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Response to Community comments: 

 

General comments: 

 

The authors present an approach to refine the ground meteorological stations in 

order to improve the regional air quality forecasts. Based on the sensitive areas for 

targeted observation, the authors first identified the essential stations, then scattered 

the other stations with different distances, finally a cost-effective observation network 

is provided. The refinement of the ground stations is a desirable one and the method 

is described in a clear and logical manner. Apart from the comments posted on the 

website by two referees, I only have a few minor comments. 

Response: We thank your appreciations. 

 

Specific comments: 

 

1. What are the compositions of PM2.5 matter considered in the model? 

Response: The components of PM2.5 simulation here include black carbon, organic 

carbon, secondary inorganic aerosol (sulfate, nitrate, ammonium) and primary PM2.5 

emitted directly from various sources. The compositions of PM2.5 matter considered 

in the model will be added in the revised manuscript.  

 

2. Is it the domain setup in WRF the same with NAQPMS? Please clarify. 

Response: The WRF model is configured with the same horizontal and vertical grid 

structure with the NAQPMS model. The details will be added in the revised manuscript. 

 

3. The boundary layer height is a key meteorological variable that affects the 

regional PM2.5 concentration, but the authors do not consider it in the definition 

of CNOP-type errors. The reasons why the BLH is not considered should be 

mentioned. 

Response: We agree with the reviewer that the boundary layer height is a key 

meteorological variable that affects the regional PM2.5 concentration forecasts. The 

CNOP in the present study only considers the sensitivity from initial uncertainties. 

Since the boundary layer simulation is more influenced by the parameterization in the 

WRF model (Chen et al., 2017; Mohan and Gupta, 2018), to study the role of boundary 

layer uncertainties in yielding the PM2.5 forecast uncertainties, an extension of the 

CNOP method, CNOP-parametric perturbation (CNOP-P; Mu et al., 2010) or nonlinear 

forcing singular vector (NFSV, Duan and Zhou, 2013), can be used to identify the 

sensitivities of boundary layer uncertainties. The related discussions will be added in 

the revised manuscript. 

 

4. I am curious about how much improvements will be when the cost-effective 

stations are removed from the all the constructed stations. It is suggested to add 

some experiments in the manuscript. At least the authors could take some 

forecasts as examples to show the differences. 
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Response: We thank the reviewer’s suggestions. The CNOP-type error represents 

the initial error that results in the largest forecast error in the verification area at the 

verification time. The CNOP-type error considers the interaction among the errors on 

spatial grid points and in this situation, the errors on the grid points with large amplitude 

of the CNOP-type error contribute much more to the final prediction error. When we 

sort the spatial grid points with a decreasing order according to the amplitude of the 

error and choose the first 3% grid points as the essential grid points, the interactions 

between these grid points are remained, so that it is assumed that assimilating the 

observations on these grid points may contribute more to the improvements of forecast 

skills. Based on a series of OSSEs, it is verified that assimilating the essential or cost-

effective observations can indeed improve greatly the PM2.5 forecasts. Specifically, 

when the 279 cost-effective station observations are assimilated for the AFs, they 

achieve an overall 41.11% the improvement of PM2.5 forecasting skills, which explains 

99% the improvement when assimilating constructed station observations; furthermore, 

when the cost-effective station observations are removed from all the constructed 

station observations, the number of the rest station observations is 77 smaller than that 

of the cost-effective station observations and the assimilation of these observations 

explains much less, which is 70% the improvement obtained by assimilating all 

constructed station observations. To be specially emphasized, for the DFs, when the 

simulated observations from the 241 cost-effective station observations are assimilated, 

it results in an improvement of 47.55% of PM2.5 forecasting skills, even 1.7% higher 

than the improvement of assimilating all constructed station observations; however, 

when the cost-effective station observations are removed, assimilating the rest 240 

station observations would only result in an improvement of 22.60% PM2.5 forecasting 

skill. Obviously, although the number of rest station observations is almost the same 

with the cost-effective station observations, the improvement of PM2.5 forecasting 

skills is less than half of the improvements obtained by assimilating the cost-effective 

station observations. 

Totally, assimilating the cost-effective station observation will lead to much higher 

PM2.5 forecasting skills than assimilating the rest observations, which emphasizes the 

important role of the cost-effective station observations in improving the PM2.5 

forecast skills. The relevant experimental results and discussions will be added in the 

revised manuscript. 

 

5. A series of OSSEs is designed to verify the effectiveness of refined stations, due 

to the unavailable of real meteorological observations. It is suggested to add more 

discussions on how future work could use real observations. 

Response: We thank the reviewer’s suggestion. We will add discussions in the revised 

manuscript.  

As we showed on Lines 295-315 in the manuscript, to identify the sensitive area 

of the ground meteorological field in each forecast, we adopt the idea of Lorenz (1965) 

and take the better simulation initialized by ERA5 as “truth run” and the simulation 

initialized by GFS forecast data as “control run”, where these two simulations have the 

same emission inventory and use the same model; so the difference between them 
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reflect the sensitivities of forecast uncertainties of PM2.5 concentrations on the 

accuracy of initial meteorological field. When we compute the CNOP-type initial 

perturbation superimposed on the better simulation initialized by ERA5, it can be 

regarded as an approximation to the most sensitive initial error and the sensitive area 

identified by such CNOP-type error can be regarded as an approximation to the real 

sensitive area. If the approximate sensitive area is valid, assimilating the additional 

observations in the sensitive area of control forecast will make the updated forecasts 

approach to the truth run.  

Although the present study is associated with hindcasts of PM2.5, it is still difficult 

to obtain the meteorological observations from the Monitor Center; therefore, we can 

only assimilate the simulated observations (i.e. the ERA5 data) to the control run to 

show the effectiveness of the cost-effective observation network. If the cost-effective 

station network is useful along this thinking, it can be inferred that assimilating real 

observations from the cost-effective stations to the initial field of the meteorological of 

the control forecast would improve the meteorological field forecasting and then the 

PM2.5 forecasting greatly against the observations.  
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