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Abstract. Accurate forecast of heavy precipitation remains
:::::::::
Forecasting

:::::
heavy

:::::::::::
precipitation

:::::::::
accurately

::
is a challenging task in

::
for

:
most deep learning (DL)-based models. This study proposes

::
To

::::::
address

::::
this,

:::
we

:::::::
present a novel DL architecture named

’
::::
called

::
"Multi-scale Feature Fusion’

:
" (MFF) for precipitation nowcasting for

:::
that

::::
can

::::::
forecast

:::::::::::
precipitation

::::
with

:
a lead time

of up to 3 h. The basic idea is to apply
:::::
hours.

:::
The

:::::
MFF

:::::
model

::::
uses

:
convolution kernels with various sizes to achieve

::::::
varying

::::
sizes

::
to

:::::
create

:
multi-scale receptive fieldsand then

:
.
::::
This

:::::
helps

::
to

:
capture the movement features of the precipitation system5

(e.g.
::::::::::
precipitation

::::::::
systems,

::::
such

::
as

::::
their

:
shape, movement direction, and moving speed). Meanwhile

:::::
speed.

:::::::::::
Additionally, the

architecture implants
:::::
utilizes

:
the mechanism of discrete probability to reduce uncertainties and forecast errors, so that heavy

precipitations can be produced
:::::::
enabling

::
it

::
to

::::::
predict

:::::
heavy

:::::::::::
precipitation even at longer lead time. The model uses four year’s

:::::
times.

:::
For

::::::
model

:::::::
training,

:::
we

:::
use

::::
four

:::::
years

::
of

:
radar echo data from 2018 to 2021for model training ,

:
and one year’s data of

::::
from 2022 for model testing. The model is compared

::
We

::::::::
compare

:::
the

:::::
MFF

:::::
model

:
with three existing extrapolative models:10

time series residual convolution (TSRC), optical flow (OF), and UNet. Results
:::
The

::::::
results

:
show that MFF obtains relatively

:::::::
achieves superior forecast skills with a high probability of detection (POD), low false alarm rate (FAR), small mean absolute

error (MAE), and high structural similarity index (SSIM). The most commendable result is that
::::::
Notably,

:
MFF can predict high-

intensity precipitation fields at 3 h lead time
::::
hours

::::
lead

:::::
time, while the other three models can not. Additionally, it can be found

from the results of radially averaged power spectral (RAPS) that
::::::::::
Furthermore,

:
MFF shows improvement in the smoothing effect15

of the forecast field. Future works will pay more attention to ,
::
as

::::::::
observed

::::
from

:::
the

::::::
results

::
of

:::::::
radially

::::::::
averaged

:::::
power

:::::::
spectral

:::::::
(RAPS).

::::
Our

:::::
future

::::::
works

::::
will

:::::
focus

::
on

::::::::::::
incorporating multi-source meteorological variables, the structural adjustments of

::::::
making

::::::::
structural

::::::::::
adjustments

::
to the network, and the combinations

:::::::::
combining

::::
them

:
with numerical models to further improve

the forecast skills of heavy precipitations at longer lead times.
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1 Introduction

Heavy precipitation is a key driver of a variety of
::
can

::::::
cause

::::::
various

:
natural disasters, including

::::
such

::
as

:
floods, landslides,

and mud-rock flows, which pose a threat to both life and property. The term ’nowcasting’ refers to predicting precipitation

over a certain
:::
can

::
be

:::::::::::::
life-threatening

::::
and

:::::
cause

::::::::
property

:::::::
damage.

::::::::::
Nowcasting

::
is
:::
the

:::::
term

::::
used

:::
for

:::::::::
predicting

:::::::::::
precipitation

::
in

:
a
:::::::
specific region within a short time frame (typically

::::::
usually

:
less than 3 hours) and with a fine-grained

::::
high spatiotempo-25

ral resolution (Ayzel et al., 2020; Czibula et al., 2021). It is an attractive
:::
has

::::::
become

::
a
:::::::
popular

:
research topic in the field

of hydrometeorology. The destruction of a precipitation event mainly depends on its intensity, duration, and falling area

. Therefore
:::
area

:::
of

:::::::::::
precipitation

::::::::
determine

::::
the

:::::
extent

:::
of

::
its

::::::::::
destruction.

::::::::::::
Consequently, accurate and timely nowcasting has

become an indispensable link
:
is
::::::::
essential

:
for disaster early warning and emergency response (Chen et al., 2020; Ehsani et

al., 2021). However, real-time, large-scale, and fine-grained precipitation nowcasting remains a challenging task due to the30

inherent complexities of atmospheric conditions (Ehsani et a
::
al., 2021; Kim et al., 2021).

Conventional
:::::
There

:::
are

:::
two

:::::
main

:::::::::::
conventional approaches for precipitation nowcastingmainly include :

:
numerical weather

prediction (NWP)-based methods (Sun et al., 2014; Yano et al., 2018) and radar echo-based quantitative forecasts (Liguori et al.,

2014). The NWP models describe atmospheric phenomenons
:::::
predict

:::::::::::
precipitation

::::::::
dynamics by solving a series of differential

equations and thus predict precipitation dynamics
::
to

:::::::
describe

::::::::::
atmospheric

::::::::::
phenomena (Dupuy et al., 2021). They represent the35

main tools for precipitation forecasts. However, these models
:
,
:::
but

::::
they are computationally intensive ,

:::
and time-consuming,

and difficult to assimilate the local data, their forecast products depend on initial/boundary conditions (Marrocu et al., 2020;

Ehsani et al., 2021). Besides
::::::::
Moreover, the first few hours of precipitation predictions by NWP models are invalid

:
, so they are

not commonly used in nowcasting (Han et al., 2019; Yan et al., 2020). The
:::
On

:::
the

:::::
other

::::
hand,

:
radar echo-based quantitative

models use the so-called Z-R relationship (radar reflectivity ’Z’ and precipitation intensity ’R’) to drive precipitation rates and40

further estimate precipitation accumulations. Especially, the optical flow (OF)
:::
The

::::::
optical

::::
flow

:
model is the simplest technique

in radar echo-based quantitative forecast models. It
:
,
:::::
which consists of tracking and extrapolation, where .

::
In

::::
this

::::::::
technique,

:
an

advection field is estimated from a series of consecutive radar echo images. This field ,
:::
and

::
it
:
is then used to extrapolate recent

radar echo images through semi-Lagrangian schemes or interpolation procedures (Ayzel et al., 2019). Progress
:::::
Many

::::::
studies

::::
have

::::::::::
documented

:::
the

:::::::
progress

:
and achievements in precipitation nowcasting with variations of the OF model have also been45

documented in many other studies (Marrocu et al., 2020; Pulkkinen et al., 2019; Ayzel et al., 2019; Prudden et al., 2020; Liu

et al., 2015; Woo et al., 2017; Li et al., 2018). Although
::::::::
However, the OF model and its variations achieved great advances in

precipitation nowcasting, they have
:::
has certain limitations due to the assumption of a constant advection field (Prudden et al.,

2020; Li et al., 2021).

Recently
::
In

:::::
recent

:::::
years, deep learning (DL) techniques in precipitation nowcastinghave drawn much attention from numerous50

studies
::::::::
techniques

::::
have

:::::::
become

::::::::::
increasingly

::::::
popular

:::
for

:::::::::::
precipitation

:::::::::
nowcasting, due to their superior performances

:::::::::::
performance

in tracking and processing successive frames of radar echo video/image. For example
::::::
instance, Shi et al. (2015) treated pre-

cipitation nowcasting as a spatiotemporal sequence predictive problem , and proposed
:::
and

::::::::
proposed

::
a
:
convolutional long

short-term memory (ConvLSTM) architecturewhich helps to capture both ,
::::::
which

:::::::
captures

:
spatial and temporal features of

2



radar echo sequences. This model outperformed the OF method. Considering the change of radar echo over time, in
:
In

:
their55

follow-up study (Shi et al., 2017), they introduced a trajectory GRU (TrajGRU) model,
:
which used the same convolutional and

recursive networks as in the ConvLSTM , while the
::::::::::
ConvLSTM

:::::
while

:::::::::
excavating

:::
the

:
spatially-variant relationship of radar

echo is excavated by
::::::
through its sub-networks. Moreover, Chen et al. (2020) built a new architecture with a transition path (star-

shaped bridge, SB) based on ConvLSTM,
:
which gleans more latent features and makes the model more robust, the model was

used
:
.
:::
The

::::::
model

:::
was

:::::
tested

:
in precipitation nowcasting over the Shanghai area and achieved better performances

::::::::::
performance60

than some conventional extrapolation methods. To improve the limitation of time-step reduction in the ConvLSTM model,

Yasuno et al. (2021) proposed a rain-code approach with multi-frame fusion, thus the model has
:::::::
allowing

::
the

::::::
model

::
to

::::
have

:
a

forecast lead time of 6 hours. Ronneberger et al. (2015) presented a deep network with U-shaped architecture
::::
deep

:::::::
network,

namely U-Net, consisting of a contracting path to capture context and an expanding path that enables precise positioning.

This model was first
::::::
initially used in biomedical segmentation applications. Numerous attempts to develop an

::::
have

::::
been

:::::
made65

::
to

:::::::
develop

:
a
:
UNet-based precipitation nowcasting modeland obtained certain success, such as ,

:::::::::
including the ’RainNet’ in

Germany (Ayzel et al., 2020), the ’MSDM’ in eastern
::::::
Eastern

:
China (Li et al., 2021), the ’Convolutional Nowcasting-Net’

with IMERG products (Ehsani et al., 2021), the ’SmaAt-UNet’ in the Netherlands (Trebing et al., 2021), the ’FURENet’ for

convective precipitation nowcasting (Pan et al., 2021),
:::
and the nowcasting system with ground-based radars and geostationary

satellites imagery (Lebedev et al., 2019), and .
:::::::::::
Additionally,

:
Sadeghi et al. , (2020) used

:
a UNet convolutional neural network70

and geographical information for improving
:
to

:::::::
enhance

:
near real-time precipitation estimation.

Apart from ConvLSTM-based and UNet-based models, many
::::
When

::
it
::::::
comes

::
to

::::::::::
radar-based

::::::::::
nowcasting,

:::::
there

:::
are

::::::
several

plug-and-play modules for radar-based nowcasting
:::::::
available

:::
that

:::
use

:::::::
different

:::::::
network

:::::::::::
architectures.

:::::
Some

::::::
models

::::
use

:::::::::
ConvLSTM

::
or

::::::::::
UNet-based

:::::::::::
architectures,

:::::
while

::::::
others either trim deformable network architectures or implant various feature extraction

operations into
::
the

:
network architectures. For example

::::::
instance, Ravuri et al. (2021) presented

:::::::
proposed

:
a conditional gen-75

erative model for the probabilistic nowcastingwhich
::::::::::
probabilistic

::::::::::
nowcasting.

:::::
Their

:::::
model

:
produced realistic and spatiotem-

porally consistent predictions with a lead time of up to 90 minutes. This model eliminate the blurry nowcasting maps and

outperformed ,
::::::::::::
outperforming

:
UNet and PySTEPS (Pulkkinen et al., 2019). The Google Research group (Sønderby et al.,

2020) developed
::::::::
"MetNet",

:
a weather probabilistic model ’MetNet’ which used

:::
that

::::
uses

:
axial self-attention mechanisms to

unearth weather patterns from large-scale radar and satellite data, it .
::::
The

:::::
model

:
provided probabilistic precipitation maps for80

up to 8
::::
eight

:
hours over the continental United States at a spatial resolution of 1 km2 and

:::
km

:::
and

::
a
:
temporal resolution of

2
:::
two minutes. The Huawei Cloud group (Bi et al., 2022

::::
2023) devised a 3D earth specific

:::::::::::
earth-specific

:
transformer module

and developed ’
:
"Pangu-Weather’", a high-resolution system for the global weather forecast. The

:::::
global

:::::::
weather

::::::::::
forecasting.

::::
This system showed good application prospects for its superior performance in many downstream forecast tasks such as wind,

temperature, and typhoon forecasts. Researchers from DeepMind and Google (Lam et al., 2022) proposed a novel machine85

learning weather simulator named ’GraphCast’, which
:::::::::::
"GraphCast".

::
It was an autoregressive model based on graph neural

networks and a high-resolution multi-scale mesh representation. The model ,
::::::
which produced medium-range global weather

forecasting for up to 10 days. The Microsoft Research group (Tung et al., 2023) developed and demonstrated the ’ClimaX’

modelwhich
::::::::
"ClimaX"

::::::
model.

::::
This

::::::
model extended the Transformer architecture with novel encoding and aggregation blocks,

3



the model resulted
:::::::
resulting

:
in superior performance on benchmarks for both weather forecasting and climate projections. Sim-90

ilarly, the author of Chen et al. (2023) presented an advanced data-driven global medium-range weather forecast system named

’FengWu’, which is
:::::::::
"FengWu".

::::
This

::::::
system

:::
was

:
equipped with model-specific encoder-decoders, cross-modal fusion Trans-

former, and a replay buffer mechanism, and it
:
.
::
It solved the medium-range forecast problem

:::::::
problems

:
from a multi-modal

and multi-task perspective. Marrocu et al. (2020) proposed the ’PreNet’ modelwhich is
:::::::
"PreNet"

::::::
model,

:::::
which

::::
was based on a

widely-used semisupervised
:::::::::::::
semi-supervised

:
and unsupervised learning DL method named ’"generative adversarial network’95

:
" (GAN, Goodfellow et al., 2014). The model’s performance was compared with state-of-the-art OF procedures and shown

::::::
showed

:
remarkable superiority. Zheng et al. (2022) established the ’GAN–argcPredNet’ model

:::::::::::::::::
"GAN-argcPredNet"

::::::
model,

which was also based on GAN architecture, and it .
::
It
:
can reduce the prediction loss in a small-scale space and show more

detailed features among prediction maps.

However, some limitations/challenges in the above DL-based models for precipitation nowcasting are widely reported .100

First, because precipitation dynamics are quite complex and DL models are difficult
::::
have

::::
their

:::::::::
limitations

::::
and

::::::::::
challenges,

::
as

:::::::
reported

::
by

:::::::
various

:::::::
studies.

::::::
Firstly,

::::
these

:::::::
models

:::::::
struggle to extrapolate short-term local convection or precipitation fields

by learning the prior knowledge from
:::
due

::
to

:::
the

:::::::
complex

::::::
nature

::
of

:::::::::::
precipitation

:::::::::
dynamics,

:::
and

:::
the

::::
fact

:::
that

::::
DL

::::::
models

::::
rely

:::::
solely

::
on

:
historical radar echo data alone

:
to
:::::
learn

::::
prior

::::::::::
knowledge (Su et al., 2020; Chen et al., 2020; Ehsani et al., 2021), it

is .
:::::
This

:::::
makes

::
it challenging to predict fast-moving precipitation systems or short-term local convections with

:::::::::::
characterized105

::
by

:
rapid growth and dissipation. Second,

::::::::
Secondly,

:::::::
iterative

:::::::
forecasts

:::::
tend

::
to

:::::
result

::
in

:
accumulative errors and uncertainties

usually occur during iterative forecasts due to the discrepancy
:::
due

::
to

:::::::::::
discrepancies

:
between the model’s training and testing

process
:::::::
processes

:
(Ayzel et al., 2020; Prudden et al., 2020; Li et al., 2020; Singh et al., 2021; Huang et al., 2023), resulting

in
:
.
::::
This

::::
can

::::
lead

::
to

:
low values of heavy precipitation, smoothing or blurry forecast fields. Third

::::::
Thirdly, the convolution

operation
::::
used in DL models covers precipitation fields as comprehensively as possiblebut is unable to

:
,
:::
but

:
it
::::::
cannot

:
reveal110

the rapid changes in echo intensity, deformation, and movement of precipitation fields (Ehsani et al., 2021; Kim et al., 2021).

Therefore
:::::::::::
Consequently, DL models inevitably produce some undesirable forecast outputs, such as declining forecast skills

with increasing lead time, smoothing and blurry precipitation fields, missing extreme precipitation events, and poor forecast

skills for precipitation growth and dissipation.

Large-scale precipitation systems are affected by many factorssuch as
::::::::
influenced

:::
by

::::::
several

:::::::
factors,

::::::::
including

:
prevailing115

westerlies, trade-wind zone, mesoscale weather systems, land-sea distributions, and topography effects (Huang et al., 2023; Luo

et al., 2023). Therefore, accurate and
::
As

:
a
:::::
result,

:
real-time precipitation nowcasting is still a very challenging issue

:::
and

:::::::
accurate

::::::::::
precipitation

:::::::::
forecasting

:::::::
remains

::
a

:::::::::
challenging

::::
task. In this study, we apply

::::::
utilized

:
large-scale radar echo data and elaborately

design a DL architecture named
:::::::
designed

:
a
::::
deep

:::::::
learning

:::::
(DL)

::::::::::
architecture

:::::
called ’Multi-scale Feature Fusion’ (MFF), which

:
.

:::
The

:::::
MFF

:::::
model

:
focuses on detecting radar echo multi-scale feature (e.g.

::::::
features

::
of

:::::
radar

::::::
echoes

::::
such

::
as

:
intensity, movement120

direction, and speed), and ,
::::::
which is expected to improve forecast skillsfor

:::::::
enhance

:::::::::::
precipitation

:::::::::
forecasting

:::::
skills,

::::::::::
particularly

::
in

::::::::
predicting

:
precipitation growth and dissipation, fast-moving precipitation systems

:
, and heavy precipitations. The rest of this

::::
This article is organized as follows: Section 2 presents the data materials, the detailed method, and the framework of the model.
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Section 3 describes the experimental results including
::::
from two precipitation cases , and discuss

::
and

::::::::
discusses

:
the advantages

and disadvantages of the four models.
::::::
Finally,

:
Section 4 draws conclusions

::::::::
concludes and explores some possible future works.125

2 Materials, Methods, and Models

2.1 Radar Reflectivity Image Products

Weather radar is the main monitoring instrument for
:
a
::::::
crucial

::::
tool

:::
for

:::::::::
monitoring

:
precipitation systems and severe convective

weather
:::::
events such as hail, gale, tornado

::::
gales,

:::::::::
tornadoes, and flash flood

:::::
floods. As of November 2022, the China Meteorolog-

ical Administration has deployed the China Next Generation Weather Radar (CINRAD) network composed
::::::
installed

::
a
:::::::
network130

of 236 C-band and S-band Doppler weather radars over China(
:::::
across

::::::
China,

::::::
known

::
as

:::
the

:::::
China

:::::
Next

:::::::::
Generation

::::::::
Weather

:::::
Radar

:::::::::
(CINRAD)

:::::::
network

::
(see Fig. 1). The

::::::::
However,

:::
the CINRAD network is distributed heterogeneously across China ex-

cept in complex terrain (Min et al., 2019), and measures the moving speeds of the meteorological target relative to radars

and further inverts
:
.
:::
The

:::::::
network

::::::::
measures

:::
the

:::::
speed

::
of

:::::::::::::
meteorological

::::::
targets

::::::
relative

::
to

:::
the

:::::
radars

::::
and

::::
then

:::::::
produces

:
various

types of meteorological products. This study collects and sorts out
::::::
focuses

::
on

:::::::::
collecting

:::
and

:::::::::
organizing radar reflectivity image135

products of
::::
from

:
five seasons (March to August) from

::::::
between

:
2018 to 2022, its temporal resolution is

:::
and

:::::
2022.

::::
The

::::
data

:::
has

:
a
::::::::
temporal

::::::::
resolution

::
of

:
6 min and its coverage area is

::::::
minutes

::::
and

::::::
covers

::
an

::::
area

::::
over (73oE− 135oE,10oN − 55oN). The

data pre-processing steps are as follows
::::::
include

::
the

:::::::::
following:

(i) Because radar echoes are affected by low-altitude objects (e.g. massif, building, tree, etc), so sham echoes are often

produced at low-elevation areas
:::::::::::
Low-altitude

::::::
objects

::::
such

::
as

:::::::::
mountains,

:::::::::
buildings,

:::
and

::::
trees

::::
can

::::::
produce

:::::
sham

::::::
echoes

::
in

:::::
radar140

::::::
images. Therefore, we firstly remove the

::::::
remove

::::
these

:
anomalous radar echoes and detach the surplus annotations (e.g. city

name, demarcation, and river)
:::::::::
unnecessary

::::::::::
annotations

::::
like

:::
city

:::::::
names,

:::::::::::
demarcations,

::::
and

:::::
rivers from each image. Secondly,

to reduce the influence
::
To

::::::
reduce

:::
the

::::::
impact of sham echoes on the extrapolative model, we use a local-mean filter algorithm

for radar image denoising, and then
:
to

:::::::
denoise

::
the

:::::
radar

:::::::
images.

::::
After

::::
this,

:::
we

::::::::
transform

:
the radar reflectivities are transformed

into precipitation values based on
:::::
using the Z-R relationship.145

(ii) The extrapolative model will be
:
is
:
difficult to converge due to the great

:::::::
because

::
of

:::
the

:::::::::
significant numerical differences

among each echo reflectivity. Therefore
::
As

:
a
:::::
result, we normalize the initial radar reflectivities to the [0,1] range . Then

:
a
:::::
range

::
of

:::::
[0,1].

::::
Also,

:::
to

:::::
assign

:
precipitation values in areas without radar echoare assigned

:
,
:::
we

:::
set

::::
them

:
as 0. Finally, we resample

the precipitation values on 1024× 880 grids
:
a
:::::
1024

::
×

:::
880

::::
grid

:
for each radar image, while its actual spatial resolution is

about .
::::
The

::::::
spatial

::::::::
resolution

:::
of

:::
one

:::::
radar

::::::
image,

:::::::::
combining

::
all

::::
grid

::::::
boxes,

:
is
:::::::::::::
approximately 5 km. After

:::::::::
completing the data150

preprocessing steps,
::
we

:::::::
obtained

::::::::
20,5848

:::::::
samples,

::::::
which

::
is a 3D matrix with a size of 20,5848× 1024× 880 is obtained

:::
the

:::
size

::
of

::::::::::::::::::::
[20,5848× 1024× 880].
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Figure 1. The distribution of the CINRAD over China and Topography (unit: m) map. White dots represent C-band radars and red dots

denote S-band radars.

2.2 Multi-scale Feature Fusion (MFF)

The extrapolative technique of radar echo
:::::
Radar

::::
echo

:::::::::::
extrapolation

:
is an important vehicle for precipitation nowcasting with

investigating several
::::::::
technique

:::
for

::::::::
predicting

:::::::::::
precipitation

:::
by

::::::::
analyzing

:
key variables such as the

:::::::::
convective

:::::
cloud intensity,155

shape, movement direction, and moving speedof convective cloud
::::
speed. However, there are different targets (e.g.

::::
echo

::::::
images

:::
may

:::::
have

::::::::
different

::::::
targets

::::
such

::
as
:

light rain, moderate rain, and heavy rain ) in an echo image or significant differences

in the size of the same target collected at various resolutions. Meanwhile
::
or

:::
the

:::::
same

:::::
target

::::
may

:::::
vary

::
in

::::
size

::
at

::::::::
different

:::::::::
resolutions.

:::::::::::
Additionally, in a certain region of interest of

::::::
specific

::::
area

::
of

:::::::
interest

::
in

:
an echo map, there may be situations of

tight arrangement and disorderly distributions of multiple targets (not least the local strong convection) which inevitably induce160

background noises
:::::::
multiple

::::::
targets

:::::::
arranged

::
in
::

a
::::
tight

:::
or

::::::::
disorderly

:::::::
manner,

::::::
which

:::
can

:::::
cause

:::::::::::
background

:::::
noise,

::::::::::
particularly

:::
due

::
to

:::::
strong

:::::
local

:::::::::
convection. Therefore, using a single /unique feature (refer to as ’convolution kernel ’ in a DL architecture

6



) will lead to low forecast skills
:::::
feature

::
or

::::::::::
convolution

::::::
kernel

::
in

::
a
:::::
Deep

:::::::
Learning

:::::::::::
architecture

:::
can

::::
lead

::
to

:::::
lower

::::::::::
forecasting

:::::::
accuracy

:
due to the relatively small receptive fields

::::::
limited

:::::::
receptive

::::
field.

This study proposes
::::::::
introduces

:::
two

::::::::
modules

:::
for

::::::
feature

::::::
fusion: a 3D Multi-scale Feature Fusion (3DMFF, Fig. 2a) module165

and a 2D Multi-scale Feature Fusion (2DMFF, Fig. 2b) module. An important part of the
:::
The 3DMFF is to apply convolution

kernels with various sizes to gain
::::::
module

::::
uses

:::::::::::
convolution

::::::
kernels

::
of

::::::::
different

:::::
sizes

::
to

::::::
capture

:::::::::::
information

::::
from

:
different

receptive fields. Given
::::::::
Assuming

:::
that

:
the average moving speed of the

:
a
:
convective cloud is 36 km/h, the largest convolution

kernel with the size of 4× 5× 5 could
::
can

:
capture the traceability information of the convective cloud under this moving

speed. Conversely, the smallest convolution kernel with the size of 4×2×2 is geared toward the slow-moving clouds. Besides,170

a key convolution kernel with the size of
::::::::::
Additionally,

::
a 4× 1× 1 is also used which is instrumental in

:::::
kernel

::
is
:::::

used
:::
for

dimensionality adjustments and information interactions
:::::::::
interaction among channels. The above multi-scale feature are then

concatenated so that the module could
::::::
outputs

::
of

::::
these

::::::::
different

::::
scale

:::::::
features

:::
are

:::::::::::
concatenated

::
to store more information from

the previous echo maps. Similarly, the 2DMFF uses various convolution kernels with
::::::
module

::::
uses

::::::::::
convolution

::::::
kernels

::
of

:
sizes

ranging from 1×1 to 4×4. Furthermore, we introduce the ’,
:::
and

::::::::
employs

:::
the

:
’Channel-Shuffle’ technique (Zhang et al., 2018)175

:
’
::::::::
technique to randomly shuffle the concatenated feature maps along the channel dimensionswhich

:
.
::::
This enhances the feature

interaction ability between channels and further improves the generalization ability of the module. The
::::
Both

:::
the

:
3DMFF and

2DMFF module both apply the ’Relu’
:::::::
modules

:::
use

:::
the

:::::::
’ReLU’ activation function for nonlinear mappingwhich thins ,

::::::
which

::::
helps

::
to

::::
thin the network and ease the over-fitting problem to a certain extent.
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Figure 2. (a) The 3D Multi-scale Feature Fusion (3DMFF) and (b) the 2D Multi-scale Feature Fusion (2DMFF).

Consequently,
::
as compared to the conventional single feature

:::::::::::
single-feature module, the MFF modules make full use of the180

information of
:::::::::::
Multi-Feature

::::::
Fusion

::::::
(MFF)

:::::::
modules

::::
use different receptive fields and enhances the feature interaction ability

by increasing
::
to

:::::::
enhance

:::::
feature

:::::::::
interaction

::::
and

:::::::
increase the number of network routes. That is precisely the conventional single

feature module is unable
:::
This

:::::::
enables

:::
the

::::
MFF

::::::::
modules to fully extract feature information due to less network routes(refer

to as the issue of information loss). In addition
:::
that

::::
was

:::::::::
previously

::::
lost

:::
due

::
to
::::::

fewer
:::::::
network

::::::
routes.

::::::::::
Additionally, the MFF

modules introduce channel sorting and spatial-temporal convolutions to address the issue of information redundancy.185

2.3 The Framework of the Nowcasting Model based on MFF

We present the complete framework
:::
Here

::
is
::
a
:::::::
detailed

:::::::::
description of the precipitation nowcasting model

:::::::::
framework

:
(Fig. 3) .

Overall, the model uses 60-min
:::
that

:::
we

:::::::::
developed.

::::
The

:::::
model

::
is

::::::
trained

:::::
using

::::::::
60-minute

:
radar echo mapsfor training with the

:
,

::::
with

::
an input size of (1,10,880,1024), and generates the 180-min nowcasting outputs with the

:::::::
produces

:::::::::
nowcasting

:::::::
outputs

::
of
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:::
180

:::::::
minutes,

::::
with

::
a size of (1,30,880,1024). The model consists of two steps

:::
has

:::
two

::::
main

:::::::::::
components: the encoding network190

and the decoding network. Where the encoding network contains a series of down-sampling layers of initial features based on

several
:::
and

::::::::
decoding

::::::::
networks.

::::
The

:::::::
encoding

:::::::
network

::::
uses

:::::::
multiple

:
3DMFF modules , it plays a role in feature extraction and

information compression. As for
:
to

::::::
extract

:::::::
features

:::
and

::::::::
compress

:::::::::::
information,

:::::
while the decoding network , it applies several

:::::::
involves

::::::
feature

:::::::::
restoration

:::
and

::::::::::
up-sampling

:::::
using 3D transpose convolutions and 2DMFF modulesfor feature up-sampling and

feature restoration. Note that the
:
.
:::
The

:
3D transpose convolutions also generate a tensor (see P in Fig. 3) which can be deemed195

:::
that

::::
acts as the probability matrix. To fully restore the features of the decoding networkto

:
,
:::::::
retaining

:::
the

::::::::
intensity

::::::::::
information

::
of

::::
radar

:::::
echo

:::
for

:::::::::
predicting

::::::
various

:::::::::::
precipitation

:::::::
systems

:::::
such

::
as

::::
light

:::::
rain,

::::::::
moderate

::::
rain,

::::
and

:::::
heavy

:::::
rain.

::
To

:::::::
restore the

incipient
::::::::
decoding

::::::::
network’s

:::::::
features

::
to

:::
the input’s features,

::
we

:::::::
perform two Hadamard product operationsare performed: one

is .
::::

The
::::
first

::::::::
operation

:::::::::
multiplies the output features of the 2DMFF multiplied by the probability matrix (see m⊙P in Fig.

3)while another is the ,
:::::
while

:::
the

::::::
second

::::::::
operation

:::::::::
multiplies

:::
the output features of the 3D transpose convolutions multiply by200

1−P (see (1−P )⊙ f1 in Fig. 3). The action of the probability matrix is that it retains the most of intensity information of

radar echo as much as possible so that various precipitation systems (e.g. light rain, moderate rain, and heavy rain) can be well

predicted. Because the
::::
Since

:::
the

:
outputs from 3D transpose convolutions lack edge information(since the use of the padding

strategy of 0), so these outputs are also concatenated
:
,
:::
we

::::::::::
concatenate

::::
them

:
with the outputs from the 2DMFF modules to

reduce information loss. Finnally
::::::
Finally, we apply a 3D convolution operation to adjust the channel of the product outputs and205

further generate the precipitation nowcasting results.

By drawing lessons from ’MetNet’ (Sønderby et al., 2020), suppose the target weather condition is y, and the input condition

is x, therefore,

p(y|x) =DNNθ(x) (1)

Where p(y|x) is a conditional probability over the output target y given the input x, DNNθ(x) is a deep neural network210

with parameters θ, the model introduces uncertainties due to the calculation of the .
::::
The

::::::
model

::::
used

::
in

::::
this

::::
case

:::::::::
introduces

::::::::::
uncertainties

:::::::
because

::
it
:::::::::
calculates

:::
the

:
probability distribution over possible outcomes and does not provide a deterministic

output. In most cases, the radar echo reflectivity is a continuous variable, hence we
:::
and

:::
we

::::
need

::
to

:
discretize the variable into

a series of intervals and then
:
to

:
approximate the probability density function of the variable. Because the

:::
By

::::
using

::
a
:
discrete

probability model
:
,
:::
we can reduce uncertainties, therefore,

:
.
::::::::
Therefore,

:
the combination of discrete probability and radar echo215

reflectivity will further
::
can

:::::::::::
significantly reduce uncertainties of extrapolative radar echo. Here, we invoke

:::
use a mechanism of

discrete probability as follows:

y[τ ] =Σ
∑
::

c
i=1p

[τ ]
i (y[τ ]|x) ·xi (2)

Where y[τ ] is the output at
:
a
:::::
given

:
time τ , x is the input condition, c is the number of channels, p[τ ]i (y[τ ]|x) is a con-

ditional probabilityat a channel at time τ . Eq. (2) shows the information of multiple channels at a certain time τ . Here, one220

channel corresponds to one probability valuesuggesting that the probability is assigned to each channel to conduct better feature

extraction. We multiply the
::::
each

::::::
channel

::::
has

::
its

::::
own

:::::::::
probability

:::::
value,

::::::
which

:
is
:::::
used

::
to

:::::
extract

:::::
better

::::::::
features.

:::
The

:
conditional

9



probability p
[τ ]
i :

is
:::::::::
multiplied by related channel information xi and then calculate their summation

::
xi,

::::
their

::::
sum

::
is

:::::::::
calculated

over all channels so that
::
to

::::::
abtain more realistic radar echo reflectivitiesare achieved. As can be seen that .

::::
The

::::::::::
mechanism

::
of

::::::
discrete

::::::::::
probability

::
is

::::
used

:::
by both m⊙P and 1−P (see (1−P )⊙ f1 in

:::::::::::
(1−P )⊙ f1::::

(see Fig. 3use the mechanism of225

discrete probability
:
).

Figure 3. The framework of the nowcasting model based on Multi-scale Feature Fusion (MFF).

Overall, the framework of the nowcasting model with
:::::::::
nowcasting

::::::
model

:::
has

:
a deep and hierarchical encoding-decoding

backbone is instrumental in extracting the
:::
that

:::::
helps

:::
to

::::::
extract essential features from the inputs, while

:::::
inputs.

::
It
::::

also
::::

has

several plug-and-play modules are suitable to excavate the context informationor meticulous texture featuresof the inputs and

reduce background noises of the inputs, making the model effectively to investigate
::::::
suitable

:::
for

:::::::::
excavating

::::::
context

:::::::::::
information,230

:::::::
reducing

::::::::::
background

:::::
noise

::::
and

:::::::::
identifying

::::::
texture

::::::::
features.

::::
This

::::::
makes

:::
the

::::::
model

:::::::
effective

:::
in

::::::::::
investigating

:
the movement

vector features of precipitation system (e.g.
::::::
systems

:::::
such

::
as

:
shape, movement direction, and moving speed) in the practical

nowcasting. Moreover, the model introduces
:
.
::::
The

:::::
model

::::
also

::::
uses the mechanism of discrete probability to skillfully reduce

10



uncertainties and forecast errors, making the model
:::::
which

:::::
helps

::
to
:
postpone the declining rate of strong-intensity echoes to

some extent. Therefore, the model can produce heavy rains with longer lead times.235

2.4 Comparative Models

To have a comprehensive comparison,
::::::
provide

::
a

::::::::
thorough

::::::::::
comparison,

::::
here

:::
we

::::
also

:::::::
present three radar echo extrapolation

modelsare also presented here.

2.4.1 Optical Flow (OF)

The radar echo extrapolating problem can be regarded as moving object detection which separates the
::::::
problem

:::
of

::::
radar

:::::
echo240

:::::::::::
extrapolation

:::
can

::
be

::::
seen

::
as

::::::::
detecting

::::::
moving

:::::::
objects,

:::::
which

:::::::
involves

:::::::::
separating targets from a continuous sequence of images.

Gibson (1979) proposed
:::::::::
introduced the concept of OF characterizing an

::::::
optical

::::
flow

:::::
(OF),

:::::
which

:::::::::::
characterizes

:::
the

:
instanta-

neous velocity of pixel motion of a space object in an imaging plane. Specifically, the OF uses
:::
The

:::
OF

:::::::
method

::::::::
employs

the variation of a pixel of the image sequence in the time domain and the correlation between two adjacent frames , thereby

investigating
:
to

:::::::::
investigate

:
the movement information of objects between consecutive frames. Generally

:::::::::
Essentially, the tran-245

sient variation of a pixel on a certain coordinate of the 2D imaging plane is defined as an optical flow vector. The OF method

satisfies two basic hypotheses: the
::::
relies

:::
on

::::
two

::::
basic

:::::::::::
assumptions:

:
grey-scale invariant and the tiny

::::::::
invariance

::::
and

:::
the

:::::
small

movement of pixels between consecutive frames.

Let I(x,y, t) be the grey-scale value of the pixel at position (x,y) and time t, it moves (dx,dy) units of distances using

dt units of time. Based on the grey-scale invariant hypothesis, the grey-scale value remains unchanged between two adjacent250

times, so the following equation holds:

I(x,y, t) = I(x+ dx,y+ dy,t+ dt) (3)

Using Taylor expansion, the right term of Eq. (3) becomes:

I(x,y, t) = I(x,y, t)+
∂I

∂x
dx+

∂I

∂y
dy+

∂I

∂t
dt+ ϵ (4)

Where ϵ represents the infinitesimal of the second order which is negligible. Then substitute Eq. (4) into Eq. (3) and divide255

by dt, therefore we have:

∂I

∂x

∂x

∂t
+

∂I

∂y

∂y

∂t
+

∂I

∂t
= 0 (5)

Suppose u= dx/dy and v = dy/dy are two velocity vectors of optical flow along the x-axis and the y-axis, respectively. Let

Ix = ∂I
∂x , Iy = ∂I

∂y and It =
∂I
∂t are the partial derivative of the grey-scale of pixels along the x-axis, the y-axis, and the t-axis,

respectively. Therefore, Eq. (5) turns into:260

Ixu+ Iyv+ It = 0 (6)

Where Ix, Iy , and It can be calculated from the original image data, while (u,v) are two unknown vectors. Because Eq.

(6) is a constraint equation but has two unknown variables. Therefore, it is necessary to add other constraint conditions to
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calculate (u,v). Currently, there are two common algorithms used by solving
::
to

:::::
solve this problem: global optical flow (Horn

and Schunck, 1981) and local optical flow (Lucas and Kanade, 1981), detailed mathematical derivations of the two algorithms265

do not expatiate here.

2.4.2 UNet

The second comparative model is U-Net. The biggest difference between
:::::
Unlike

:
the MFF modeland the U-Net model is the

latter ,
:::
the

:::::
UNet

:::::
model

:
uses general 2D convolution in place

::::::
instead of the ’MFF module’. There are mainly three parts in the

U-Net model
::
It

:::::::
consists

::
of

::::
three

:::::
main

::::
parts. The first part

:
,
:::::
called

:::
the

:::::::
encoder

:::::::
module, is a backbone network (encoder module)270

used for
:::
that

::::::::
performs down-sampling and feature extraction, and is stacked by

:
.
::
It

:
is
:::::::::
composed

::
of

:
several convolution layers

and max-pooling layers. Based on the output features from the first part, the second part (decoder module)
:::
The

:::::::
second

::::
part,

:::::
called

:::
the

:::::::
decoder

:::::::
module, uses several up-convolution layers and convolution layers to conduct up-sampling and strengthen

feature extraction, so that the features can be fused more effectively. The
:
.
::::
This

::::::
allows

:::
for

:::::::
effective

::::::
feature

::::::
fusion

:::::
based

:::
on

::
the

::::::
output

:::::::
features

::::
from

:::
the

::::
first

::::
part.

:::::::
Finally,

:::
the third part is a prediction module which

:::
that

:
is used for a specific task

:
, such275

as regression and segmentation. In addition
::::::::::
Additionally, to ensure the down-sampling feature’s size matches the up-sampling

feature’s sizeand further reserves ,
::::
and

::
to

::::::
further

:::::::
preserve

:
more original information, the operation of ’feature copying and

cropping’ is also needed
::::::::
operation

::
is

::::
also

:::::::
required.

2.4.3 Time Series Residual Convolution (TSRC)

The third comparative model is the TSRC model proposed by
:::::
TSRC

::::::::
proposed

::
n

:
our previous study (Huang et al., 2023),280

detailed mathematical derivations of the TSRC are omitted here. The core idea of TSRC is that it compensates .
::::
The

::::::
model

::::::::::
compensates

:::
for

:
the current local radar echo features with previous features during convolution processes on a spatial scale.

Moreover, the model implants
::
It

::::
also

::::::::::
incorporates

:
’time series convolution’ to ease the

::::::::
minimize

:
dependencies on spatial-

temporal scalesso that
:
,
::::::::
resulting

::
in

:::
the

::::::::::
preservation

:::
of more contextual information and less uncertain features are reserved

:::::
fewer

:::::::
uncertain

:::::::
features

:
in the hierarchical architecture. Especially, the model exhibits good performance in dealing with

:::
The285

:::::
model

:::
has

::::::
shown

:::::::
excellent

:::::::::::
performance

::
in

::::::::
handling the smoothing effect of the precipitation field and the degenerate effect of

::
the

:
echo intensity.

:::
For

:::::::
detailed

:::::::::::
mathematical

:::::::::
derivations

::
of

:::
the

::::::
TSRC

::::::
model,

:::::
please

:::::
refer

::
to

:::
our

:::::::
previous

:::::
study.

:

2.5 Evaluation Metrics

We utilize five evaluation metrics to examine the forecast skills of the three extrapolative models, including the
:::::
metrics

:::
to

:::::
assess

:::
the

:::::::
forecast

::::::::
accuracy

::
of

:::::
three

:::::::
models:

:
probability of detection (POD), false alarm rate (FAR), mean absolute error290

(MAE), radially averaged power spectral (RAPS), and structural similarity index (SSIM).

POD =
successful forecast

successful forecast+missing forecast
(7)
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FAR=
null forecast

successful forecast+null forecast
(8)

Where successful forecast, missing forecast
::
In

:::::::
practical

:::::::::::
precipitation

:::::
tasks,

::
it

::
is

:::::::
common

::
to

:::::::::
encounter

:::::::::
successful

::::::::
forecasts,295

::::::
missing

::::::::
forecasts, and null forecast typically appear in practical precipitation tasks. The above three values

:::::::
forecasts,

::::::
which

are determined by the comparison between
:::::::::
comparing

:::
the ground true value (GTV), forecast value (FV), and threshold value

(TV). In practical precipitation tasks (Huang et al., 2023),
:::::
Here, the threshold of 20 dBz represents those

::
is

::::
used

::
to

::::::::
represent

reflectivity values greater than 20 dBz (hereafter
:::::::
referred

::
to

::
as ‘∼20 dBz’). Similarly, the term ‘∼30 dBz’ and ‘∼40 dBz’ can

be abbreviated. In this study , we adopt three thresholds which are set as
:::
This

:::::
study

::::::
adopts

:::::
three

::::::::
thresholds

::
( 20, 30, and 40300

dBz. For example,
::
).

::
To

:::::::::
determine

:::
the

:::::::::
occurrence

::
of

:::::::::
successful

:::::::
forecast

::::::
events,

:::::
mark

:::
one

:
if GTV ≥ TV and FV ≥ TV, then

mark one successful forecast event; .
:::
For

:::::::
missing

:::::::
forecast

::::::
events,

:::::
mark

:::
one if GTV ≥ TV and FV < TVthen mark one missing

forecast event;
:
.
:::
For

::::
null

::::::
forecast

::::::
events,

:::::
mark

::::
one if GTV < TV and FV ≥ TV, then mark one null forecast event. Both POD

and FAR intuitively describe the .
::::
The

:
performance of growth and dissipation forecasting tasks .

::
can

:::
be

::::::::
intuitively

:::::::::
described

::
by

::::
both

:::::
POD

:::
and

:::::
FAR.305

MAE =
1

n
Σ
∑
::

n
i=1|Y

g
i −Y f

i | (9)

Where Y g
i and Y f

i are the ground truth value and forecast value in the i− th pixel of the related echo image, and n is the

total number of pixels. This metric describes the performance of each forecast model at different precipitation intensity levels.

This studyregards the grey-scale of radar echoas
::
In

::::
this

:::::
study,

:::
the

::::
radar

::::::
echo’s

::::::::
greyscale

::
is

:::::::::
considered

:
a signal. The power

spectrum describes the magnitude of different signal frequency components
:::::::
different

::::::::
frequency

:::::::::::
components’

::::::::::
magnitudes

:
of310

a 2D image , therefore it is treated by
:::::
signal.

:::::::::
Therefore,

:::
we

:::
use

:
the Fourier transform

:
to

:::::::
convert

::
it from the spatial domain

into
:
to

:
the frequency domain (Braga et al., 2014). Different frequency components within

::
in

:::
the power spectra are located at

different
::::::
varying

:
distances and directions from the base point on the frequency plane. High-frequency components are located

more distant
::::::
farther from the base point, and different directions from the base point indicate different orientations of the data

features. Here, we use RAPS (Sinclair, 2005; Ruzanski, 2011) to
::
To investigate the smoothing effect of forecast radar echo315

maps and discuss the forecast skill on local convection. Detailed ,
:::
we

:::
use

::::::
RAPS

:::::::
(Sinclair,

:::::
2005;

:::::::::
Ruzanski,

::::::
2011).

::::
Here

:::
are

:::
the

mathematical derivations of RAPS are omitted here.

::
in

:::::
detail.

:::::
First,

::
we

:::::::
perform

::
a
:::
2D

::::::
Fourier

:::::::::
Transform

:::
on

:
a
:::
2D

::::
input

::::::
image.

:

F (u,v) = F{
:::::::::::

f(x,y)
:::::

}
:

(10)

:::::
where

:::::::
F (u,v)

::
is

:::
the

::::::::::::
representation

::
of

::::::::
complex

::::::
domain

:::::
after

::::::
Fourier

::::::::::
Transform,

::
F

::
is

:::
the

:::::::
Fourier

:::::::
operator,

:::::::
f(x,y)

::
is

:::
the320

::::
input

::::::
image.

::::
And

::::
then

:::
we

:::::::
calculate

:::
the

::::::
power

::::::
spectral

:::
P

:::
and

:::::
radial

:::::::::
coordinate

:
r
::
in
:::
the

:::::::::
frequency

:::::::
domain.

P (u,v) = |F (u,v)|2, r(u,v) =
√
u2 + v2

:::::::::::::::::::::::::::::::::
(11)
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::::
Last,

:::
the

::::::
power

:::::::
spectrum

:::
are

::::::::
grouped

::::::::
according

::
to

:::
the

:::::
radial

:::::::::
coordinate

:::
of

:::::::::
frequency;

:::::::::::
subsequently,

::::
take

:::
the

:::::::
average.

::::
For

::::
each

:::::
radius

:::
rk,

::
its

::::::::::::
corresponding

:::::::
radially

::::::::
averaged

:::::
power

:::::::
spectral

::
Pk::

is
:

Pk =
1

Nk

∑
i

P (ui,vi)

::::::::::::::::::

(12)325

:::::
Where

::::::::::::
r(ui,vi)≈ rk,

::::
and

:::
Nk::

is
::::::
number

::
of
:::::::::
frequency

:::::
point

:::::
falling

::::::
within

:::
the

:::::
radius

::
of

:::
rk.

:

Besides, we calculate the SSIM (Wang et al., 2004) to examine the similarity of precipitation fields between ground true and

forecasting radar echo maps.

SSIM =
(2µgµf + c1)(2σgf + c2)

(µ2
g +µ2

f + c1)(σ2
g +σ2

f + c2)
(13)

Where µg and µf are the means of ground truth and forecasting radar echo map, σg and σf are the related standard deviation,330

σgf is the covariance, respectively. c1 and c2 are two constants. This metrics reflects the movement of precipitation field
:::::
fields

between ground truth and forecasting radar echo map.

3 Results

3.1 Overall Forecast Performances on Testing Data

We use four years’ data (2018-2011
:::::::::
2018-2021) for model training and one year’s data from 2022 for model testing.

::
In

:
Fig.335

4shows
:
,
:::
we

::::
show

:
the four evaluation metrics:

:
POD, FAR, MAE, and SSIM in three reflectivity intervals of ∼20, ∼30, and ∼40

dBz. Overall,
::
we

::::::::
observed

::::
that POD in the four models consistently plunges

::::::::
decreases with increased forecast lead time for all

reflectivity internals, while it is conversely for FAR
:::::::
intervals,

::::::
while

::::
FAR

::::::::
increases. The rankings of POD (or FAR) are quite

different from
::
for

:
the three reflectivity intervals. For example, in

::
In

:::
the ∼20 dBz reflectivity

::::::
interval, MFF ranks the highest

::
in POD during the whole

:::::
entire

:
forecast period, it remains

::::::::
remaining stable ranging from 0.6 to 0.8,

:
which is almost twice340

that of TSRC, OF, and UNet after the 2 h lead time; however
:::::
2-hour

::::
lead

::::
time.

::::::::
However, MFF and TSRC hold the

:::
have

:
nearly

equal FARwhich are ,
::::::
which

::
is roughly half of that from

::
of OF and UNet. In

:::
the ∼30 dBz reflectivity

::::::
interval, TSRC ranks the

highest
::::::
highest

::
in

:
POD, followed by MFF; coincidentally

:
.
::::::::::::
Coincidentally, TSRC also ranks the highest

::::::
highest

::
in FAR before

the 1-hour forecast time, while both MFF and TSRC obtain relatively low FAR compared with
::
to

:
that of OF and UNet. In

:::
the

∼40 dBz reflectivity
::::::
interval, POD in TSRC is ahead of that of the other three models, especially before the 1-hour lead time,345

and it degrades into that of MFF at the longer lead time; .
:
POD in both OF and UNet are

:::::::
remains lower than 0.2 during the

whole
:::::
entire forecast period and nearly decline

::::::
declines

:
to 0 after 2 h

:::
the

:::::
2-hour

:
lead time; MFF reports the lowest FAR during

the whole
::::
entire

:
forecast period. While the value of FAR climbs from about 0.1 to 0.9; ,

:
TSRC has a relatively stable FAR,

while the value of FAR is higher than 0.5 during the whole forecast period;
::::
entire

:::::::
forecast

::::::
period.

:
FAR in OF and UNet rapidly

increase
:::::::
increases

:
from about 0.1 to 0.8 at

::
in the first 90 min;

:::::::
minutes.

:
FAR in all models are

:
is
:
greater than 0.8.350

Although MFF produces relatively low POD in high reflectivity (∼30 and ∼40 dBz) intervals compared with TSRC,

however,
:
to

::::::
TSRC,

:
it obtains relatively low FAR at the same time. It is evident from

::::
From the definition of POD/FAR

:
,
:
it
::::
can
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::
be

:::::::::
understood

:
that both more ’successful forecasts’ and more ’null forecasts’

:::::::::
"successful

:::::::::
forecasts"

:::
and

:::::
more

::::
"null

:::::::::
forecasts"

occur in TSRC, and conversely, fewer ’successful forecast’
::::
while

:::::
fewer

::::::::::
"successful

::::::::
forecast" events and fewer ’null forecast’

::::
"null

::::::::
forecast" events occur in MFF compared with

::
to TSRC for high reflectivity intervals. Taking

:
If

:::
we

::::
take

:
POD=0.6 as355

a dividing point, it is obvious
:::
clear

:
that MFF yields ’successful forecast’

:::::::::
"successful

::::::::
forecast" events for the whole forecast

period in ∼20 dBz reflectivity; ,
:
while TSRC, OF, and UNet gain ’successful forecast’

:::::::::
"successful

::::::::
forecast" events only before

60 min
::::::
minutes, 24 min

::::::
minutes, and 36 min

:::::::
minutes, respectively. Similarly, taking

:
if
:::
we

::::
take

:
FAR=0.5 as a dividing point in

∼40 dBz reflectivity, it can be found that MFF, OF, and UNet report FAR<0.5 only before 2 h
::::
hours, 30 min

::::::
minutes, and 30

min
::::::
minutes, respectively, suggesting that at least the three models can avoid half of the ’null forecast’

::::
"null

::::::::
forecast"

:
events360

before 2 h
::::
hours, 30 min

::::::
minutes, and 30 min

:::::::
minutes, respectively. However, TSRC is unavoidable to produce ’null forecast’

::
in

::::::::
producing

:::::
"null

:::::::
forecast"

:
events for the whole forecast period in ∼40 dBz reflectivity.

In addition, we examine the MAE and SSIM between
:::
We

::::
also

:::::::
analyze

:::
the

:::::
Mean

::::::::
Absolute

:::::
Error

:::::::
(MAE)

:::
and

:::::::::
Structural

::::::::
Similarity

:::::
Index

:::::::
Metric

::::::
(SSIM)

::::::::
between

:::
the

:
nowcasting and ground truth. Overall, the MAE gradually rises

:::
The

::::::
MAE

::::::::
gradually

::::::::
increases with the forecast time for all models. Specifically, in terms of MAE

:::
Out

:::
of

:::
the

:::::
three

::::::
models, MFF has365

the smallest MAE (about
::::::
around 15 dBz)which is ahead of

:
,
:::::
which

::
is

:::::
better

::::
than both TSRC and UNet by about

::::::::::::
approximately

2 dBz reflectivity after 90-min, while
::
90

:::::::
minutes.

::::
On

:::
the

:::::
other

:::::
hand,

:
OF has the largest MAE, especially

::::::
highest

::::::
MAE,

:::::::::
particularly

:
in long forecast time. These suggest

:::::
times.

::::
This

:::::::
indicates

:
that MFF reproduces the precipitation intensity with rel-

atively less overestimation or underestimation compared with the other three
:
to
:::
the

:::::
other models, while OF shows little capacity

to do so, especially in a long forecast time. In terms of SSIM, an important finding is that MFF keeps
:
it
:::
can

:::
be

:::::
found

:::
that

:::::
MFF370

:::::::
performs

::::
well

::::
and

::::::::
maintains

:
an upward trend, OF enjoys a steadfast position, while

:::::
while

:::
OF

:::::::
remains

::::::::
consistent

::::::::::
throughout

::
the

:::::::
forecast

:::::
time.

::::::::
However,

:
TSRC and UNet show a downward trend, especially after 90 min. These indicate

:::::::
minutes.

::::
This

:::::::
indicates

:
that MFF is suitable to capture

::::::
capable

::
of

:::::::::
capturing the shapes of precipitation fields with high with relatively high

similarity,
:
and its forecast performance increases

:::::::
improves

:
with forecast times.

Understandably, MFF has a strong ability to dredge the movement vector features
::
the

:::::
MFF

::::::
model

:::
can

:::::::
identify

:::::::::
movement375

::::::
vectors of precipitation systems

:::
and

::::::
reduce

:::::::::::
uncertainties in multi-scale and alleviate the issue of information loss (reduce

uncertainties ) in high reflectivity intervals. Therefore, by enforcing
:::
By

::::
using

:
the mechanism of discrete probability, the model

shows favorable superiority especially
::
is

:::::::::
particularly

::::::::
effective for high-intensity precipitation systems even at longer forecast

times. By using the strategy of compensated information in time series
:::::::
However, the TSRC model might

:::
may

:
struggle to

replenish the information on precipitation intensitybut inevitably brings the issue of ,
:::::::
leading

::
to

:
overestimation for the whole380

forecast period , which leads to producing more ’null forecasts’ events. OF
::::
entire

:::::::
forecast

::::::
period

::::
and

::::::::
producing

:::::
more

:::::
"null

::::::::
forecasts"

::::::
events.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::
OF

:::::
model

:
produces precipitation fields based on the grey-scale

::::::::
gray-scale

:
invariant

and the tiny
::::
slight

:
movement of the precipitation system, so it is difficult to dig the fast changes of

::::::
making

::
it

::::::
difficult

::
to
::::::
detect

:::
fast

:::::::
changes

::
in precipitation fields, especially in longer forecast time, and also

:::::
times.

:::::::::::
Additionally,

::
it
:::::
tends

::
to overestimate or

underestimate the high-intensity precipitations. UNet
:::::
Lastly,

:::
the

:::::
UNet

::::::
model

::::
only

:
performs feature extractions only on the385

spatial scalewhich results in ,
:::::::
leading

::
to information loss and is unable to excavate the fast changes of

::
an

:::::::
inability

::
to

:::::
detect

::::
fast
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::::::
changes

::
in
:
precipitation fields on the temporal scale and the high-intensity precipitations, therefore, .

::::::::::::
Consequently, it has poor

ability in nowcasting during the whole
::::::::::
performance

::
in
::::::::::
nowcasting

:::::::::
throughout

:::
the

:
forecast period.
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Figure 4. The forecast results in terms of four evaluation metrics on testing data on
::
for

:
the whole year of 2022.
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3.2 Results of Case Study

Here we show some forecast results of
::::::
present

:::::::
forecast

:::::
results

:::
for two real precipitation cases (

:::
see Fig. 5) to further understand390

the forecast
::::
better

::::::::::
understand

:::
the performance of the four models.

Figure 5. The overview of two precipitation cases over China.

3.2.1 Case 1

The first case is a large-scale precipitation process over China on 5 June 2025
::::
2022, 02:36:00 UTC (Fig. 5a), it contains

the north part over northeastern China affected by a cold vortex and the south part (also known as ‘dragon-boat rain’) over

southern China affected by warm-humid air. Fig. 6 presents the forecast results of this case. In the ground truth (GT), the whole395

precipitation area keeps a sluggish enlarging trend with the increased lead time, but the precipitation area of the high-intensity

(e.g. greater than 35 dBz) echoes narrows gradually. As an important finding, MFF shows the best forecast performances since

it can predict high-intensity (e.g. greater than 45 dBz) echoes even at the longest lead time (T+180 min). Comparatively, TSRC

and UNet produce these echoes only at the short-range forecast time and miss them at the longest lead time. In terms of the

precipitation field, both MFF and TSRC roughly capture the precipitation area, especially for low-intensity (e.g. less than 30400

dBz) echoes at short-range lead times; OF draws an obvious dragged trajectory of the precipitation field in longer lead times,

indicating the model simply creates precipitation fields with symbolic replications from the first frame to the last frame (T+180

min) at a horizontal scale and always misses the local changes of the precipitation system; UNet is definitely difficult to grasp

the whole precipitation filed, not to mention the heavy precipitation system and its precipitation filed narrows gradually with

the increasing lead time and finally disappears. The above analysis seems to be in accord with previous results that the high405

POD is reported in MFF and TSRC for low-intensity echoes (Fig. 4a), while the relatively steady POD in OF and UNet for
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high-intensity echoes (Fig. 4b and 4c). Overall, MFF outperforms the other three models in predicting the precipitation field

and the heavy precipitation.

::
On

:::::
June

:::
5th,

:::::
2022

::
at

::::::::
02:36:00

:::::
UTC,

:
a
:::::::::
large-scale

:::::::::::
precipitation

:::::::
process

:::::::
occurred

::::
over

::::::
China,

::::::::
affecting

::::::::::
northeastern

::::::
China

:::
and

::::::::
southern

:::::
China

::::::::::
differently.

::::
The

::::::::::
northeastern

::::
part

::::
was

:::::::
affected

:::
by

::
a
::::
cold

::::::
vortex,

:::::
while

::::
the

:::::::
southern

::::
part

:::::::::::
experienced410

::::::::::
warm-humid

:::
air,

::::
also

::::::
known

::
as

:::::::::::
’dragon-boat

:::::
rain’.

::
In

::::
Fig.

:::
5a,

:::
the

:::::::
forecast

::::::
results

::
of

::::
this

::::
case

:::
are

::::::::
presented,

::::
with

:::
the

:::::::
ground

::::
truth

:::::::
showing

:
a
:::::::
sluggish

:::::::::::
enlargement

::
of

:::
the

:::::
whole

:::::::::::
precipitation

::::
area,

:::
but

:
a
:::::::
gradual

::::::::
narrowing

:::
of

:::::::::::
high-intensity

::::::
echoes

:::::::
(greater

:::
than

:::
35

:::::
dBz).

:::
An

:::::::::
important

::::::
finding

::
is
::::

that
:::::
MFF

:::
has

:::
the

::::
best

:::::::
forecast

::::::::::::
performances,

:::::::::
predicting

::::::::::::
high-intensity

::::::
echoes

:::::
even

:
at
::::

the
::::::
longest

::::
lead

:::::
time

::::::
(T+180

:::::::::
minutes).

::
In

::::::::
contrast,

:::::
TSRC

::::
and

:::::
UNet

::::
only

::::::::
produce

::::
these

:::::::
echoes

::
at

::::::::::
short-range

:::::::
forecast

::::
times

::::
and

::::::
missed

:::::
them

::
at

:::
the

::::::
longest

::::
lead

:::::
time.

::
In

:::::
terms

:::
of

:::
the

::::::::::
precipitation

:::::
field,

::::
both

:::::
MFF

:::
and

::::::
TSRC

:::::::
roughly

::::::
capture

:::
it,415

::::::::
especially

:::
for

:::::::::::
low-intensity

::::::
echoes

::::
(less

::::
than

::
30

:::::
dBz)

::
at

:::::::::
short-range

::::
lead

:::::
times.

:::
OF

:::::
draws

:::
an

:::::::
obvious

:::::::
dragged

::::::::
trajectory

::
of

:::
the

::::::::::
precipitation

::::
field

::
in

::::::
longer

:::
lead

::::::
times,

::::::::
indicating

:::
the

::::::
model

:::::
simply

::::::
creates

:::::::::::
precipitation

:::::
fields

::::
with

::::::::
symbolic

:::::::::
replications

:::::
from

::
the

::::
first

:::::
frame

:::
to

:::
the

:::
last

:::::
frame

:::::::
(T+180

::::::::
minutes)

::
at

:
a
:::::::::
horizontal

:::::
scale,

::::::
always

:::::::
missing

:::
the

:::::
local

:::::::
changes

::
of

:::
the

:::::::::::
precipitation

::::::
system.

:::::
UNet

::
is

::::::::
definitely

::::::
difficult

::
to
:::::
grasp

:::
the

::::::
whole

::::::::::
precipitation

:::::
field,

:::
not

::
to

:::::::
mention

:::
the

:::::
heavy

::::::::::
precipitation

:::::::
system,

:::
and

:::
its

::::::::::
precipitation

::::
field

:::::::
narrows

::::::::
gradually

::::
with

:::
the

:::::::::
increasing

:::
lead

::::
time

::::
and

::::::::
eventually

::::::::::
disappears.

:::
The

::::::
above

::::::
analysis

::
is
::
in

::::
line

::::
with420

:::::::
previous

::::::
results

:::
that

::::
MFF

::::
and

:::::
TSRC

::::
have

::::
high

:::::
POD

:::
for

:::::::::::
low-intensity

::::::
echoes

:::
(see

::::
Fig.

::::
4a),

::::
while

:::
OF

::::
and

:::::
UNet

::::
have

::::::::
relatively

:::::
steady

:::::
POD

::
for

::::::::::::
high-intensity

::::::
echoes

::::
(see

:::
Fig.

:::
4b

:::
and

::::
4c).

:::::::
Overall,

::::
MFF

:::::::::::
outperforms

:::
the

::::
other

:::::
three

::::::
models

::
in

:::::::::
predicting

:::
the

::::::::::
precipitation

::::
field

::::
and

:::::
heavy

:::::::::::
precipitation.

The precipitation maps of case 1 (5 June 2025, 02:36:00 UTC); the first row: ground truth (GT); the second row: Multi-scale

Feature Fusion (MFF); the third row: time series residual convolution (TSRC); the fourth row: optical flow (OF); the fifth row:425

UNet; the sixth row: the radially averaged power spectral density.

The RAPS is an important metric to intuitively
:::
The

::::::
RAPS

:::::
metric

::
is

::::
used

::
to

:
examine the smoothing and blurry precipitation

fields, while the lower the power spectral , the smoother the precipitation fieldis.
::

A
:::::
lower

::::::
power

:::::::
spectral

:::::::
indicates

::
a
::::::::
smoother

::::::::::
precipitation

::::
field. Conspicuously, OF enjoys a relatively high power spectral which is close

:::
that

::
is

::::::::::
comparable to that of

:::
the

ground truth for the whole
:::::
entire wavelength range. At first glanceOF can predict the meticulous local-convection ,

:::
OF

::::
can430

::::::::
accurately

::::::
predict

:::::
local

:::::::::
convection

:
activity and the evolution of the precipitation system. However, the precipitation field is

shifted by the model
:::::
model

::::
shifts

:::
the

:::::::::::
precipitation

::::
field from the first frame to the lastframe and is to raise ’successful forecast’

or ’null forecast’ events, indicating the
:
,
:::::
which

::::::
results

::
in
:

poor forecast performance of the model at longer lead times. The

other three DL-based models (MFF, TSRC, and UNet) have relatively low power spectra, suggesting they inevitably
::::::::
indicating

:::
that

::::
they introduce a smooth precipitation field to some extent, but .

::::
But they might describe the evolution of the precipitation435

system more reasonably. Specifically, MFF reports inconspicuous
::::
MFF

:::
has

:
a
::::
low power spectral under 4 km wavelengthwhich

is ,
:
higher than that of TSRC and UNet, while this difference becomes increasingly apparent

:
.
::::
This

::::::::
difference

::::::::
becomes

:::::
more

::::::::
significant

:
at longer lead times, suggesting the model has even more advantages to describe the local-convection

:::
that

:::
the

:::::
MFF

:::::
model

::
is

:::::
better

::
at

:::::::::
describing

::::
local

:::::::::
convection activity on a small scaleand the model did

:
.
:::::::
Overall,

:::
the

::::
MFF

::::::
model

::::
does at least

ease the smoothing effect.440
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Figure 6.
::
The

::::::::::
precipitation

:::::
maps

::
of

:::
case

::
1
::
(5

::::
June

:::::
2025,

:::::::
02:36:00

:::::
UTC);

:::
the

:::
first

::::
row:

::::::
ground

::::
truth

:::::
(GT);

::
the

::::::
second

::::
row:

:::::::::
Multi-scale

:::::
Feature

::::::
Fusion

::::::
(MFF);

::
the

::::
third

::::
row:

::::
time

:::::
series

::::::
residual

:::::::::
convolution

:::::::
(TSRC);

::
the

:::::
fourth

::::
row:

::::::
optical

:::
flow

:::::
(OF);

:::
the

:::
fifth

::::
row:

:::::
UNet;

:::
the

::::
sixth

:::
row:

:::
the

::::::
radially

:::::::
averaged

:::::
power

::::::
spectral

::::::
density.

3.2.2 Case 2
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The second case occurred on 15 May 2022,
::
On

:::::
May

:::
15,

:::::
2022

::
at 03:06:00 UTC

:
,
:
a
:::::::::
significant

:::::::::::
precipitation

:::::
event

::::::::
occurred

::
in

::::::
central

:::::
China

::::
and

:::::::
offshore

:::::
China

:
(Fig. 5b). It was a large-scale precipitation process over central China and offshore of

China, and was affected
:::
The

:::::
event

::::
was

:::::::::
influenced

:
by the upper-level westerly trough, the southwest vortex, and the lower-

level shear. Fig. 7 presents the forecast results of this case. As can be found from the ground truth, the precipitation field445

gradually expands
:::
The

:::::::
forecast

:::::
results

:::
for

::::
this

:::::
event

:::
are

::::::::
presented

::
in

::::
Fig.

::
7,

:::
The

:::::::::::
precipitation

::::
area

::::::::
gradually

::::::::
expands, but the

high-intensity area shrinks
:::::::
decreases

:
with lead times. Overall, both

::::
Both

:::
the

:
MFF and TSRC roughly exhibit

::::::
models

:::::::
roughly

:::::
follow

:
the shape of the precipitation areas (on the land and the ocean)

::
on

::::
land

:
and

:::
sea

:::
and

:
provide the evolutionary trend of

the precipitation system. OF still
:::::::
However,

:::
the

:::
OF

::::::
model shifts the precipitation field from the first frame to the last frameand

certainly misses
:
,
::::::
missing

:
the evolutionary trend of the precipitation systemespecially

:
,
:::::::::
particularly

:
for longer lead times, which450

further proves the poor ability of the model in long-range precipitation forecasting. As the precipitation field grows smaller in

UNet which is opposite to
:
.
::::
This

:::::::
confirms

:::
the

:::::::
model’s

::::
poor

::::::
ability

::
to

:::::::
forecast

:::::::::::
precipitation

::::
over

::::
long

::::::
ranges.

:::
The

:::::
UNet

::::::
model

:::::
proved

:::
to

::
be

:::
the

::::
most

::::::::::
challenging

::
to
::::
use

::
in

::::::::
capturing the ground truth, the model is quite difficult to capture the evolutionary

trend of the precipitation system. In terms of echo intensity, the models have
:
,
::
as

::
it

:::::::::
reproduces

:::
the

:::::
small

:::::::::::
precipitation

:::::
field,

:::::
which

::
is

:::
the

:::::::
opposite

::
of

:::
the

::::::
ground

:::::
truth.

::::
The

:::
four

:::::::
models

::::
show

:
different forecasting performances

:
in
:::::
terms

:::
of

::::
echo

:::::::
intensity.455

MFF overestimates these strong-intensity echoes (greater than 30 dBz)but at the same time it enlarges ,
:::
but

::
it
::::
also

::::::::
increases

the area of echoes at all lead times; TSRC is unable to produce these .
::::::
TSRC

:::
can

:::
not

:::::::
produce

:
strong echo intensities after the

120-min
:::
120

:::::::
minutes

:
lead time. Although OF can predict these strong-intensity echoes at longer lead times, however, they are

almost the same as the first framewhich indicates that the model performs poorly
::
but

:::
the

:::::::
model’s

:::::::::
prediction

::
is

:::::
almost

::::::::
identical

::
to

:::
the

:::
first

::::::
frame,

:::::::::
indicating

:
a
:::::
poor

::::::::::
performance

:
in predicting the evolution of strong-intensity echoes. Unfortunately, UNet460

shows the worst forecast performance since it underestimates these strong intensities at shorter lead times and can not produce

::::::
deduce these strong-intensity echoes at longer lead times.

The three DL-based models report relatively low power spectra before the 90 min
:::::::
minutes lead time. OF obtain

::::::
obtains

relatively high power spectra,
:
which are almost equal to that of

:::
the ground truth at all lead times, for the same reason that

:
.
::::
This

:
is
:::::::
because

:
OF shifts the precipitation filed by

:::
field

:::::
using

:
an extrapolative technique. It is noteworthy that the power spectral in465

MFF is slightly greater than that in TSRC and UNet at longer lead timeswhich suggests ,
:::::::::
suggesting

:
that the smoothing effect

is further improved by MFF, therefore, this model is
::::::
making

::
it more suitable for precipitation forecasting both on the land and

the ocean
:::
land

:::
and

:::
sea.
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Figure 7. Same as in Fig. 6, but for the precipitation case 2 (15 May 2022, 03:06:00 UTC).

3.3 Discussions

Here we summarize the advantages and disadvantages of the four models in precipitation nowcasting.470
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3.3.1 MFF

The purpose of MFF is to improve the forecast skill of heavy precipitations, especially
:::::::
accuracy

::
of

:::::::::::
precipitation

::::::::::
forecasting,

:::::::::
particularly

:
at longer lead times. Current DL-based models for precipitation nowcasting are facing two challenges: one is

poor forecast skills when there are
:::::::::
forecasting

:::
are

:::::
faced

:::::
with

:::
two

::::::
major

:::::::::
challenges:

::::
the

::::
poor

:::::::
forecast

::::
skill

:::::
when

:
different

precipitation systems with various scales
::::::
varying

::::::
scales

::
are

:::::::
present; and the other is the low predictive accuracy when various475

precipitation targets(e.g.
:::::::
different

:::::::::::
precipitation

:::::::
targets,

::::
such

::
as

:
light rain, moderate rain, and heavy rain) ,

:
are densely dis-

tributed at
:
in

:
a certain area of interest and also introduce noises. From a qualitative perspective, this study proposes MFF which

::::
MFF

::::::::
proposes

:
a
:::::
deep

:::
and

::::::::::
hierarchical

::::::::::::::::
encoding-decoding

::::::::::
architecture

::::
that

:
can make full use of the receptive fields to effi-

ciently detect different precipitation systems in multi-scales and predict various precipitation targets. This superiority is unable

to be achieved by the traditional single-scale receptive fields. However, while this deep and hierarchical encoding-decoding480

:::
this architecture shows strong ability in feature extraction , it

::
but

:
might also account for the issue of information redundancy.

Therefore, the model introduces several crafts (e.g.
:::::::
employs

::::::
several

:::::::::
techniques,

::::
such

:::
as channel shuffle, feature concatenation,

:::
and spatial-temporal convolution) ,

:
to enhance the feature interaction ability among multi-scales and further ease information

redundancy. The above operations
::::
These

:::::::::
techniques

:
do obtain considerable forecast performances

::::::::::
performance

:
in several eval-

uation metrics: ,
::::::::
including

:
POD, FAR, MAE, and SSIM. In addition

::::::::::
Additionally, the model skillfully applies the mechanism485

of discrete probability,
:

which mathematically allocates the probability information into each channel and can reduce uncer-

tainties and forecast errors to the most extent. The results of the case study further prove that only this model can produce

heavy precipitations such as those greater than 45 dBz reflectivity radar echoes even at the 3 h
:::::
hours lead time. It is notewor-

thy that two tricky issues(
:
,
::::::
namely

:::
the

:
smoothing effect and cumulated error) ,

:
are still inevitably reported in the model, of

course, they .
:::::::::
However,

::::
these

:::::
issues

:
are not specific to MFFwhile most DL-based ,

::
as

:::::
most

::::
deep

::::::::::::
learning-based models are also490

confrontedwith the same issues. The principal reasons account for the issues
::::
them

:
include: the convolution strives to smooth

multi-scale feature
::::::
features

:
in receptive fields to minimize fitting errorsand the iterative discrepancy between

:
;
:::
and

:::::
there

:::
are

::::::
iterative

::::::::::::
discrepancies

:::::::
between

:::
the

:
training processes and targets. Encouragingly, by introducing Multi-scale Feature Fusion

::
the

:::::
MFF

:
and the mechanism of discrete probability, at least our models have some improvementswhich offer much promise

for tackling many .
::::
This

::::::
offers

:
a
:::
lot

::
of

:::::::
promise

:::
for

:::::::
handling

:
practical tasks such as precipitation growth and dissipation, fast-495

moving precipitation system
::::::
systems, heavy precipitation, local-convection activity, etc.

:::
and

::::
local

::::::::::
convection

::::::::
activity...In any

event, MFF is a DL-based and data-driven radar extrapolative model without any consideration of physical constraints and

atmospheric dynamics, hopefully, .
:::::::::
Hopefully,

:
the model can be further improved by combining

::::::
adding multi-source data and

:::::::::
combining ingenious DL architectures.

::::::::::
Furthermore,

::::
like

:::::
other

:::::::::::::::
convolution-based

::::
DL

:::::::
models,

:::
the

:::::
MFF

:::::
model

::::
also

:::::::
requires

:::::::::::
highlighting

:::
the

:::::::::
"inductive

::::
bias"

:::
to500

:::::::
improve

::
its

::::::::::::
generalization

::::::
ability.

::::::::
Inductive

::::
bias

::::
can

::
be

:::::::
thought

::
of
:::

as
:
a
::::

sort
::
of

::::::
"local

::::::
prior".

::
In

:::
the

::::
case

:::
of

:::::
image

::::::::
analysis,

::
the

::::::::
inductive

::::
bias

::
in

:::
the

:::::
MFF

:::::
model

:::::::
mainly

::::::
consists

:::
of

:::
two

:::::::
aspects.

::::
The

:::
first

::::::
aspect

::
is

:::::::
"spatial

:::::::
locality",

::::::
which

:::::::
assumes

::::
that

:::::::
adjacent

::::::
regions

::
in

::
a

::::
radar

::::
echo

::::::
image

::::::
always

::::
have

:::::::
relevant

:::::::::::
precipitation

:::::::
features.

:::
For

::::::::
example,

:::
the

:::::
region

:::
of

:::::::::::::
strong-intensity

:::::
echoes

:::
is

::::::
usually

::::::::::::
accompanied

::
by

::::
the

::::::
region

::
of

::::::::::::::::
moderate-intensity

:::::::
echoes.

::::::::
However,

::::
this

::::::::
inductive

::::
bias

::::
may

::::::::::
sometimes
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::::::::::
overestimate

:::
the

:::::::::::
precipitation

:::::::
intensity

::::
(see

::::
case

::
2

::
in

::::::
Figure

:::
7).

::
or

::::::
enlarge

:::
the

:::::::::::
precipitation

:::::
field,

::::::
leading

::
to

::::::::
accuracy

::::::
issues.505

:::
The

:::::
other

::::::
aspect

::
is

:::::::::
"translation

:::::::::::::
equivariance",

:::::
which

::::::
means

::::
that

:::::
when

:::
the

::::::::::
precipitation

:::::
field

::
in

:::
the

:::::
input

::::
map

::
is

:::::::::
translated,

::
the

:::::::::::
precipitation

::::
field

::
is
::::
also

:::::::::
translated

:::
due

::
to

:::
the

::::
use

::
of

::::
local

::::::::::
connection

:::
and

:::::::::::::
weight-sharing

::
in

:::
the

::::::::::
multi-scale

::::::::::
convolution

::::::
process.

:::::
This

::::::
feature

::::
does

:::::
allow

:::
the

:::::
MFF

:::::
model

::
to
:::::

trace
:::
the

:::::::
moving

::::::::::
precipitation

:::::::
system.

:::::::::
Therefore,

::
as

::
a
:::::::::::::::
widely-concerned

::::::
weather

::::::::::::
phenomenon,

:::::::
extreme

:::::::::::
precipitations

::::
(e.g.

:::::
1/100

::::
year

::::::
rainfall

:::::::
events)

::::
may

:::
also

:::
be

::::::::::
extrapolated

:::
and

::::::::
predicted

:::
by

:::::
using

:::::::
inductive

::::
bias

::
in
::::

the
::::
MFF

::::::
model

::
if

::::
both

:::
the

:::::::
training

::::::
dataset

::::
and

::::::
testing

::::
input

:::::::
provide

:::::::::::
precipitation

::::::
events

::::
with

::::
very

::::::
strong510

::::
radar

:::::::
echoes.

:::::::::
Conversely,

::
it
::
is

::::
also

::::
very

:::::::::
challenging

:::
for

:::
the

:::::
MFF

:::::
model

::
to

::::::
tackle

::::
such

:
a
:::::::::
forecasting

:::::
task.

3.3.2 TSRC

Essentially, TSRC is a reinforced ’encoding-deconding’ architecture , it appends previous features into
:::::::::::::::::
"encoding-decoding"

:::::::::
architecture

::::
that

::::
adds

::::::::
previous

:::::::
features

::
to

:
current feature planes on temporal scales during convolution processes, so

:
.
::::
This

:::::
allows

:
more contextual information and less uncertain features could

::
to

:
remain in deep networks. The model fully considers515

::::
takes

::::
into

:::::::
account the correlation of radar echo features on a temporal scale, therefore, it should theoretically alleviate

:::::
which

::::::::::
theoretically

:::::::
reduces the problem of information loss and the degenerate effect intensity. However, those

:::
the

:
compensatory

features in the architecture may lack specificity and carry noises, resulting in the model mindlessly increasing
:::::
which

::::::
causes

::
the

::::::
model

::
to

:::::::
increase

:
the precipitation intensities at the whole forecast lead times . Understandably,

:::::::::
mindlessly.

::::::::
Although the

model has relatively high PODthough, ,
::
it

:::
has high FAR and MAEcan be found especially ,

::::::::::
particularly for heavy precipitations.520

Undoubtedly, the
:::
The

:
model increases the depth of the hierarchical architecture with different learnable parameters, excavates

the dependencies of echo features on both temporal scales and spatial scales, and also uses several crafts (e.g.
:::
uses

:::::::
several

:::::::::
techniques,

::::
such

:::
as feature concatenation, residual connection, attention mechanism) to retard

:::
and

:::::::
attention

::::::::::
mechanism,

:::
to

::::::
prevent

:
the declining rate of intensity and the smoothing effect. The results of testing data show great advantages of the

model at those
:::::
testing

::::
data

::::::
shows

:::
that

:::
the

::::::
model

:::
has

::::
great

::::::::::
advantages

::
at real forecast tasks

:
, such as low-intensity precipitation525

systems, and slow-change precipitation systems, especially for short lead times. However,
:::
the

:::::
model

:::::
lacks

:::::::::::
consideration

:::
of

:::::::::
multi-scale

:::::::
features due to the fixed/unique receptive field on spatial scales, it lacks consideration of multi-scale feature which

:
.
:::
This

:
leads to great difficulty in many real forecast tasks, such as local-convection activity, growth and dissipation, fast-moving

precipitation systems, and rapid changes of
:
in

:::
the

:
rainfall field. This has sparked speculation

::::::::
Therefore,

::
it

:
is
:::::::::
speculated

:
that the

model will
:::
can be further improved by implementing feature extraction on multi-spatial scales.530

3.3.3 OF

The core idea of
::::
main

::::::::
principle

::::::
behind OF is to calculate the change of pixels from the image sequence

::::::
observe

:::
the

::::::::
variation

::
of

:::::
pixels

::
in

:
a
::::::::
sequence

::
of

::::::
images

:
in the time domainand the dependence in .

:::
By

:::::::::
examining

:::
the

:::::::::
correlation

::
of two adjacent frames,

and thus investigate the information of moving objects. The forecast results from testing data show that OF is only suitable

for the forecast of precipitation systems with slow change at very
::
the

::::::::
algorithm

::::
can

:::::
detect

:::
the

:::::::::
movement

::
of

:::::::
objects.

::::::::
However,535

:::
OF

:::
can

::::
only

:::::::::
accurately

:::::::
forecast

::::::::::
precipitation

:::::::
systems

::::
that

::::
have

:::::
slow

:::::::
changes

::::
even

::
at short lead times. The reason lies in the

two basic hypothesesof the model which are the
:::::
model

:::::
relies

::
on

::::
two

::::::::::
fundamental

::::::::::
hypotheses,

:::::::
namely

:::
the grey-scale invariant
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::::::::
invariance

:
and the tiny movement of pixels. For the

:::
The grey-scale invariant, it makes the model difficult

:::::::::
invariance

::::::
feature

::::::
renders

:::
the

:::::
model

::::::::::
challenging

:
to deal with that precipitation system with rapid intensity changes. As for

::::::::::
precipitation

:::::::
systems

:::::::::::
characterized

::
by

:::::
swift

:::::::
intensity

::::::::::
fluctuations.

:::
For

:
the tiny movement of pixels, it can hardly satisfy the forecast of a fast-moving540

precipitation system..Unlike the DL-based models, OF produces
:::::::
generates

:
precipitation fields based on Lagrangian persistence

and smooth motion,
:

which also fail to recognize both the local features of echo and
::::
local

:::
and

::::::::::
multi-scale

:::::::
features

:::
of the

multi-scales features of echo, resulting in the
::::::::::
precipitation

:::::::
system.

::::
This

::::
leads

::
to
:

poor forecasting ability at longer lead times.

Therefore, it is easy to understand OF yields forecast results by simply
:
,
:::
and

:::
the

::::::
model

:::::
often

:::::::
produces

:::::::::
inaccurate

::::::
results

:::
by

::::::
merely shifting the precipitation fields, while the timeliness of precipitation forecasting and the accuracy are hard to guarantee.545

Even with further improved methods such as
:
.
::::::::
Although

::::::::
improved

:::::::
methods

::::
like the semi-Lagrangian method

:
, which relies on

the advection field, it is still difficult to expound
:::
have

:::::
been

:::::::::
developed,

::::
they

:::
still

:::::::
struggle

::
to

:::::::
explain the complex features of the

precipitation system.

3.3.4 UNet

There are three key steps in the UNet architecture which are
:::
The

:::::
UNet

:::::::::::
architecture

:::::::
involves

:::::
three

::::::::
important

:::::
steps,

:::::::
namely550

encoding, decoding, and skip connection. The encoding part uses several
::::::::
procedure

::::
uses

::::::::
multiple

:
convolution layers for

down-sampling and features compression, allowing .
::::
This

::::::
allows

:
the contracting path to capture more context information.

Conversely
::
On

::::
the

:::::
other

::::
hand, the decoding part

::::::
process applies several deconvolution layers for up-sampling and feature

restoration, allowing .
::::
This

::::::
allows the expanding path to locate different features. The skip connection part fuses the pixel-level

features and semantic-level features to achieve feature segmentation and reduce information loss. Meanwhile,
:::::
While the bottom555

of the hierarchical architecture collects low-frequency information in the form of greater receptive fieldsbut
:
,
:
it
:
fails to capture

high-frequency information. Therefore, when confronted with
::
As

::
a
::::::
result,

:::::
when

:
it
::::::

comes
:::
to forecast tasks, the model may

focus on those global (abstract or essential) features of precipitation systems but omit those exquisite changes in precipitation

systems at spatial-temporal scales. The
::::
Since

:
radar echoes usually have variability at multi-scales, so it is not

:::::::
multiple

::::::
scales,

:
it
::
is insufficient for UNet to capture complex features of the precipitation system. The results from the case study also confirm560

that the model has poor forecast skills in fast-moving precipitations, high-intensity precipitations, growth,
:
and dissipation, and

::
as

::::
well

::
as long-term forecasting. In a word, UNet ranks

:::::::
summary,

:::::
UNet

::::
has the worst forecast performance among the three

DL-based models.

4 Conclusions

In this study , we present
::::
This

:::::
study

:::::::
presents MFF, a DL-based model

::::
deep

:::::::
learning

::::::
model

:::::::
designed

:
for large-scale precip-565

itation nowcasting with a lead time of up to 3 h
::::
hours. The model aims to investigate the movement features of precipitation

systems on multi-scales. Moreover
::::::
multiple

::::::
scales.

:::
To

::::::
reduce

::::::::::
uncertainties

::::
and

:::::::
forecast

:::::
errors, we introduce the mechanism of

discrete probability in the modelto reduce uncertainties and forecast errors. Three .
:::
We

::::::::
compare

:::
our

:::::
model

::::
with

:::::
three existing

radar echo extrapolative modelswhich are ,
:::::::
namely TSRC, OF, and UNetare compared with our study. The comprehensive
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analyses of testing data further prove the impressive forecast skills of MFF under four evaluation metrics:
:
POD, FAR, MAE,570

and SSIM. In addition, from the results of case studies at least, MFF is the only extrapolative model that produces heavy pre-

cipitations even at the 3 h
::::
hours

:
lead time, and the smoothing effect of the precipitation field is improvedby our models. From

an early warning perspective, the model shows a promising application prospect.

It is well known that data always determine the upper limit of a machine learning model, while algorithms only attempt

to approximate this limit. Regretfully, the current study only considers the radar echo data as the model inputs. Therefore, it575

is highly suggested to consider
::
we

::::::
highly

::::::::::
recommend

::::::::::
considering more meteorological variables (e.g.,

::::
such

::
as

:
temperature,

pressure, humidity, wind, etc.) ,
:
and ground elevations in future work, while these data

:::::
works.

::::::
These

::::
data

:::
can

:
come from

various sources such as radar observations, satellite sounding, reanalysis, real-time observation, NWP downscaling, etc. We

believe
:::
that

:
these multi-source data would

:::
can

:
fortify some kind of physical or thermodynamic constraint for a pure data-

driven extrapolative model. As one of the thorny problems in most DL-based models, the smoothing effect
::::
The

:::::::::
smoothing580

:::::
effect

:::::::
remains

:
a
::::::::::
challenging

:::::
task,

:::
and

::
it
:

is still reported as long as the convolution procedure is performedand remains a

challenging task. Therefore, future works will focus on the structural adjustments of the network and the combinations with

numerical models to further improve the forecast accuracy of heavy precipitations at longer lead times.
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