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Abstract. The paper investigates how to refine the ground meteorological observation network for 

greatly improving the PM2.5 concentration forecasts by identifying the sensitive areas for targeted 

observations associated with a total of 48 forecasts in eight heavy haze events during the years of 2016-

2018 over the Beijing-Tianjin-Hebei (BTH) region. The conditional non-linear optimal perturbation 15 

(CNOP) method is adopted to determine the sensitive area of the surface meteorological fields for each 

forecast and a total of 48 CNOP-type errors are obtained including wind, temperature, and water vapor 

mixing ratio components. It is found that, although all the sensitive areas tend to locate within and/or 

surrounding the BTH region, their specific distributions are dependent on the events and the start times 

of the forecasts. Based on these sensitive areas, the current ground meteorological stations within and 20 

surrounding the BTH region are refined to form a cost-effective observation network, which makes the 

relevant PM2.5 forecasts starting from different initial times for varying events assimilate fewer 

observations but overall achieve the forecasting skill comparable to, even higher than that obtained by 

assimilating all ground station observations. This network sheds light on that some of the current ground 

stations within and surrounding the BTH region are very useless for improving the PM2.5 forecasts in the 25 

BTH region and can be greatly scattered to avoid the thankless work. 
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1. Introduction 

Air pollution has become a serious environmental issue in many Asian countries in recent decades. The 

Beijing-Tianjin-Hebei region (BTH region), being one of the most prosperous and populated regions in 30 

China, has suffered successive heavy haze events during the past several decades (Xiao et al., 2020). 

Despite large reductions in primary pollutant emissions due to the recent strict pollution control policies 

in China, heavy hazy events still occurred in recent years, even during the COVID-19 lockdown period 

(Huang et al., 2021). The particulate matter of aerodynamic diameter smaller than 2.5 (PM2.5) has been 

dominated as one of the main air pollutants during the hazy events. Exposure of large population to high 35 

PM2.5 will pose a higher health risk and even a higher death rate (GBD, 2017; WHO, 2021). Therefore, 

an accurate prediction of PM2.5 concentration is critical for providing early warnings to residents and 

helping governments take timely actions.  

To accurately predict the PM2.5 concentrations, it is crucial to improve the quality of meteorological 

conditions and emissions since the chemical transport model (CTM) require their information as input. 40 

Although the initial chemical concentrations and emission play important roles in air pollution forecasts, 

the meteorological conditions still substantially influence the PM2.5 variations at the regional scale (Liu 

et al., 2017; Lou et al., 2019; Chen et al., 2020). In terms of the effect of meteorological initial conditions, 

lots of studies have shown that small uncertainties in meteorological initial fields will result in large 

uncertainties in PM2.5 forecasts (Gilliam et al., 2015; Bei et al., 2017). Recently, it has been recognized 45 

that a bad meteorological initial condition may even affect the forecast of the accumulation or dissipation 

processes of the PM2.5 event and could result in a false alarm of the heavy haze event (Yang et al., 2022). 

Therefore, an accurate meteorological initial condition is also crucial for the regional PM2.5 forecasts, 

besides the initial chemical concentrations and emission.  

Data assimilation has been recognized as one of the most effective ways to improve the accuracy of 50 

initial conditions (Talagrand, 1997). High-quality meteorological initial fields could be obtained by 

assimilating the observations from an observation network for atmospheric conditions (Snyder, 1996). 

Among the various meteorological observation sources, the observations from the ground meteorological 

stations are often assimilated to predict the meteorology fields (Hu et al., 2019; Devers et al., 2020; Yao 

et al., 2021). Yang et al. (2022) studied the uncertainties of meteorological initial fields to PM2.5 forecasts 55 

and found that the meteorological forecasts in the BTH region are much highly sensitive to the 
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meteorological initial errors at the ground level with the lead time of 12 hours. They emphasized that the 

initial conditions located at the ground level may play an important role on the meteorological forecasts 

over the BTH, which will further affect the regional PM2.5 forecasts, especially for the forecasts with lead 

time of 12 hours. In this sense, assimilating the observations from the ground meteorological stations 60 

could make an important contribution to the improvement of the PM2.5 forecast skills, especially in the 

BTH region.  

In the past years, high quantity of meteorological stations over the world are constructed to study 

the atmospheric motions and its weather and climate variabilities; In China alone, there are more than 

2000 stations operated by the China Meteorological Administration (CMA) in the year of 2020, whose 65 

locations are generally selected based on the administrative district and resident populations 

(http://data.cma.cn/). Even though there exist a huge number of meteorological stations to provide 

observations, assimilating more observations may not necessarily lead to much higher forecast benefits 

(Li et al., 2010; Liu et al., 2021). Liu and Rabier (2002) used a simple 1-D framework and the 

computation of analysis-error covariance to show that increasing the observation density beyond a certain 70 

threshold value would yield little or no improvement in the analysis accuracy. In fact, previous studies 

have applied both simple and complicated numerical models to argue that additional observations may 

not result in a large improvement of the forecast skills (Bengtsson and Gustavsson, 1972; Morss et al., 

2001; Yang et al., 2014). Theoretically, in the area of strong sensitivity to initial values of the forecasts, 

assimilating few observations may result in high forecast skills; conversely, slightly improvements or 75 

even worse forecast skills could be resulted even though a large number of observations are assimilated 

in the area of weak sensitivity, due to the additional errors induced by the imperfect assimilation 

procedure or the unsolved scales and processes in the model (Janjić et al., 2018; Zhang et al., 2019). Thus, 

even if we have sufficient meteorological observations, observations in which area and how many 

observations should be preferentially assimilated to get higher forecasting skills is still a key question. 80 

For the ground meteorological stations of concerned here, it is therefore essential to identify which ones 

provide the additional observations that dominantly enhance the improvement of the PM2.5 forecast level. 

One of the development targets proposed by the China Meteorological Administration during the 14th 

Five-Year Plan Period is to arrange the meteorological observation network more reasonably and 

scientifically (https://www.cma.gov.cn/zfxxgk/gknr/ghjh/202112/t20211208_4295610.html). The results 85 

https://www.cma.gov.cn/zfxxgk/gknr/ghjh/202112/t20211208_4295610.html
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would provide guidance to refine the existing ground meteorological observation networks for improving 

the PM2.5 forecasts in the BTH region and avoid the thankless works.  

The dominant meteorological stations to be identified, as mentioned above, would provide the 

meteorological observations that will have the largest impact on the PM2.5 forecasts of the concerned 

region. This idea belongs to the new observational strategy of “targeted observation”, that is assimilating 90 

additional observations at the target time t1 in some key areas (i.e. sensitive areas), compared to doing it 

in other areas, may reduce the forecast errors in the concerned area (verification area) at the future time 

t2 (verification time; t1< t2) to a larger degree. It is obvious that the meteorological stations located in the 

sensitive areas would provide the meteorological observations that dominantly promote the PM2.5 

forecasts of the concerned area (i.e. the verification area). Some approaches, such as the singular vector 95 

(SV, Palmer et al., 1998), adjoint sensitivities (Langland et al., 1999), and the ensemble transform Kalman 

filter (ETKF) (Bishop et al., 2001; Majumdar et al., 2002), have been used to identify the sensitive areas 

for targeted observations. However, these approaches are developed under the assumption that the initial 

errors are linearly developed in the nonlinear model, which is not completely true in the real atmosphere 

(Toth and Kalnay, 1993; Mu and Wang, 2001). In this study, an advanced fully nonlinear method, 100 

Conditional Nonlinear Optimal Perturbation (CNOP; Mu et al., 2003), is applied to seek the initial 

perturbation of the fastest growth in the nonlinear model and then to determine the meteorological 

sensitive area of the PM2.5 forecasts. It has been verified that the sensitive area identified by the CNOP 

shows advantages compared with the areas identified by traditional methods through both the theoretical 

proves and numerical experiments (Qin and Mu, 2011; Chen et al., 2013; Duan et al., 2018; Feng et al., 105 

2022). The CNOP has been adopted to identify the sensitive areas in the studies of tropical cyclones, El 

Nino-Southern Oscillation events, oceanic mesoscale eddies, and marine environments and has 

successfully improve the forecasting skills (see the review of Duan et al., 2022). Especially, Yang et al. 

(2022) applied the CNOP to determine the sensitive areas for targeted observation of a heavy hazy event 

which was not warned in time by the monitoring center and demonstrated that assimilating additional 110 

observations in such sensitive area leads to successful forecast of the PM2.5 concentrations with much 

higher skill. Then in this study, we would use the CNOP to recognize the dominant ground meteorological 

stations applicable for PM2.5 forecasts by investigating the sensitive areas of eight winter heavy hazy 

events over the BTH region during years of 2016-2018, consequently providing an idea to refine the 
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current ground meteorological stations for improving the PM2.5 forecasts in the BTH. It is noted that 115 

during this period, encouraged by the strict pollution control policies issued by the Chinese government, 

great efforts have been made to produce more accurate high-resolution emission inventory (Zheng et al., 

2020), which is favorable for better simulating the chemical components in China and then separating 

the meteorological uncertainty effects of interest in the present study.  

The remainder of the paper is organized as follows. In Sect.2, we introduce the model, data and 120 

method. In Sect.3, we reproduce the eight heavy hazy events occurred in the BTH during 2016-2018 and 

identify the sensitive areas of surface meteorological conditions for the PM2.5 forecasts with the 

application of CNOP method. Then a cost-effective meteorological observation network is constructed 

in Sect. 4, which has been verified to be an approximation to the whole BTH ground meteorological 

stations for improving the PM2.5 forecasts. In Sect. 5, we interpret the reasons why assimilating the cost-125 

effective observations can lead to an improvement of the PM2.5 forecast skill comparable to assimilating 

the whole ground observations from the perspectives of thermodynamics and dynamics, and in Sect.6, a 

summary and discussion is finally provided.  

2. Model, Data and Method 

In this study, we use the Weather Research and Forecasting model (WRF) and its adjoint model, and the 130 

Nested Air Quality Prediction Modeling System (NAQPMS) to identify the sensitive areas of surface 

meteorological conditions associated with the regional PM2.5 forecasts by the application of CNOP 

approach. 

2.1 Models 

The NAQPMS model is a 3-D regional Eulerian chemical transport model, which contains emissions, 135 

advection/convection, diffusion, dry and wet deposition, gas/aqueous chemical modules (Wang et al., 

1997; 2006). It has been widely used in scientific studies and practical forecasts for air quality in China. 

The anthropogenic emissions are obtained from Multi-resolution Emission Inventory for China 

(http://meicmodel.org/). Since in the present paper, we only focus on the sensitivity of meteorological 

conditions on PM2.5 forecast, the emission inventory is assumed as perfect and is kept as the same in all 140 

the simulations. The modelling domain includes 119×119 grids with a horizontal resolution of 30km and 

http://meicmodel.org/
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20 levels in the vertical. The compositions of PM2.5 matter considered in the model include black carbon, 

organic carbon, secondary inorganic aerosol (sulfate, nitrate, ammonium) and primary PM2.5 emitted 

directly from various sources. 

The NAQPMS model is driven by the meteorological fields generated through the WRF 145 

(http://www.wrf-model.org/).  The parametrization schemes adopted in the WRF model include the Lin 

microphysics scheme (Lin et al. 1983), Dudhia shortwave radiation schemes (Dudhia, 1989), RRTMG 

longwave radiation (Iacono et al. 2008), and Yonsei University planetary boundary layer 

parameterization scheme (Hong et al. 2006). The adjoint model of WRF also use the same 

parameterization schemes. Both the WRF model and the adjoint model of WRF are configured with the 150 

same horizontal and vertical grid structure with the NAQPMS model. 

2.2 Data 

There are eight typical heavy hazy events occurring in the BTH region during the wintertime (OND, 

October-November-December) in the years of 2016-2018 (Table 1) and all these eight events and their 

associated forecasts are concerned in the study. The observed surface PM2.5 concentration datasets of the 155 

events are obtained by the national environmental monitoring stations. Exactly, there are 80 air quality 

monitoring stations within the BTH region [see the geographical distribution for these 80 stations in Fig. 

1(a)]; and from these stations, we retrieved the hourly PM2.5 concentration time series for each of the 

eight events.  

To produce the initial and boundary conditions for WRF simulation, the fifth generation ECMWF 160 

reanalysis for the global climate and weather (ERA5, https://www.ecmwf.int/en/forecasts/datasets/ 

reanalysis-datasets/era5 ) and National Centers for Environmental Prediction (NCEP) GFS historical 

archive forecast data (GFS, https://rda.ucar.edu/ datasets/ds084.1/) are used. 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://rda.ucar.edu/%20datasets/ds084.1/
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Figure 1 The maps of (a) the 80 environmental monitoring stations (black circles) within the BTH region and 165 

(b) the 481 national ground meteorological stations (black dots) within and surrounding the BTH region 

([110oE~120oE, 34oN~46oN]). The black lines represent the boundaries of provinces in China, and the thick 

black lines are the coastline. The boundaries of the Beijing City, Tianjin City and Hebei Province are 

presented in thick red lines. 

2.3 Conditional Nonlinear Optimal Perturbation (CNOP) 170 

The CNOP represents the initial perturbation (or initial error) that result in the largest forecast error in 

the verification area at the verification time and is the most sensitive initial perturbation. The dynamical 

equation in the nonlinear model can be written as Eq. (1), 

{
𝜕𝒙

𝜕𝑡
+ 𝐹(𝒙) = 0

𝒙|𝑡=0 = 𝒙0

,             (1) 

where 𝑡 is the time, 𝐹 is the nonlinear partial differential operator and 𝒙 is the state vector with an 175 

initial value 𝒙0. If we add an initial perturbation 𝛿𝒙0 to the initial state 𝒙0, the evolution of the two 

initial states at the prediction time 𝑇 can be described as Eq. (2), 

𝒙(𝑇) = 𝑀(𝒙𝟎), x(𝑇)+𝛿𝒙(𝑇)= 𝑀(𝒙0 + 𝛿𝒙0),     (2) 

where 𝑀 is the nonlinear propagator that propagates the initial value to the prediction time 𝑇. So 𝛿𝒙(𝑇) 

describes the evolution of initial perturbation 𝛿𝒙0 of the reference state 𝒙(𝑇). An initial perturbation is 180 

called as CNOP (𝛿𝒙0
∗ ) if and only if  

𝐽(𝛿𝒙0
∗ ) = max

𝛿𝒙𝟎
𝑇

𝐶1𝛿𝒙𝟎≤𝛽
[𝑀(𝒙0 + 𝛿𝒙0) − 𝑀(𝒙0)]𝑇𝐶2[𝑀(𝒙0 + 𝛿𝒙0) − 𝑀(𝒙0)].    (3) 

The 𝛿𝒙0
𝑻𝐶1𝛿𝒙0 ≤ 𝛽 is the constraint condition of initial perturbation and 𝛽 is a positive value. 𝐶1 and 

𝐶2  are coefficient matrices, which define the format of the initial perturbation and its evolution. 
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Mathematically, the CNOP leads to the global maximum of the cost function 𝐽(𝛿𝒙0
∗ ) under the certain 185 

constraint.  

In our study, since we focused on the uncertainties of meteorological initial condition associated 

with the PM2.5 forecast, following Yang et al., (2022), the state vector 𝒙 consists of zonal and meridional 

wind (U and V, respectively), temperature (T), water vapor mixing ratio (Q) and pressure (P) components, 

which are considered as important meteorological fields on PM2.5 forecasts over the BTH region (see the 190 

review paper of Chen et al., 2020). The perturbations 𝛿𝒙0  are superimposed on the ground 

meteorological field 𝒙0 of interest. The amplitude of initial perturbation and its evolution are defined 

by the total energy of meteorological state at the ground level of the model domain and the integral of 

the total energy from ground to top (i.e., 100 hPa) at the verification areas (i.e. the BTH region), 

respectively. The expression of total energy is shown in Eq. (4) (Ehrendorfer et al., 1999), 195 

Total energy = 𝑈2 + 𝑉2 +
𝐶𝑝

𝑇𝑟
𝑇2 +

𝐿2

𝐶𝑝𝑇𝑟
𝑄2 + 𝑅𝑎𝑇𝑟(

𝑃

𝑃𝑟
)2,   (4) 

where 𝐶𝑝 (11005.7 Jkg-1 K-1), 𝑅𝑎 (1287.04 Jkg-1 K-1), 𝑇𝑟 (1270 K), 𝐿(= 2.5105 × 106 Jkg-1) and 

𝑃𝑟(11000 hPa) are constant values.  

The spectral projected gradient 2 (SPG2) method is used to solve the optimization problem in Eq. 

(3). It is noted that the SPG2 algorithm is generally designed to solve the minimum value of nonlinear 200 

function (cost function) with an initial constraint condition, and the gradient of cost function with respect 

to the initial perturbation represents the descending direction of searching for the minimum of the cost 

function. Therefore, in this study, we have to rewrite the cost function Eq.(3) as 𝐽′(𝛿𝑥0
∗) = min

𝛿𝑥0
𝑇𝐶1𝛿𝑥0≤𝛽

−

[𝑀(𝑥0 + 𝛿𝑥0) − 𝑀(𝑥0)]𝑇𝐶2[𝑀(𝑥0 + 𝛿𝑥0) − 𝑀(𝑥0)] and the WRF adjoint model is used to compute 

the gradient of the cost function. Specially, to calculate the CNOP, a first guess initial perturbation, 𝛿𝒙𝟎
(𝟎)

, 205 

is projected into the constraint condition and superimposed on the initial state 𝒙𝟎 of the WRF model. 

After a forward integration of the WRF, the value of the cost function, i.e. -[𝑀(𝒙𝟎 + 𝛿𝒙𝟎
(𝟎)

) − 𝑀(𝒙𝟎)], 

can be obtained. Then, with the adjoint model of the WRF, the gradient of the cost function with respect 

to the initial perturbation, 𝑔(𝛿𝒙𝟎
(𝟎)

) , is calculated. Theoretically, the gradient presents the fastest 

descending direction of the cost function. However, in realistic numerical experiments, the gradient 210 

presents the fast-descending direction but not necessarily the fastest, so we need more iterations. After 

iteratively forward and backward integrations of the WRF model governed by the SPG2 algorithm, the 

initial perturbation is optimized and updated until the convergence condition is satisfied, where the 
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convergence condition is ‖𝑃 (𝛿𝒙𝟎
(𝒑)

− 𝒈 (𝛿𝒙𝟎
(𝒑)

)) − 𝛿𝒙𝟎
(𝒑)

‖
2

≤ 𝜀1 and  𝜀1  is an extremely small 

positive number, 𝑃(𝛿𝒙𝟎
(𝒑)

)  projects the initial perturbation to the constraint condition. Finally, the 215 

CNOP 𝛿𝒙𝟎
(𝒑)

 can be obtained. The flow chart of the CNOP calculation is shown in Figure 2. For further 

details of the SPG2 algorithm, the readers can be referred to Birgin et al. (2001). 

 

Figure 2 The flow chart of CNOP calculation 

3. The sensitive areas of surface meteorological field for the PM2.5 forecasting 220 

In this section, we first simulate the PM2.5 concentrations variability using the WRF initialized by the 

ERA5 reanalysis data and NCEP-GFS forecast data separately to show the sensitivities of PM2.5 forecasts 

to the meteorological initial uncertainties. Then we calculated the CNOP-type initial errors of concerned 

forecasts and identify their sensitive areas.  

3.1 Sensitivity to meteorological initial uncertainties of PM2.5 variability simulations.  225 

For each of the eight heavy haze events, after the 10-day spin-up of WRF-NAQPMS, the ERA5 and the 

GFS data are separately used to initialize the WRF model and then two forecasted meteorological fields 

can be obtained, which force the NAQPMS to output two kinds of simulations of PM2.5 concentrations. 

Table 1 provides the initial and final times of the eight events simulations and Fig. 2 plots the two kinds 

of simulations of the PM2.5 concentrations averaged over the BTH region for each event and 230 

corresponding observations. We take the event initialized at 00:00 BJT on 30 November 2018 as an 

example to describes the difference between two kinds of simulations of PM2.5 concentrations (see Fig. 
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3). Exactly, for this event, the ERA5 presents weak southerly winds with a mean speed of 1.06 ms-1 over 

the BTH region at the initial time, while the GFS shows stronger southerly winds with the speed of 1.91 

ms-1. Obviously, the two simulations show a difference in the initial meteorological fields of this event. 235 

When the time comes to the final time after 18 hours, the simulation initialized by ERA5 presents weak 

northerly wind in the BTH region and forecast the PM2.5 concentration of 93.05 μg m−3 averaged over 

the BTH region; however, the simulation initialized by GFS enhances the southerly wind to 3.56 ms-1, 

and particularly in the southern part of Hebei the southerly wind reaches to 5.89 ms-1, which transports 

more PM2.5 from the south to the BTH region and result in the PM2.5 forecasts of 134.71 μg m−3 on 240 

average. It is noted that these two PM2.5 simulations are generated from the same emission inventory and 

the same initial chemical concentrations, with the initial PM2.5 concentration concentrating in Anhui and 

Hubei provinces, which are located to the south of BTH region. It is therefore certain that the difference 

between the two PM2.5 simulations of this illustrated event are only caused by the different meteorological 

initial fields. For other forecasts, it is also seen from Figure 2 that different initial meteorological 245 

conditions result in different PM2.5 simulation accuracy, in terms of the magnitude, peak time and even 

the variability in the accumulation and dissipation processes of the heavy haze event.  

 

Figure 3 Time series of the PM2.5 concentrations averaged over the BTH region of observations (black line) 

and simulations initialized by ERA5 (blue line) and GFS (red line) meteorological data during the eight heavy 250 

hazy events in 2016-2018. These events occurred during (a) 12:00BJT, 15 Nov-02:00 BJT, 20 Nov in 2016; (b) 

00:00 BJT, 9 Dec-12:00 BJT, 13 Dec in 2016; (c) 00:00 BJT, 16 Dec-00:00 BJT, 23 Dec in 2016; (d) 00:00 BJT, 

30 Nov-00:00 BJT, 4 Dec in 2017; (e) 00:00 BJT, 13 Oct-00:00 BJT, 17 Oct in 2018; (f) 00:00 BJT, 1 Nov-00:00 

BJT, 5 Nov in 2018; (g) 00:00 BJT, 11 Nov-00:00 BJT, 16 Nov in 2018; (h) 00:00 BJT, 30 Nov-00:00 BJT, 4 Dec 
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in 2018. 255 

 

Figure 4 The surface wind (vector, m s-1) and PM2.5 concentration (shaded; 𝛍𝐠 𝐦−𝟑) components of the initial 

states for the simulation of the event during 30 November and 4 December in 2018  (1) and their evolutions 

at the lead time 18 hours (2), where the initial time is 00:00 30 November 2018 and (a) is initialized by the 

ERA5 and (b) is initialized by the GFS. 260 

To quantify the different sensitivities of the two simulations on initial meteorological conditions, 

the Root Mean Square Error (RMSE) and correlation coefficients (CC) between the simulation and 

observation of the eight events are calculated. It is found that, of all the eight events, the ERA5 

simulations show smaller RMSEs and higher CCs with respect to the observations (see Table 1). If we 

take an average of the eight events for the whole simulation period (see Table 1 and Figure 2), the RMSE 265 

of the ERA5 and GFS simulations are 41.16 μg m−3 and 59.83μg m−3 , respectively; the CCs of the 

ERA5 and GFS simulations reach to 0.79 and 0.50, respectively. Thus, for all the heavy hazy events 

considered, the simulations initialized by ERA5 reanalysis perform better than the GFS forecast data. In 

fact, since the ERA5 reanalysis data was obtained by assimilating all available observations with more 

advanced model by ECWMF, it has much high quality and often regarded as an approximation to the real 270 

atmosphere. It is therefore comprehensible that the ERA5 performs much well in simulating the PM2.5 

concentrations. This also indicates that the PM2.5 forecasting uncertainties made by the WRF-NAQPMS 

are highly sensitive to meteorological initial conditions and a much accurate meteorological initial 

condition is essential for PM2.5 forecasts. Although the simulations initialized by ERA5 reanalysis 
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perform better than the GFS forecast data, they still depart from the observations. Therefore, considering 275 

the sensitivity of meteorological field accuracy on PM2.5 concentration simulations, it is necessary to 

identify the sensitive area of the meteorological initial field for PM2.5 forecasts and assimilate additional 

targeted observations, further pushing the PM2.5 simulation resulted by the ERA5 much closer to the truth.   

 

Table 1. The RMSE (𝛍𝐠 𝐦−𝟑) and CC of PM2.5 concentrations between the simulations initialized by the ERA5 280 

/ GFS and the observations in the eight heavy hazy events. The simulation of smaller RMSE and higher CC 

is marked in bold. 

Cases 
Initial time / Final time 

(BJT, Day Month, Year) 

RMSE 

(ERA5/GFS) 

CC 

(ERA5/GFS) 

1  1200, 15 Nov / 0200, 20 Nov, 2016 39.66/44.21 0.86/0.78 

2  0000, 09 Dec / 1200, 13 Dec, 2016 56.94/82.06 0.57/0.25 

3  0000, 16 Dec / 0000, 23 Dec, 2016 66.89/72.42 0.91/0.84 

4  0000, 30 Nov / 0000, 04 Dec, 2017 47.46/51.91 0.64/0.56 

5  0000, 13 Oct / 0000, 17 Oct, 2018 14.87/27.29 0.86/0.16 

6  0000, 01 Nov / 0000, 05 Nov, 2018 20.74/53.88 0.86/0.59 

7  0000, 11 Nov / 0000, 16 Nov, 2018 45.94/61.42 0.83/0.28 

8  0000, 30 Nov / 0000, 04 Dec, 2018 36.77/85.45 0.81/0.54 

 

3.2  The sensitive areas of meteorological initial fields for PM2.5 forecasts 

From Figure 2, it is known that when the haze started to develop, it usually takes more than 2 days to 285 

accumulate and dissipate rapidly in a few hours. For example, for the event occurred during the period 

from 00:00 BJT (Beijing Time, UTC+8 hours) on 9 Dec to 12:00 BJT on 13 Dec in 2016, the haze started 

to accumulate at approximately 20:00 on 9 Dec and it took 55 hours to accumulate PM2.5 from 45 μg m−3 

to 208 μg m−3; this high PM2.5 concentration sustained for almost 16 hours, then from 18:00 on 12 Dec, 

the PM2.5 concentration decreased from 217 μg m−3  to 46 μg m−3  in 18 hours. Certainly, the stable 290 

atmospheric boundary layer will lead to the accumulation of PM2.5 concentrations, while the dissipation 

is mostly attributed to the large winds or wet deposition (Chen et al., 2020). These distinct mechanisms 

may indicate that the sensitive areas of meteorological initial field are different for the PM2.5 forecasts 
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during the accumulation and dissipation processes. Yang et al. (2022) investigated the vertical energy 

profiles of the most sensitive meteorological initial perturbations (i.e. the CNOP-type error) of the PM2.5 295 

forecasts in one heavy haze event in the BTH, and they showed that, for the forecasts during either 

accumulation or dissipation processes, the large energy of the CNOP-type errors mainly lie at the low 

level of the atmosphere for the lead time of 24 hours and at the ground level for the lead time of 12 hours. 

It is indicated that the uncertainties of ground meteorological initial conditions may play a more 

important role on the PM2.5 forecasts with the lead time of 12 hours. To further assess the role of ground 300 

meteorological initial fields on the PM2.5 forecasts, we calculated the CNOP-type errors for the eight 

heavy haze events in this study, as Yang et al. (2022) did, and found that the PM2.5 forecast uncertainties 

are indeed much sensitive to the accuracy of ground meteorological initial conditions for the lead time 

12 hours [The details are omitted here because of similar thoughts to Yang et al. (2022)]. This result, 

relative to the economic property of the targeted observation strategy (see the introduction), inspires us 305 

to investigate the current ground meteorological stations within and surrounding the BTH and to see if 

they can be refined to more cost-effectively improve the PM2.5 forecasts in the heavy haze events by 

exploring the sensitive areas of ground meteorological fields forecasting. It is expected that a station 

network with fewer stations will be provided and assimilating these fewer station observations can lead 

to the PM2.5 forecasting skill comparable to, even higher than that obtained by assimilating all constructed 310 

station observations.  

To do it, we consider the forecasts with the fixed lead time of 12 hours but with different start times. 

For each event we analyze 4 cycle forecasts every 12 hour from its start time (see Table 2) over the 

accumulation process (hereafter as AFs) and 2 forecasts over the dissipation process (hereafter as DFs). 

As a result, a total of 32 AFs and 16 DFs were obtained for the eight events of investigation. To identify 315 

the sensitive areas of the ground meteorological field in each forecast, we adopt the idea of Lorenz (1965) 

that when exploring the effect of initial error growth, an assumption of perfect model is done. However, 

in reality, whichever it is initial filed of model, even emission inventories, it certainly consists of 

uncertainties. So to make much realistic we have to take the better simulation initialized by ERA5 as 

“truth run” because we cannot obtain relevant observations from the Monitor center for assimilations and 320 

the worse simulation initialized by GFS forecast data as “control forecast” or “control run”. The 

differences between them reflect the sensitivities of forecast uncertainties of PM2.5 concentrations on the 
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accuracy of initial meteorological field. Therefore, when one computes the CNOP-type initial 

perturbation superimposed on the better simulation initialized by ERA5 (i.e. “truth run”), it can be 

regarded as an approximation to the most sensitive initial error that disturbs the meteorology forecast of 325 

the BTH region and then the PM2.5 forecast result. According to this perturbation, we can determine the 

sensitive area of the meteorological field (see next subsection) and preferentially assimilating additional 

observations in the sensitive area of the control forecast will make the updated forecast (hereafter as 

“assimilation run”) approach to the truth run (see Yang et al., 2022). Such idea is a kind of observation 

system simulation experiment (OSSE, Masutani et al., 2020). It is conceivable that, if the real 330 

observations are available, assimilating the real observations on the sensitive areas of ERA5 simulation 

will also make the ERA5 simulation much closer to the real truth. In our study, we adopt this idea to 

determine the sensitive areas. Since the real meteorological observations are not in public archive, the 

“additional observations” are correspondingly taken from the initial field of the truth run (i.e. the ERA5 

data) and called as “simulated observations” according to the OSSEs. These simulated observations 335 

include the wind, temperature and relative humidity variables and they are all the standard meteorological 

variables monitored in the national meteorological stations; and the relevant assimilations are performed 

by the WRF-3DVar schemes.  

Table 2.  Start times of the cycling AFs and DFs for the eight heavy hazy events. 

Cases 
AFs 

(BJT, Day Month, Year) 

DFs 

(BJT, Day Month, Year) 

1 02:00, 16 Nov, 2016 14:00, 18 Nov, 2016 

2 14:00, 09 Dec, 2016 02:00, 12 Dec, 2016 

3 14:00, 16 Dec, 2016 02:00, 22 Dec, 2016 

4 14:00, 30 Nov, 2017 20:00, 02 Dec, 2017 

5 14:00, 13 Oct, 2018 20:00, 15 Oct, 2018 

6 14:00, 01 Nov, 2018 02:00, 04 Nov, 2018 

7 20:00, 11 Nov, 2018 20:00, 14 Nov, 2018 

8 02:00, 30, Nov, 2018 20:00, 02 Dec, 2018 

 340 

Now we determine the sensitive areas of the ground meteorological field associated with PM2.5 
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forecasts in the BTH. For this purpose, the CNOP-type initial errors which include wind, temperature 

and water vapor mixing ratio components at the ground level are calculated for each of the 48 PM2.5 

forecasts in the “truth run” with the application of WRF and its adjoint model by using the SPG2 solver 

(see section 2). Then a total of 48 CNOP-type initial errors are obtained for the 48 forecasts including 32 345 

AFs and 16 DFs. For the AFs, the CNOP-type errors basically concentrate within the BTH region, 

although there exist position differences among the forecasts; while for the DFs, the CNOP-type errors 

are mostly located on the northern part of the BTH region, but the specific structures are dependent on 

the start time. Figure 4 shows two examples of the CNOP-type errors with the wind and temperature 

components during AF and DF of the heavy haze event occurring during 1-5th November 2018, 350 

respectively. It can be seen that, for the AF started from 02:00 on Nov 2 in 2018, the CNOP-type error 

presents large southerly wind anomalies at the southern part of the BTH region, particularly in the cities 

of Anyang and Liaocheng, and large negative temperature anomalies almost located within the BTH 

region; and for the AF started from 14:00 on Nov 2 in 2018, the large southerly wind errors are dominant 

in the Jining city of Shandong province, while the negative temperature error concentrate in the southern 355 

part of Hebei region; as for the two examples of the CNOP-type errors of the DFs, one is for the forecast 

initialized at 02:00 on Nov 4 in 2018 and exhibits large northerly wind and negative temperature 

anomalies on the northern part of BTH region, covering the region of Abaga Banner, with the much large 

temperature anomalies in the southern part of Shandong Province; the other is for the forecast at the 

02:00 on Nov 5 in 2018 and presents the northerly winds and negative temperature anomalies over the 360 

northern part of Hebei province. It is obvious that the CNOP-type errors, though they are all mainly 

presented around the BTH region, provide different areas where different meteorological variable errors 

concentrate even for the same forecast. To overcome this embarrassment, we evaluate the total moist 

energy norm (TME; Yang et al., 2022) of the CNOP-type errors. 

TME =
1

2
(𝑈′2 + 𝑉 ′′2 +

𝐶𝑝

𝑇𝑟
𝑇 ′′2 +

𝐿2

𝐶𝑝𝑇𝑟
𝑄′2+𝑅𝑎𝑇𝑟(

𝑃′

𝑃𝑟
)2).   (5) 365 

The TME considers all the concerned meteorological variables in the CNOP-type errors and measures 

the comprehensive sensitivity of PM2.5 forecast uncertainties on initial meteorological perturbations. 

Then the PM2.5 forecasts are more sensitive to the combined effect of all meteorological variables’ 

uncertainties occurred in the area with larger values of TME and these areas are regarded as the sensitive 

areas (see Yang et al., 2022). Figure 5 shows the spatial distribution of the TME for the 4 forecasts 370 
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mentioned above. It is seen that, for the two AFs, their sensitive areas (i.e. the areas with larger values of 

TME) are mostly located in the BTH region, especially in the Beijing City and southern part of Hebei 

province; but for the forecast started from 02:00 on Nov 2 in them, the area in the center of Shandong 

province is also additionally denoted as a sensitive area. For the two DFs, their sensitive areas, compared 

with those of the two AFs, move northward and the one in the forecast initialized at 02:00 on Nov 4 is 375 

mostly located in the Inner-Mongolia and western part of Liaoning provinces, while the other forecast 

presents its sensitive area closer to the BTH region, mostly located in the cities of Chengde and 

Zhangjiakou in Hebei province.  
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 380 

Figure 5 The horizontal distribution of the wind (1) and temperature (2) components of the CNOP-type errors 

for the AF started from the 02:00 on Nov 2 (a) and from 14:00 on Nov 2 in 2018 (b), and for the DF started 

from 02:00 on Nov 4 (c) and from 14:00 on Nov 4 in 2018 (d).  
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 385 

Figure 6 The horizonal distribution of the TME (unit: J kg-1) for the AFs started from (a) 02:00 on Nov 2 and 

(b) 14:00 on Nov 2 in 2018, and for the DFs started from (c) 02:00 on Nov 4 and (d) 14:00 on Nov 4 in 2018. 

The black rectangle is the verification area, i.e. the BTH region. 

From the sensitive areas above, it is easily known that, even for the same event, the specific 

distributions of the sensitive areas are dependent on the start times of the forecasts. It is therefore 390 

conceivable that the 48 forecasts for the eight events will exhibit the sensitive areas of multifarious 

structures and locations. In terms of this situation, one naturally asks that how to reveal a cost-effective 

observation network that does for the PM 2.5 forecasts starting from different initial times for different 

events. Relative to the ground meteorological stations in China of interest, the above question can be 

converted into how to refine the current meteorological stations within and surrounding the BTH and 395 

make them applicable for improving much cost-effectively the PM2.5 forecasts with different start times 

for different heavy haze events. This question will be addressed in the next section.  

4. The cost-effective meteorological observation network applicable for significantly improving 

the PM2.5 forecasts   

In this section, we will construct the cost-effective meteorological observation network based on the 400 

sensitive areas identified by the CNOP-type errors of the 48 forecasts for the eight heavy haze events; 

then a series of OSSEs (see section 3.2) are conducted to show the advantage of the additional 

observations from this observational network in improving the PM2.5 forecasting skills, which finally 
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provides a strategy to refine the current meteorological stations within and around the BTH. 

4.1 An essential observational network that enhances the PM2.5 forecasting skill much greatly 405 

For the 48 CNOP-types errors, we use a quantitative frequency method [see Duan et al. (2018)] to identify 

the spatial grids that are often covered by large values of the TME. Specifically, for each CNOP-type 

error, we sort its spatial grid points with a decreasing order according to the amplitude of the TME and 

choose the first 3% grid points of the model domain; then a total of 424 grid points is obtained, which 

bear larger TME values than other grid points and contribute more to the meteorological forcing errors 410 

associated with the relevant PM2.5 forecast (see Yang et al., 2022). Note that we select here the first 3% 

grid points so that the number 424 of sensitive grid points is close to the number 481 of the current 

meteorological stations within and surrounding the BTH (see Fig. 1b), in attempt to investigate whether 

the sensitive grid points explain the current ground stations. Since 32 AFs are considered in the study, 

we can get 32 grid point sequences from their 32 CNOP-type errors and in each sequence, there are 424 415 

grid points. For each grid point, we compute its frequency of each grid (𝑖, 𝑗) occurring in the 32 sequences 

by the Eq. (8). 

𝐹𝑖,𝑗 =
𝑐𝑖,𝑗

𝑁
× 100%,   (6) 

where 𝑐𝑖,𝑗 is the number of the grid point (𝑖, 𝑗) occurring in all sequences and N denotes the number of 

all sequences (here is 32). We define a threshold 60% and select the grid points with F larger than 60%, 420 

which means that the grid point (𝑖, 𝑗) exists in most of the sequences. Then a total of 174 grid points is 

determined. These 174 grid points are certainly frequently carrying much large meteorology errors 

measured by the TME in the 32 CNOP-type errors for the 32 AFs. Similarly, we also obtain 184 grid 

points from the 16 CNOP-type errors of the 16 DFs (Fig. 6a, b). We incorporated the 174 grid points for 

the AFs and the 184 grid pints for the DFs into an integrated observation network, as compared with the 425 

current ground meteorological stations that has been constructed within and surrounding the BTH region 

(110oE~120oE, 34oN ~46oN, see Fig. 1b). It is found that the meteorological stations have been 

constructed with 99 ones in the area covered by the 174 grid points for the AFs and with 60 ones in the 

area covered by the184 grid points for the DFs. Since these 99 stations for AFs and 60 stations for DFs, 

a total of 127 stations (32 stations are overlapped), are all located in the area covered by the sensitive 174 430 

grid points for AFs and 184 grid pints for DFs, they could provide additional observations that help 
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improve much significantly the skill of the PM2.5 forecast in the BTH, as compared with other constructed 

stations but not in the sensitive grids. For this reason, we regard the network spanned by these 127 stations 

as an “essential network” [see Fig. 6(c)].  

 435 

Figure 7 The spatial distributions of the 174 sensitive grid points (red squares) for AFs (a), the 184 sensitive 

grid points (blue squares) for DFs (b), and all constructed stations [denoted by black dots in (a) and (b)]; and 

a contrasting between the essential stations for AFs (red dots) and those for DFs (blue dots) (c), where the 

thick black dots present their overlapped stations. (d) shows the cost-effective stations network including the 

essential stations (blue, red, and black dots) as in (c) and the additional scattered stations (gray dots).  440 

Now we investigate how much this essential network can explain the skill improvement of the PM2.5 

forecasts when assimilating the data acquired from all the current ground meteorology stations in and 

surrounding the BTH. As mentioned in section 3.2, we have to assimilate simulated observations taken 

from the ERA5 due to the unavailable real observations. With the simulated observations, we assimilate 

them from the essential stations and those from all the ground stations within and surrounding the BTH 445 

to the control run generated by the GFS. Then comparisons between the assimilation runs and the control 

runs can be made from the perspective of AEV and AEM in Eqs. (7) and (8), in attempt to show the role 
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of the assimilated observations in improving PM2.5 forecast skill.  

AEV = (
|𝑃C−𝑃T|−|𝑃A−𝑃T|

|𝑃C−𝑃T|
)𝑡=𝑇 × 100%,  (7) 

AEM =
1

𝑇
∑ (

|𝑃C−𝑃T|−|𝑃A−𝑃T|

|𝑃C−𝑃T|
)𝑡=𝑖

𝑖=𝑇
𝑖=𝑡0

× 100%,  (8) 450 

where AEV  and AEM  measure the reduction rate of the errors in the control forecast at verification 

times [T, see Eq. (7)] and that during the whole forecast period [from 𝑡0 to T, see Eq. (8)] after the 

assimilation.  The 𝑃C, 𝑃T,  and 𝑃A  denote the surface PM2.5 concentration in the control run, truth run 

and assimilation run, respectively. The sign |∙| means the absolute value of forecast errors averaged over 

the BTH region.  455 

For the 32 AFs, when assimilating the 99 simulated observations, the overall improvements are 

12.03% and 13.59% measured by AEV and AEM, respectively; and an average of 57% grids in the BTH 

area show positive AEV values and 54% grids show positive AEM values; particularly, the forecast with 

the largest forecast error among the 32 AFs presents a reduction rate of the error by 31.34% at the forecast 

time, even with approximately 76% of the grid points in the BTH area showing positive improvement 460 

(see Fig. 7 and Table 3). For the 16 DFs, assimilating the simulated observations at the 60 essential 

stations can improve the PM2.5 forecast skills with the AEV varying from 4.12% to 45.53% (exactly 

from 0.57 to 15.18  μg m−3 ) and the AEM  varying from 0.03% to 39.24% (exactly from 0.34 to 

7.77 μg m−3) and the forecast errors are reduced by average for 18.07% at the forecast times and 18.05% 

during the whole forecast periods. It is indicated that, for either AFs or DFs, their respective essential 465 

stations can provide additional observations that much significantly increase the PM2.5 forecasting skill 

in BTH region. Moreover, when the overall improvements are relative to those 15.48% and 17.90% 

(measured by AEV and AEM) for AFs and 23.87% and 24.76% for DFs of assimilating the simulated 

observations taken from all the constructed stations within and surrounding the BTH (a total of 481 

stations), they can account for at least 75% of the latter, although the former essential stations only cover 470 

at most 20.58% of the latter ground stations. It is clear that the essential stations can indeed provide 

additional observations that help increase the skill of the PM2.5 forecast in the BTH much significantly. 

Therefore, the essential stations are indeed crucial for the improvement of the PM2.5 forecasts in the BTH. 
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 475 

Figure 8 The boxplot of the (1) AEV and (2) AEM values when assimilating the essential station observations, 

the essential observations plus the scattered station observations with the distances 60, 90, 120, 150 and 180km, 

and all constructed station observations for (a) AFs and (b) DFs. 

4.2 The cost-effective observation network for significantly improving PM2.5 forecast in the BTH 

The essential network has been shown to play the dominant role on the improvement of the PM2.5 480 

forecast in BTH when compared with assimilating the simulated observations taken from all constructed 

stations, but we notice that there still exist non-negligible differences between the improvements 

achieved by assimilating essential observations and those of assimilating all observations. Therefore, on 

the current conditions of all the constructed stations, we would refine them to provide a cost-effective 

observation network that almost fully accounts for the total improvement of the PM2.5 forecasts achieved 485 

by assimilating all the observations but brings fewer observations to the assimilation. For this purpose, 

we would base on the essential stations to further include relatively important stations from the remaining 

constructed ground stations (a total of 354 stations, which are defined by the exclusion of the 127 

essential stations from the constructed 481 stations). For the remaining constructed stations, they are all 

also located on the areas covered by the CNOP-type errors for AFs and DFs but are ruled out of the first 490 

3% grid points, therefore bearing very small errors. That is to say, the remaining stations are essential 
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neither for AFs nor for DFs and it is hard to distinguish whether they are more sensitive to AFs or DFs. 

For example, the southwestern part of Shandong province is covered by some of the remaining stations, 

but it not only locates on the area covered by the CNOP-type error of the AF initialized at the 14:00 on 

Nov 2 in 2018, but also lies in the area of the CNOP-type error for the DF starting from the 14:00 on 495 

Nov 4 in 2018 (see Fig. 5a, 5c). Therefore, to determine much useful ones of the remaining stations for 

AFs and DFs, we do not distinguish which one is particularly important for AFs or DFs, but use the 

comprehensive sensitivity (𝑟TME) defined by Eq. (9) to balance its role on both AFs and DFs.  

𝑟TME = 𝑤1
1

𝑛1
∑ TME𝑖(AF) +

𝑛1
𝑖=1 𝑤2

1

𝑛2
∑ TME𝑖(DF)

𝑛2
𝑖=1 ,   (9) 

where TME𝑖(AF) and TME𝑖(DF) represent the TME [see the Eq. (5)] of AF and DF, respectively. 𝑛1 500 

and  𝑛2 are the numbers of AFs and DFs, which are 32 and 16. Since the number of AFs is twice of DFs, 

we define the weight coefficients 𝑤1 =
1

2
, 𝑤2 = 1. Thus, the sensitivity defined by the 𝑟TME could be 

proportional to AF and DF and the grid points with larger 𝑟TME are expected to provide the additional 

observations that, on the whole, contribute more to the reduction of the forecast errors for AFs and DFs. 

Despite this, how many grid observations are needed to account for higher forecasting skills is also a 505 

challenging problem, especially for those observations located on the non-sensitive grid points with small 

CNOP-type errors. As shown by Liu and Rabier (2002), for a dense observation network with strongly 

correlated error in the assimilation scheme, increasing the observation density may even decrease the 

quality of analysis states and further decay the forecast skill. Particularly for the remaining ground 

stations mentioned above, they locate the area covered by small errors in the CNOP-type error patterns 510 

and are therefore less sensitive to PM2.5 forecast uncertainties; then a worse forecast may come by when 

the impacts of error correlations between the nearby observations overweigh the sensitivities. Therefore, 

a decrease of observation density for the remaining stations is necessary to avoid the impairing analysis 

in the assimilation process. In fact, Yang et al. (2014) suggested that assimilating the observations with 

appropriate observing distance helps get larger benefits of the forecasts [see also Li et al., (2009), Zhang 515 

et al., (2019), and Yang et al. (2022)]. Therefore, when we select relatively important stations from the 

remaining stations by sorting the grid points according to the sensitivity provided by the 𝑟TME, we 

should consider simultaneously the effect of station distances. To achieve it, we get an attempt to scatter 

the remaining stations (354 in total) with the distances of 60, 90, 120, 150, 180 km and select the grid 

point with much large values of 𝑟TME defined by Eq. (9) to determine the required stations. Note that 520 
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if the distance between the scattered stations is set smaller than 60km, all the remaining stations will be 

included which is inconsistent with the aim of refining. We take the scatter distance of 60km as an 

example to show how to select the required stations. Because the real station locations do not match the 

grid points in the model, we take the 𝑟TME value of their closest grid point as an approximation of their 

sensitivities. Therefore, for the remaining constructed ground stations, the station whose closest grid 525 

point has the largest 𝑟TME is taken as the first selected ground station; then, we exclude the stations no 

further than 60km away from the first selected station and determine the station with the largest 𝑟TME 

among the rest stations as the second selected station; after the second station is determined, we further 

exclude the stations no further than 60km away from the second station and selected the third station 

according to the 𝑟TME of its closest grid point; the other stations are similarly determined. Finally, a 530 

new observation network can be constructed by the combination of the essential stations and the scattered 

stations (see Fig. 6d).   

The simulated observations (i.e. the ERA5 data) taken from the new observation networks are 

assimilated to the control run to show the improvements achieved by assimilating the additional 

observations, where it is noted, since the essential stations responsible for DFs alone are not sensitive to 535 

the AFs, these stations are also scattered with corresponding distances according to the 𝑟TME when 

implementing the AFs; the same procedures are also carried out for the DFs. Specifically, on the basis of 

the essential stations, if the scattered stations are included with the distance of 60km, the performance of 

the PM2.5 forecasts for 32 AFs and 16 DFs are totally improved from 12.03% to 15.02% and from 18.07% 

to 23.62% measured by AEV; meanwhile, the AEM increases from 13.59% to 17.15% and from 18.05% 540 

to 24.18% averaged by all the AFs and DFs, respectively (see Figure 7 and Table 3). If a comparison is 

made between the essential stations and the additional scattered stations, it is found that the latter 

contributes an improvement of 2.99% and 3.56% of the PM2.5 forecasts measured by the AEV and AEM 

averaged for all the AFs and an improvement of 5.55% and 6.13% for all DFs, which, from another 

perspective, emphasizes the dominant role of the essential stations in improving the PM2.5 forecasts. For 545 

the scattered stations with other distances above, we also do similar experiments and make comparisons 

with those scattered by the distance of 60km, eventually showing that the stations scattered by 60km 

perform the best in enhancing the PM2.5 forecast skill for either AFs or DFs. However, we also find that 

there are not big differences among the skill scores achieved by them. For example, when the additional 
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stations are scattered from 60km to 90km (correspondingly, the station number is further decreased by 550 

83), the overall improvements of the AFs are only reduced by 0.35% measured by AEV  and 0.02% 

measured by AEM, while for the DFs, when the additional stations are scattered further than 90km, it is 

even difficult to differentiate the effects between the 120 to 180km distances. These imply that a 

saturation of the error reduction may exist in the given framework. In fact, Morss et al. (2001) 

demonstrated that the analysis errors are often small in a certain density of observation network so that 555 

adding more observations only resulted in small benefits, which may explain the saturation of the error 

reduction in the PM2.5 forecasts here. 

Now we take the observation network constructed by the combination of essential stations and the 

scattered stations with a distance of 60km as the newly refined observation network (see Figure 6d) and 

compare it with all the constructed ground stations by performing the assimilation runs. We find that the 560 

resultant improvements (15.02% for AFs and 23.62% for DFs; see above paragraph) by assimilating the 

newly refined station observations can account for 97% and 99% of the improvements (15.48% for AFs 

and 23.87% for DFs) achieved by assimilating all the constructed station observations for the AFs and 

DFs, respectively. Particularly, among the individual forecasts, 9 of the 32 AFs and 5 of the 16 DFs even 

show much higher forecast skills at the forecast times in the assimilation of the newly refined 565 

observations than in that of all the constructed ground observations. It is demonstrated that assimilating 

the simulated observations on the refined network can result in comparative, sometimes even higher 

improvements of the PM2.5 forecasting skills, as compared with assimilating all the ground stations 

observations within and surrounding the BTH; furthermore, we note that the number of the newly refined 

stations is at least 180 less than that of the constructed stations. All these indicate that, on the condition 570 

of the current ground meteorological stations, the above newly refined stations may compose to a cost-

effective observation network that almost accounts for the total improvement of the PM2.5 forecasts 

achieved by assimilating all the ground observations. The cost-effective observation network may 

provide guidance to optimize the current ground meteorological stations; at least, it suggests a much cost-

effectively assimilation strategy for increasing the accuracy of meteorological forecasts for the significant 575 

improvement of the PM2.5 forecasts in the BTH.      

 

Table 3 The mean and maxima of the improvements measured by 𝐀𝐄𝐕 /𝐀𝐄𝐌 for the AFs and DFs, when the 

simulated observations on different observation networks are assimilated. The largest improvements among 
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AFs or DFs for the refined observation networks are marked in bold, respectively.  580 

Observation network 
AFs DFs 

Mean (%) Max (%) Mean (%) Max (%) 

Essential stations 12.03/13.59 31.34/35.89 18.07/18.05 45.53/39.24 

All constructed 

stations 
15.48/17.90        40.47/38.42 23.87/24.76 55.54/46.76 

Essential & 

Scattered 60km 
15.02/17.15         41.12/39.21 23.62/24.18 54.04/47.13 

Essential & 

Scattered 90km 
14.67/17.13         37.99/38.19 21.79/22.41 50.43/45.02 

Essential & 

Scattered 120km 
14.29/16.29         37.97/38.18 21.17/21.79 50.16/43.15 

Essential & 

Scattered 150km 
13.92/ 15.44        37.56/38.61 20.77/21.21 49.59/43.89 

Essential & 

Scattered 180km 
12.77/15.21        35.62/38.22 20.97/20.87 48.99/42.57 

5. Interpretations 

In this section, we interpret why assimilating the cost-effective station observations results in 

comparative improvements, sometimes even higher improvements in PM2.5 forecasts than assimilating 

all the constructed station observations. It is known that the variation of PM2.5 concentrations is 

dependent on both the thermodynamical and dynamic meteorological conditions. Beyond question, the 585 

stable thermodynamical conditions, such as low planetary boundary layer height, are favorable for the 

accumulation of the PM2.5 concentrations (Miao et al., 2015); furthermore, a high relative humidity (RH) 

will also promote the processes such as heterogeneous chemistry and gas-particle partitioning, which are 

all favorable for the formation of the PM2.5. For the dynamic conditions in BTH region, increased wind 

speed may conversely influence the PM2.5 forecasts. For instance, dominant northerly wind will blow 590 

away the PM2.5 in downtown areas of BTH region, whilst southerly wind will bring more PM2.5 from the 

southern cities to the BTH region (Zhao et al., 2009). So the accuracy of thermodynamical and dynamic 

meteorological conditions are both essential for the PM2.5 forecasts in the BTH region (see the review 
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paper of Chen et al., 2020). 

For all the AFs and DFs concerned in the study, we compare their meteorological conditions before 595 

and after the assimilations of the cost-effective station observations and all the constructed station 

observations, respectively. We find that the assimilation, as expected, adjusts the thermodynamical and 

dynamic meteorological conditions at the initial state in the control run, and forecasts the meteorological 

condition closer to the truth run which further improve the PM2.5 forecasting skills. In particular, we 

found that the improvements for the AFs are basically associated with the more accurate 600 

thermodynamical conditions in the assimilation runs; whilst for the DFs, the improved forecasting skills 

are mostly attributed to the corrections of both the dynamical and thermodynamical conditions. 

Furthermore, the assimilations of the cost-effective station observations and all the constructed stations 

observations correct the meteorological conditions for the PM2.5 forecasts in a similar way, which thus 

causes a comparative skill of the PM2.5 forecasts between them. Specifically, we select two forecasts, i.e. 605 

the AF initialized at the 14:00 on 2 November 2018 and the DF initialized at the 02:00 on 15 November 

2018, which possess large forecast errors in the control runs, as examples to present the detailed 

interpretations.  

For the AF, the PM2.5 concentrations in the truth run increases from 101.54 μg m−3 at 14:00 on 2 

November to 143.01 μg m−3 at 02:00 on 3 November averaged over the BTH, indicating an 610 

accumulation process of the PM2.5. The control run is also able to present the accumulation process, but 

with an underestimation of 129.92 μg m−3 at the forecast time of 02:00 on 3 November (Fig. 8a). The 

differences between them are mainly attributed to the thermodynamical condition, since there are less 

differences in the wind components (see Fig. 9a). Therefore, we mainly concern the thermodynamical 

condition to explain the AF. Compared with the truth run, the control run has presented a less stable 615 

condition with an overestimation of 45.84 m in the boundary layer height and an underestimation of 

16.67% in the RH averaged over the BTH region at the forecast time, which are not beneficial for the 

accumulation and formation of PM2.5 so that an underestimation of PM2.5 concentration comes by. When 

the simulated observations from all the constructed meteorological stations are assimilated, the boundary 

layer height has decreased and the RH has increased over the central and southern part of BTH region at 620 

the initial time. The improved thermodynamic condition further modifies the meteorological condition 

at the forecast time, including a decrease of 21.56 m on the boundary layer height and an increase of 
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8.02% on RH averaged over the BTH region, which contribute to an increase of PM2.5 concentrations 

from 129.92 μg m−3 to 138.85 μg m−3 averaged over the BTH region and thus an improvement of the 

PM2.5 forecast skill (see Figure 10). By comparison, the assimilation of the cost-effective station 625 

observations will modify the meteorological conditions in the same way, with a decrease of 20.95 m in 

boundary layer and an increase of 7.57% in RH, finally resulting in the average PM2.5 of 138.60 μg m−3 

at the forecast time, only 0.25 μg m−3 lower than the forecast with the assimilation of all constructed 

station observations. Hence, the cost-effective network can approximate to the whole constructed stations 

and provide additional observations of equivalent efficiency to the whole observations in improving 630 

PM2.5 forecasts in the BTH. Moreover, we also implement the PM2.5 forecasts with longer lead times for 

the eight heavy haze events by using the meteorological analysis field updated by assimilating the cost-

effective observations. And we demonstrate that, although the cost-effective network is developed 

according to the sensitivity on the meteorological forecasts with the lead time of 12 hours, its resultant 

meteorological analysis fields still have positive effects on improving the AFs with longer lead times. 635 

For example, in the AF quoted in this section, assimilating the cost-effective station observations can 

reduce the forecast errors by 32.05% and 7.81% at the forecast time with lead time of 18 and 24 hours, 

respectively; furthermore, these improvements are also approaching to those achieved by the assimilation 

of all the constructed station observations (see Figure 8a and Figure 10). 

 640 

Figure 9 Time series of the PM2.5 concentrations averaged over the BTH region of the truth run, the control 

run, and the assimilation run inherited from the cost-effective observations and all the constructed 

observations for the AF initialized by 14:00 on 2 November 2018 with lead time of 24 hours (a) and the DF 

started from 02:00 on 15 November 2018 with lead time of 24 hours (b). 

 645 
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Figure 10 The differences in the wind (vector, m s−1) and PM2.5 concentration (shaded, ug m-3) between the 

truth run and control run (control run minus truth run) for (a) the AF at the forecast time 02:00 on 3 

November 2018 and (b) the DF at the forecast time 14:00 on 15 November 2018. 

 650 

Figure 11 The differences of the boundary layer height (contour line, m, blue line means reduction and red 

line means increase) and the PM2.5 concentrations (shaded, µg m−3) between the assimilation run inherited 

from the cost-effective observations and constructed observations and the control run for the AF started from 

14:00 on 2 November 2018 and with the lead times of 12h and 24h. 

For the DF, the mechanism is different from the AF, where both thermodynamical and dynamical 655 

    cost-effective

     observations

T=24T=12T=0
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conditions have critical impacts on the PM2.5 variation. The PM2.5 concentrations in the truth run 

decreased from 120.50 μg m−3 at Nov 15th 02:00 to 57.19 μg m−3 at Nov 15th 14:00 in the BTH region. 

The dissipation is caused by the northerly wind in the northwestern part of the BTH region at the initial 

time, and then the northerly wind increased gradually with the speed of 4.92 m s-1 at the forecast time 

over the BTH region, which blew away the PM2.5 concentrations in the BTH. Conversely, the control run 660 

presents southerly wind in the northern part of BTH region and easterly wind in the Inner Mongolia 

Province, which are against the truth run (Figure 9b) and result in an overestimation of PM2.5 with the 

concentration of 105.50 μg m−3 at the forecast time (Figure 8b). Besides the dynamical reasons, the 

control run also presents higher relative humidity biases over the BTH region, which also contributes to 

the overestimation of PM2.5 concentrations. When the simulated observations from all the constructed 665 

stations are assimilated to the initial state, it increased the northwesterly wind in the northern part of the 

BTH region at the initial time and at the forecast time the northerly wind over the BTH region has 

increased to 2.73 m s-1. Meanwhile, the assimilation also results in a decrease of RH from 76.28% to 

73.67%. It is obvious that the increased northerly wind and decreased RH are beneficial for the 

dissipation of the PM2.5 and lead to the PM2.5 concentration decrease from 105.50 μg m−3  to 83.35 670 

μg m−3in the BTH region at the forecast time, resulting in an improvement of 45.85% PM2.5 forecasting 

skills. When the simulated observations from the cost-effective station observations are assimilated, the 

meteorological conditions are modified in the same way, except the stronger northerly wind of 2.77 m s-

1 over the BTH at the forecast time. The stronger northerly wind blows more pollution in the BTH region 

to the downwind region so that the mean PM2.5 concentrations over the BTH region decreases to 82.53 675 

μg m−3  and shows an improvement of 47.55% of PM2.5 forecasting skills at the forecast time, 1.7% 

higher than the improvements when all the constructed station observations are assimilated. Therefore, 

though fewer observations in the cost-effective network are assimilated, they result in a higher 

forecasting skill by reducing larger forecast errors in the northerly wind. Furthermore, similar to the AFs, 

with the meteorological analysis fields obtained by the cost-effect observation network, the comparative 680 

improvements of the DFs can be achieved at much longer times. Specifically in this forecast, the 

improvements can reach to 34.16% and 29.36% at the lead times of 18 and 24 hours measured by AEV, 

respectively, almost the same as the improvements of the assimilation of all constructed station 

observations (see Figure 8b and Figure 11). 
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 685 

Figure 12 The differences of ground wind (vector, m s−1) and PM2.5 concentrations (shaded, µg m−3) between 

the assimilation run (inherited from the cost-effective observations and all constructed stations observations) 

and the control run for the DF started from 02:00 on 15 November 2018 and with the lead times of 12h and 

24 h. 

So far, we have verified numerically the validity of the cost-effective ground meteorological stations 690 

network in improving the PM2.5 forecasts of the BTH more economically by assimilating fewer 

observations; also, we have interpreted this validity in terms of the perspective of dynamics and 

thermodynamics. It is therefore expected that the cost-effective network can provide a guidance to refine 

the current ground stations from the viewpoint of the PM2.5 concentration forecasts in the BTH.  

6. Summary and discussions 695 

The PM2.5 forecasts of BTH region are sensitive to meteorological initial condition and in this study, we 

investigate the role of the ground meteorological stations within and surrounding the BTH, finally 

proposing a strategy to refine them, inspired by the fact that high density of observations is not necessary 

to cause higher forecast benefits. Specifically, a total of 32 AFs and 16 DFs obtained from all eight heavy 

hazy events in the BTH region in the winter season during the years of 2016-2018 were investigated 700 

using the WRF-NAQPMS model; and their fastest growth initial errors, i.e. the CNOP-type errors, are 
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calculated to identify their respective sensitive areas of ground meteorological fields; based on these 

sensitive areas, a frequency method suggested by Duan et al. (2018) is used to recognize the sensitive 

grid points applicable for the forecasts of the PM2.5 concentrations with different start times, which 

provides help to refine the current ground meteorological stations (a total of 481 stations) within and 705 

surrounding the BTH and form a newly refined stations network (a total of 287 stations, which is 194 

less than that of the former) for the PM2.5 forecasts in the BTH.  

Numerically, a series of OSSEs is conducted to verify the effectiveness of the newly refined 287 

stations observations on improving the PM2.5 forecasts in the BTH. They demonstrate that, when the 

additional simulated observations (i.e. the ERA5 data) from these refined stations are assimilated to the 710 

control run initialized by the GFS data the overall PM2.5 forecasting skills increase to 15.02% and 23.62% 

at the forecast time of AFs and DFs, which have accounted for 97% and 99% of the improvements when 

the simulated observations from all the 481 ground stations are assimilated; especially, for some 

individual forecasts, assimilating the simulated observations even results in higher forecasting skills of 

PM2.5. Physically, we interpret why assimilating the fewer observations from the refined stations can 715 

have the improvement of the PM2.5 forecast skill comparative to, even higher than that of assimilating 

the whole ground stations observations. In fact, assimilating the fewer observations has equivalent 

capabilities of correcting the atmospheric stability for the AFs and modifying the dynamical and 

thermodynamical conditions for the DFs compared with assimilating the whole ground observations, 

which makes the control run closer to the truth and result in a comparative improvement of PM2.5 forecast 720 

skills.  

It is clear that assimilating the fewer sensitive observations can lead to higher PM2.5 forecast skills, 

which indicates that it is not necessarily the use of much denser meteorological observation stations but 

instead a few sensitive stations can greatly improve the PM2.5 forecast skills. It implies that the 58% (the 

279 refined stations for the AFs) of the current station observations accounting for the 97% of the 725 

improvements at the forecast time of AFs and 50% (the 241 refined stations for the DFs) of the current 

station observations contribute to the 99% of the improvements at the forecast time of DFs. Combined 

AFs and DFs, there are a total of 287 stations (about 60% of the current stations) remain to make highly 

efficient contribution to the PM2.5 forecasts in the BTH region. It is therefore indicated that the newly 

refined network may play a role of the cost-effective ground meteorological stations for greatly 730 
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improving the PM2.5 forecast in the BTH. Although the present study is associated with hindcasts of 

PM2.5, it is still difficult to obtain the meteorological observations from the Monitor Center; therefore, 

we can only assimilate the simulated observations (i.e. the ERA5 data) to the control run to show the 

effectiveness of the cost-effective observation network. The effectiveness is verified by examining 

whether a forecast (i.e. the simulation initialized by GFS) after assimilating the observations from the 735 

cost-effective station network will be much closer to the good simulation (i.e. the simulation initialized 

by ERA5). If the cost-effective station network is useful along this thinking, it can be inferred that 

assimilating real observations from the cost-effective stations to the meteorological initial field in the 

control forecast would improve the meteorological field forecasting and then the PM2.5 forecasting 

greatly against the observations. This may suggest that 287 refined stations in the study should maintain 740 

operations and other stations surrounding the BTH can be greatly scattered for avoiding the thankless 

work. Relative to the objective in scientifically arranging the observation network proposed by the China 

Meteorological Administration during the 14th Five-Year Plan Period, our study would provide a 

scientific guidance for optimizing the ground meteorological station network with the respect of 

improving the air quality forecasts.  745 

In this study, we focus on the effect of surface meteorological uncertainties of the PM2.5 forecast in 

the BTH and suggest that the current constructed ground stations can be refined to a cost-effective station 

network. In fact, these cost-effective stations, as demonstrated in Section 4, are made up of the 

constructed stations that are fallen into the area covered by the 174/184 sensitive grid points for AFs/DFs 

revealed by the CNOP-types errors and the scatted stations which have also been constructed but not 750 

fallen in the area covered by the sensitive grids. It is therefore conceivable that the cost-effective network 

in this study could be further optimized by moving the stations not located in the area covered by the 

sensitive grids to the area with higher sensitivities (i.e. the area covered by the 174/184 sensitive grid 

points). In the present study, we studied meteorological initial uncertainties of wind, temperature and 

water vapor variables, which are conventional meteorological variables monitored in the national 755 

meteorological stations. Apart from these, the boundary layer height is a key meteorological variable for 

PM2.5 forecasts. Since the boundary layer simulation is more influenced by the parameterization in the 

WRF model (Chen et al., 2017; Mohan and Gupta, 2018), to study the role of boundary layer uncertainties 

in yielding the PM2.5 forecast uncertainties, an extension of the CNOP method, CNOP-parametric 
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perturbation (CNOP-P; Mu et al., 2010) or nonlinear forcing singular vector (NFSV, Duan and Zhou, 760 

2013), can be used. It is expected that future studies could address the boundary layer uncertainties using 

the extensions of CNOP method and these uncertainties may provide guidance to optimize its relevant 

observation network. Besides the meteorological observations, pollutant observations are also quite 

important for the air quality forecasts (Luo et al., 2022). Therefore, optimizing the environmental 

monitoring stations and obtaining more useful pollutant observations are also very important for the 765 

significant improvements of air quality forecasting, which may further reduce the gap between the 

forecasts and observations in the air quality studies. Though previous studies have attempted to identify 

the sensitive areas for targeted observations of chemical constituents using singular vector or adjoint 

sensitivity methods (Daescu and Carmichael, 2003; Goris and Elbern, 2015), they used a linear approach 

and did not sufficiently consider the nonlinear effect of initial value sensitivity, so that implementing the 770 

observations on these sensitive areas may not lead to the largest improvements (Wang et al., 2011). The 

application of CNOP on determining the sensitive areas may overcome the limitations. It is therefore 

expected that the optimization of environmental monitoring stations can be in-depth studied and more 

useful conclusions will be achieved for greatly improving the forecasts of air quality in the future. 

 775 
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