Dear Reviewers,

We would like to thank you once again for your review and helpful comments. We believe
they helped us to substantially improve the manuscript both content- and structure-wise.
Below you will find your referee comments (in black) and our responses (in blue).

With regards,

Atabek Umirbekov, on behalf of all authors

RC1: Matthieu Lafaysse
General comments

Umirbekov et al. present a new machine learning approach to simulate snow mass with
parcimonious data input and an extremely low numerical cost. The evaluation framework
is really interesting as it includes independent data removed from the calibration dataset,
but also the state-of-the-art ESM-SnowMIP dataset including challenging climate and
environment conditions beyond those of the calibration dataset, and finally a spatialized
application with more uncertain forcing data and evaluation data derived from remote
sensing. Of course, the potential of machine learning has to be considered in snow
modelling and | think this paper can be a significant contribution on that topic. The results
clearly challenge physical models, even if obviously the output variables are not sufficient
for all applications.

Nevertheless, | think the description of methods and results is sometimes a bit too fast in
the current version of the manuscript and that some details are missing for an accurate
understanding and interpretation of results. In general, figures are not really introduced
in the main text. | would also have expected more in-depth discussion of the advantages
and disadvantages of this approach compared to physical approaches and other machine
learning approaches in the light of presented results and previous literature, and also
discussions about the possibility to disentangle errors due to the forcing and to the
algorithm itself. Maybe, the chosen structure of the paper that mixes results description
and results discussion is partly responsible for this sometimes incomplete discussion.
Finally the choice to try to recalibrate the Ts parameter is sometimes confusing especially
when it's done on evalution datasets, as it leads to unrealistic values and overcalibration.

| also have some specific comments or questions below that can probably be addressed
rather easily by the authors during the revision process.



Dear Dr. Matthieu Lafaysse,

We appreciate your comprehensive feedback on the manuscript and are grateful for your
valuable comments. In response to your suggestions, we had incorporated a comparison
with simulations from the ESM-SnowMIP study (Krinner et al., 2018), and included a brief
discussion of the advantages and disadvantages of the model in comparison with machine
learning and physical snow models. We had introduced all figures in the main text for
better context. We had restructured the manuscript which allows better orientation for
readers through the text. We had also provided a more detailed description in the main
text regarding the precipitation-snow partitioning and the 'Ts' parameter to prevent any
confusion with traditional temperature-based partitioning methods.

Detailed comments

Section 2.1 The choice of SVR relatively to other machine learning algorithms is not
discussed. | would suggest to add a quick summary of advantages and disadvantages
compared to the most classical algorithms available in literature (random forests,
convolutional neural network, simpler regressions, etc.)

Thank you for this suggestion. We had added into the introduction a brief overview of
machine learning application to snowpack modeling (lines 61-70 in the tracked changes
version):

“In terms of ways in which machine learning (ML) has been integrated into snowpack modeling, the
respective research studies can be grouped into several main approaches. One common approach
is estimating spatial distribution of snowpack by applying ML-supported interpolation of sparse
snow observations and using topographical features, meteorological and satellite data (Broxton et
al.,, 2019; Mital et al., 2022). Other studies have explored potential of satellite radar data for direct
detection of instantaneous properties of snowpack (Santi et al., 2022; Daudt et al., 2023). In cases
where one or multiple gridded snow products are available, ML can be employed for a better
prediction through assimilation of multiple estimates or bias-correction (Shao et al.,, 2022; King et
al., 2020). A few recent studies managed to apply ML in a manner consistent with traditional snow
models, explicitly modeling snow mass accumulation and melt dynamics (Vafakhah et al., 2022;
Duan et al.,, 2023).”

In addition, we included a brief paragraph into the discussion section summarizing some
our experiments and hypotheses (lines 555-577):

“Machine learning is still an emerging sub-field in hydrological and snow modelling, with most
existing applications predominantly limited to snowpack interpolation or the detection of its
instantaneous state through the assimilation of ground-truth and active satellite radar data. In
contrast, GEMS provides a modelling framework similar to traditional snow modelling approaches,
by simulating snowpack in a dynamic manner and leveraging climate and topographic inputs
commonly used in snow models. Moreover, the revealed variable importance aligns with the general
physics governing how climate affects changes in snowpack during its accumulation and ablation



phases. Some recent studies employing machine learning algorithms (Vafakhah et al., 2022; Duan
et al,, 2023) also simulate snowpack in a dynamic manner and demonstrate promising results. It
remains unclear however what the extrapolation capacity is of those models beyond the spatial
domain where they had been trained on, which is a known challenge in machine learning.
Transferability of the models can be also constrained by the use of complex climate inputs or specific
local datasets that may not be available elsewhere. From these perspectives, GEMS offers a higher
degree of parsimony in terms of required input variables and, more importantly, a proven ability to
generalize outside of the training domain.

We have evaluated several other data-driven techniques for the model development, including
multivariate linear regression, Gaussian process, Random Forests, and Gradient Boosting Machines
(not shown here). When evaluating on the training dataset, the performance of most models was
either lower or equivalent to SVR; however, even in the latter case their accuracy on the evaluation
dataset was worse. Experiments in other fields indicate that SVR has relatively better extrapolation
potential on unseen data (Horn and Schulz, 2011; Kim and Kim, 2019), which may explain why it
outperformed other algorithms. We haven't examined neural network algorithms since they take
more computer resources during training, and evidence suggests that they tend to underperform
relative to other machine learning ML techniques when applied to tabular data (Borisov et al., 2022;
Shwartz-Ziv and Armon, 2022). To make definitive judgments with regard to performances of
different machine learning algorithms, however, would require a more extensive intercomparison
experiment that is outside the scope of this paper.

Can you define more explicitely i, j, N, xi, xj, X ?

We added notations for the variables and parameters denoted in the SVR formula (lines
116-126)

| understand from Fig.1 and Eq. 2 that when temperature is below the -1°C threshold and
precipitation is zero, then dSWE is always equal to 0. Is that correct ? How often does this
assumption fail in the training or evaluation dataset? Does this imply an intrinsic limitation
of GEMS for transferability on steep slopes where the surface energy balance can be
positive even at negative temperatures ? (I think it does.)

Thank you for these guiding questions. We recognize this as one of the model constraints
and noted it in the Model limitations section (lines 502-505):

"When temperature is below the -1°C Ts threshold and precipitation is zero, GEMS will automatically
estimate daily change in SWE as 0 mm. The model thus does not account for snow sublimation
process, which can occur even when temperatures are below freezing. This differs from some other
snow models, particularly those based on energy balance, which can estimate snow sublimation.”

Section 2.2

The authors say they « fine-tuned the hyperparameters so that the model produces similar
levels of accuracy when applied to observations from the same stations for 2019 and



2020. » | understand the general idea but the detailed procedure is not accurately
described. Can you describe the detailed protocol for this « fine-tuning » ?

We complemented respective sub-section with the following details (lines 130-134):

“The hyperparameter calibration process involved an exhaustive 'grid-search' technique, which
systematically explored all possible combinations within predefined parameter ranges. Ultimately,
we selected the hyperparameter configurations that resulted in the lowest root mean squared error
between simulated and observed dSWE during both model training on observations from 2017-
2018 and its testing on observations from 2019 and 2020."

As solid precipitation measurements are prone to large measurement errors and is one of
the main predictor of the model, | would have expected more details about precipitation
gauges used in the SNOTEL network, procedures applied to account for undercatch, and
if possible estimated uncertainties.

We added the following details into the Data section (lines 165-168):

"SNOTEL precipitation gauges may also be susceptible to solid precipitation undercatch, especially
when snowfall occurs in windy conditions (USDA, 2014). Scalzitti et al, 2016 provide a
comprehensive review of the issues associated with precipitation undercatch, highlighting reported
undercacth ranging from 11% for snowfall under 2m/sec wind speed to more than 30% during
intense snowstorm events.”

Section 3 | think « Model evaluation » would be a more appropriate title than « model
validation » as a model can never be considered as fully validated.

Thank you for this suggestion. We changed the section title to “Model evaluation”.

The authors say « we excluded stations that exhibit precipitation undercatch, which we
formulate as when SWE accumulated by March is greater than the accumulated
precipitation during October to March. ». | would expect all stations to be affected by
precipition undercatch and total SWE to be always higher than raw precipitation
measurements. Do you apply a specific threshold to only eliminate major undercatch ? Or
do you use precipitation timeseries that are already corrected for precipitation undercatch
following WMO recommendations ? My misunderstanding is probably linked to the lack
of details in Section 2.2 as previously mentioned.

Then, was this selection procedure also apply to the training dataset ? If not, why ?

We appreciate these comments and questions. We agree that this part needs more
clarifications, and included some additional explanatory exerts, which include:

line 168-171



"To ensure data accuracy, we cleaned the training dataset by removing observations with
inconsistencies between daily precipitation and snow mass accumulation. These inconsistencies
refer to cases when the daily increase in SWE exceeded the reported daily precipitation.”

The selection approach differed for the evaluation dataset because we aimed to retain as
many stations as possible for evaluation and besides that the model requires complete
daily time series without missing observations.

Line 189-192

"This approach enabled us to include more stations in the evaluation dataset while excluding only
those hydrological years that exhibited inconsistencies between these variables. When using this
filter, we did not set any specific threshold for the magnitude of inconsistencies, nor did we make
corrections to the precipitation time series.”

It should be also noted that we included a criterion that required at least five hydrological
years of observations for a station to be part of the evaluation dataset. Consequently,
some SNOTEL stations were excluded based on this specific requirement.

Section 3.1

L193 | would suggest to start by a sentence presenting the Figure before providing its
interpretation.

We have introduced the Figure 4 in the text before its interpretation (line 241-242)

In Figure 4 « actual » should be replaced by « observed ». Is there a reason to present the
simulations in the X axis and not in the Y axis (that would be more common for a scatter
plot) ?

Thank you for pointing at this. We have replaced ‘actual” with “observed” and also
modified X and Y axis accordingly (Figure 4, line 248)

In Figure 5, it is not immediate to understand what is represented because the caption is
not self-sufficient and the description in the text is also too vague. The definition of TAVG
should be remind in the caption. Then what does represent a single point ? A station and
a date ? Then, this solid fraction of precipitation does not really appear in model
description, neither in Figure 1 neither in the Equations, so it is difficult to understand how
this diagnostic is obtained from the provided model description. The reason for providing
this Figure is also unclear as finally these outputs are not really used as a fixed temperature
threshold finally replaces the values obtained by the algorithm. This needs to be clarified.

We appreciate your suggestion to incorporate additional clarifications into this section.
We added more description into the text (line 255-262):



"Since the SNOTEL observations do not contain explicit information on precipitation-snow
transition, we decided to use a sample of the dataset to simulate the transition depending on climate
inputs (temperature variables) and topographical characteristics (e.g. elevation). More specifically
we have filtered the SNOTEL observations that closely fall on this phase by selecting observations
that meet the following non-exhaustive main criteria: 1) observations for October or November
when precipitation is non-zero 2) average temperature (TAVG) is less than 10 or higher than -10°C,
3) accumulated SWE is less than 20mm. We then run the model using the obtained sample of
observations and estimated solid fraction of precipitation simulated by the model, i.e. amount of
dSWE estimated by the model in respect to precipitation amount. Error! Reference source not
found. depicts the rain-to-snow transition modelled using the metadata of the 520 validation
SNOTEL stations.”

As for the other Figures, introducing quickly Figure 6 would be helpful before providing
the results analysis. In the description of the results of Figure 6, detailed references to the
subplots would help to follow results description.

We introduced the Figure 6 in the text, lines 290-291.

Isn't the maxSWE score more representative of the quality of input precipitation than of
the skill of the SVR model ?

Yes, given the temperature threshold, we assume that maxSWE might be more
representative of precipitation input accuracy. However, since a portion of the simulated
maxSWE is influenced by the model's simulation of dSWE (at temperatures above the Ts
threshold), we think it is reasonable to keep maxSWE as one of the metrics.

L252-254 If removing stations with incorrect measurements is understandable, removing
stations with snow drift should be avoided as snow drift is not a measurement error, it's a
natural process challenging to reproduce with physical models and also maybe with
machine learning models, but the general ability or unability of any model to reproduce
snow conditions should account for places where snow drift happen.

Thank you for raising this concern. Instances where recorded maxSWE exceeds
accumulated precipitation may be due to snow-drift, precipitation undercatch, or a
combination of both factors. Unfortunately, attributing these inconsistencies to individual
factors may require a separate research effort. We therefore had to exclude those stations
from the evaluation, but we note the inability of the model to capture snow-drift in line
323-325 and explicitly state this as a model's limitation in line 498-500.

L255-256 You mean that an overcalibration is obtained due to error compensation
between snow drift and rain-snow transition ? Could the sentence be more clear ?

Thank you. Yes indeed, we meant that overcalibration may lead to error compensation.
However, we now realize that beside the snow drifting, there might be several other



contributing factors leading to overestimation of SWE, such as sublimation, effect of dense
canopy, and rain-on-snow events. Unfortunately, we can not delineate/ verify these factors
within the scope of this manuscript, but we believe they should be noted since they also
define limitations of model. Therefore, we rewrote this passage in the following manner
(lines 320-326):

"While the median of the adjusted TS values for all stations agrees with its default threshold (-1 °C),
the density distribution also shows a high frequency of calibrated Ts resulting at the lowest bound
of -5 °C Figure 7f). This suggests that, in many cases where calibrated Ts values approach the lowest
boundary, the model simulations might have been overcalibrated, resulting in error compensation.
The overestimation of SWE at these locations can be attributed to several factors that the model
does not account for, including effect of dense vegetation, wind induced snow-drift, sublimation,
and rain-on-snow events which may be frequent phenomena in the mountain areas (Li et al.,, 2019;
Boniface et al., 2015; Kirchner et al., 2014; Sexstone et al., 2018).”

Section 3.3
Again, an introduction of Figure 8 in the text would be useful.
We have introduced the Figure 8 in the text (lines 326-327).

L266-267 It is not obvious which value of NSE should be considered as « acceptable ».
Indeed, NSE is easily high when dealing with variables with a high seasonal cycle. What
would be the NSE value of the daily interannual mean of observed SWE ? Is the 0.7 value
at Sapporo better than such a reference score ?

We intended to refer to some categorizations of NSE across multiple studies (e.g. N.
Moriasi et al, 2007). However, we recognize that these classifications, designed for
hydrological models, might not be directly applicable for classifying snow model outputs.
Therefore, we revised sentences with qualitative classifications in the text like this one.

L269-270 This could be moved to the Method section

Here we refer to the limitation with one of the input variable for the SOD station, which
may be a potential source of uncertainty for the model simulations. We therefore assume
that it is more appropriate to keep this exert in the same paragraph. However, we slightly
modified respective lines to make ours message clearer (lines 347-351):

"It is important to note that in terms of latitude and thus the range of daylengths, the SOD station
is situated much beyond the range of the data utilized to pre-train the GEMS model. In addition,
since the Global Continuous Heat-Insolation Load Index (CHILI) does not extend beyond the arctic
circle. To estimate it for SOD, we used the nearest known value and assuming flat terrain, though
our estimate may have some uncertainty.”



L274-280 As it was already noticed with the SNOTEL dataset that local calibration of the
Ts threshold leads to severe error compensations, and as the purpose of the application
of the GEMS system on the ESM-SnowMIP dataset is to assess its spatial transferability
beyond its training dataset, | am not really convinced of the interest to test again to
recalibrate locally this threshold on each ESM-SnowMIP site. The conclusions that again
this leads to overcalibration and errors compensations were rather expected, so | would
suggest to remove thisanalysis.

Thank you for these insights and the suggestion. We acknowledge that calibrating the Ts
threshold may result in error compensations. However, the results do not provide insights
into the extent of these compensations. As previously described, the Ts threshold in the
model differs from the classical temperature-based threshold method. For instance, when
Tsis set at -3°C and temperature (TAVG) is 0°C, the model will likely classify a larger portion
of precipitation as snow (Figure 5). Nevertheless, we recognize that calibration in general
might be inappropriate when assessing the spatial transferability of the model. Hence, we
removed the calibration analysis for Snow-MIP stations from the manuscript.

Apart from model evaluation, calibration could still be useful during model application,
particularly when local precipitation-snow partitioning patterns are known. In light of this,
we more explicitly acknowledged the risk for error compensation due to calibration in the
model limitations section, and there recommended calibration only if local precipitation-
snow partitioning patterns are known (lines 505-507):

"Furthermore, the evaluation on the SNOTEL dataset suggests that significant adjustments of the Ts
threshold imposes a risk of error compensation due to over-calibration. Therefore, we recommend
adhering to the default value of Ts (-1°C), unless local precipitation-snow partitioning patterns are
well understood.”

Section 3.4
Again an introduction of Figure 9 is missing.
We introduced Figure 9 in the text (line 382).

My feeling is that the level of discussion in this section is not as advanced as for the
evaluation on ESM-SnowMIP sites. How does this skill in terms of snow cover extent
compare with physical models ?

Thank you for this suggestion. We acknowledge that this section's content is not as
comprehensive as other sections, particularly in terms of comparison with the
performance of physical models. However, the extensive computational burden for such a
comparison present a significant challenge to us. Instead we added some clarifications of
why we conducted this analysis (lines 383-388):



“The primary objective of this analysis was to test and demonstrate the model's transferability to
regions with complex terrain and lacking in-situ SWE data. We assume that if the extent of the
simulated SWE aligns well with the remote-sensed snow cover, then the simulated SWE is likely to
contain less uncertainty. This assumption is also based on fact that remote sensed snow cover is
increasingly used for parameter calibration or uncertainty reduction in snow modules of
hydrological models (e.g. Parajka and Bloschl, 2008; Gyawali and Bardossy, 2022; Tong et al., 2022;
Di Marco et al., 2021)."

Section 4.1
L312 Reference error.

We apologize for this error, the missing part was intended as a reference to Figure 10. We
corrected this in a new version of the manuscript and appropriately introduced Figure 10
in the text (lines 411-412).

L315 Could the relatively low contribution of the heat-insolation index be possibly
explained by an unsufficient variability of this predictor in the training dataset ?

Yes, this is what we intended to state. We revised the sentence making this message
clearer (lines 421-424).

In mountainous areas, shadows and slope inclinations are a major factor to explain
melting. But | assume that all observations correspond to flat areas, and maybe the
variability of shadows in the SNOTEL network is neither representative of the variability of
topographic conditions in mountains. This is important to discuss as it could limit the
possibility to apply this algorithm on areas with complex topography.

We appreciate these comments and suggestions. Indeed, the SNOTEL stations utilize
flatbed pillows, but are primarily situated in mountainous regions. However, the
introduction of heat-insolation index (CHILI) helps to capture effects and variability of
terrain-induced shadowing. Despite of this, we have introduced the following passage
into the limitations section (lines 508-512):

"As discussed in the Section 4.2and illustrated in Figure 11a, the model demonstrates relatively
better performance in mountainous areas compared to lower elevations. However, the training
dataset used to elaborate the model may be less representative of locations with lowest CHILI
indices (Figure 2d). Lower CHILI indices often correspond to sites significantly shadowed by terrain
or situated at higher latitudes or both. This discrepancy may be an additional source of model
uncertainty. ”

Section 4.2



| am wondering how much this conclusion is affected by the choice of NSE to quantify
errors. Indeed, as this score is highly influenced by the existence of a seasonal cycle, it is
rather normal to get better scores with deeper snowpacks that exhibit a very strong
seasonality than on sites with more intermittent snow cover. Considering other scores (for
instance a Root Mean Square Error), | would not be surprised that stations with the poorest
performance would be reversed. Can you comment on that topic ?

Thank you for your guiding questions. We agree that NSE alone may not adequately
distinguish between cases of ‘good' and 'poor' model performance, and use of different
metrics would likely result in varying compositions of these two performance groups. We
tested normalized RMSE as a metrics but got similar results in terms of ‘poor’ and ‘good’
simulations across the stations. We therefore haven't amended this analysis much, except
a minor modification: instead of using a threshold to delineate between the ‘poor’ and
‘good’ simulations (NSE less or greater than 0.7), we compared the lowest and highest
quartiles of NSE across the stations (lines 430-432).

L375 The authors say that « GEMS also addresses the equifinality issue that is pertinent to
hydrological and snow modelling. » but the only parameter they have introduced (Ts
threshold) clearly raises a very strong equifinality resulting in possible overcalibration to
compensate various possible errors including snow drift, precipitation undercatch, etc.

We assume that this sentence is now justified, considering the preceding explanation of
how Ts works in the model, how it differs from temperature-based partitioning methods,
as well as our intention to stick to the default Ts in our recommendations. In this sentence
we refered to the challenge of calibrating multiple parameters in hydrological and snow
modelling. This sentence is now a bit modified and expanded with the following
clarification (line 537-543):

“In addition to avoiding computationally demanding calibration, GEMS may also alleviate the
challenge of equifinality of model parameters that is pertinent to modelling environmental systems.
The issue of equifinality is particularly pronounced in hydrological modeling, where even relatively
simple snow modules require the calibration of at least two parameters: the precipitation-snow
threshold and the degree-melt coefficient. Considering that there are many other parameters for
remaining components of a hydrological model, it would be easy to end up with multiple
combinations of optimal parameters. In contrast GEMS model shows generally plausible
performance in diverse climatic and topographic conditions upon using the default value of Ts.”

L388 « GEMS can, for instance, provide information for the parameterization of physics-
based models, e.g. precipitation phase partitioning and its elevational dependence ». |
don’t see how the results presented here suggest this conclusion and considering the
strong risk of overcalibration of this Ts value (leading to clearly unrealistic values below -
5°C), I am not convinced at this point that GEMS could help me to discriminate between
snow and rain.



As mentioned earlier, we acknowledge that calibrating Ts poses a risk of error
compensation, though considering how Ts operates in the model, the extent of
overcalibration maybe not as pronounced as it would be with traditional temperature-
based thresholds. Despite this, we recognize that the statement in this sentence may have
been too assertive and requires further verification, therefore we removed this sentence
from the manuscript.

There is a section 5.1 but not any section 5.2. Maybe a subtitle for the first part of Section
5 is missing.

As it was also recommended by Reviewer 2, we deliniated the section into two separate
sections in a new version of the manuscript: section 5 ‘Model Limitations’ and section 6
‘Summary’.

L393-400 The authors discuss the limitations of their approach relatively to forest areas
but they seem to have intentionnally remove the 3 forest sites of the ESM-SnowMIP
dataset from their evaluations. This should at least be discussed if there is a valid reason
for that. But even if the model skill is lower on the 3 Canadian forest sites, | would have
included these sites in the evaluations to provide concrete results to support this
discussion.

Indeed, we haven't evaluated the model on the three Canadian sites but because at that
time we couldn't precisely locate the sites to determine CHILI parameters. We have
included these sites for the model evaluation in the next version of the manuscript (lines
354-357):

“The performance of the model exhibited notable disparities across three forested locations in
Canada (OAS, OBS, OJP). In comparison to other sites, the model's performance at these sites was
relatively inferior, indicated by NSE values ranging between 0.44 and 0.66 and maxSWE errors
spanning from 15% to 30%. This observation suggests a diminished performance of the model in
environments characterized by dense canopy interception. ”

L408-410 Unfortunately, blowing snow can be an important process even at large scale
especially in polar regions. So large scale applications of the system may still be affected
by this limitation.

We removed that part of the sentence.

The discussion do not compare the skill of this approach with the skill of physical models
while similar metrics are provided at the same sites in Ménard et al., 2021, and other



evaluations are also available in the literature for snow cover extent. | think this would be
important to consider as well.

We appreciate this suggestion. We have compared the skill of the model in terms of NSE
with that of physical models that participated in ESM-SnowMIP, using model simulations
presented in Krinner et al.,, 2018. It should be noted however that this comparison has
some limitations, since participants of the ESM-SnowMIP study didn't have possibility to
adjust model parameters, rain-snow transition in particular. Respective new exerts include
the following:

Lines 358-364

"For reference, Table 4 also provides the NSE of simulations produced by models that participated
in ESM-SnowMIP. With the exception of the SNB site, ESM-SnowMIP simulations had lower NSE
than those of GEMS simulations. However, a direct comparison between GEMS and ESM-SnowMIP
simulations is not possible because evaluation data were not provided to the ESM-SnowMIP
participants in advance and rain-snow transitions were prescribed in the driving data (Ménard et al.,
2019). ESM-SnowMIP participants thus had no opportunity to enhance model performance by
adjusting parameters.

Lines 532-536 in the Summary section:

"The model evaluation suggests that GEMS achieves comparable performance to physical snow
models, as evidenced by comparing with simulations from ESM-SnowMIP. A more appropriate
comparison might necessitate adjustment of physical model parameters, which was not investigated
in ESM-SnowMIP. Nevertheless, the evaluation outcomes allow us to conclude that, at the very least,
GEMS with its default TS parameter exhibits superior spatial transferability compared to physical
models with unadjusted parameters.”

The discussion or final summary also lack comments about the strengths and weaknesses
of their results compared to the literature cited in the introduction applying machine
learning to predict snow mass.

We have added our perspective on the strengths and weaknesses of our model approach
compared to other cases of snow models utilizing machine learning (lines 555-577):

"Machine learning is gaining more space in snow modelling, with existing applications
predominantly focusing on snowpack interpolation or the detection of its instantaneous state
through the assimilation of ground-truth and active satellite radar data. GEMS provides a modelling
framework similar to traditional snow modelling approaches, by simulating snowpack in a
temporally progressive manner and leveraging climate and topographic inputs commonly used in
snow models. Moreover, the revealed variable importance aligns with the general physics governing
how climate affects changes in snowpack during its accumulation and ablation phases. Some recent
studies employing machine learning methods (Vafakhah et al., 2022; Duan et al., 2023) also simulate
snowpack in a temporal manner and demonstrate robust performance, though spatial extrapolation
limits of those algorithms remain unclear. Another recent study (Wang et al, 2022) presents



promising results for a deep learning-based approach, showcasing its superior spatial transferability
compared to enhanced temperature index model across the United States. Nevertheless, the
applicability of these models beyond their targeted regions may be questionable due to
dependance on climate inputs or locally-specific data that may not be available elsewhere. From
these perspectives, GEMS offers a higher degree of parsimony in terms of required input variables
and, more importantly, a proven ability to generalize outside of the training domain.

We have evaluated several other data-driven techniques for the model development, including
multivariate linear regression, Gaussian process, Random Forests, and Gradient Boosting Machines
(not shown here). When evaluating on the training dataset, the performance of most models was
either lower or equivalent to SVR; however, even in the latter case their accuracy on the evaluation
dataset was worse. Experiments in other fields indicate that SVR has relatively better extrapolation
potential on unseen data (Horn and Schulz, 2011; Kim and Kim, 2019), which may explain why it
outperformed other algorithms. We haven't examined neural network algorithms since they take
more computer resources during training, and evidence suggests that they tend to underperform
relative to other machine learning ML techniques when applied to tabular data (Borisov et al., 2022;
Shwartz-Ziv and Armon, 2022). To make definitive judgments with regard to performances of
different machine learning algorithms, however, would require a more extensive intercomparison
experiment that is outside the scope of this paper.”

Furthermore, the outputs of the model are currently limited to SWE while several snow-
sensitive applications require more variables (e.g. surface temperature for NWP and
climate modelling, snow internal properties for remote-sensing retrieval algorithms or
avalanche forecasting). This limitation should also be mentioned with possibly discussions
about the feasability to extend this approch to more variables.

Thank you for this suggestion. We have included this limitation and complement it by
presenting our perspective on the snow processes to which our approach may be
applicable (lines 544-550):

"One difference between GEMS and physics-based models lies in the number of outputs they
generate. While GEMS is specifically designed for simulating only SWE, comprehensive physics-
based snow models produce a broader spectrum of outputs that provide valuable insights into other
snow properties. We assume that machine learning could become helpful in modelling some of
these snow properties. For example, previous studies have shown how simple empirical models can
effectively derive snow depth from SWE measurements and vice versa (Aschauer et al., 2023; Hill et
al., 2019). We assume that a similar approach to GEMS could be scalable for estimating snow depth
by incorporating additional variables such as snow age etc. ”



RC2: Anonymous Referee #2

The paper addresses an important and compelling topic: the issue of choosing an
adequate snow modelling scheme in the context of scarce data availability. This topic is
particularly relevant for many areas of the world where instrumentation and monitoring is
rather poor, yet the population depends on meltwater resources. The authors presented
a machine learning-based model that requires simple and/or commonly available input
data and no calibration. The model showed good performances in reproducing SWE both
in the subset of stations not used for calibration and in two other remote, orographically
complex and scarcely monitored stations. The model structure, training, validation and
limitations are well explained and clear. The validation is extensive and considers point-
wise and large-scale cases.

My suggestion is a major review. The motivations are the following. Generally, throughout
the paper, | often found the literature review either insufficient or even absent. The
description of the data used is scattered throughout the text, which doesn't help clarity.
Figures often lack axes ticks, labels and/or units.

Dear Reviewer

We are grateful for your valuable feedback and comments. In response, we have enhanced
the literature review and expanded the discussion of the important aspects that you have
highlighted in your comments both here and below. We agree with your observation that
the first version of the manuscript presents a mixing of data and methods, and we have
reorganized them for clarity. Additionally, we redesigned incomplete figures and improved
their overall organization, as you've suggested in your comments.

The comments are the following:

--- MANUSCRIPT -

0. General comments:

0.1 I suggest adding a comprehensive “Data” section where the authors can (a) list all the
data they used, separating them in subsections for model training and validation, point-



wise and large-scale; (b) roughly describe the geography/orography/data availability for
the datasets they chose.

As requested, we have gathered information on data used for both model training and
evaluation under a separate section “Data”, and provided brief details on climate and
topographical characteristics. Sources of all used data had been previously indicated in
the Data availability section.

0.2 | suggest restructuring the final part of the paper with a freestanding “Model
limitations” section and a "Conclusions” section encompassing and enhancing what is now
in section “Summary”.

As requested, we have separated ‘Model limitations’ into standalone section, and added
“Summary and Conclusions” section to the manuscript.

0.3 | suggest a re-reading and improvement of the English language, there are
syntax/grammar errors in the text and the structure of some sentences is confusing (see
comments for each section). Please check that the used tense is consistent along a section
or paragraph.

0.4 Notations: throughout the text, figures and tables, please make the Celsius degree
symbol consistent (°C); correct the Elevation unit from m to m a.s.l; when a quantity is
non-dimensional (i.e. NSE), please use the non-dimensional unit ([-]).

We have edited some sentences across the text according to your comments per each
section below, and corrected unit notations accordingly.

1. Introduction

| suggest rewriting the Introduction by significantly expanding the state of the art and
literary research, taking into account the following comments:

L30: Suggested citation: Beniston M. (2008), Extreme climatic events and their impacts:
Examples from the swiss alps. In: Diaz HFRJ (ed) Murnane, climate extremes and society.
Cambridge University Press. New York. USA. pp: 147-164.

Thank you for suggesting an appropriate reference for this sentence. We added a

reference to Beniston, 2008 in line 30

L31-39: This paragraph generally lacks references and examples on both kind of models;
| suggest providing a small literature review.



Thank you for this suggestion. We have added supporting references in line 39 (such as
Essery, 2020; Link et al., 2019) that provide descriptions of two types of snow models,
though we have not extended the text with particular model examples and their
description. In our opinion adding model examples and their descriptions will require new
extensive paragraphs which would divert a focus of the of the introduction.

L37: “... research often opt for relatively simpler conceptual TI models...” references and
examples are needed.

We have added references to Hock, 2003 and Ohmura, 2001 for this sentence.

L40-41: | find this sentence too general and poorly supported by literature (the authors
only provide one example). For example, in this recent study https://doi.org/10.5194/hess-
26-3447-2022 the authors showed how a PB snow-hydrological model substantially
outperformed a conceptual TI model. Both models were applied on the same spatial
domain (catchment Dischma), and the TI model completely missed the snowmelt-induced
discharge timing (see Figure 7 d-e).

Thank you for pointing at the issue of insufficient references. We have amended the
sentence and supplemented it with the following references (lines 43-45):

"Despite the differences in the number of internal processes represented and the corresponding
data requirements, both types of models produce similar results when calibrated and applied to the
same spatial domain and same climatic conditions (Kumar et al., 2013; Bavera et al., 2014;
Magnusson et al., 2011; Shakoor et al., 2018).

In addition, we added a new sentence into the paragraph (lines 48-50):

“Models calibrated to the same conditions in the current climate can produce different predictions
under climate change (Carletti et al.,, 2022).”

L51-60: | find this paragraph dedicated to the state of the art preceding the authors' work
too short and general. | suggest expanding this section by better detailing the findings of
previous works (upon which the authors rely for their work) and the critical issues of the
previous works (which the authors seek to address in this paper).

We have expanded the overview of machine learning applications for snow modelling with
the following passage (lines 61-70):

“In terms of ways in which machine learning (ML) has been applied for snowpack modeling, the
respective research studies can be grouped into several main approaches. One common approach
is estimating spatial distribution of snowpack by applying ML-supported interpolation of sparse
snow observations and using topographical features, meteorological and satellite data (Broxton et
al., 2019; Mital et al., 2022). Other studies have explored potential of satellite radar data for direct
detection of instantaneous properties of snowpack (Santi et al., 2022; Daudt et al., 2023). In cases
where several gridded snow products are available, ML can be employed for a better prediction



through assimilation of multiple estimates or bias-correction (Shao et al., 2022; King et al., 2020). A
few recent studies managed to apply ML in a manner consistent with traditional snow models,
explicitly modeling snow mass accumulation and melt dynamics (Vafakhah et al., 2022; Duan et al.,
2023; Wang et al., 2022). However, in many instances, most of the noted approaches also rely on is-
situ observations or extensive set of regional reanalysis variables, which again restricts their wider
applicability due to unavailability of such data in many regions. Furthermore, the ability of pretrained
machine learning models to generalize to new geographic and climatic domains remains another
challenge; machine learning models often perform less well outside the data distribution used to
train them (Chase et al,, 2022; Hernanz et al., 2022).”

2. Model description

The default threshold temperature value for rain/snow separation is set to -1 °C. Here, it
would be necessary to justify this choice, or at least provide references, because this tuning
parameter can vary a lot in snow/hydrological modelling (see for example
https://doi.org/10.3390/cli9010008 for a TI model and https://doi.org/10.5194/hess-26-
1063-2022 for a PB model).

Thank you for this suggestion. We have added additional description with regard to Ts
threshold, such as the following (lines 274-280):

"Here it is important to note that the TS constraint in the GEMS model differs from classical
temperature-based partitioning methods where the threshold defines precipitation in a binary way
as either 100% rainfall or 100% snow. The model simulates snow-precipitation partitioning only until
the temperature drops below TS, at which point any precipitation is regarded as 100% snow. For
example, when the average temperature (TAVG) is 0°C, using the assimilated statistical relationships
the model will likely simulate some portion of precipitation as snowfall. As illustrated in the Figure
5, Error! Reference source not found. at TAVG around of 0°C, the model, on average, simulates
around 75% of precipitation as snowfall. Depending on other input variables this ratio varied from
approximately 25% to as high as 95%."

L82-85: “... and is available as a set of functions [...] respectively” If the subject is “a set of
functions”, then verbs should be “calculate” and “"generate”. Otherwise, the sentence as it
is is unclear and | suggest rephrasing, dividing or better explaining.

Thank you for pointing at this error. We have corrected the sentence accordingly.

L110: “As it was noted above, the SVR model has two tunable parameters: cost and
gamma...” Actually, gamma is never mentioned. The authors mention “sigma” on L99.
Please clarify.

We apologize for this confusion. We meant the same parameter, ‘gamma’, which is
sometimes referred in literature as ‘sigma’. We now use term ‘gamma’ throughout the new
version of the manuscript.



3. Model validation

L160: Please cite https://doi.org/10.1016/0022-1694(70)90255-6

Thank you for suggesting the reference. We included a reference to Nash and Sutcliffe
1970 (line 273)

L180: As mentioned in Comment 0.1, Mendoza and Western Pamir are not mentioned
earlier in the text as data used for validation and are only introduced here.

Introduction to Mendoza Andes and Western Pamir regions is now moved to a new
section ‘Data’ (lines 202-210).

L199-200: Do the authors refer to Figure 47 If so, Figure 4 needs to be mentioned. See the
comments about Figures.

We appreciate this suggestion. We have introduced all figures in the text in the new
version of the manuscript.

L202: “.. the rain-to-snow transition modelled using the metadata of the 520 validation
SNOTEL stations.” Do the authors mean that there are observations/data on the transition
between rain and snow for all the 520 stations? And how was that used in modelling?
Please clarify.

The main motivation behind this analysis is to have an understanding how the model
simulates precipitation-snow partitioning during snow accumulation phase. The following
new exert provide additional details in this regard (lines 255-262):

"Since the SNOTEL observations do not contain explicit information on precipitation-snow
transition, we decided to use a sample of the dataset to simulate the transition depending on climate
inputs (temperature variables) and topographical characteristics (e.g. elevation). More specifically
we have filtered the SNOTEL observations that closely fall on this phase by selecting observations
that meet the following non-exhaustive main criteria: 1) observations for October or November
when precipitation is non-zero 2) average temperature (TAVG) is less than 10 or higher than -10°C,
3) accumulated SWE is less than 20mm. We then run the model using the obtained sample of
observations and estimated solid fraction of precipitation simulated by the model, i.e. amount of
dSWE estimated by the model in respect to precipitation amount.”

L206: “... does not exceed 100%" do the authors mean does not reach 100%?
Yes, indeed, 'not reach 100%' is more appropriate here and we have rephrased this part

accordingly. Thank you for this correction.

L210: | suggest justifying this sentence with a plot or a better explanation. Again, if this
information is contained within some metadata, this needs to be explicitly stated.



Unfortunately, explicit rain-to-snow transition thresholds are not provided in the SNOTEL
data. We assume that the updated description of Tsand how it differs from the traditional
temperature threshold (lines 274-280 and Figure 5) offers some explanation. Moreover,
the default Ts threshold exhibits satisfactory performance across the majority of validation
stations, encompassing both SNOTEL and ESM-SnowMIP sites.

L241: How did the authors calibrate Ts? Please clarify.
We have included the following description into the text (lines 309-310):

"We calibrated Ts for each of the stations with the objective of maximizing the Nash-Sutcliffe
Efficiency of the model's simulations with respect to observed SWE, and bounded the range of
calibrated TS to -5 to +5 °C."

L255-256: Can the authors verify this assumption? Shortly after, in the text, the authors
write the same for the SnowMIP station SNB, so | assume it is possible?

Thank you for these guiding questions. Here we made an assumption that simulations at
larger margin of adjusted Ts likely led to overcalibration compensation, also implying a
model limitation for locations susceptible to snow drifts. We now realize that beside the
snow drifting, there might be several other contributing factors leading to overestimation
of SWE, such as sublimation, effect of dense canopy, and rain-on-snow events.
Unfortunately, we can not delineate/ verify these factors within the scope of this
manuscript, but we believe they should be noted since they also define limitations of
model. Therefore, we rewrote this passage in the following manner (lines 320-326):

"While the median of the adjusted TS values for all stations agrees with its default threshold (-1 °C),
the density distribution also shows a high frequency of calibrated Ts resulting at the lowest bound
of -5 °C (Figure 7f). This suggests that, in many cases where calibrated Ts values approach the lowest
boundary, the model simulations might have been overcalibrated, resulting in error compensation.
The overestimation of SWE at these locations can be attributed to several factors that the model
does not account for, including effect of dense vegetation, wind induced snow-drift, sublimation,
and rain-on-snow events which may be frequent phenomena in the mountain areas (Li et al.,, 2019;
Boniface et al., 2015; Kirchner et al., 2014; Sexstone et al., 2018).”

In addition, we have also noted these limitations in the “Model limitations” section.

L292: The authors should explain the meaning of “class balance accuracy”.

We have supplemented this sentence with a brief explanation of class balance accuracy
and reference (lines 391-393):

"Overall pixel-wise accuracy of snow/no-snow detection for both regions was 92%, while the class-
balanced accuracy, which takes into account the balance of class distribution (Branco et al., 2016),
was 87% on average.”



4. Model sensitivity and uncertainty assessment

L305: Is there a reference for this method? If so, | suggest adding it.

Yes, this method is explained in Fisher et al., 2018 and Greenwell et al., 2018. We have
added these references into the sentence (line 409).

L311: “.. depending on the phase considered ...” Do the authors mean “precipitation
phase”? Please clarify. Also, the reference is missing.

We refer to two general phases of snow metamorphosis - snow accumulation and snow
ablation. We edited the sentence in the revised version of the manuscript (lines 409-411):

"We applied the permutation-based feature importance analysis on the entire training dataset of
the independent SNOTEL stations, as well as its subsamples representing snow accumulation or

melt phases”

Our apologies for the missing reference; it was supposed to be a cross-reference to the
Figure 10 further down.

L316: What do the authors mean by “relative comparison”? Please clarify.

In the given context, "relative comparison” means that the importance of those
topographic variables is made in relation to other variables used by the model. We rewrote
this line in the text to make it clearer (lines 418-420):

"At first glance, the results suggest that topographic variables are among the least influential, but it
should be noted that their significance is assessed in relation to other variables, some of which, such
as precipitation and temperature, are more fundamental for accurate snowpack estimation (Glinther
etal, 2019)."

L349: Please refer to Table 1 when addressing the different model settings.

A cross-reference to the Table 1 has been included in the line 456

L355: What do the authors mean by “when outliers are controlled for”? Please clarify.

The boxplots in Figure 12 show extreme limits, which exclude outliers. More specifically,
the minimum and maximum limits of the boxplots are determined by (1st Quartile - 1.5 *
IQR) and (3rd Quartile + 1.5 * IQR), where IQR represents the interquartile range (Hu,
2020). To prevent confusion, we have removed the phrase 'when outliers are controlled
for' from the sentence.

5. Summary

L375: The concept of equifinality is only addressed at the end of the paper but it is never
mentioned earlier. The most important papers on equifinality are not cited (see



https://doi.org/10.1016/0022-1694(89)90101-7, https://doi.org/10.1016/0309-
1708(93)90028-E, https://doi.org/10.1016/j.jhydrol.2005.07.007). ~ If = overcoming
equifinality is one of the aims of the paper, this needs to be addressed in the Introduction
and also in the discussion of the results. And additionally, how does the model improve
equifinality? This needs to be explained and justified. The results shown in Figure 12, for
example, seem contradictory to this sentence, because there the authors show that one
can obtain similarly good model performances with different sets of parameters.

Thank you for suggested references. In this sentence we rather refer to the challenge of
calibrating multiple parameters in hydrological and snow modelling. We have briefly
introduced issue of equifinality in the introduction (lines 39-42):

"The two types of snow models usually require adjustment of internal parameters that characterize
embedded processes. Depending on the complexity of a model, calibrating its parameters can
become a computational burden and introduce challenges related to the equifinality of model
parameters (Beven, 1993, 2006; Glnther et al., 2020)."

We have also corrected and expanded respective exert in the “Summary and Conclusions”
section with the following (lines 537-543):

“In addition to avoiding computationally demanding calibration, GEMS may also alleviate the
challenge of equifinality of model parameters that is pertinent to modelling environmental systems.
The issue of equifinality is particularly pronounced in hydrological modelling (), where even relatively
simple snow modules require the calibration of at least two parameters: the precipitation-snow
threshold and the degree-melt coefficient. Considering that there are many other parameters for
remaining components of a hydrological model, it would be easy to end up with multiple
combinations of optimal parameters. In contrast GEMS model shows generally plausible
performance in diverse climatic and topographic conditions upon using the default value of TS. “

Figure 12 shows performance of four GEMS models that differ in a number of required
inputs, but contain only a single parameter (Ts) which can be adjusted. All four models’
performances depicted in figure 12 were obtained by using the default value of the Ts (-
1°C)

L383-385: This sentence is not clear. What do the authors mean by “instrumental™?

We edited the sentence (line 525), by replacing ‘instrumental’ with 'helpful’. Here we
meant that “balance (in) complexity, data requirement, and transferability... could be helpful
for operational monitoring and hydrological modelling in data scarce domains.”

L385: Similarly for the equifinality, the problem of finding empirical relations and
parametrizations is never addressed before in the text. If this is one of the aims of the
paper, it needs to be addressed in the Introduction accompanied by proper references (as
parametrizations of different kinds are already widely used in snow/hydrological
modelling).



Thank you for raising this. We now recognize that the statement in this sentence may have
been too assertive and requires further verification. We have removed this sentence from
the manuscript.

Please consider mentioning the undercatch selection issue within the Model limitation
section.

By filtering observations for precipitation undercatch, we assume that the evaluation
dataset is comparatively free of this issue. However our selection algorithm also filtered
records where inconsistencies between accumulated precipitation and SWE may be
reasoned by wind-induced snow-drift. Disentangling these two phenomena is challenging
without further research. The model cannot capture/simulate snow-drifts, we
acknowledge this limitation in lines 441-443 and explicitly stated it in lines 498-500.

FIGURES

General comments:

When a figure is composed by different subplots, as it is often the case in this paper,
something that enhances clarity very much is naming each subplot differently, for example
with letters like (a), (b)... And then, throughout the text, referring to each subplot like Figure
5a, Figure 5b etc.

| suggest improving the figure referencing generally and throughout the whole text: often
the authors describe the results referring to specific subplots of a same Figure by only
mentioning the general Figure once at the beginning of the paragraph. Referring to each
specific subplot before introducing each finding highlighted by the subplot increases
clarity significantly.

Thank you for these recommendations. We have reorganized the figures accordingly, and
ensured they are properly introduced and referenced in the text.

Specific comments:

Figure 2: Axes ticks and labels (latitude, longitude) are missing, legend is missing.
Figure 3: Axes labels are missing.

Figure 6: Left plots: missing adimensional symbol for NSE ([-]), missing unit for snow
meltout date error (days?), missing y-axis label. Right plots: Missing axes ticks and labels
(latitude, longitude).

Figure 7: Same as above.

Figure 8: y-axis label and units are missing.



Figure 11: "Latitude” is spelled wrong, missing units, missing y-axis ticks and labels.

Thank you for pointing out at these deficiencies. We have corrected these figures
accordingly.
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