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Abstract: Snow modeling is often hampered by the availability of input and calibration data, which can affect the 

choice of models, their complexity, and its transferability. To address the trade-off between model parsimony and 

transferability, we present the Generalizable Empirical Model of Snow Accumulation and Melt (GEMS), a machine 

learning-based model, which that requires only daily precipitation, temperature or its daily diurnal cycle, and basic 5 

topographic features, to simulate snow water equivalent. The model embeds a Support Vector Regression pretrained 

on a large dataset of daily observations from a diverse set of the Snowpack Telemetry Network (SNOTEL) stations in 

the United States.  GEMS does not require any user calibration, except for the option to adjust the temperature 

threshold for rain-snow partitioning, though the model achieves robust simulation results with the default value. We 

validated the model with long term daily observations from numerous independent SNOTEL stations not included in 10 

the training and with data from reference stations of the Earth System Model-Snow Model Intercomparison Project. 

We demonstrate how the model advances large scale SWE modelling in regions with complex terrain that lack in-situ 

snow mass observations for calibration, such as the Pamir and Andes, by assessing the model`s ability to reproduce 

daily snow cover dynamics. Future model development improvements should consider the effects of vegetation, 

improve simulation accuracy for shallow snow in warm locations at lower elevations and possibly address wind-15 

induced snow redistribution. Overall, GEMS provides a new approach for snow modeling that can be useful for hydro-

climatic research and operational monitoring in regions where in-situ snow observations are scarce. 

 

  



1. Introduction 20 

 

Snow is a vital component of the global climate system and plays a key role in regulating the temperature of the Earth's 

surface and in governing the hydrologic cycle on both global and regional scales (Zhang, 2005; Sturm et al., 2017). 

Furthermore, snow plays an important role as a natural means of water storage and supply for human activities (Barnett 

et al., 2005), with a substantial share of the world`s population relying on snowmelt to provide water for agriculture 25 

and domestic needs (Mankin et al., 2015; Kraaijenbrink et al., 2021). Snowmelt is particularly crucial for densely 

populated downstream areas, where the timing and quantity of snow accumulation and melting in mountainous regions 

determine the availability of water  (Armstrong et al., 2019; Immerzeel et al., 2020). Accurate estimation of snow 

mass accumulation and melt is therefore essential for water resource management as well as for early warning of 

droughts and floods (Beniston, 2008). 30 

Energy-balance and temperature-index snow models are the two main types of models to simulate snow accumulation 

and melting. Energy-balance snow models, also referred to as physics-based models, calculate the amount of snow 

mass based on the balance between the energy input to the snowpack and the energy output from the snowpack (Essery, 

2019). These models consider multiple factors such as incoming solar radiation, air temperature, humidity, 

precipitation, and wind speed, as well as the physical properties of the snowpack, such as snow density and surface 35 

albedo. Due to high input data requirement of energy-balance models, which are often lacking especially in countries 

of the Global South, researchers often opt for relatively simpler conceptual temperature-index models, which rely on 

temperature and precipitation data (Hock, 2003; Ohmura, 2001). These models estimate the amount of snowmelt by 

determining empirical relationship between temperature and amount of snowmelt (Link et al., 2019). The two types 

of snow models usually require adjustment of internal parameters that characterize embedded snow processes. 40 

Depending on the complexity of a model, calibrating its parameters can often become a computational burden and 

introduces challenge of model parameters equifinality (Beven, 1993, 2006; Günther et al., 2020). 

Despite the differences in the number of internal processes represented and the corresponding data requirements, both 

types of models produce similar results when calibrated and applied to the same spatial domain and same climatic 

conditions (Kumar et al., 2013; Bavera et al., 2014; Magnusson et al., 2011; Shakoor et al., 2018). The growing number 45 

of the intercomparison studies conclude that model complexity does not determine performance (Essery et al., 2013; 

Magnusson et al., 2015; Menard et al., 2021), and simpler models may perform equally well or even outperform more 

sophisticated snow models in some cases, e.g. when input data is of low quality (Terzago et al., 2020). Models 

calibrated to the same climate conditions can however produce different simulations under different climate conditions 

(Carletti et al., 2022). HoweverIn this regard, physics-based snow models are known to show better temporal and 50 

spatial transferability than temperature-index models (Magnusson et al., 2015), since they are able to capture the 

dynamic physical processes that govern formation, accumulation, and melting of snow, which allows them to simulate 

snow under a wide range of climate conditions. The generalizability and transferability of snow models are important 

considerations in their development and deployment, especially for applications over geographical domains where in-

situ snow-measurements are non-existent or scarce.  55 



In recent years, the research community saw an emergence of so-called data-driven approaches for snow modeling, 

which usually employ machine learning techniques on many extensive sets of snow observations and predictor 

variables. The studies employ machine learning techniques with a combination of onsite measurement and airborne 

or satellite data to estimate instant properties of snow pack or interpolate the spatial distribution of snow mass (e.g. 

Broxton, van Leeuwen and Biederman, 2019; Mital et al., 2022; Santi et al., 2022), rather than explicitly modeling 60 

snow mass accumulation and melt dynamics In terms of ways in which machine learning (ML) has been applied for 

snowpack modeling, the respective research studies can be grouped into several main approaches. One common 

approach is estimating the spatial distribution of snowpack by applying ML-supported interpolation of sparse snow 

observations and using topographical features, meteorological and satellite data (Broxton et al., 2019; Mital et al., 

2022). Other studies have explored the potential of satellite radar data for direct detection of instantaneous properties 65 

of snowpack (Santi et al., 2022; Daudt et al., 2023). In cases where one or multipleseveral gridded snow products are 

available, ML can be employed for a better prediction through assimilation of multiple estimates or bias-correction 

(Shao et al., 2022; King et al., 2020). A few recent studies applied ML in a manner consistent with traditional snow 

models, explicitly modeling snow mass accumulation and melt dynamics (Vafakhah et al., 2022; Duan et al., 2023; 

Wang et al., 2022). However, most of the noted approaches also rely on is-situ observations or extensive set of regional 70 

reanalysis variables, e.g. of snow depth or solar radiation, which restricts their wider applicability due to unavailability 

of such data in many instancesregions. Furthermore, Tthe ability of pretrained machine learning models to generalize 

to new geographic and climatic domains remains another challenge; machine learning models often perform less well 

outside the data distribution used to train them (Chase et al., 2022; Hernanz et al., 2022). 

We address these challenges with the Generalizable Empirical Model of Snow accumulation and melt (GEMS) that, 75 

by leveraging the power of machine learning to learn from a large number of diverse experiments, generates accurate 

estimates of snow water equivalent from a limited range of input data. Instead of modeling snow as a dynamic system, 

the GEMS employs assimilated statistical relationship between changes in snow mass in response to climate variables 

while accounting for topographic features. By incorporating diverse climate and topographic observations into the 

model training, we demonstrate how it simulates snow water equivalent with acceptable accuracy even in distant out-80 

of-sample geographical locations.  

 

2. Model description 

2.1 Model structure and required inputs 

GEMS is an empirical model based on statistical learning of daily changes in snow water equivalent in response to 85 

precipitation, temperature, and topography. It incorporates Support Vector Regression (SVR) that was trained using 

more than 28,000 observations of daily snow accumulation and melt from 94 stations of the Snowpack Telemetry 

Network (SNOTEL) in the United States. The model has only one adjustable parameter, a temperature threshold (TS) 

that specifies when 100% of precipitation falls as snow, which is used to confine the SVR simulations during the rain-

to-snow transition and snow accumulation phases. Figure 1Figure 1 depicts the model's workflow and its primary 90 

components, which are described in greater detail in the following sections. 



 

Figure 1. GEMS workflow. Model elements and abbreviations are described in the sub-sections that follow 

 

The GEMS v1.0 model is implemented developed in the R programming environment (R Core Team, 2020), with 95 

anticipated replication in Python and possibly other program languages. and It is available as a pretrained SVR model, 

accompanied by an R script containing a set of functions that take input data on daily time steps, calculates additional 

predictors (described in the “Data for training support vector regression” section), and generates corresponding 

estimates of snow water equivalent. It can be applied for both single-point and spatially distributed simulations by 

feeding input data in tabular form or raster files, respectively.  100 

The model is available in four variations of the required input data listed in Table 1Table 1. T, with the simplest one, 

GEMS-4P (the “P” suffix specifies the number of required inputs), requires four predictors, such as daily precipitation, 

average temperature, latitude, and elevation. Three other modifications, GEMS-5P, GEMS-6P  and GEMS-7P, require 

additional predictors, such as daily diurnal temperature range (daily maximum and minimum temperatures) and a 

location-specific heat-insolation index, which can be retrieved through the Google Earth Engine.    105 

Table 1. Required forcing data for GEMS (highlighted with grey per each model version) 

Input data GEMS-4P GEMS-5P GEMS-6P GEMS-7P 

Precipitation (mm)     

Mean daily temperature (°C)     

Maximum daily temperature (°C)     

Minimum daily temperature (°C)     

Latitude ( decimal degrees)     

Elevation (meters a.s.l.)     

Heat-insolation index     

 



2.2 Support vector regression  

 

In its core embedding, GEMS is built on a pretrained SVR that estimates daily accumulation and melt of SWE given 110 

the meteorological conditions and terrain features. SVR is a supervised machine learning algorithm that projects data 

into a higher dimensional space, then minimizes error by generating a set of hyperplanes that explain as many 

observations as possible (Awad and Khanna, 2015; Vapnik and N., 1995). SVR utilizes radial basis function kernels 

(Schölkopf et al., 2004) and is calibrated for optimal cost and gamma hyperparameters, which govern training errors 

and degree of influence of a single training point. The SVR can be expressed as:  115 

𝑆𝑉𝑅(𝑋𝑥) = ∑ (𝛼௜ − 𝛼௜
∗) 𝐾(𝑥௜ , 𝑥)ே

௜ୀଵ + 𝑏               (1) 

 

where, 

N is the total number of support vectors, which corresponds to number of data points during training,  

 𝛼௜ , 𝛼௜
∗ are Langrage multipliers, such that 𝛼௜ ≥ 0 𝑎𝑛𝑑 𝛼௜

∗ ≤ 0, and  120 

K is the radial basis function kernel, is such that: 

𝐾൫𝑥௜ , 𝑥௝൯ = exp ቈ− 
||𝑥௜ − 𝑥௝||ଶ

2𝜎ଶ
቉  

   

where, 

||𝑥௜ −  𝑥௝|| is the Euclidian distance between feature vectors corresponding to the i-th and j-th input data 125 

points. 

 

We trained the model using data from selected SNOTEL stations (described in Section 3.1 ) for  2017 and 2018, We  

and fine-tuned the hyperparameters so that the model produces similar levels of accuracy when applied to observations 

from the same stations for 2019 and 2020. The hyperparameter calibration process involved an exhaustive 'grid-search' 130 

technique, which systematically explored all possible combinations within predefined parameter ranges. Ultimately, 

we selected the hyperparameter configurations that resulted in the lowest root mean squared error between simulated 

and observed dSWE during both model training on observations from 2017 and -2018 and its we tested the modeling 

on observations from 2019 and 2020. 

 135 

2.3 Temperature threshold constraint and model-wrapper function 

 

Due to instabilities of daily changes in SWE (dSWE) estimated by the SVR during rain-snow transition phases 

(described in the Section 4.1 Model  section below), simulated dSWE at any day (t) values are constrained as follows:  



dSWE୲ =  ൜
SVR(Xx୲୧),         if TAVG୧୲ ≥ Tୗ

PRCP୧୲ ,             if TAVG୧୲ < Tୗ
 (2) 140 

where, 

 𝑇ௌ is a 100% rain-snow temperature threshold, with default value of -1℃ 

 

The dSWE estimates are then aggregated into daily SWE timeseries using the cumulative sum-reset function:  

SWE୲ =  ൜
0 ,                                                 if t = 0
max(dSWE௜୲ + SWE୧୲ିଵ, 0) , if t > 0

     (3) 145 

3. Data  

3.1 Data for training support vector regression 

 

For training the SVR, we used the SNOTEL data listed in Table 2, the largest network of automated weather stations 

that collect data on snow water equivalent, precipitation, temperature, and other climatic variables. We used daily 150 

observations from 94 SNOTEL stations located in the contiguous United States for two hydrological years, 2017 and 

2018. Figure 2 displays location of the selected stations, along with density distribution of  their main geographical 

and topographical characteristics. 

As it was noted above the SVR model has two tunable parameters: cost and gamma, which can be optimized to 

achieve the best prediction performance, but overfitting can occur if these are overtuned. To avoid overfitting, we 155 

trained the model using data from 2017 and 2018 and fine-tuned the hyperparameters so that the model produces 

similar levels of accuracy when applied to observations from the same stations for 2019 and 2020. 

 



Figure 2. Location of SNOTEL stations used for training the SVR (a), and their density distributions in terms of (b) elevation, (c) 

latitude, and (d) heat-insolation index.  160 

In the 1990s, the temperature observations from SNOTEL showed anomalous trends (Pepin et al., 2005), which were 

eventually attributed to a new temperature sensor (Oyler et al., 2015), installed with an incorrect equation algorithm. 

To correct for this bias, we applied a debiasing equation on SNOTEL temperature data proposed by Brown et al. 

(2019) and using metadata of affected stations (Air Temperature Bias Correction). 

SNOTEL precipitation gauges may also be susceptible to solid precipitation undercatch, especially when snowfall 165 

occurs in windy conditions (USDA, 2014). Scalzitti et al., 2016 provide a comprehensive review of the issues 

associated with precipitation undercatch, highlighting reported undercactch ranging from 11% for snowfall under 

2m/sec wind speed to more than 30% during intense snowstorm events. To ensure data accuracy, we cleaned the 

training dataset by removing observations with inconsistencies between daily precipitation and snow mass 

accumulation. These inconsistencies refer to cases when the daily increase in SWE exceeded the reported daily 170 

precipitation. 

The input data includes a heat-insolation index to account for the influence of topographic shading, which may result 

in a significant variability of surface energy balance and therefore in snowmelt rate, particularly in complex terrain. 

We used the Continuous Heat-Insolation Load Index (CHILI), which approximates effects of insolation and 

topographic shading on evapotranspiration and is determined by estimating insolation in the early afternoon at equinox 175 

sun height (Theobald et al., 2015). The Google Earth Engine provides access to CHILI data on a global scale with a 

horizontal resolution of 90 m. Since CHILI is a location-specific static characteristic, we also augmented the forcing 

data with daylength, which is a time-varying variable estimated using latitude of a location and day of a year. 

 

Table 2. Climate and topographic data used to train the model 180 

Variable Abbreviation Source/reference 

Daily change of Snow water equivalent (mm) dSWE SNOTEL 

Precipitation (mm) PRCP SNOTEL 

Mean daily temperature (°C ) TAVG SNOTEL 

Maximum daily temperature (°C) TMAX SNOTEL 

Minimum daily temperature (°C ) TMIN SNOTEL 

Rolling sum of temperature over preceding 

three days (°C) TSUM Calculated using TAVG 

Cumulative sum of precipitation over 

preceding three days (mm) PSUM Calculated using PRCP 

Daylength (hours) DAYL 

Calculated as a function of latitude and 

day of a year (Forsythe et al., 1995) 



Elevation (meters a.s.l.) ELEV SNOTEL 

Heat-insolation index  CHILI 

Global Continuous Heat-Insolation Load 

Index (Theobald et al., 2015) 

 

 

3.2 Data and procedure for evaluation of the model 

 

The evaluation of the model performance followed a three-tiered structure.  185 

First, we assessed the model performance using observations from SNOTEL stations that were not included in the 

training. The selection of stations for validation followed two main criteria: First. we excluded stations that exhibit 

precipitation undercatch, which we formulate as when SWE accumulated by March is greater than the accumulated 

precipitation during October to March. This approach enabled us to include more stations in the evaluation dataset 

while excluding only those hydrological years that exhibited inconsistencies between these variables. We selected 190 

evaluation observations using this criterion without any specific threshold for the magnitude of inconsistencies, nor 

did we make corrections to the precipitation time series. Out of the filtered stations we selected only stations that have 

complete daily observations for at least five water years, defined as October of the preceding year to September next 

year for any year from 2011 to 2022.  The selection algorithm filtered 520 stations from a total of approximately 703 

contiguous US SNOTEL stations that had not been used for model training.  195 

Second, we evaluated the model performance using snow and meteorological data from seven reference stations, 

which were used in the Earth System Model-Snow Model Intercomparison Project (ESM-SnowMIP), hereinafter 

referred to as ESM-SnowMIP reference stations. Table 3 below provides descriptions of these sites. 

Table 3. Geographic and climate characteristics of the ESM-SnowMIP reference stations 

Site name, country 

Abbrevi

ation 

Latitude  

(⁰N)  

Elevation 

(meters a.s.l.) 

Snow cover 

classification 

Köppen climate 

classification 

Col de Porte, France CDP 45.3 1,325 Alpine 

Warm-summer humid 

continental climate 

Old Aspen, Canada OAS 53.63 600 Taiga 

Warm-summer humid 

continental climate 

Old Black Spruce, Canada OBS 53.99 629 Taiga 

Warm-summer humid 

continental climate 

Old Jack Pine, Canada OJP 53.92 579 Taiga 

Warm-summer humid 

continental climate 

Reynolds Mountain,  USA RME 43.19 2,060 Alpine 

Warm-summer humid 

continental climate 



Sapporo, Japan SAP 43.08 15 Maritime 

Hot summer continental 

climates 

Senator Bec, USA SNB 37.91 3,714 Alpine 

Polar and alpine 

(montane) climates 

 

Swamp Angel, USA SWA 37.91 3,371 Alpine Subarctic climate 

 

Sodankylä, Finland SOD 67.37 179 Taiga Subarctic climate 

Weissfluhjoch, Switzerland  WFJ 46.83 2,536 Alpine 

Polar and alpine 

(montane) climates 

 200 

Source: Ménard et al., 2019 

Finally, we assessed the performance of the model using distributed large-scale climate data over Western Pamir in 

Central Asia and Central Andes regions with complex terrain (Figure 3) by comparing observed and simulated snow 

cover. Both selected regions are characterized by semi-arid climate conditions in higher elevations, and predominantly 

arid climate conditions in plains. We used temperature and precipitation data at 1 km resolution from CHELSA-W5E5 205 

dataset (Karger et al., 2022a) to force the model, and compared the extent of SWE simulated during the two 

consecutive snow seasons between 2014 and 2016 with MODIS-derived snow cover retrievals using the cloud-gap 

filled MOD10A1F product images (Riggs et al., 2019).  

  

Figure 3. Selected regions for distributed snow modelling 210 

 

The evaluation metrics for single point simulations across SNOTEL and ESM-SnowMIP reference sites consist of 

the Nash–Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970) , mean absolute percentage error of peak 

SWE (maxSWE MAPE), bias of the simulated peak SWE (maxSWE BIAS), and difference in snow melt-out dates: 



𝑁𝑆𝐸 ൫𝑆𝑊𝐸, 𝑆𝑊𝐸෣ ൯ = 1 −
∑ே(ௗ௔௬௦)

௜ୀଵ (𝑆𝑊𝐸௜ − 𝑆𝑊𝐸෣
௜)ଶ

∑ே(ௗ௔௬௦)

௜ୀଵ ൫𝑆𝑊𝐸௜ − 𝑚𝑒𝑎𝑛(𝑆𝑊𝐸௜)൯
ଶ 215 

where, 

  𝑆𝑊𝐸௜  – observed daily SWE; 

 𝑆𝑊𝐸෣
௜  – simulated daily SWE 

 

𝑚𝑎𝑥𝑆𝑊𝐸 𝑀𝐴𝑃𝐸(𝑦, 𝑦ො) =
100%

𝑁 (𝑦𝑒𝑎𝑟𝑠)
෍

ே (௬௘௔௥௦)

௪ୀଵ

|𝑦௪ − 𝑦ො௪|

𝑦௪

 220 

𝑚𝑎𝑥𝑆𝑊𝐸 𝐵𝐼𝐴𝑆(𝑦, 𝑦ො) =
100%

𝑁(𝑦𝑒𝑎𝑟𝑠)
෍

ே(௬௘௔௥௦)

௪ୀଵ

𝑦௪ − 𝑦ො௪

𝑦௪

 

where, 

𝑦௪– observed peak SWE in wth hydrological year; 

 𝑦ො௪ – simulated peak SWE  in wth hydrological year 

 225 

𝑆𝑛𝑜𝑤 𝑚𝑒𝑙𝑡 𝑜𝑢𝑡 𝑑𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁(𝑦𝑒𝑎𝑟𝑠)
෍

ே(௬௘௔௥௦)

௪ୀଵ

𝑚𝑑𝑎𝑡𝑒௪ − 𝑚𝑑𝑎𝑡𝑒෣
௪  

where, 

𝑚𝑑𝑎𝑡𝑒௪– actual date of snow disappearance in wth hydrological year; 

𝑚𝑑𝑎𝑡𝑒෣
௪– date of the snow disappearance according to model simulations 

 230 

All simulations for the evaluation are implemented with the GEMS-7P version of the model that uses seven predictors 

(Table 1Table 1). The Ssection 4.74.3 (“Performance of GEMS model under different input 

requirementsPerformance of GEMS model under different input requirements”) compares the overall performance 

of the model's four different versions (GEMS-7P, GEMS-6P,  GEMS-5P, and GEMS-4P). 

 235 

4. Model evaluation 

2.2  

2.34.1 Observed and modeled daily changes in SWE across training and validation SNOTEL 

stations 

 240 



The Figure 4 compares observed and predicted dSWE values obtained by running the pretrained SVR  using training, 

calibration, and validation datasets. The model pretrained SVR yields plausible estimates of the dSWE, albeit the 

variance is greater at higher melt rates (Figure 4).  There is a greater variance between simulated and observed values 

in the validation dataset, although it should be noted that the validation datasetit has a much larger number of 

observations compared to the training and calibration datasets (1.36 million, 28,600, and 32,600 observations, 245 

respectively), which results in more outliers.  In each of the three instances, the slope of the robust linear regression 

between the observed and simulated values ranges between 0.981.03 to 10.9902.  

 

Figure 4. Predicted and observed dSWE values for training, calibration, and validation datasets. The red line represents the slope 

of the robust linear regression run on observed and predicted dSWE values 250 

 

The validation dataset simulations exhibited a bigger proportion of outliers in the upper tile corresponding to snow 

accumulation phase (dSWE>0). To determine the accuracy of the SVR's performance for this phase, we compared 

model simulations using a sample of the validation dataset that includes observations with incremental changes of 

SWE at the beginning of the snow season. Since the SNOTEL observations do not contain explicit information on 255 

precipitation-snow transition, we decided to use a sample of the dataset to simulate the transition depending on climate 

inputs (temperature variables) and topographical characteristics (e.g. elevation). More specifically we have filtered 

the SNOTEL observations that closely fall on precipitation-snow transition phase by selecting observations that meet 

the following non-exhaustive main criteria: 1) observations for October or November when precipitation is non-zero 

2) average temperature (TAVG) is less than 10 or higher than -10°C, 3) accumulated SWE is less than 20mm. We 260 

then run the model using the obtained sample of observations and estimated solid fraction of precipitation simulated 

by the model, i.e. amount of dSWE estimated by the model in respect to precipitation amount.  

Figure 5 depicts the rain-to-snow transition modelled using the metadata of the 520 validation SNOTEL stations. We 

conclude that average daily temperatures (TAVG) at which the model predicts precipitation to fall partially as snow 

may range from -5 to more than 5 °C and have a relatively higher association with maximum temperature and 265 

elevation. The comparison also reveals that the simulations tend to underestimate snow accumulation, since in some 

cases the solid component of precipitation in simulations does not exceed reach 100% even at temperatures below -5 

°C. In this regard, we have introduced a constraint (specified above in the sSection 3.4 “Temperature threshold 



constraint and model-wrapper function” section), which imposes that any daily precipitation after a certain 

temperature threshold (TS) is considered to fall as 100% snow. We set the default value of TS as -1 C°°C, which the 270 

simulations revealed to be the optimal common threshold based on observations from the validation dataset. 

Consequently, GEMS estimates a snow fraction of precipitation using the assimilated statistical relationships until the 

average temperature falls below -1 C°, at which point all precipitation is considered to be snowfall.  

Here it is important to note that the TS constraint in the GEMS model differs from classical temperature-based 

partitioning methods where the threshold defines precipitation in a binary way as either 100% rainfall or 100% snow. 275 

The model simulates snow-precipitation partitioning only until the temperature drops below TS, at which point any 

precipitation is regarded as 100% snow. For example, when the average temperature (TAVG) is 0°C, using the 

assimilated statistical relationships the model will likely simulate some portion of precipitation as snowfall. As 

illustrated in Figure 5  at TAVG around of 0°C, the model, on average, simulates around 75% of precipitation as 

snowfall. Depending on other input variables this ratio varied from approximately 25% to as high as 95%. 280 

 

Figure 5. The rain-snow transition with respect to average temperature (TAVG) simulated by the pretrained SVR using metadata 

from the SNOTEL validation data. The two graphs illustrate the same simulations and highlight distributions of elevation (a) and 

maximum temperature (b). The black line is the median of the resulting solid fraction of precipitation across the simulations. 

 285 

2.44.2 Model evaluation in simulation of SWE timeseries forwith the independent SNOTEL 

stations  

 

 

Figure 6 presents results of Tthe model validationevaluation onon multi-annual data from the 520 independent 290 

SNOTEL stations, with histograms and distribution maps of the four selected metrics. showed that tThe model 

produces accurate simulations of SWE timeseries in most cases with (Figure 6). Tthe median NSE for simulations 

across all the stations is 0.91, and for 84% of the stations the model achieved NSE of greater than or equal to 0.8. For 

80% of all stations, the maxSWE erorr (maxSWE MAPE) of the simulations is less than 20%, with the median value 

for all stations being 14%. The median error of the snow meltout date was four days and did not exceed ten days in 295 



74% of instances. We found no spatial associations for NSE values and maxSWE errors, while bias for maxSWE and 

snow meltout date error tend to be larger in the western part of the study domain (in the vicinity of the Cascade 

mountains, Oregon state). Here the simulations overestimate maxSWE and snow meltout date by a larger margin.  

Another concentration of overestimation of simulated snow melt-out date occurs in stations located in the Sierra-

Nevada mountains. In contrast, the model systematically underestimates maxSWE in some stations in the north-300 

eastern part (Montana and Wyoming),  where it consequently simulates earlier snow disappearance.    

       

 

Figure 6. GEMS performance metrics for independent SNOTEL stations: histograms (left) and spatial distributions (right) of the 

resultant (a) NSE, (b) maxSWE MAPE, (c) maxSWE bias, (d)  and snow meltout date error, and corresponding histograms (e-h). 305 



Vertical red dashed lines on the histograms denote the median across all stations; the vertical black dashed line correspond to the 

5th percentile (and 95th percentile in case of two-tailed distributions). 

In addition to simulations generated with the default TS value, we also examined the model's accuracy using Ts values 

calibrated to each SNOTEL station (Figure 7). We calibrated TS for each of the stations with the objective of 

maximizing the Nash-Sutcliffe Efficiency of the model`s simulations with respect to observed SWE, and   We bounded 310 

the range of calibrated TS to -5 to +5 °C.  The results illustrated on Figure 7Accordingly show that , the station-adjusted 

modeling incrementally improves all evaluation metrics of the simulations result, though with a lesser impact on mean 

maxSWE error (Figure 7). Adjusted TS values tends to be negative across the stations on mountain ranges, particularly 

across the Cascade and Sierra-Nevada and Rocky Mountains. A cluster of a few stations with positive TS appear in 

the northeastern portion of the study region.  315 

  



Figure 7. GEMS performance metrics for the independent SNOTEL stations with station-adjusted TS threshold.: (a) NSE, (b) 

maxSWE MAPE, (c) maxSWE bias, (d) snow meltout date error.  The bottom histogram and map (e) and histogram (f) show 

density and spatial distribution of the adjusted TS values. 

While the median of the adjusted TS values for all stations agrees with its default threshold (-1 °C), the density 320 

distribution also shows a high frequency of calibrated Ts resulting at the lowest bound of -5 °C (Figure 7f). This 

suggests that, in cases where calibrated Ts values approach the lowest boundary, the model simulations might have 

been overcalibrated, resulting in error compensation. The overestimation of SWE at these locations can be attributed 

to several factors that the model does not account for, including effect of dense vegetation, wind induced snow-drift, 

sublimation, and rain-on-snow events which may be frequent phenomena in the mountain areas (Li et al., 2019; 325 

Boniface et al., 2015; Kirchner et al., 2014; Sexstone et al., 2018). Here we should mention that the selection algorithm, 

designed to filter out stations with systematic precipitation undercatch also effectively excluded stations where 

discrepancies between SWE and accumulated precipitation are due to snow drifts into to snow pillows. However, the 

algorithm does not prevent inclusion of stations where snow drifts out of the station's snowpillow, which may be a 

frequent phenomenon across the SNOTEL network (Meyer et al., 2012). Thus in many cases where calibrated Ts 330 

values are close to the lowest boundary, the calibration likely aligned model simulations to "undercatched" snow 

observations.  

 

2.54.3 Model evaluation using ESM-SnowMIP reference station data 

 335 

Table 4 below presents obtained NSE, maxSWE MAPE and maxSWE bias values of the GEMS simulations using the 

ESM-SnowMIP reference stations, and the Figure 8 compares their observed and modelled SWE timeseries. The 

model performance at ESM-SnowMIP reference sites was robust for the majority of stations with the TS threshold set 

to -1 C°°C by default (Table 4; Figure 8). In general, simulated SWE was more accurate for the stations located at 

higher elevations and characterized by higher snow accumulation rates (RME, CDP, WFJ, and SWA), except for SNB, 340 

which had the lowest NSE value (0.34) and the highest maxSWE error (17%) among all ESM-SnowMIP stations. The 

poor performance of the model for the SNB station is attributed to prevalence of wind-induced snow redistribution, 

which can reportedly reduce peak SWE on the site by up to 40% (Landry et al., 2014). For the same reason, one of 

the largest SWE errors were recorded for the SNB site by the majority of models that participated in ESM-SnowMIP 

(Menard et al., 2021).  345 

SWE simulations for SOD and SAP stations, while inferior to those of other sites, are acceptable with have NSE 

values of around 0.7 and maxSWE MAPE errors of 8% and 18%, respectively. It is important to note that in terms of 

latitude and thus the range of daylengths, the SOD station is situated much beyond the range of the data utilized to 

pre-train the GEMS model. In addition, since the Global Continuous Heat-Insolation Load Index (CHILI) does not 

extend beyond the arctic circle,. To estimate we estimated it for SOD, we used based on the nearest known value and 350 

assuming flat terrain., but acknowledge that our estimate may have some uncertainty. Regarding the SAP station, 



GEMS’ performance may be affected by the site's anomalous precipitation phase partitioning, in which precipitation 

reportedly can fall as rain at low temperatures and as snow at temperatures over 5C°°C (Ménard et al., 2019).  

The performance of the model exhibited notable disparities across three forested locations in Canada (OAS, OBS, 

OJP). In comparison to other sites, the model's performance at these sites was relatively inferior, indicated by NSE 355 

values ranging between 0.44 and 0.66 and maxSWE errors spanning from 15% to 30%. This observation suggests a 

diminished performance of the model in environments characterized by dense canopy interception.   

For reference, Table 4 also provides the NSE of simulations produced by models that participated in ESM-SnowMIP. 

With the exception of the SNB site, ESM-SnowMIP simulations had lower NSE than those of GEMS simulations. 

However, a direct comparison between GEMS and ESM-SnowMIP simulations is not possible because evaluation 360 

data were not provided to the ESM-SnowMIP participants in advance and rain-snow transitions were prescribed in 

the driving data (Ménard et al., 2019). ESM-SnowMIP participants thus had no opportunity to enhance model 

performance by adjusting parameters. 

 

 365 

Table 4 also contains an evaluation of model runs using site-adjusted TS thresholds, which improved SWE simulations 

across all stations, except CDP and SAP sites where the default TS threshold remained optimal. The incremental 

improvements in terms of NSE and maxSWE errors are particularly noticeable for RME and SOD sites. The SNB 

site's NSE also increased significantly when TS was set to -5 C°, though the simulations for the nearby SWA site show 

the best performance with a much lower maxSWE error when TS is set to 1 C°. This contradiction, coupled with the 370 

fact that the maxSWE error does not change for updated SNB simulations, may suggest that the new TS threshold 

rather compensates for wind-blown snow than improves SWE simulations per se. 

Table 4. GEMS performance metrics for the ESM-SnowMIP reference stations.  

  GEMS model    ESM-SnowMIP models  

Station NSE 
maxSWE 

MAPE (%) 
maxSWE 
bias (%): 

  max NSE 

CDP 0.84 14 0  0.6 

OAS 0.6 15 -13  0.24 

OBS 0.44 29 -29  0.18 

OJP 0.66 27 -30  0.41 

RME 0.8 13 -13  0.72 

SAP 0.72 17 3  0.47 

SNB 0.34 17 -13  0.46 

SOD 0.68 8 6  0.68 

SWA 0.85 15 14  0.6 



WFJ 0.85 14 4   0.64 
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Figure 8. Observed and modelled SWE  at the ESM-SnowMIP reference stations (with the default TS threshold) 

 

2.64.4 Evaluation of the modelModel evaluation for large-scale simulations 380 

 

Figure 9 compares observed and simulated snow cover area for the selected Western Pamir and Mendoza-Andes 

regions on daily timestep over two consecutive snow seasons.  The primary objective of this analysis was to test and 

demonstrate the model's transferability to regions with complex terrain and without in-situ SWE data. We assume that 

if the extent of the simulated SWE aligns well with the remotely -sensed snow cover, then the simulated SWE is likely 385 

to contain less uncertainty. This assumption is also based on fact that remotely sensed snow cover is increasingly used 



for parameter calibration or uncertainty reduction in snow modules of hydrological models (e.g. Parajka and Blöschl, 

2008; Gyawali and Bárdossy, 2022; Tong et al., 2022; Di Marco et al., 2021). 

GEMS accurately reproduced seasonal cycles and interannual variations of snow cover in the Western Pamir and 

Mendoza-Andes region, which have distinctive seasonal patterns (Figure 9). The simulations capture short-term spikes 390 

in the snow cover extent in the middle of the snow seasons over the Pamir. Overall pixel-wise accuracy of snow/no-

snow detection for both regions was 92%, while the class-balanced accuracy, which takes into account the balance of 

class distribution (Branco et al., 2016), was 87% on average.  

 

All validation sites used previously are in the northern hemisphere because we were unable to locate representative 395 

station-based snow and climate forcing data for validation model evaluation in the southern hemisphere. The 

validation evaluation of the model in the Mendoza-Andes region implies that the model may have comparable 

performance for locations in the southern hemisphere. 
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Figure 9. Observed and simulated snow cover area for Western Pamir and Mendoza-Andes region 

 

3. Model sensitivity and uncertainty assessment  

 



3.14.5 Relative importance of climate and topographic variables 405 

 

We conducted a permutation-based feature importance analysis to determine how individual input variables affect 

dSWE simulation. The method randomly shuffles input data and compares the model's baseline performance on the 

original dataset to performance after permuting a feature's values (Fisher et al., 2018; Greenwell et al., 2018). We 

applied the permutation-based feature importance analysis on the entire training dataset of the independent SNOTEL 410 

stations as well as its subsamples containing onlyrepresenting snow accumulation or melt observationsphases. The 

Figure 10 illustrates the obtained variable importance scores.  

The results unequivocally identified precipitation and average temperature followed by daylength as the most 

significant variables, but they also demonstrate that their importance varies considerably depending on the phase 

considered . In terms ofFor snow accumulation, precipitation is by far the most obvious and significant variable, 415 

followed by a wide margin by maximum temperature. In contrast, the model relies heavily on average temperature 

and daylength to predict snow melt, followed by precipitation and other remaining variables, again by a wide margin. 

At first glance, the results suggest that topographic variables are among the least influential, but it should be noted 

that their significance is assessed in relation to other variables, some of which, such as precipitation and temperature, 

are more fundamental for accurate snowpack estimation (Günther et al., 2019). this is a relative comparison, and the 420 

effect of elevation is evident from the simulation of the precipitation partitioning phase. Furthermore, climate variables 

predictors can be highly variable, whereas topographic features are constant per each location, which predetermines 

insufficient variability of these predictors in the dataset and thus contributes to a wider gap between of their relative 

importance in comparison with climate variables.  

 425 

Figure 10. Relative importance of model inputs during SWE accumulation and melt phases. 

 

3.24.6 Climatic and topographic attributes of locations where the model exhibited lower accuracy  

 



In order to evaluate model uncertainty, we filtered the SNOTEL stations into two groups based on their NSE values: 430 

one group from the 1st quartile, and another group from the 4th quartile of NSE values across all validation SNOTEL 

stations. the simulations for the SNOTEL stations with NSE values below 0.70 were separated from those with NSE 

values above that level. We then calculated probability distribution densities for several climatic and topographic 

characteristics (presented on Figure 11) for each group to compare how stations with relatively poorer model 

performance differ from those with good model performance. 435 

Accordingly, there is a higher likelihood that a station where the GEMS shows relatively inferior performance 

typically yields lower seasonal snowpack and has higher average seasonal temperatures. In addition, stations with 

poor model performance tend to have slightly higher diurnal fluctuations during the snow season. We have not 

detected any significantminor differences between two groups of stations in terms of average elevation or distribution 

of heat-insolation indices. Despite not using station latitude in the model as a direct input (it is required to estimate 440 

daylength for the location), the comparison suggests that there was a relatively slightly higher proportion of poorly 

performing stations at lower latitudes. 

These distinguishing characteristics of poorly performing stations in some instances are not mutually exclusive. 

E.g.For example locations with higher seasonal temperatures usually tend to have lower seasonal SWE peaks under 

identical conditions. Similarly, lower latitudes in the western US have generally greater diurnal air temperature 445 

variations. We hypothesize that the performance of the model under such climatic conditions could be enhanced by 

incorporating more respective observations into the training dataset, which apparently included fewer SNOTEL 

stations from the southern part of the training domain (see Figure 2c). 
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Figure 11. Probability dDensity distributions of topographic and climatic characteristics of  theof the SNOTEL stations where 

the model shows higher and lower performance in terms of NSE. 

 

3.34.7 Performance of GEMS model under different input requirements 

 455 

To evaluate how the model performance depends on a number and type of various input ranges of input data (see 

Table 1), we compared simulations of the three versions of GEMS using the SNOTEL validation dataset. Overall, the 

incorporation of diurnal temperature range and heat-insolation index enhances simulation accuracy as measured by a 

smaller interquartile range of NSE and maxSWE error (Figure 12). Compared to utilizing only the maximum and 

minimum temperatures, the heat-insolation index is a predictor that appears to modestly improve model accuracy. 460 



This improvement is evident, as compared to GEMS-6P, GEMS-5P exhibits somewhat better performance across the 

four metrics used. 

Besides, GEMS-7P and GEMS-5P have a tighter range between the minimum and maximum NSE and maxSWE error 

when outliers are controlled for. However, there is no discernible difference in the snow meltout date and maximum 

SWE bias across the three model versions. Although GEMS-4P has a slightly lower NSE and maxSWE error accuracy, 465 

its overall performance is still robust and it has the benefit of requiring less inputs (only precipitation, average 

temperature, elevation, and latitude).   

Running any of the three versions of the model on a desktop computer using single CPU core (Intel i7) took less than 

6 seconds for 20-year long Weissfluhjoch station data, which approximates to 0.3 seconds per site-year. An ongoing 

experiment (not shown here) suggests that the computation time can be reduced by about  30% through improved 470 

sampling of the training data used to develop the model, a modification that will be implemented in the updated version 

of GEMS. 
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Figure 12. Comparison of performance across three GEMS models. The boxplots` minimum and maximum limits correspond to 

1stQ-1.5*IQR and 3rdQ+1.5*IQR respectively.  

5. Model limitations 

 

Instances of less consistent simulations generated by the model can arise from various sources of uncertainty, including 480 

internal uncertainty within the model, as well as uncertainty in input data and unaccounted external factors. 

One of the major limitations of the model is that it does not account for vegetation, which is known to have a complex 

and divergent effect on snow accumulation and melt under different climate conditions (Dickerson-Lange et al., 2021; 

Sun et al., 2022). Because most SNOTEL stations are situated in forest clearings or open bushes, we initially assumed 

the training sample locations to be free of canopy obstruction. A visual check using Google Earth of the stations used 485 

in both the training and validation samples reveals, however, that some sites can be intercepted by the tree canopies 



in their surroundings. In addition, we have detected the shadowing of some snow pillows by the dense forests that 

surround them. Both phenomena are possible sources of model uncertainty, also evidenced from relatively lower 

performance of the model for three forested ESM-SnowMIP sites in Canada (OAS, OBS, OJP), and future model 

development should try to incorporate vegetation effects. 490 

Based on a comparison of high performing and low performing site simulations, the model may be less accurate at 

simulating shallow snow in warm sites at lower elevations. When these factors combine with large diurnal temperature 

fluctuations, model simulations may even become more distorted. These issues could be resolved with a more 

sophisticated sampling strategy and by incorporating additional observations into the training of the model. It is 

remains unclear questionable, however, whether an improved sampling strategy could also better approximate rain-495 

on-snow effects, as these are driven by dynamic processes of energy exchanges across snow layers that the model 

does not capture for. 

The model's parsimonious design, which relies only on precipitation and temperature variables as climate data inputs, 

also precludes the incorporation of wind- or gravity-induced snow redistribution,. which While this may compromise 

the accuracy of single-point simulations for wind-exposed sites, it may be a minor concern for large-scale distributed 500 

applications of the model..  

When temperature is below the -1°C Ts threshold and precipitation is zero, GEMS will automatically estimate daily 

change in SWE as 0 mm. The model thus fails to account for snow sublimation, which can occur even when 

temperatures are below freezing.  This differs from snow models based on energy balance, which can estimate snow 

sublimation. Furthermore, the evaluation on the SNOTEL dataset suggests that significant adjustments of the Ts 505 

threshold imposes a risk of error compensation due to over-calibration. Therefore, we recommend adhering to the 

default value of Ts (-1°C), unless local precipitation-snow partitioning patterns are well understood. 

As discussed in the Section 4.6 and also evidenced from the evaluation on ESM-SnowMIP sites, the model 

demonstrates relatively better performance in mountainous areas compared to lower elevations. However, the training 

dataset used to elaborate the model may be less representative of locations with very low CHILI indices (Figure 2d). 510 

Low CHILI indices often correspond to sites significantly shadowed by terrain or situated at higher latitudes or both. 

This discrepancy may be an additional source of model uncertainty.  

 

 

4.6. Summary and conclusions 515 

 

We present a computationally efficient model that emulates snow mass accumulation and melting using only a few 

climate and topographic inputs. The absence of the explicit need for calibration is the most distinctive aspect of the 

GEMS model, with 100% rain-snow transition temperature threshold (TS) being the only parameter that can be 



modified, though  (in most validation cases, robust simulations were obtained just using the default TS value). Despite 520 

its parsimony and no extensive calibration options, the model achieves robust transferability across a variety of climate 

and geographic conditions.  

 

The main motivation behind the development of GEMS was to balance the trade-off between complexity, data 

requirement, and transferability, which can be helpfulinstrumental for operational monitoring and hydrological 525 

modelling in data scarce domains. The emulator was developed by training a machine learning model on daily changes 

in snow water equivalent as a response to daily climate inputs and diverse topographic features. Despite the dynamic 

nature of snow processes, our simplified "static" approach effectively captured the impact of precipitation, 

temperature, and topography on snow melt, as indicated by the validation results. This corroborates the conclusion of 

several intercomparison studies that model complexity is not necessarily a predeterminant of its performance (Essery 530 

et al., 2013; Magnusson et al., 2015; Menard et al., 2021).  

The model evaluation suggests that GEMS achieves comparable performance to physical snow models, as evidenced 

by comparing with simulations from ESM-SnowMIP. A more appropriate comparison might necessitate adjustment 

of physical model parameters, which was not investigated in ESM-SnowMIP. Nevertheless, the evaluation outcomes 

allow us to conclude that, at the very least, GEMS with its default TS parameter exhibits superior spatial transferability 535 

compared to physical models with unadjusted parameters. 

In addition to avoiding computationally demanding calibration, GEMS may also help to address the equifinality of 

model parameters that is pertinent to hydrological and snow modelling. The challenge of equifinality is particularly 

pronounced in hydrological modeling, where even relatively simple snow models require calibration of at least two 

parameters: the precipitation-snow threshold and the degree-day melt factor. Considering that there are many other 540 

parameters for the remaining components of a hydrological model, it is easy to end up with multiple combinations of 

optimal parameters. In contrast, GEMS shows generally plausible performance in diverse climatic and topographic 

conditions using the default value of TS. 

One difference between GEMS and physics-based models lies in the number of outputs they generate. While GEMS 

is specifically designed for simulating only SWE, comprehensive physics-based snow models produce a broader 545 

spectrum of outputs that provide valuable insights into other snow properties. We assume that machine learning could 

become helpful in modelling some of these snow properties. For example, previous studies have shown how simple 

empirical models can effectively derive snow depth from SWE measurements and vice versa (Aschauer et al., 2023; 

Hill et al., 2019). We assume that a similar approach to GEMS could be scalable for estimating snow depth by 

incorporating additional variables, such as snow age.  550 

 



The derived empirical relationships may also proof useful for the advancement of snow modelling. GEMS can, for 

instance, provide information for the parameterization of physics-based models, e.g.  precipitation phase partitioning 

and its elevational dependence. 

Machine learning is gaining importance in snow modelling, with existing applications predominantly focusing on 555 

snowpack interpolation or the detection of its instantaneous state through the assimilation of ground-truth and active 

satellite radar data. GEMS provides a modelling framework similar to traditional snow modelling approaches, by 

simulating snowpack in a temporally progressive manner and leveraging climate and topographic inputs commonly 

used in snow models. Moreover, the revealed variable importance aligns with the general physics governing how 

climate variables affect snowpack accumulation and melt. Some recent studies employing machine learning methods 560 

(Vafakhah et al., 2022; Duan et al., 2023) also simulate snowpack in a temporal  manner and demonstrate robust 

performance, though spatial extrapolation limits of those algorithms remain unclear. Another recent study (Wang et 

al., 2022) presents promising results for a deep learning-based approach, showcasing its superior spatial transferability 

compared to enhanced temperature index model across the United States. Nevertheless, the applicability of these 

models beyond their targeted regions may be questionable due to dependance on climate inputs or locally-specific 565 

data that may not be available elsewhere. From these perspectives, GEMS offers a higher degree of parsimony in 

terms of required input variables and, more importantly, a proven ability to generalize outside of the training domain.  

We have tested several other data-driven techniques for the model development, including multivariate linear 

regression, Gaussian process, Random Forests, and Gradient Boosting Machines (not shown here). When evaluating 

on the training dataset, the performance of most models was either lower or equivalent to SVR; however, even in the 570 

latter case their accuracy on the evaluation dataset was worse. Experiments in other fields indicate that SVR has 

relatively better extrapolation potential on unseen data (Horn and Schulz, 2011; Kim and Kim, 2019), which may 

explain why it outperformed other algorithms. We have n'ot examined neural network algorithms since they take more 

computer resources during training, and evidence suggests that they tend to underperform relative to other machine 

learning ML techniques when applied to tabular data (Borisov et al., 2022; Shwartz-Ziv and Armon, 2022). To make 575 

definitive judgments with regard to performances of different machine learning algorithms, however, would require a 

more extensive intercomparison experiment which is outside the scope of this paper. 

 

Future development of GEMS may aim at addressing vegetation effects and improving model performance for shallow 

snowpack in warm sites. Including sublimation and rain-on-snow effects may be possible but though inevitably lead 580 

to increased complexity of the model.  Another promising aspect of model improvement involves further reduction of 

computational costs. At least to some extent, these improvements may be achieved through a more careful selection 

and sampling of the training dataset used to develop the model. In addition to these imperatives, further work may 

also concentrate on extending the similar framework for modelling other snow properties, such as snow depth and 

albedo. 585 

 



 

 

 

Code and data availability: 590 

 

 The current version of GEMS model is available from the project website: https://github.com/iamo-lsg/GEMS . The 

exact version of the GEMS model used to produce the results used in this paper is available on 

https://zenodo.org/doi/10.5281/zenodo.7929178https://doi.org/10.5281/zenodo.7929181 under the Creative 

Commons Attribution 4.0 International  license. The model repository (https://doi.org/10.5281/zenodo.7929181) also 595 

contains files with a validation set of temperature-bias-corrected SNOTEL data, as well as ESM-SnowMIP stations 

data aggregated to daily time scales. Additional code and supplementary files to produce results and graphs presented 

in this paper are available at https://zenodo.org/record/8171491. The original SNOTEL data is accessible via 

https://wcc.sc.egov.usda.gov/reportGenerator  (USDA, 2022). The original ESM-SnowMIP reference station data is 

accessible at https://doi.pangaea.de/10.1594/PANGAEA.897575 (Menard and Essery, 2019).  CHELSA-W5E5 v1.0 600 

data is accessible at https://data.isimip.org/10.48364/ISIMIP.836809.3 (Karger et al., 2022b).  
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