
Dear Dr. Matthieu Lafaysse,  

Thank you much for your review and valuable comments. Below you will find your 
referee comments (in black) and our responses (in blue). 

With regards, 

Atabek Umirbekov, on behalf of all authors 

 

General comments 

Umirbekov et al. present a new machine learning approach to simulate snow mass 
with parcimonious data input and an extremely low numerical cost. The evaluation 
framework is really interesting as it includes independent data removed from the 
calibration dataset, but also the state-of-the-art ESM-SnowMIP dataset including 
challenging climate and environment conditions beyond those of the calibration 
dataset, and finally a spatialized application with more uncertain forcing data and 
evaluation data derived from remote sensing. Of course, the potential of machine 
learning has to be considered in snow modelling and I think this paper can be a 
significant contribution on that topic. The results clearly challenge physical models, 
even if obviously the output variables are not sufficient for all applications. 

Nevertheless, I think the description of methods and results is sometimes a bit too 
fast in the current version of the manuscript and that some details are missing for an 
accurate understanding and interpretation of results. In general, figures are not really 
introduced in the main text. I would also have expected more in-depth discussion of 
the advantages and disadvantages of this approach compared to physical 
approaches and other machine learning approaches in the light of presented results 
and previous literature, and also discussions about the possibility to disentangle 
errors due to the forcing and to the algorithm itself. Maybe, the chosen structure of 
the paper that mixes results description and results discussion is partly responsible 
for this sometimes incomplete discussion. Finally the choice to try to recalibrate the 
Ts parameter is sometimes confusing especially when it’s done on evalution datasets, 
as it leads to unrealistic values and overcalibration. 

I also have some specific comments or questions below that can probably be 
addressed rather easily by the authors during the revision process. 



We appreciate your overall feedback on the manuscript and are grateful for your 
valuable comments. In response to your suggestions, we will incorporate a 
comparison with physics-based snow models using proceedings from the SnowMIP2 
study (Krinner et al., 2018), and include a discussion of the advantages and 
disadvantages of the model in comparison with other physical snow models. This 
discussion will be also complemented with comparisons to other machine learning 
applications in snow modeling. We will introduce all figures in the main text for better 
context. Furthermore, we will restructure the manuscript to ensure that results and 
their corresponding discussions are appropriately organized in their respective 
sections. Finally, we will provide a more detailed description in the main text 
regarding the precipitation-snow partitioning and the 'Ts' parameter to prevent any 
confusion with traditional temperature-based partitioning methods. 

 

Detailed comments 

Section 2.1 The choice of SVR relatively to other machine learning algorithms is not 
discussed. I would suggest to add a quick summary of advantages and disadvantages 
compared to the most classical algorithms available in literature (random forests, 
convolutional neural network, simpler regressions, etc.) 

Thank you for this suggestion. We will enhance the introduction by incorporating a  
brief summary of machine learning application to snowpack modeling. In addition, 
we suggest to include a brief paragraph into the discussion section summarizing 
some our experiments and hypotheses. This passage would include (but might be 
not limited to) the followings: 

 “We have evaluated several other data-driven techniques for the model development, 
including linear regression, Random Forests, Gradient Boosting Machines, Gaussian 
process (not shown here). When compared to the training dataset, the performance of 
most models was equivalent; however, their accuracy on the evaluation dataset was worse. 
Experiments in other fields indicate that SVR has relatively better extrapolation potential 
on unseen data (Horn and Schulz, 2011; Kim and Kim, 2019), which may explain why it 
outperformed other algorithms. We haven't examined neural network algorithms since 
they take more computer resources during training, and evidence suggests that they tend 
to underperform relative to other machine learning ML techniques when applied to 
tabular data (Borisov et al., 2022). To make definitive judgments in this regard, however, 
would require a more extensive intercomparison experiment that is outside the scope of 
this paper.”  
Can you define more explicitely i, j, N, xi, xj, X ? 



We will incorporate more explicit notations for the variables and parameters denoted 
in the main formula (1). 

I understand from Fig.1 and Eq. 2 that when temperature is below the -1°C threshold 
and precipitation is zero, then dSWE is always equal to 0. Is that correct ? How often 
does this assumption fail in the training or evaluation dataset? Does this imply an 
intrinsic limitation of GEMS for transferability on steep slopes where the surface 
energy balance can be positive even at negative temperatures ? (I think it does.) 

Thank you for these guiding questions. Yes, when temperature is below the -1°C 
threshold and precipitation is zero, dSWE will be automatically set by the model code 
to 0 mm. Due to the temperature threshold and not using/estimating solar balance, 
the model does not capture snow melt and sublimation which. We recognize this as 
one of the model limitations (particularly compared with most energy-balance snow 
models). We will note this limitation in the respective part of the manuscript 
accordingly.    

Section 2.2 

The authors say they « fine-tuned the hyperparameters so that the model produces 
similar levels of accuracy when applied to observations from the same stations for 
2019 and 2020. » I understand the general idea but the detailed procedure is not 
accurately described. Can you describe the detailed protocol for this « fine-tuning » ? 

We will complement the respective lines of the manuscript with the following details: 

 ”The hyperparameter calibration process involved an exhaustive 'grid-search' technique, 
which systematically explored all possible combinations within predefined parameter 
ranges. Ultimately, we selected the hyperparameter configurations that resulted in the 
lowest root mean squared error between simulated and observed dSWE during both model 
training on observations from 2017-2018 and its testing on observations from 2019 and 
2020.”  

As solid precipitation measurements are prone to large measurement errors and is 
one of the main predictor of the model, I would have expected more details about 
precipitation gauges used in the SNOTEL network, procedures applied to account for 
undercatch, and if possible estimated uncertainties. 

We suggest to include the following passage into the Data section: 



“SNOTEL stations primarily utilize tipping bucket-type precipitation gauges, which are 
reported to have an accuracy range between 2% and 5%, depending on the type (USDA, 
2010). It is also recognized that precipitation gauges are susceptible to solid precipitation 
undercatch, especially when snowfall occurs in windy conditions (USDA, 2014). Scalzitti et 
al., 2016 provide a comprehensive review of the issues associated with precipitation 
undercatch, highlighting reported undercacth ranging from 11% for snowfall under 
2m/sec wind speed to more than 30% during intense snowstorm events.” 

 

Section 3 I think « Model evaluation » would be a more appropriate title than « model 
validation » as a model can never be considered as fully validated. 

Thank you for this suggestion. We agree and will change the section to “Model 
evaluation”. 

The authors say « we excluded stations that exhibit precipitation undercatch, which 
we formulate as when SWE accumulated by March is greater than the accumulated 
precipitation during October to March. ». I would expect all stations to be affected by 
precipition undercatch and total SWE to be always higher than raw precipitation 
measurements. Do you apply a specific threshold to only eliminate major 
undercatch ? Or do you use precipitation timeseries that are already corrected for 
precipitation undercatch following WMO recommendations ? My misunderstanding 
is probably linked to the lack of details in Section 2.2 as previously mentioned. 

Then, was this selection procedure also apply to the training dataset ? If not, why ? 

We appreciate these comments and questions. We agree that this part needs more 
clarifications, and suggest to include some additional explanatory exerts. These may 
include (but are not limited to) the following: 

“While SNOTEL stations may be susceptible to precipitation undercatch, especially during 
intense snowfall events and high winds (Scalzitti et al., 2016), it is essential for machine 
learning to have accurate training data. To ensure data accuracy, we cleaned the training 
dataset by removing observations with inconsistencies between daily precipitation and 
snow mass accumulation. These inconsistencies refer to cases when the daily increase in 
SWE exceeded the reported daily precipitation.  

The selection approach differed for the evaluation dataset because we aimed to retain as 
many stations as possible for evaluation and besides that the model requires complete 
daily time series without missing observations.  We therefore used aggregated 



precipitation sums from October to March to compare with accumulated SWE by March. 
This approach enabled us to include more stations in the evaluation dataset while 
excluding only those hydrological years that exhibited inconsistencies between these 
variables. When using this filter, we did not set any specific threshold for the magnitude of 
inconsistencies, nor did we make corrections to the precipitation time series.” 

It should be also noted that we included a criterion that required at least five 
hydrological years of observations for a station to be part of the evaluation dataset 
(line 150). Consequently, some SNOTEL stations were excluded based on this specific 
requirement. 

Section 3.1 

L193 I would suggest to start by a sentence presenting the Figure before providing its 
interpretation. 

Yes, we will introduce the Figure in the text before its interpretation. 

In Figure 4 « actual » should be replaced by « observed ». Is there a reason to present 
the simulations in the X axis and not in the Y axis (that would be more common for a 
scatter plot) ? 

Thank you for pointing at this. We will replace ’actual” with “observed”. We will also 
swap current X and Y axis accordingly.  

In Figure 5, it is not immediate to understand what is represented because the 
caption is not self-sufficient and the description in the text is also too vague. The 
definition of TAVG should be remind in the caption. Then what does represent a 
single point ? A station and a date ? Then, this solid fraction of precipitation does not 
really appear in model description, neither in Figure 1 neither in the Equations, so it 
is difficult to understand how this diagnostic is obtained from the provided model 
description. The reason for providing this Figure is also unclear as finally these 
outputs are not really used as a fixed temperature threshold finally replaces the 
values obtained by the algorithm. This needs to be clarified. 

We appreciate your suggestion to incorporate additional clarifications into this 
section. We will add more details under the Figure caption. Furthermore, we will add 
more clarifications into the text, such as the following: 

“The Ts constraint differs from classical temperature-based partitioning methods where 
the threshold define precipitation in a binary way as either 100% rainfall or 100% snow. 



The model simulates snow-precipitation partitioning using its inherent learned algorithm, 
but only until the temperature drops below Ts. At that point, any precipitation is regarded 
as 100% snow. For example, when the average temperature (TAVG) is 0°C, the model will 
likely simulate a portion of precipitation as snow. As an example, as illustrated in Figure 5 
at TAVG at around of 0°C, the model is likely to simulate a significant portion of 
precipitation as snow (around 75% of precipitation) even if Ts is -1°C.” 

As for the other Figures, introducing quickly Figure 6 would be helpful before 
providing the results analysis. In the description of the results of Figure 6, detailed 
references to the subplots would help to follow results description. 

We will introduce the Figure 6 in the text.  

Isn’t the maxSWE score more representative of the quality of input precipitation than 
of the skill of the SVR model ? 

Yes, given the temperature threshold, we assume that maxSWE might be more 
representative of precipitation input accuracy. However, since a portion of the 
simulated maxSWE is influenced by the model's simulation of dSWE (at temperatures 
above the Ts threshold), we think it is reasonable to keep maxSWE as one of the 
metrics.  

L252-254 If removing stations with incorrect measurements is understandable, 
removing stations with snow drift should be avoided as snow drift is not a 
measurement error, it’s a natural process challenging to reproduce with physical 
models and also maybe with machine learning models, but the general ability or 
unability of any model to reproduce snow conditions should account for places where 
snow drift happen. 

Thank you for raising this concern. Instances where recorded maxSWE exceeds 
accumulated precipitation may be due to snow-drift, precipitation undercatch, or a 
combination of both factors. Unfortunately, attributing these inconsistencies to 
individual factors may require a separate research effort. We therefore had to 
exclude those stations from the evaluation, but we note the inability of the model to 
capture snow-drift in line 263-265 and explicitly state this as a model`s limitation in 
line 407-408.  

L255-256 You mean that an overcalibration is obtained due to error compensation 
between snow drift and rain-snow transition ? Could the sentence be more clear ? 



Thank you. Yes indeed, we meant that overcalibration may lead to error 
compensation.  We will make it more explicit in a new version of the manuscript. 

Section 3.3 

Again, an introduction of Figure 8 in the text would be useful. 

We will introduce the Figure 8 in the text.  

L266-267 It is not obvious which value of NSE should be considered as « acceptable ». 
Indeed, NSE is easily high when dealing with variables with a high seasonal cycle. 
What would be the NSE value of the daily interannual mean of observed SWE ? Is the 
0.7 value at Sapporo better than such a reference score ? 

We intended to refer to some categorizations of NSE across multiple studies (e.g. N. 
Moriasi et al., 2007). However, we recognize that these classifications, designed for 
hydrological models, might not be directly applicable for classifying snow model 
outputs. Therefore, we will revise sentences with qualitative classifications like this 
one. 

L269-270 This could be moved to the Method section 

We agree with and will implement this suggestion. 

L274-280 As it was already noticed with the SNOTEL dataset that local calibration of 
the Ts threshold leads to severe error compensations, and as the purpose of the 
application of the GEMS system on the ESM-SnowMIP dataset is to assess its spatial 
transferability beyond its training dataset, I am not really convinced of the interest to 
test again to recalibrate locally this threshold on each ESM-SnowMIP site. The 
conclusions that again this leads to overcalibration and errors compensations were 
rather expected, so I would suggest to remove thisanalysis. 

Thank you for these insights and the suggestion. We acknowledge that calibrating the 
Ts threshold may result in error compensations. However, the results do not provide 
insights into the extent of these compensations. As previously described, the Ts 
threshold in the model differs from the classical temperature-based threshold 
method. For instance, when Ts is set at -3°C and temperature (TAVG) is 0°C, the model 
will likely classify a larger portion of precipitation as snow (Figure 5). Nevertheless, we 
recognize that calibration in general might be inappropriate when assessing the 
spatial transferability of the model. Hence, we ´will remove the calibration analysis 
for Snow-MIP stations from the manuscript. 



Apart from model evaluation, calibration could still be useful during model 
application, particularly when local precipitation-snow partitioning patterns are 
known. In light of this, we suggest the following: 1) more explicitly acknowledge the 
risk for error compensation due to calibration in the model limitations section, and 
2) recommend adhering to the default value of -1°C unless the local precipitation-
snow partitioning patterns are known." 

Section 3.4 

Again an introduction of Figure 9 is missing. 

We will introduce Figure 9 in the text.  

My feeling is that the level of discussion in this section is not as advanced as for the 
evaluation on ESM-SnowMIP sites. How does this skill in terms of snow cover extent 
compare with physical models ? 

Thank you for this suggestion. We acknowledge that this section's content is not as 
comprehensive as other sections, particularly in terms of comparison with the 
performance of physical models. However, the extensive computational burden for 
such a comparison present a significant challenge to us. 

The primary objective of this section is to test and demonstrate the model's 
transferability to regions with complex terrain and lacking in-situ SWE data. We 
assume that if the extent of the simulated SWE aligns well with the remote-sensed 
snow cover, then the simulated SWE is likely to contain less uncertainty. This 
assumption is also based on fact that “remote sensed snow cover is increasingly used 
for parameter calibration or uncertainty reduction in snow modules of hydrological 
models (e.g. Parajka and Blöschl, 2008; Gyawali and Bárdossy, 2022; Tong et al., 2022; Di 
Marco et al., 2021).” 

We would like to suggest to elaborate on these points in the new version of the 
manuscript. 

Section 4.1 

L312 Reference error. 

This was intended as a reference to Figure 10. We will correct this in a new version of 
the manuscript and appropriately introduce Figure 10 in the text. 



L315 Could the relatively low contribution of the heat-insolation index be possibly 
explained by an unsufficient variability of this predictor in the training dataset ? 

Yes, this is what we intended to state. We will revise the sentence making this clearer.  

 In mountainous areas, shadows and slope inclinations are a major factor to explain 
melting. But I assume that all observations correspond to flat areas, and maybe the 
variability of shadows in the SNOTEL network is neither representative of the 
variability of topographic conditions in mountains. This is important to discuss as it 
could limit the possibility to apply this algorithm on areas with complex topography. 

We appreciate these comments and suggestions. Indeed, the SNOTEL stations utilize 
flatbed pillows, but are primarily situated in mountainous regions. As discussed in 
Section 4.2 and illustrated in Figure 11, the model demonstrates relatively better 
performance in mountainous areas compared to lower elevations. However, when 
examining the histogram of CHILI values in Figure 2, it becomes apparent that the 
training dataset may be less representative of locations with lower CHILI indices. 
These lower indices often correspond to sites significantly shadowed by terrain or 
situated at higher latitudes or both. This discrepancy poses an additional potential 
source of model uncertainty, a point we will further discuss in the section on model 
limitations. 

Section 4.2 

I am wondering how much this conclusion is affected by the choice of NSE to quantify 
errors. Indeed, as this score is highly influenced by the existence of a seasonal cycle, 
it is rather normal to get better scores with deeper snowpacks that exhibit a very 
strong seasonality than on sites with more intermittent snow cover. Considering 
other scores (for instance a Root Mean Square Error), I would not be surprised that 
stations with the poorest performance would be reversed. Can you comment on that 
topic ? 

Thank you for your guiding questions. We agree that NSE alone may not adequately 
distinguish between cases of 'good' and 'poor' model performance, and use of 
different metrics would likely result in varying compositions of these two 
performance groups. We assume that Root Mean Square Error may serve as a more 
suitable alternative for comparing the model performance across the stations. 
Consequently, we suggest to revisit the analysis in this section using RMSE (probably 
comparing lowest and highest quartiles) and incorporate it as an additional metric in 
the evaluation section. 



L375 The authors say that « GEMS also addresses the equifinality issue that is 
pertinent to hydrological and snow modelling. » but the only parameter they have 
introduced (Ts threshold) clearly raises a very strong equifinality resulting in possible 
overcalibration to compensate various possible errors including snow drift, 
precipitation undercatch, etc. 

We assume that this sentence is now justified, considering the preceding explanation 
of how Ts works in the model, how it differs from temperature-based partitioning 
methods, as well as our intention to stick to the default Ts in our recommendations. 

In this sentence we refered to the challenge of calibrating multiple parameters in 
hydrological and snow modelling. This challenge is particularly prominent in 
hydrological modeling, where even relatively simple snow modules require 
calibration of at least two parameters: the precipitation-snow threshold and the 
degree factor. Considering that there are many other parameters for different 
components of a hydrological model, it would be easy to end up with multiple 
combinations of optimal model parameters. We hypothesize that replacing the snow 
module with a model that is based on generalizable empirical relationships may help 
to reduce the equifinality issue, especially when employing conceptual hydrological 
modeling. 

 

L388 « GEMS can, for instance, provide information for the parameterization of 
physics-based models, e.g. precipitation phase partitioning and its elevational 
dependence ». I don’t see how the results presented here suggest this conclusion and 
considering the strong risk of overcalibration of this Ts value (leading to clearly 
unrealistic values below -5°C), I am not convinced at this point that GEMS could help 
me to discriminate between snow and rain. 

As mentioned earlier, we acknowledge that calibrating Ts poses a risk of error 
compensation, though considering how Ts operates in the model, the extent of 
overcalibration maybe not as pronounced as it would be with traditional 
temperature-based thresholds. Despite this, we recognize that the statement in this 
sentence may have been too assertive and requires further verification. We will 
remove this sentence from the manuscript. 

There is a section 5.1 but not any section 5.2. Maybe a subtitle for the first part of 
Section 5 is missing. 



As it was also recommended by Reviewer 2, we would like to separate section 5 into 
two separate sections in a new version of the manuscript: section 5 ‘Model 
Limitations’ and section 6 ‘Discussion’. 

L393-400 The authors discuss the limitations of their approach relatively to forest 
areas but they seem to have intentionnally remove the 3 forest sites of the ESM-
SnowMIP dataset from their evaluations. This should at least be discussed if there is 
a valid reason for that. But even if the model skill is lower on the 3 Canadian forest 
sites, I would have included these sites in the evaluations to provide concrete results 
to support this discussion. 

Indeed, we haven’t evaluated the model on the three Canadian sites but because at 
that time we couldn’t precisely locate the sites to determine CHILI parameters. We 
will include these sites for the model evaluation in the next version of the manuscript. 

L408-410 Unfortunately, blowing snow can be an important process even at large 
scale especially in polar regions. So large scale applications of the system may still be 
affected by this limitation. 

We will remove that part of the sentence. 

The discussion do not compare the skill of this approach with the skill of physical 
models while similar metrics are provided at the same sites in Ménard et al., 2021, 
and other evaluations are also available in the literature for snow cover extent. I think 
this would be important to consider as well. 

We appreciate this suggestion. We will compare the skill of the model with that of 
physical models that participated in ESM-SnowMIP, using model simulations 
presented in Krinner et al., 2018.    

The discussion or final summary also lack comments about the strengths and 
weaknesses of their results compared to the literature cited in the introduction 
applying machine learning to predict snow mass. 

We will present our perspective on the strengths and weaknesses of our model 
approach compared to other cases of snow models utilizing machine learning. 

Furthermore, the outputs of the model are currently limited to SWE while several 
snow-sensitive applications require more variables (e.g. surface temperature for 
NWP and climate modelling, snow internal properties for remote-sensing retrieval 



algorithms or avalanche forecasting). This limitation should also be mentioned with 
possibly discussions about the feasability to extend this approch to more variables. 

Thank you for this suggestion. We will include this as a limitation of our model and 
complement it by presenting our perspective on the snow processes to which our 
approach may be applicable. 

 

References: 

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., and Kasneci, G.: Deep 
Neural Networks and Tabular Data: A Survey, IEEE Trans. Neural Networks 
Learn. Syst., 1–21, https://doi.org/10.1109/TNNLS.2022.3229161, 2022. 

Gyawali, D. R. and Bárdossy, A.: Development and parameter estimation of 
snowmelt models using spatial snow-cover observations from MODIS, Hydrol. 
Earth Syst. Sci., 26, 3055 – 3077, https://doi.org/10.5194/hess-26-3055-2022, 
2022. 

Horn, J. E. and Schulz, K.: Spatial extrapolation of light use efficiency model 
parameters to predict gross primary production, J. Adv. Model. Earth Syst., 3, 
https://doi.org/https://doi.org/10.1029/2011MS000070, 2011. 

Kim, M. and Kim, J.: Extending the coverage area of regional ionosphere maps using 
a support vector machine algorithm, Ann. Geophys., 37, 77–87, 
https://doi.org/10.5194/angeo-37-77-2019, 2019. 

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., 
Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., 
Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., 
Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, 
X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., 
Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., 
Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. 
G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., 
Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying 
snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, 
https://doi.org/10.5194/gmd-11-5027-2018, 2018. 

Di Marco, N., Avesani, D., Righetti, M., Zaramella, M., Majone, B., and Borga, M.: 
Reducing hydrological modelling uncertainty by using MODIS snow cover data 
and a topography-based distribution function snowmelt model, J. Hydrol., 599, 
126020, https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126020, 2021. 



N. Moriasi, D., G. Arnold, J., W. Van Liew, M., L. Bingner, R., D. Harmel, R., and L. 
Veith, T.: Model Evaluation Guidelines for Systematic Quantification of Accuracy 
in Watershed Simulations, Trans. ASABE, 50, 885–900, 
https://doi.org/https://doi.org/10.13031/2013.23153, 2007. 

Parajka, J. and Blöschl, G.: The value of MODIS snow cover data in validating and 
calibrating conceptual hydrologic models, J. Hydrol., 358, 240–258, 
https://doi.org/10.1016/j.jhydrol.2008.06.006, 2008. 

Scalzitti, J., Strong, C., and Kochanski, A. K.: A 26 year high-resolution dynamical 
downscaling over the Wasatch Mountains: Synoptic effects on winter 
precipitation performance, J. Geophys. Res. Atmos., 121, 3224–3240, 
https://doi.org/https://doi.org/10.1002/2015JD024497, 2016. 

Tong, R., Parajka, J., Széles, B., Greimeister-Pfeil, I., Vreugdenhil, M., Komma, J., 
Valent, P., and Blöschl, G.: The value of satellite soil moisture and snow cover 
data for the transfer of hydrological model parameters to ungauged sites, 
Hydrol. Earth Syst. Sci., 26, 1779 – 1799, https://doi.org/10.5194/hess-26-1779-
2022, 2022. 

USDA: Chapter 2 Data Parameters, in: Snow Survey and Water Supply Forecasting 
National Engineering Handbook, 2010. 

USDA: Chapter 6 Data Management, in: Snow Survey and Water Supply Forecasting 
National Engineering Handbook, 2014. 

 


