amount of sample data. The proposed method takes the engineering data of Shenyang City as 

an example to establish a 3D geological model. The accuracy of the deep neural network training model on the test set for 

sampling data points reaches 98.16%. When the test borehole data without missing geological semantics are predicted 

through cross-validation, the prediction accuracy of the borehole stratum can reach 85.9%. This shows that the established 

model conforms to the borehole distribution and has good prediction ability. Compared with the implicit HRBF modelling 725 

method and SVM modelling method, the modelling results can express the stratum distribution well, and the modelling 

results are more accurate than those of the traditional machine learning method. The model uncertainty analysis shows that 

the pseudolabel method can slightly reduce the uncertainty of the model, which can improve the stability of the 3D 

geological model and has more advantages in dealing with more complex geological phenomena. 

Code availability. The program “PDNN” was written in the Python programming language. The program reads borehole data and 730 

preprocesses the borehole data with upsampling and normalizaionnormalization. By using the DNN to train the model and predict the 

attributes of data poinspoints, Ppseudolabels with high confidence scores wereare added to the unlabelled grid points. The code is available 

for download from the following public repository: https://zenodo.org/deposit/7833570. 

Data availability. The model data and terrain data of used in the case study in this paper are available at: 

https://doi.org/10.5281/zenodo.7535214. 735 

Video supplement. We have provided web links to download the video recordings of our case studies. The real area case study of a real 

area verifies the feasibility of the proposed approach. The video supplement can be viewed at: 

https://drive.google.com/file/d/13VERDXM6YJmP7xMabQy3IjhCExuQSWzk/view?usp=sharing. 
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