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Abstract: Snow modeling is often hampered by the availability of input and calibration data, which can affect the 

choice of model complexity and its transferability. To address the trade-off between model parsimony and 

transferability, we present the Generalizable Empirical Model of Snow Accumulation and Melt (GEMS), a machine 

learning-based model that requires only daily precipitation, temperature or its daily diurnal cycle, and basic 5 

topographic features to simulate snow water equivalent. The model embeds a Support Vector Regression pretrained 

on a large dataset of daily observations from a diverse set of the Snowpack Telemetry Network (SNOTEL) stations in 

the United States.  GEMS does not require any user calibration, except for the option to adjust the temperature 

threshold for rain-snow partitioning, though the model achieves robust simulation results with the default value. We 

validated the model with long term daily observations from numerous independent SNOTEL stations not included in 10 

the training and with data from reference stations of the Earth System Model-Snow Model Intercomparison Project. 

We demonstrate how the model advances large scale SWE modelling in regions with complex terrain that lack in-situ 

snow mass observations for calibration, such as the Pamir and Andes, by assessing the model`s ability to reproduce 

daily snow cover dynamics. Future model development should consider the effects of vegetation, improve simulation 

accuracy for shallow snow in warm locations at lower elevations and address wind-induced snow redistribution. 15 

Overall, GEMS provides a new approach for snow modeling that can be useful for hydro-climatic research and 

operational monitoring in regions where in-situ snow observations are scarce. 
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1. Introduction 20 

 

Snow is a vital component of the global climate system and plays a key role in regulating the temperature of the Earth's 

surface and in governing the hydrologic cycle on both global and regional scales (Zhang, 2005; Sturm et al., 2017). 

Furthermore, snow plays an important role as a natural means of water storage and supply for human activities (Barnett 

et al., 2005), with a substantial share of the world`s population relying on snowmelt to provide water for agriculture 25 

and domestic needs (Mankin et al., 2015; Kraaijenbrink et al., 2021). Snowmelt is particularly crucial for densely 

populated downstream areas, where the timing and quantity of snow accumulation and melting in mountainous regions 

determine the availability of water  (Armstrong et al., 2019; Immerzeel et al., 2020). Accurate estimation of snow 

mass accumulation and melt is therefore essential for water resource management as well as for early warning of 

droughts and floods. 30 

Energy-balance and temperature-index snow models are the two main types of models to simulate snow accumulation 

and melting. Energy-balance snow models, also referred to as physics-based models, calculate the amount of snow 

mass based on the balance between the energy input to the snowpack and the energy output from the snowpack (Essery, 

2006). These models consider multiple factors such as incoming solar radiation, air temperature, humidity, 

precipitation, and wind speed, as well as the physical properties of the snowpack, such as snow density and surface 35 

albedo. Due to high input data requirement of energy-balance models, which are often lacking especially in countries 

of the Global South, researchers often opt for relatively simpler conceptual temperature-index models, which rely on 

temperature and precipitation data. These models estimate the amount of snowmelt by determining empirical 

relationship between temperature and amount of snowmelt. 

Despite the differences in the number of internal processes represented and the corresponding data requirements, both 40 

types of models produce similar results when calibrated and applied to the same spatial domain (Kumar et al., 2013). 

The growing number of the intercomparison studies conclude that model complexity does not determine performance 

(Essery et al., 2013; Magnusson et al., 2015; Menard et al., 2021), and simpler models may perform equally well or 

even outperform more sophisticated snow models in some cases, e.g. when input data is of low quality (Terzago et 

al., 2020). However, physics-based snow models are known to show better temporal and spatial transferability than 45 

temperature-index models (Magnusson et al., 2015), since they are able to capture the dynamic physical processes that 

govern formation, accumulation, and melting of snow, which allows them to simulate snow under a wide range of 

climate conditions. The generalizability and transferability of snow models are important considerations in their 

development and deployment, especially for applications over geographical domains where in-situ snow-

measurements are non-existent or scarce.  50 

In recent years, the research community saw an emergence of so-called data-driven approaches for snow modeling, 

which usually employ machine learning techniques on many snow observations and predictor variables. The studies 

employ machine learning techniques with a combination of onsite measurement and airborne or satellite data to 

estimate instant properties of snow pack or interpolate the spatial distribution of snow mass (e.g. Broxton, van 

Leeuwen and Biederman, 2019; Mital et al., 2022; Santi et al., 2022), rather than explicitly modeling snow mass 55 
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accumulation and melt dynamics. In many instances, these approaches also rely on is-situ observations, e.g. of snow 

depth or solar radiation, which again restricts their wider applicability due to unavailability of such data in many 

instances. The ability of pretrained machine learning models to generalize to new geographic and climatic domains 

remains another challenge; machine learning models often perform less well outside the data distribution used to train 

them (Chase et al., 2022; Hernanz et al., 2022). 60 

We address these challenges with the Generalizable Empirical Model of Snow accumulation and melt (GEMS) that, 

by leveraging the power of machine learning to learn from a large number of diverse experiments, generates accurate 

estimates of snow water equivalent from a limited range of input data. Instead of modeling snow as a dynamic system, 

the GEMS employs assimilated statistical relationship between changes in snow mass in response to climate variables 

while accounting for topographic features. By incorporating diverse climate and topographic observations into the 65 

model training, we demonstrate how it simulates snow water equivalent with acceptable accuracy even in distant out-

of-sample geographical locations.  

 

2. Model description 

 70 

GEMS is an empirical model based on statistical learning of daily changes in snow water equivalent in response to 

precipitation, temperature, and topography. It incorporates Support Vector Regression (SVR) that was trained using 

more than 28,000 observations of daily snow accumulation and melt from 94 stations of the Snowpack Telemetry 

Network (SNOTEL) in the United States. The model has only one adjustable parameter, a temperature threshold that 

specifies when 100% of precipitation falls as snow, which is used to confine the SVR simulations during the rain-to-75 

snow transition and snow accumulation phases. Figure 1 depicts the model's workflow and its primary components, 

which are described in greater detail in the following sections. 

 

Figure 1. GEMS workflow. Model elements and abbreviations are described in the sub-sections that follow 

 80 
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The GEMS v1.0 model is implemented in the R programming environment (R Core Team, 2020), and is available as 

a setof functions that take input data on daily time steps, calculates additional predictors (described in the “Data for 

training support vector regression” section), and generates corresponding estimates of snow water equivalent. It can 

be applied for both single-point and spatially distributed simulations by feeding input data in tabular form or raster 

files, respectively.  85 

The model is available in four variations of the required input data (Table 1), with the simplest one, GEMS-4P (the 

“P” suffix specifies the number of required inputs), requires four predictors, such as daily precipitation, average 

temperature, latitude, and elevation. Three other modifications, GEMS-5P, GEMS-6P  and GEMS-7P, require 

additional predictors, such as daily diurnal temperature range (daily maximum and minimum temperatures) and a 

location-specific heat-insolation index, which can be retrieved through the Google Earth Engine.    90 

Table 1. Required forcing data for GEMS (highlighted with grey per each model version) 

Input data GEMS-4P GEMS-5P GEMS-6P GEMS-7P 

Precipitation (mm)     

Mean daily temperature (°C)     

Maximum daily temperature (°C)     

Minimum daily temperature (°C)     

Latitude ( decimal degrees)     

Elevation (meters)     

Heat-insolation index     

 

2.1 Support vector regression  

 

In its core embedding, GEMS is built on a pretrained SVR that estimates daily accumulation and melt of SWE given 95 

the meteorological conditions and terrain features. SVR is a supervised machine learning algorithm that projects data 

into a higher dimensional space, then minimizes error by generating a set of hyperplanes that explain as many 

observations as possible (Awad and Khanna, 2015; VAPNIK and N., 1995). SVR utilizes radial basis function kernels 

(Schölkopf et al., 2004) and is calibrated for optimal cost and sigma hyperparameters, which govern training errors 

and degree of influence of a single training point. The SVR can be expressed as:  100 

𝑆𝑉𝑅(𝑋) = ∑ (𝛼 − 𝛼
∗) 𝐾(𝑥 , 𝑥)ே

ୀଵ + 𝑏               (1) 

where, 𝛼 , 𝛼
∗ 𝑎𝑟𝑒 𝐿𝑎𝑛𝑔𝑟𝑎𝑔𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠, such that 𝛼 ≥ 0 𝑎𝑛𝑑 𝛼

∗ ≤ 0, and the radial basis function kernel is 

𝐾൫𝑥 , 𝑥൯ = exp ቈ− 
||𝑥 − 𝑥||ଶ

2𝜎ଶ
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2.2 Model inputs and data for training support vector regression 105 

 

For training the SVR, we used the SNOTEL data, the largest network of automated weather stations that collect data 

on snow water equivalent, precipitation, temperature, and other climatic variables. We used daily observations from 

94 SNOTEL stations located in the contiguous United States (Figure 2) for two hydrological years, 2017 and 2018. 

As it was noted above the SVR model has two tunable parameters: cost and gamma, which can be optimized to achieve 110 

the best prediction performance, but overfitting can occur if these are overtuned. To avoid overfitting, we trained the 

model using data from 2017 and 2018 and fine-tuned the hyperparameters so that the model produces similar levels 

of accuracy when applied to observations from the same stations for 2019 and 2020.  For parsimony we limit the 

climate inputs to precipitation and temperature variables to develop the empirical model (Table 1).  

 115 

Figure 2. Location of SNOTEL stations used for training the SVR and their density distributions in terms of latitude, elevation 

and heat-insolation index.  

In the 1990s, the temperature observations from SNOTEL showed anomalous trends (Pepin et al., 2005), which were 

eventually attributed to a new temperature sensor (Oyler et al., 2015), installed with an incorrect equation algorithm. 

To correct for this bias, we applied a debiasing equation on SNOTEL temperature data proposed by Brown et al. 120 

(2019) and using metadata of affected stations (Air Temperature Bias Correction). 

The input data includes a heat-insolation index to account for the influence of topographic shading, which may result 

in a significant variability of surface energy balance and therefore in snowmelt rate, particularly in complex terrain. 

We used the Continuous Heat-Insolation Load Index (CHILI), which approximates effects of insolation and 

topographic shading on evapotranspiration and is determined by estimating insolation in the early afternoon at equinox 125 

sun height (Theobald et al., 2015). The Google Earth Engine provides access to CHILI data on a global scale with a 

horizontal resolution of 90 m. Since CHILI is a location-specific static characteristic, we also augmented the forcing 

data with daylength, which is a time-varying variable estimated using latitude of a location and day of a year. 
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Table 2. Climate and topographic data used to train the model 130 

Variable Abbreviation Source/reference 

Daily change of Snow water equivalent (mm) dSWE SNOTEL 

Precipitation (mm) PRCP SNOTEL 

Mean daily temperature (C°) TAVG SNOTEL 

Maximum daily temperature (C°) TMAX SNOTEL 

Minimum daily temperature (C°) TMIN SNOTEL 

Rolling sum of temperature over preceding 

three days (C°) TSUM Calculated using TAVG 

Cumulative sum of precipitation over 

preceding three days (mm) PSUM Calculated using PRCP 

Daylength (hours) DAYL 

Calculated as a function of latitude and 

day of a year (Forsythe et al., 1995) 

Elevation (meter) ELEV SNOTEL 

Heat-insolation index CHILI 

Global Continuous Heat-Insolation Load 

Index (Theobald et al., 2015) 

 

 

2.3 Temperature threshold constraint and model-wrapper function 

 

Due to instabilities of daily changes in SWE (dSWE) estimated by the SVR during rain-snow transition phases 135 

(described in the Model validation section below), simulated dSWE values are constrained as follows:  

dSWE୲ =  ൜
SVR(X),         if TAVG୧ ≥ Tୗ

PRCP୧ ,             if TAVG୧ < Tୗ
 (2) 

where, 

 𝑇ௌ is a 100% rain-snow temperature threshold, with default value of -1℃ 

 140 

The dSWE estimates are then aggregated into daily SWE timeseries using the cumulative sum-reset function:  

SWE୲ =  ൜
0 ,                                                 if t = 0
max(dSWE + SWE୧ିଵ, 0) , if t > 0

     (3) 
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3. Model validation 

 145 

The evaluation of the model performance followed a three-tiered structure. First, we assessed the model performance 

using observations from SNOTEL stations that were not included in the training. The selection of stations for 

validation followed two main criteria: First. we excluded stations that exhibit precipitation undercatch, which we 

formulate as when SWE accumulated by March is greater than the accumulated precipitation during October to March. 

Out of the filtered stations we selected only stations that have complete daily observations for at least five water years, 150 

defined as October of the preceding year to September next year for any year from 2011 to 2022.  The selection 

algorithm filtered 520 stations from a total of approximately 703 contiguous US SNOTEL stations that had not been 

used for model training.  

Second, we evaluated the model performance using snow and meteorological data from seven reference stations, 

which were used in the Earth System Model-Snow Model Intercomparison Project (SnowMIP), hereinafter referred 155 

to as SnowMIP reference stations. Table 3 below provides descriptions of these sites. 

Table 3. Geographic and climate characteristics of the SnowMIP reference stations 

Site 

Abbrevi

ation 

Latitude  

(⁰N)  

Elevation 

(m) 

Snow cover 

classification 

Köppen climate 

classification 

Col de Porte, France CDP 45.3 1,325 Alpine 

Warm-summer humid 

continental climate 

Reynolds Mountain, East 

Idaho, USA RME 43.19 2,060 Alpine 

Warm-summer humid 

continental climate 

Sapporo, Japan SAP 43.08 15 Maritime 

Hot summer 

continental climates 

Senator Bec, Colorado, 

USA SNB 37.91 3,714 Alpine 

Polar and alpine 

(montane) climates 

Swamp Angel, Colorado, 

USA SWA 37.91 3,371 Alpine Subarctic climate 

Sodankylä, Finland SOD 67.37 179 Taiga Subarctic climate 

Weissfluhjoch, 

Switzerland  WFJ 46.83 2,536 Alpine 

Polar and alpine 

(montane) climates 

 

Source: Ménard et al., 2019 

The evaluation metrics for single point simulations across SNOTEL and SnowMIP reference sites consist of the Nash–160 

Sutcliffe Efficiency (NSE) coefficient, mean absolute percentage error of peak SWE (maxSWE MAPE), bias of the 

simulated peak SWE (maxSWE BIAS), and difference in snow melt-out dates: 
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𝑁𝑆𝐸 ൫𝑆𝑊𝐸, 𝑆𝑊𝐸 ൯ = 1 −
∑ே(ௗ௬௦)

ୀଵ (𝑆𝑊𝐸 − 𝑆𝑊𝐸
)ଶ

∑
ே(ௗ௬௦)

ୀଵ ൫𝑆𝑊𝐸 − 𝑚𝑒𝑎𝑛(𝑆𝑊𝐸)൯
ଶ 

where, 

  𝑆𝑊𝐸  – observed daily SWE; 165 

 𝑆𝑊𝐸
  – simulated daily SWE 

 

𝑚𝑎𝑥𝑆𝑊𝐸 𝑀𝐴𝑃𝐸(𝑦, 𝑦ො) =
100%

𝑁 (𝑦𝑒𝑎𝑟𝑠)


ே (௬௦)

௪ୀଵ

|𝑦௪ − 𝑦ො௪|

𝑦௪

 

𝑚𝑎𝑥𝑆𝑊𝐸 𝐵𝐼𝐴𝑆(𝑦, 𝑦ො) =
100%

𝑁(𝑦𝑒𝑎𝑟𝑠)


ே(௬௦)

௪ୀଵ

𝑦௪ − 𝑦ො௪

𝑦௪

 

where, 170 

𝑦௪– observed peak SWE in wth hydrological year; 

 𝑦ො௪ – simulated peak SWE  in wth hydrological year 

 

𝑆𝑛𝑜𝑤 𝑚𝑒𝑙𝑡 𝑜𝑢𝑡 𝑑𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁(𝑦𝑒𝑎𝑟𝑠)


ே(௬௦)

௪ୀଵ

𝑚𝑑𝑎𝑡𝑒௪ − 𝑚𝑑𝑎𝑡𝑒
௪  

where, 175 

𝑚𝑑𝑎𝑡𝑒௪– actual date of snow disappearance in wth hydrological year; 

𝑚𝑑𝑎𝑡𝑒
௪– date of the snow disappearance according to model simulations 

 

Finally, we assessed the performance of the model using distributed large-scale climate data over two regions with 

complex terrain (Figure 3) by comparing observed and simulated snow cover. We used temperature and precipitation 180 

data at 1 km resolution from CHELSA-W5E5 dataset (Karger et al., 2022a) to force the model, and compared the 

extent of SWE simulated during the two consecutive snow seasons between 2014 and 2016 with MODIS-derived 

snow cover retrievals using the cloud-gap filled MOD10A1F product images (Riggs et al., 2019).  
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Figure 3. Selected regions for distributed snow modelling 185 

 

All simulations for the validation are implemented with the GEMS-7P version of the model that uses seven predictors 

(Table 1). The section 4.3 “Performance of GEMS model under different input requirements” compares the overall 

performance of the model's four different versions (GEMS-7P, GEMS-6P,  GEMS-5P, and GEMS-4P). 

 190 

3.1 Observed and modeled daily changes in SWE across training and validation SNOTEL stations 

 

The pretrained SVR yields plausible estimates of the dSWE, albeit the variance is greater at higher melt rates (Figure 

4).  There is a greater variance between simulated and observed values in the validation dataset, although it should be 

noted that the validation dataset has a much larger number of observations compared to the training and calibration 195 

datasets (1.36 million, 28,600, and 32,600 observations, respectively), which results in more outliers.  In each of the 

three instances, the slope of the robust linear regression between the observed and simulated values ranges between 

0.98 to 1.02.  

The validation dataset simulations exhibited a bigger proportion of outliers in the upper tile corresponding to snow 

accumulation phase (dSWE>0). To determine the accuracy of the SVR's performance for this phase, we compared 200 

model simulations using a sample of the validation dataset that includes observations with incremental changes of 

SWE at the beginning of the snow season. Figure 5 depicts the rain-to-snow transition modelled using the metadata 

of the 520 validation SNOTEL stations. We conclude that average daily temperatures at which the model predicts 

precipitation to fall partially as snow may range from -5 to more than 5 °C and have a relatively higher association 

with maximum temperature and elevation. The comparison also reveals that the simulations tend to underestimate 205 

snow accumulation, since in some cases the solid component of precipitation in simulations does not exceed 100% 

even at temperatures below -5 °C. In this regard, we have introduced a constraint (specified above in the section 3.4 

“Temperature threshold constraint and model-wrapper function” section), which imposes that any daily precipitation 

after a certain temperature threshold (TS) is considered to fall as 100% snow. We set the default value of TS as -1 C°, 
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which the simulations revealed to be the optimal common threshold based on observations from the validation dataset. 210 

Consequently, GEMS estimates a snow fraction of precipitation using the assimilated statistical relationships until the 

average temperature falls below -1 C°, at which point all precipitation is considered to be snowfall.  

 

Figure 4. Predicted and observed dSWE values for training, calibration, and validation datasets. The red line represents the slope 

of the robust linear regression run on observed and predicted dSWE values 215 

 

 

Figure 5. The rain-snow transition simulated by the pretrained SVR using metadata from the SNOTEL validation data. The two 

graphs illustrate the same simulations and highlight distributions of elevation (left) and maximum temperature (right). The black 

line is the median of the resulting solid fraction of precipitation across the simulations. 220 

 

3.2 Model evaluation in simulation of SWE timeseries for the independent SNOTEL stations  

 

The validation on multi-annual data from the 520 independent SNOTEL stations showed that the model produces 

accurate simulations of SWE timeseries in most cases (Figure 6). The median NSE for simulations across all the 225 

stations is 0.91, and for 84% of the stations the model achieved NSE of greater than or equal to 0.8. For 80% of all 

stations, the maxSWE erorr (maxSWE MAPE) of the simulations is less than 20%, with the median value for all 

stations being 14%. The median error of the snow meltout date was four days and did not exceed ten days in 74% of 

instances. We found no spatial associations for NSE values and maxSWE errors, while bias for maxSWE and snow 
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meltout date error tend to be larger in the western part of the study domain (in the vicinity of the Cascade mountains, 230 

Oregon state). Here the simulations overestimate maxSWE and snow meltout date by a larger margin.  Another 

concentration of overestimation of simulated snow melt-out date occurs in stations located in the Sierra-Nevada 

mountains. In contrast, the model systematically underestimates maxSWE in some stations in the north-eastern part 

(Montana and Wyoming), where it consequently simulates earlier snow disappearance.  

  235 

Figure 6. GEMS performance metrics for independent SNOTEL stations: histograms (left) and spatial distributions (right) of the 

resultant NSE, maxSWE MAPE, maxSWE bias and snow meltout date error. Vertical red dashed lines on the histograms denote 

the median across all stations; the vertical black dashed line correspond to the 5th percentile (and 95th percentile in case of two-

tailed distributions). 

In addition to simulations generated with the default TS value, we also examined the model's accuracy using Ts values 240 

calibrated to each SNOTEL station (Figure 7). We bounded the range of calibrated TS to -5 to +5 °C.  Accordingly, 

the station-adjusted modeling incrementally improves all evaluation metrics of the simulations result, though with a 

lesser impact on mean maxSWE error. Adjusted TS values tends to be negative across the stations on mountain ranges, 
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particularly across the Cascade and Sierra-Nevada and Rocky Mountains. A cluster of a few stations with positive TS 

appear in the northeastern portion of the study region.  245 

 

Figure 7. GEMS performance metrics for the independent SNOTEL stations with station-adjusted TS threshold. The bottom 

histogram and map show density and spatial distribution of the adjusted TS values. 

While the median of the adjusted TS values for all stations agrees with its default threshold (-1 °C), the density 

distribution also shows a high frequency of calibrated Ts resulting at the lowest bound of -5 °C. Here we should 250 

mention that the selection algorithm, designed to filter out stations with systematic precipitation undercatch also 

effectively excluded stations where discrepancies between SWE and accumulated precipitation are due to snow 

drifts into to snow pillows. However, the algorithm does not prevent inclusion of stations where snow drifts out of 

the station's snowpillow, which may be a frequent phenomenon across the SNOTEL network (Meyer et al., 2012). 

Thus in many cases where calibrated Ts values are close to the lowest boundary, the calibration likely aligned model 255 

simulations to "undercatched" snow observations.  

3.3 Model evaluation using SnowMIP reference station data 
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The model performance at SnowMIP reference sites was robust for the majority of stations with the TS threshold set 

to -1 C° by default (Table 4; Figure 8). In general, simulated SWE was more accurate for the stations located at higher 260 

elevations and characterized by higher snow accumulation rates (RME, CDP, WFJ, and SWA), except for SNB, which 

had the lowest NSE value (0.34) and the highest maxSWE error (17%) among all SnowMIP stations. The poor 

performance of the model for the SNB station is attributed to prevalence of wind-induced snow redistribution, which 

can reportedly reduce peak SWE on the site by up to 40% (Landry et al., 2014). For the same reason, the largest SWE 

errors were recorded for the SNB site by the majority of models that participated in SnowMIP (Menard et al., 2021).  265 

SWE simulations for SOD and SAP stations, while inferior to those of other sites, are acceptable with NSE values of 

around 0.7 and maxSWE MAPE errors of 8% and 18%, respectively. It is important to note that in terms of latitude 

and thus the range of daylengths, the SOD station is situated much beyond the range of the data utilized to pre-train 

the GEMS model. In addition, since the Global Continuous Heat-Insolation Load Index (CHILI) does not extend 

beyond the arctic circle, we estimated it for SOD based on the nearest known value and assuming flat terrain. 270 

Regarding the SAP station, GEMS’ performance may be affected by the site's anomalous precipitation phase 

partitioning, in which precipitation reportedly can fall as rain at low temperatures and as snow at temperatures over 

5C° (Ménard et al., 2019).  

Table 4 also contains an evaluation of model runs using site-adjusted TS thresholds, which improved SWE simulations 

across all stations, except CDP and SAP sites where the default TS threshold remained optimal. The incremental 275 

improvements in terms of NSE and maxSWE errors are particularly noticeable for RME and SOD sites. The SNB 

site's NSE also increased significantly when TS was set to -5 C°, though the simulations for the nearby SWA site show 

the best performance with a much lower maxSWE error when TS is set to 1 C°. This contradiction, coupled with the 

fact that the maxSWE error does not change for updated SNB simulations, may suggest that the new TS threshold 

rather compensates for wind-blown snow than improves SWE simulations per se. 280 

Table 4. GEMS performance metrics for the SnowMIP reference stations. 

 

Performance under default TS  

 (Ts = -1 C°)  

Performance under adjusted TS  

thresholds 

 NSE 

maxSWE 

MAPE (%) 

maxSWE 

bias (%):  NSE 

maxSWE 

MAPE (%) 

maxSWE 

bias (%): 

Ts threshold 

(C°): 

RME 0.80 13 -13  0.88 9 -6 -5.0 

CDP 0.84 14 0  0.84 14 0 default 

WFJ 0.85 14 4  0.87 15 5 -1.5 

SAP 0.72 17 3  0.72 17 3 default 

SWA 0.85 15 14  0.86 8 8 1 

SNB 0.34 17 -13  0.56 17 -4 -5.0 

SOD 0.68 8 6  0.9 4 -4 3 
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Figure 8. Observed and modelled SWE at the SnowMIP reference stations (with the default TS threshold) 285 

 

3.4 Evaluation of the model for large-scale simulations 

 

GEMS accurately reproduced seasonal cycles and interannual variations of snow cover in the Western Pamir and 

Mendoza-Andes region, which have distinctive seasonal patterns (Figure 9). The simulations capture short-term spikes 290 

in the snow cover extent in the middle of the snow seasons over the Pamir. Overall pixel-wise accuracy of snow/no-

snow detection for both regions was 92%, while the class-balanced accuracy was 87% on average.  

All validation sites used previously are in the northern hemisphere because we were unable to locate representative 

station-based snow and climate forcing data for validation in the southern hemisphere. The validation of the model in 

the Mendoza-Andes region implies that the model may have comparable performance for locations in the southern 295 

hemisphere. 
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Figure 9. Observed and simulated snow cover area for Western Pamir and Mendoza-Andes region 

 300 

4. Model sensitivity and uncertainty assessment  

 

4.1 Relative importance of climate and topographic variables 

 

We conducted a permutation-based feature importance analysis to determine how individual input variables affect 305 

dSWE simulation. The method randomly shuffles input data and compares the model's baseline performance on the 

original dataset to performance after permuting a feature's values. We applied the permutation-based feature 

importance analysis on the entire training dataset of the independent SNOTEL stations as well as its subsamples 

containing only snow accumulation or melt observations.  

The results unequivocally identified precipitation and average temperature followed by daylength as the most 310 

significant variables, but they also demonstrate that their importance varies considerably depending on the phase 

considered (Error! Reference source not found.). In terms of snow accumulation, precipitation is by far the most 

obvious and significant variable, followed by a wide margin by maximum temperature. In contrast, the model relies 

heavily on average temperature and daylength to predict snow melt, followed by precipitation and other remaining 

variables, again by a wide margin. At first glance, the results suggest that topographic variables are among the least 315 

influential, but it should be noted that this is a relative comparison, and the effect of elevation is evident from the 

simulation of the precipitation partitioning phase. Furthermore, climate variables can be highly variable, whereas 
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topographic features are constant per each location, which contributes to a wider gap between their relative 

importance.  

 320 

Figure 10. Relative importance of model inputs during SWE accumulation and melt phases. 

 

4.2 Climatic and topographic attributes of locations where the model exhibited lower accuracy  

 

In order to evaluate model uncertainty, the simulations for the SNOTEL stations with NSE values below 0.70 were 325 

separated from those with NSE values above that level. We then calculated probability distribution densities for several 

climatic and topographic characteristics (Figure 11) for each group to compare how stations with relatively poorer 

model performance differ from those with good model performance. 

Accordingly, there is a higher likelihood that a station where the GEMS shows relatively inferior performance 

typically yields lower seasonal snowpack and has higher average seasonal temperatures. In addition, stations with 330 

poor model performance tend to have slightly higher diurnal fluctuations during the snow season. We have not 

detected any significant differences between two groups of stations in terms of average elevation or distribution of 

heat-insolation indices. Despite not using station latitude in the model as a direct input (it is required to estimate 

daylength for the location), the comparison suggests that there was a relatively higher proportion of poorly performing 

stations at lower latitudes. 335 

These distinguishing characteristics of poorly performing stations are not mutually exclusive. E.g. locations with 

higher seasonal temperatures usually tend to have lower seasonal SWE peaks under identical conditions. Similarly, 

lower latitudes in the western US have generally greater diurnal air temperature variations. We hypothesize that the 

performance of the model under such climatic conditions could be enhanced by incorporating more respective 

observations into the training dataset, which apparently included fewer SNOTEL stations from the southern part of 340 

the training domain (see Figure 2). 
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Figure 11. Density distributions of topographic and climatic characteristics of  the SNOTEL stations where the model shows 

high and low performance. 

 345 

4.3 Performance of GEMS model under different input requirements 

 

To evaluate the performance of various input ranges, we compared simulations of the three versions of GEMS using 

the SNOTEL validation dataset. Overall, the incorporation of diurnal temperature range and heat-insolation index 

enhances simulation accuracy as measured by a smaller interquartile range of NSE and maxSWE error (Figure 12). 350 

Compared to utilizing only the maximum and minimum temperatures, the heat-insolation index is a predictor that 

appears to modestly improve model accuracy. This improvement is evident, as compared to GEMS-6P, GEMS-5P 

exhibits somewhat better performance across the four metrics used. 

Besides, GEMS-7P and GEMS-5P have a tighter range between the minimum and maximum NSE and maxSWE error 

when outliers are controlled for. However, there is no discernible difference in the snow meltout date and maximum 355 

SWE bias across the three model versions. Although GEMS-4P has a slightly lower NSE and maxSWE error accuracy, 

its overall performance is still robust and it has the benefit of requiring less inputs (only precipitation, average 

temperature, elevation, and latitude).   

Running any of the three versions of the model on a desktop computer using single CPU core (Intel i7) took less than 

6 seconds for 20-year long Weissfluhjoch station data, which approximates to 0.3 seconds per site-year.  360 
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Figure 12. Comparison of performance across three GEMS models. The boxplots` minimum and maximum limits correspond to 

1stQ-1.5*IQR and 3rdQ+1.5*IQR respectively.  365 

 

 

5. Summary 

 

We present a computationally efficient model that emulates snow mass accumulation and melting using only a few 370 

climate and topographic inputs. The absence of the explicit need for calibration is the most distinctive aspect of the 

GEMS model, with 100% rain-snow transition temperature threshold (TS) being the only parameter that can be 

modified (in most validation cases, robust simulations were obtained just using the default TS value). Despite its 

parsimony and no extensive calibration options, the model achieves robust transferability across a variety of climate 

and geographic conditions. In addition to avoiding computationally demanding calibration, GEMS also addresses the 375 

equifinality issue that is pertinent to hydrological and snow modelling. 

The emulator was developed by training a machine learning model on daily changes in snow water equivalent as a 

response to daily climate inputs and diverse topographic features. Despite the dynamic nature of snow processes, our 

simplified "static" approach effectively captured the impact of precipitation, temperature, and topography on snow 

melt, as indicated by the validation results. This corroborates the conclusion of several intercomparison studies that 380 

model complexity is not necessarily a predeterminant of its performance (Essery et al., 2013; Magnusson et al., 2015; 

Menard et al., 2021).  

The main motivation behind the development of GEMS was to balance the trade-off between complexity, data 

requirement, and transferability, which can be instrumental for operational monitoring and hydrological modelling in 

data scarce domains. The derived empirical relationships may also proof useful for the advancement of snow 385 
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modelling. GEMS can, for instance, provide information for the parameterization of physics-based models, e.g.  

precipitation phase partitioning and its elevational dependence. 

 

5.1 Model limitations 

 390 

Instances of less consistent simulations generated by the model can arise from various sources of uncertainty, including 

internal uncertainty within the model, as well as uncertainty in input data and unaccounted external factors. 

One of the major limitations of the model is that it does not account for vegetation, which is known to have a complex 

and divergent effect on snow accumulation and melt under different climate conditions (Dickerson-Lange et al., 2021; 

Sun et al., 2022). Because most SNOTEL stations are situated in forest clearings or open bushes, we initially assumed 395 

the training sample locations to be free of canopy obstruction. A visual check using Google Earth of the stations used 

in both the training and validation samples reveals, however, that some sites can be intercepted by the tree canopies 

in their surroundings. In addition, we have detected the shadowing of some snow pillows by the dense forests that 

surround them. Both phenomena are possible sources of model uncertainty, and future model development should try 

to incorporate vegetation effects. 400 

Based on a comparison of high performing and low performing site simulations, the model may be less accurate at 

simulating shallow snow in warm sites at lower elevations. When these factors combine with large diurnal temperature 

fluctuations, model simulations may even become more distorted. These issues could be resolved with a more 

sophisticated sampling strategy and by incorporating additional observations into the training of the model. It is 

questionable, however, whether an improved sampling strategy could also better approximate rain-on-snow effects, 405 

as these are driven by dynamic processes of energy exchanges across snow layers that the model does not capture for. 

The model's parsimonious design, which relies only on precipitation and temperature variables as climate data inputs, 

also precludes the incorporation of wind- or gravity-induced snow redistribution. While this may compromise the 

accuracy of single-point simulations for wind-exposed sites, it may be a minor concern for large-scale distributed 

applications of the model. 410 

 

Code and data availability: The current version of GEMS model is available from the project 

website: https://github.com/iamo-lsg/GEMS . The exact version of the model used to produce the results used in this 

paper is available on https://doi.org/10.5281/zenodo.7929181 under the Creative Commons Attribution 4.0 

International  license. The model repository (https://doi.org/10.5281/zenodo.7929181) also contains files with a 415 

validation set of temperature-bias-corrected SNOTEL data, as well as SnowMIP stations data aggregated to daily time 

scales. Additional code and supplementary files to produce results and graphs presented in this paper are available at 

https://zenodo.org/record/8171491. The original SNOTEL data is accessible via 

https://wcc.sc.egov.usda.gov/reportGenerator  (USDA, 2022). The original SnowMIP reference station data is 
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accessible at https://doi.pangaea.de/10.1594/PANGAEA.897575 (Menard and Essery, 2019).  CHELSA-W5E5 v1.0 420 

data is accessible at https://data.isimip.org/10.48364/ISIMIP.836809.3 (Karger et al., 2022b) 

Author contributions: AU and DM designed the study, AU performed computations, RE provided feedback on 

model evaluation. All authors contributed to writing and review of the manuscript. DM supervised the project. 

Competing interests: The authors declare that they have no conflict of interest. 

Acknowledgments: This research has been supported by the Volkswagen Foundation within the 'Structured doctoral 425 

programme on Sustainable Agricultural Development in Central Asia' (SUSADICA) project, Grant Number 96 264.  

We would like to acknowledge the use of IAMO`s computing facilities in this research.  

 

References 

 430 

Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, S.-J. S., Raup, B., Hill, A. F., 

Khan, A. L., Wilson, A. M., Kayastha, R. B., Fetterer, F., and Armstrong, B.: Runoff from glacier ice and seasonal 

snow in High Asia: separating melt water sources in river flow, Reg. Environ. Chang., 19, 1249–1261, 

https://doi.org/10.1007/s10113-018-1429-0, 2019. 

Awad, M. and Khanna, R.: Support Vector Regression, in: Efficient Learning Machines, Apress, Berkeley, CA, 67–435 

80, https://doi.org/10.1007/978-1-4302-5990-9_4, 2015. 

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in 

snow-dominated regions., Nature, 438, 303–9, https://doi.org/10.1038/nature04141, 2005. 

Brown, C. R., Domonkos, B., Brosten, T., DeMarco, T., and Rebentisch, A.: Transformation of the SNOTEL 

Temperature Record – Methodology and Implications, 2019. 440 

Broxton, P. D., van Leeuwen, W. J. D., and Biederman, J. A.: Improving Snow Water Equivalent Maps With 

Machine Learning of Snow Survey and Lidar Measurements, Water Resour. Res., 55, 3739–3757, 

https://doi.org/https://doi.org/10.1029/2018WR024146, 2019. 

Chase, R. J., Harrison, D. R., Burke, A., Lackmann, G. M., and McGovern, A.: A Machine Learning Tutorial for 

Operational Meteorology. Part I: Traditional Machine Learning, Weather Forecast., 37, 1509–1529, 445 

https://doi.org/https://doi.org/10.1175/WAF-D-22-0070.1, 2022. 

Dickerson-Lange, S. E., Vano, J. A., Gersonde, R., and Lundquist, J. D.: Ranking Forest Effects on Snow Storage: 

A Decision Tool for Forest Management, Water Resour. Res., 57, e2020WR027926, 

https://doi.org/https://doi.org/10.1029/2020WR027926, 2021. 

Essery, R.: Snow Modelling, https://www.ecmwf.int/sites/default/files/elibrary/2007/9315-snow-modelling.pdf, 450 

20

https://doi.org/10.5194/gmd-2023-103
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



2006. 

Essery, R., Morin, S., Lejeune, Y., and B Ménard, C.: A comparison of 1701 snow models using observations from 

an alpine site, Adv. Water Resour., 55, 131–148, https://doi.org/https://doi.org/10.1016/j.advwatres.2012.07.013, 

2013. 

Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H., and Schoolfield, R. M.: A model comparison for daylength as a 455 

function of latitude and day of year, Ecol. Modell., 80, 87–95, https://doi.org/https://doi.org/10.1016/0304-

3800(94)00034-F, 1995. 

Hernanz, A., García-Valero, J. A., Domínguez, M., and Rodríguez-Camino, E.: A critical view on the suitability of 

machine learning techniques to downscale climate change projections: Illustration for temperature with a toy 

experiment, Atmos. Sci. Lett., 23, e1087, https://doi.org/https://doi.org/10.1002/asl.1087, 2022. 460 

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., 

Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. 

A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., 

Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and 

vulnerability of the world’s water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020. 465 

Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O., Zimmermann, N. E., and Frieler, K.: CHELSA-

W5E5: Daily 1\,km meteorological forcing data for climate impact studies, Earth Syst. Sci. Data Discuss., 2022, 1–

28, https://doi.org/10.5194/essd-2022-367, 2022a. 

Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., and Zimmermann, N. E.: CHELSA-W5E5 v1.0: W5E5 v1.0 

downscaled with CHELSA v2.0, https://doi.org/10.48364/ISIMIP.836809.3, 2022b. 470 

Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T., and Immerzeel, W. W.: Climate change decisive for Asia’s snow 

meltwater supply, Nat. Clim. Chang., 11, 591–597, https://doi.org/10.1038/s41558-021-01074-x, 2021. 

Kumar, M., Marks, D., Dozier, J., Reba, M., and Winstral, A.: Evaluation of distributed hydrologic impacts of 

temperature-index and energy-based snow models, Adv. Water Resour., 56, 77–89, 

https://doi.org/https://doi.org/10.1016/j.advwatres.2013.03.006, 2013. 475 

Landry, C. C., Buck, K. A., Raleigh, M. S., and Clark, M. P.: Mountain system monitoring at Senator Beck Basin, 

San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and 

hydrologic processes, Water Resour. Res., 50, 1773–1788, https://doi.org/https://doi.org/10.1002/2013WR013711, 

2014. 

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas, T.: Evaluating snow models with varying 480 

process representations for hydrological applications, Water Resour. Res., 51, 2707–2723, 

https://doi.org/https://doi.org/10.1002/2014WR016498, 2015. 

21

https://doi.org/10.5194/gmd-2023-103
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., and Diffenbaugh, N. S.: The potential for snow to supply 

human water demand in the present and future, Environ. Res. Lett., 10, 114016, https://doi.org/10.1088/1748-

9326/10/11/114016, 2015. 485 

Menard, C. and Essery, R.: ESM-SnowMIP meteorological and evaluation datasets at ten reference sites (in situ and 

bias corrected reanalysis data), https://doi.org/10.1594/PANGAEA.897575, 2019. 

Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, 

M., Dai, Y., Decharme, B., Dutra, E., Fang, X., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H., Lafaysse, 

M., Marke, T., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Schädler, G., Semenov, V. A., Smirnova, T., 490 

Strasser, U., Swenson, S., Turkov, D., Wever, N., and Yuan, H.: Scientific and Human Errors in a Snow Model 

Intercomparison, Bull. Am. Meteorol. Soc., 102, E61–E79, https://doi.org/10.1175/BAMS-D-19-0329.1, 2021. 

Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fierz, C., Kim, H., Kontu, A., Lejeune, Y., 

Marks, D., Niwano, M., Raleigh, M., Wang, L., and Wever, N.: Meteorological and evaluation datasets for snow 

modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth Syst. Sci. Data, 11, 495 

865–880, https://doi.org/10.5194/essd-11-865-2019, 2019. 

Meyer, J. D. D., Jin, J., and Wang, S.-Y.: Systematic Patterns of the Inconsistency between Snow Water Equivalent 

and Accumulated Precipitation as Reported by the Snowpack Telemetry Network, J. Hydrometeorol., 13, 1970–

1976, https://doi.org/https://doi.org/10.1175/JHM-D-12-066.1, 2012. 

Mital, U., Dwivedi, D., Özgen-Xian, I., Brown, J. B., and Steefel, C. I.: Modeling Spatial Distribution of Snow 500 

Water Equivalent by Combining Meteorological and Satellite Data with Lidar Maps, Artif. Intell. Earth Syst., 1, 

e220010, https://doi.org/10.1175/AIES-D-22-0010.1, 2022. 

Oyler, J. W., Dobrowski, S. Z., Ballantyne, A. P., Klene, A. E., and Running, S. W.: Artificial amplification of 

warming trends across the mountains of the western United States, Geophys. Res. Lett., 42, 153–161, 

https://doi.org/https://doi.org/10.1002/2014GL062803, 2015. 505 

Pepin, N. C., Losleben, M., Hartman, M., and Chowanski, K.: A Comparison of SNOTEL and GHCN/CRU Surface 

Temperatures with Free-Air Temperatures at High Elevations in the Western United States: Data Compatibility and 

Trends, J. Clim., 18, 1967–1985, https://doi.org/10.1175/JCLI3375.1, 2005. 

R Core Team: R: A language and environment for statistical computing., https://www.r-project.org/, 2020. 

Riggs, G., Hall, D., and Salomonson, V.: MODIS snow products user guide to collection 6.1, 2019. 510 

Santi, E., De Gregorio, L., Pettinato, S., Cuozzo, G., Jacob, A., Notarnicola, C., Günther, D., Strasser, U., Cigna, F., 

Tapete, D., and Paloscia, S.: On the Use of COSMO-SkyMed X-Band SAR for Estimating Snow Water Equivalent 

in Alpine Areas: A Retrieval Approach Based on Machine Learning and Snow Models, IEEE Trans. Geosci. Remote 

Sens., 60, 1–19, https://doi.org/10.1109/TGRS.2022.3191409, 2022. 

22

https://doi.org/10.5194/gmd-2023-103
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Schölkopf, B., Tsuda, K., and Vert, J.-P.: A primer on kernel methods, in: Kernel Methods in Computational 515 

Biology, MIT Press, 2004. 

Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A trillion dollar science question, Water 

Resour. Res., 53, 3534–3544, https://doi.org/https://doi.org/10.1002/2017WR020840, 2017. 

Sun, N., Yan, H., Wigmosta, M. S., Lundquist, J., Dickerson-Lange, S., and Zhou, T.: Forest Canopy Density 

Effects on Snowpack Across the Climate Gradients of the Western United States Mountain Ranges, Water Resour. 520 

Res., 58, e2020WR029194, https://doi.org/https://doi.org/10.1029/2020WR029194, 2022. 

Terzago, S., Andreoli, V., Arduini, G., Balsamo, G., Campo, L., Cassardo, C., Cremonese, E., Dolia, D., Gabellani, 

S., von Hardenberg, J., di Cella, U., Palazzi, E., Piazzi, G., Pogliotti, P., and Provenzale, A.: Sensitivity of snow 

models to the accuracy of meteorological forcings in mountain environments, Hydrol. Earth Syst. Sci., 24, 4061–

4090, https://doi.org/10.5194/hess-24-4061-2020, 2020. 525 

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., and Albano, C. M.: Ecologically-Relevant Maps of 

Landforms and Physiographic Diversity for Climate Adaptation Planning, PLoS One, 10, 1–17, 

https://doi.org/10.1371/journal.pone.0143619, 2015. 

Air Temperature Bias Correction: 

https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/temperature/temperatureBiasCorrection/. 530 

USDA: Report Generator 2.0 for the SNOwpack TELemetry Network (SNOTEL) database, 2022. 

VAPNIK and N., V.: The Nature of Statistical Learning, II., 334 pp., 1995. 

Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, 

https://doi.org/https://doi.org/10.1029/2004RG000157, 2005. 

 535 

 

23

https://doi.org/10.5194/gmd-2023-103
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.


