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Abstract. Inaccurate parameter estimation is a significant
source of uncertainty in complex terrestrial biosphere mod-
els. Model parameters may have large spatial variability, even
within a vegetation type. Model uncertainty from parameters
can be significantly reduced by model–data fusion (MDF),5

which, however, is difficult to implement over a large re-
gion with traditional methods due to the high computational
cost. This study proposed a hybrid modeling approach that
couples a terrestrial biosphere model with a data-driven ma-
chine learning method, which is able to consider both satel-10

lite information and the physical mechanisms. We developed
a two-step framework to estimate the essential parameters
of the revised Integrated Biosphere Simulator (IBIS) pixel
by pixel using the satellite-derived leaf area index (LAI) and
gross primary productivity (GPP) products as “true values.”15

The first step was to estimate the optimal parameters for
each sample using a modified adaptive surrogate modeling
algorithm (MASM). We applied the Gaussian process regres-
sion algorithm (GPR) as a surrogate model to learn the rela-
tionship between model parameters and errors. In our sec-20

ond step, we built an extreme gradient boosting (XGBoost)
model between the optimized parameters and local environ-
mental variables. The trained XGBoost model was then used
to predict optimal parameters spatially across the deciduous
forests in the eastern United States. The results showed that25

the parameters were highly variable spatially and quite dif-
ferent from the default values over forests, and the simula-

tion errors of the GPP and LAI could be markedly reduced
with the optimized parameters. The effectiveness of the opti-
mized model in estimating GPP, ecosystem respiration (ER), 30

and net ecosystem exchange (NEE) were also tested through
site validation. The optimized model reduced the root mean
square error (RMSE) from 7.03 to 6.22 gC m−2 per 8 dTS1

for GPP, 2.65 to 2.11 gC m−2 per 8 d for ER, and 4.45 to
4.38 gC m−2 per 8 d for NEE. The mean annual GPP, ER, and 35

NEE of the region from 2000 to 2019 were 5.79, 4.60, and
−1.19 Pg yr−1, respectively. The strategy used in this study
requires only a few hundred model runs to calibrate regional
parameters and is readily applicable to other complex terres-
trial biosphere models with different spatial resolutions. Our 40

study also emphasizes the necessity of pixel-level parame-
ter calibration and the value of remote sensing products for
per-pixel parameter optimization.

1 Introduction

Accurate quantification of the terrestrial carbon budget 45

is crucial for understanding the global carbon cycle and
biosphere–atmosphere interactions, and informing climate
projections (Fernández-Martínez et al., 2018; Piao et al.,
2020). Land surface models (LSMs) built on process-based
mechanisms of atmosphere–biosphere interactions are often 50
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used to simulate the behavior of the terrestrial carbon cycle
in response to a changing climate (Peaucelle et al., 2019).
These models typically use a large number of parameters.
Prescribed values of model parameters based on a theoreti-
cal assumption, empirical analysis, or field measurements are5

prone to substantial uncertainties which can engender inac-
curate projections in modeling (Barman et al., 2014; Keenan
et al., 2012; Kuppel et al., 2014). Parameter estimation is be-
coming more challenging, especially when greater details are
introduced to enhance the authenticity and interpretability of10

LSMs (Famiglietti et al., 2021).
Model–data fusion (MDF) is an increasingly used method

that can be leveraged to reduce the model–data misfit by
calibrating parameters. Researchers have mainly used the
site and sample measurements, raw reflectivity observations,15

and satellite-based products to estimate parameters in com-
plex terrestrial biosphere models, and significant progress
has been made in the integration of univariate observations
(MacBean et al., 2016). However, due to the complex rela-
tionship between model variables, univariate assimilation is20

often not enough to constrain the vegetation parameters in-
volved in multiple surface processes, and it is still necessary
to introduce other data streams to increase the constraints on
model parameters (Fernández-Martínez et al., 2018; Liu et
al., 2015; Schürmann et al., 2016; Zobitz et al., 2014). For25

example, soil moisture observations can be regarded as an
additional constraint of a plant functional type (PFT) due to
the tight coupling of carbon and water cycles in vegetation
photosynthesis (Scholze et al., 2016), and some remote sens-
ing products, such as the fraction of photosynthetically ac-30

tive radiation data (FAPAR) and leaf area index (LAI) could
bring phenology information in constraining long-term vege-
tation dynamics. Joint constraints of LAI or FAPAR products
and in situ observations of carbon fluxes or atmospheric CO2
concentration have already been explored in reducing param-35

eters uncertainties (Forkel et al., 2014; Bacour et al., 2015).
Although remote sensing has provided high-precision prod-
ucts, there are only a limited number of variables available.
Using remote sensing products as a reference to calibrate the
parameters of the surface model can not only improve the40

simulation accuracy of target variables but also affect related
processes in the model, which thereby can improve the sim-
ulation accuracy of other related variables (e.g., carbon stor-
age, respiration), and our understanding of terrestrial ecosys-
tem processes and their interactions with the environment.45

The parameter estimation of complex models has been
well studied at the site scale. Many researchers used obser-
vations to optimize parameters at the site scale and then ap-
plied the optimized parameters to regions. However, when a
PFT covers a broad area, ecosystem characteristics, density,50

or disturbance history can vary substantially across the re-
gion. In this case, site-scale parameters with a small footprint
cannot be considered spatially representative, and the rela-
tionship between observations and models may not be spa-
tially scalable (Raoult et al., 2016; Xiao et al., 2014; Zhou et55

al., 2020). Finding a globally applicable parameter scheme is
complicated for LSMs, as it requires a high computational
cost (Gong and Duan, 2017). Machine learning (ML) ap-
proaches are flexible in adapting to an increasing stream of
geospatial products, making it easy to extract patterns and 60

combine them with physical models as an additional source
of information. It offers an opportunity to improve or ac-
celerate parameterizations by integrating model simulation
and multiple observations or high-quality spatial products
more intensively in different ways. For example, Chaney et 65

al. (2016) carried out parameter calibration at 85 eddy co-
variance flux sites, and then obtained the spatial parameters
using extra trees and combining local environmental charac-
teristics. Although the parameters showed significant spatial
variability, their study did not verify the performance of the 70

optimized model. Tao et al. (2020) constrained parameters at
the site scale to improve the soil organic carbon simulation
and then extended the optimized parameters to the United
States, utilizing a neural network. Their results showed that
the model error was significantly reduced when the spatial 75

heterogeneity of optimal parameters was considered. These
studies using flux sites to calibrate parameters can ensure the
parameter accuracy at each site, while it is likely to cause
potential problems of overfitting due to limited training sam-
ples, which makes it difficult to guarantee the accuracy when 80

extending the resulting optimal parameters to a broad region
using ML.

To date, few researchers conducted pixel-level parame-
terization because parameter optimization often depends on
a large number of parameter samplings and model opera- 85

tions, especially when using the Markov chain Monte Carlo
(MCMC) method as the optimization algorithm. MCMC is
usually applied to model parameter calibration to obtain
the optimal posterior probability distribution of parameters
(Yuan et al., 2012; Safta et al., 2015). It typically requires 90

thousands of model simulations, which are excessively ex-
pensive for complex LSMs that may take hours for each
model simulation (Fer et al., 2018). ML can be an inno-
vative method to conduct surrogate modeling or emulation
in parameter optimization (J. Li et al., 2018; Reichstein et 95

al., 2019). ML is regarded as an effective method to speed
up model parameterizations and can make better use of the
abundant spatial information provided by the multisource
high-precision remote sensing products. Researchers have
proved the feasibility of surrogate modeling and indicated 100

that once the ML emulator is trained well, the optimization
speed can be increased by an order of magnitude without
much loss of accuracy (Sawada and Koike, 2014; Fer et al.,
2018). For example, Gong and Duan (2017) pointed out that
using a surrogate model can reduce the number of model 105

runs from 106 to a few hundred or thousands with accept-
able accuracy. The integration of physical and ML models
may not only achieve improved performance but may also
significantly improve computing speed, and the optimization
of model parameters using multisource observations based 110
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on surrogate modeling has the potential for improving the
accuracy of regional or global LSMs (Zhang et al., 2019; Xu
et al., 2018).

Some researchers considered finding unknown regional
parameters using an ML emulator but with a very coarse res-5

olution (Dagon et al., 2020; J. Li et al., 2018). This is be-
cause a large number of model runs are still needed to train
the surrogate model to ensure its accuracy, even though adap-
tive surrogate modeling-based optimization algorithms have
been developed to reduce the initial training samples (J. Li10

et al., 2018; Gong and Duan, 2017). In this paper, we ex-
plored a two-step method of combining ML and a physical
model to improve the calibration speed of spatial parameters,
made full use of high-quality remote sensing products to cal-
ibrate the model at each pixel, and carried out a study on15

the deciduous forests (DF) in the eastern United States. We
first performed pixel-level parameter calibration using sur-
rogate running instead of a terrestrial model within samples
in our region, and then expanded the optimal parameters ob-
tained from samples into spatial distribution using the ML20

approach with several environmental variables. In this way,
the results of our first step can provide more samples for
training ML model than directly using ML for spatial expan-
sion of optimized parameters. Compared to studies that sim-
ply use surrogate models to optimize parameters, our second-25

step ML extension makes it easier to obtain large-scale, high-
resolution parameter space distributions.

This paper is organized as follows. Section 2 briefly intro-
duces a terrestrial model and related data sources. Section 3
describes the two-step pixel-by-pixel region parametrization30

algorithm and the experimental setting. Section 4 shows the
results of thus optimizing parameters and presents a spatial
analysis of carbon fluxes before and after the optimization.
Uncertainty analysis and future work are described in Sect. 5,
followed by a conclusion in Sect. 6.35

2 Models and data

2.1 Model framework and running strategy

2.1.1 Model description

The Integrated Biosphere Simulator (IBIS) model integrates
many land-surface ecosystem processes into a complex phys-40

ical mechanism model, which is divided into the land sur-
face, vegetation phenology, carbon balance, and vegetation
dynamic modules (Foley et al., 1996; Yuan et al., 2014). It
has a hierarchical structure operating on 60 min or 1-year
time steps. IBIS considers three snow layers and six soil lay-45

ers in each pixel and determines PFTs based on different
ecological characteristics. Detailed information about IBIS
is available in Foley et al. (1996) and Kucharik et al. (2000).

A simple function is used in IBIS to describe the relation-
ship between leaf behaviors and phenological status, which50

forecasts the onset of budburst when suitable temperatures
are reached. It describes the defoliation when the 10 d aver-
age daily air temperature is below 5 ◦C in autumn. The po-
tential LAI (pLAI), also known as the yearly maximum leaf
area, is calculated for the growing season based on the leaf 55

carbon biomass of previous years, as shown in Eq. (1). When
simplified phenology (phen, shown below and calculated by
the accumulated growing degree day and several tempera-
ture parameters) is considered for pLAI, the overall growth
dynamics of vegetation leaves can be obtained for each year 60

(Cao et al., 2015):

pLAI= leaf biomass× specla, (1)
LAI= pLAI× phen, (2)

where specla refers to specific leaf area (m2 kg−1).
Biomass allocation in the IBIS model is updated annually, 65

and therefore it is difficult to accurately describe the influ-
ence of meteorological factors on LAI and to capture the
detailed dynamics of leaves (Kucharik et al., 2006). Captur-
ing the daily dynamics of LAI requires changes in the leaf
biomass pool each day. For this process, we incorporated 70

part of the carbon allocation in the data assimilation linked
ecosystem carbon (DALEC) model (Chuter et al., 2015) into
the original IBIS model, a simple box model evaluating daily
six-carbon pools for deciduous forests. The photosynthesis
rate of deciduous forests conveyed following the Farquhar 75

equation (Farquhar et al., 1980) can be expressed as the min-
imum of light and Rubisco-limited rates of photosynthesis
in the IBIS model, and then we can obtain gross primary
productivity (GPP) at each time step on a pixel basis. Pho-
tosynthates stored in daily GPP will be allocated to the fo- 80

liage (Cf), woody (Cw), and root (Cr) pools within a discrete
dynamical process as defined in the DALEC model. The dy-
namic LAI values can be obtained by dividing daily Cf by
the leaf mass per area. LAI values most directly limit spe-
cific growth or carbon allocation characteristics, potentially 85

influencing the seasonal dynamics of carbon-related fluxes.
Net ecosystem exchange (NEE) is defined as the difference
between ecosystem respiration (ER) and GPP. In this paper,
a positive value of NEE represents carbon release, while a
negative value indicates carbon uptake. 90

2.1.2 Running strategy

We simulated the LAI and carbon fluxes for the deciduous
forests in the eastern United States from 2000 to 2019 at
a spatial resolution of 0.05◦× 0.05◦. All model simulations
were forced with daily climate drivers, CO2 concentration, 95

and soil properties. We employed fixed vegetation instead
of dynamic runs to avoid model errors from building forest
species structures while simulating ecological processes. All
the datasets used to drive the model are described in Sect. 2.2.

For model initialization, the improved IBIS was cyclically 100

spun up for 50 years by repeating meteorological datasets
in 2000. The final soil and carbon states of initialization run
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at each pixel reached a quasi-equilibrium and were saved as
inputs for the subsequent transient simulation. Default values
for the initial carbon pools (six pools for DF) used in DALEC
modeling were set to the same scheme as Chuter et al. (2015).

2.2 Data sources5

2.2.1 Model forcing

Initial soil and vegetation properties and daily climate data
are required in IBIS. The soil parameters include soil sand
and clay content (%), which were gathered from avail-
able comprehensive, gridded Global Soil Datasets for use in10

Earth System Models (GSDE) with a resolution of 30 arcsec
(Shangguan et al., 2014). Forcing meteorological datasets
are maximum and minimum temperature (◦C), precipitation
(mm), wind speed (m s−1), specific humidity (%), pressure
(Pa), and cloud cover (%). All forcing datasets were resam-15

pled to match the model resolutions (0.05◦) using bilinear
resampling, and hourly pressure was aggregated into daily
values. The global CO2 concentration was based on the mea-
surements at the Mauna Loa Observatory, Hawaii started in
2000 (Thoning et al., 1989). Information on all the datasets20

is summarized in Table 1.
The primary vegetation type in each pixel was identi-

fied by the high-resolution land cover maps from the Na-
tional Land Cover Database (NLCD, 30 m) (Homer et al.,
2020, available on http://www.mrlc.gov, last access: 9 Jan-25

uary 2021). The NLCD offers a suite of the national land
cover of the United States and associates changes that were
upscaled to the model running resolution based on the ma-
jority land cover type (>50 %) method in resampling. We
extracted data on deciduous broad-leaved forests in the east-30

ern United States with the resampled land cover map.

2.2.2 Assimilated remotely sensed products

This study used global LAI and GPP products from the
Global Land Surface Satellite (GLASS) suite as “observa-
tions” (“true values”) for parameter calibration on a spatial35

scale. This dataset has long-time coverage, high spatial res-
olution (500 m and 0.05◦), and temporal and spatial conti-
nuity. It was found to have high accuracy in a site valida-
tion and product comparison test (Liang et al., 2021) and has
been widely used in many studies (Chen et al., 2019; Ryu40

et al., 2018; Kumar et al., 2020). We used the latest version
of the GLASS LAI product, which was obtained from the
bidirectional long short-term memory deep learning model
(Ma and Liang, 2022). According to the validation by ground
measurements, the overall accuracy of this product was much45

improved (R2
= 0.73, RMSE= 0.82 m2 m−2) over the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) LAI
product (R2

= 0.57, RMSE= 1.08 m2 m−2) (Ma and Liang,
2022). The GLASS GPP product with 0.05◦ spatial resolu-
tion was derived from a revised light-use efficiency model50
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(EC-LUE model), which had a better performance at most
sites (R2

= 0.81, RMSE= 2.13 gC m−2 d−1) than FLUX-
COM and several process-based biophysical models (Zheng
et al., 2020).

2.2.3 Flux observations5

We collected 14 eddy covariance flux sites of deciduous
forests in the eastern United States from FLUXNET2015
(“Tier 1”) (Pastorello et al., 2020, https://fluxnet.org/data/
fluxnet2015-dataset/, last access: 11 June 2020) and Amer-
iFlux network (http://public.ornl.gov/ameriflux, last access:10

26 June 2020) (Table S1). Half-hourly or hourly measure-
ments from AmeriFlux datasets were aggregated into differ-
ent temporal scales. Daily values were indicated as invalid if
more than 20 % of the data were missing on a given day. Site
data from FLUXNET2015 were filtered considering quality15

information flags provided by the FULLSET data product
(NEE_VUT_REF_QC≥ 0.5) (Yuan et al., 2012).

3 Model–data fusion for pixel-level parameterization

3.1 Modified adaptive surrogate modeling (MASM)

We employed adaptive surrogate modeling in this study to20

establish a fast and practical framework for the iterative opti-
mization of a complex physical model. We slightly improved
the adaptive surrogate modeling-based optimization parame-
ter optimization and distribution estimation (ASMO–PODE)
method proposed by Gong and Duan (2017). We applied25

Bayesian optimization twice to reduce the time cost of Monte
Carlo iterations. The modified procedure (Fig. S1) is as fol-
lows.

– Step 1. Initial random sampling. We generated points
in a uniformly distributed parameter space by randomly30

sampling using the good lattice point approach with
ranked Gram–Schmidt decorrelation (Owen, 1994). As
Wang et al. (2014) pointed out, the ASMO method per-
forms better when the number of initial points is set to
15–20 times the number of the parameters; we chose35

18 as our initial sampling multiple. With the sampled
points, the dynamic model (IBIS) was run to obtain the
corresponding target variables (daily LAI and GPP, as
yM

t in Eq. 3).

yM
t = fM (xt, θ, ini)+R, (3)40

where yM
t is the modeled target variables (e.g., LAI,

GPP) at time t , fM is the IBIS model, xt represents the
forcing datasets (Table 1), θ represents the parameters,
ini represents the initial soil and carbon pools after spin-
ning up, and R represents the model errors.45

– Step 2. Cost function (CF) and surrogate model
construction. We used the GLASS products (see

Sect. 2.2.2) as the “observations” (i.e., “true values”)
to implement pixel-level parameter schemes to cali-
brate the model parameters. Under the observation con- 50

straints, the posterior probability distribution of param-
eters can be obtained with Bayes’ rules and is propor-
tional to the likelihood and prior probability density:TS2

P
(
θi |y

O
t

)
∝ P

(
yO

t |θi

)
P (θ)= L

(
θi |y

O
t

)
P (θi)

θ ∼ uniform (range); i = 1,2,3, . . .,n, (4)

where yO
t is the observation, P (θi |y) denotes the pos- 55

terior probability density functions of selected parame-
ters given by the y, P (y|θi) means likelihood, P (θi)
(i = 1,2,3, . . .,n) represents prior distribution (set as
uniform), and n is the number of sensitive parameters.
The distribution bounds of each parameter are shown in 60

Table 2. We aggregated the daily variables simulated by
the model into 8 d and constructed the CF with observa-
tions.

L
(
θi |y

O
t

)
= (2πσ)−n/2

∏
t
exp

{
−
[yO

t − y
M
t ]

2

2σ 2

}
, (5)

where σ 2 is the error variance of each observation. We 65

assumed that the errors between the model and the ob-
servation (yO

t −y
M
t ) are independent (i.e., the covariance

is zero), and therefore σ 2 here is expressed by the vari-
ance of each observation product (Yuan et al., 2012). We
used −2log(L) as our final target function. 70

CFs
t = fs (CFM

t ,θsam), (6)

where CFs
t stands for CF estimated from the GPR

(Gaussian process regression algorithm model) (fs),
CFM

t stands for CF estimated from IBIS model (fM),
and θsam denotes sampled parameters. 75

– Step 3. Surrogate optimization protocol based on the
MASM algorithm. We performed global optimization on
the GPR model using MASM, which requires many it-
erative operations that cost much less than running the
highly complex IBIS model directly. One slight differ- 80

ence between MASM and the ASMO–PODE is that we
applied two Bayesian optimizations for the GPR model.
The first one (Fig. S1, Bayes1) was mainly the same as
Gong’s method (Gong and Duan, 2017), but we reduced
the number of Monte Carlo iterations and set it to 10 000 85

to establish a relatively high-precision GPR model. The
second application (Fig. S1, Bayes2) was aimed mainly
at the repeated iteration of the GPR model obtained
in the previous step. After running Bayes1, we calcu-
lated the error between the CF estimated by the GPR 90

model (CFs
t ) and the original model (CFM

t ), as shown

https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/
http://public.ornl.gov/ameriflux
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by Eq. (7).

RMSE=

√√√√1
n

n∑
n=0
(CFs

t −CFM
t )

2 (7)

GR=

√
N2− 1
N2

+
Nchain+ 1
Nchain×N2

×
B

W
, (8)

where B represents the variance between the averaged
values of each chain and W is the average of the vari-5

ances within each chain.

At the end of each Monte Carlo iteration in Bayes1, five
representative samples were selected adaptively from the
posterior distribution of parameters and were then used as
inputs to the IBIS model to obtain the corresponding CFM

t .10

A new sample scheme containing those representative points
was used to update the GPR model again. This procedure sig-
nificantly reduced the running time of the initial model and
obtained a relatively high-precision surrogate model when
the first stop criterion was reached (Niter= 200). In the sec-15

ond optimization (Bayes2), we repeated the iterative opti-
mization of the finally established GPR model and added the
Gelman and Rubin (GR) factor shown in Eq. (8) as the index
to judge the convergence of the Markov chain. When the GR
factor was less than 1.2, the Markov chain was considered to20

have converged, and the result was considered credible and
repeatable (Gelman and Rubin, 1992). The model was run
for both initial sampling (Fig. S1, Run1) and adaptive resam-
pling (Fig. S1, Run2), and the total number of model eval-
uations was Npars× 18+ 5×Niter. The model was run in25

parallel using MATLAB. Compared with the parameter cal-
ibration for the original model, this number was reduced by
an order of magnitude, which greatly reduced the computa-
tional resources.

3.2 Experimental design for generating pixel-level30

parameter estimates

3.2.1 Parameter screening

Adding a new module inevitably introduces more parameters
(Sect. 2.1.1), resulting in higher computational costs. Before
calibration, we needed to screen parameters and select the35

ones with the most influence on the target variables for cali-
bration. A few parameters related to photosynthesis, carbon
allocation, respiration, and water stress were considered in
our revised IBIS model. All the parameters were restricted
to a predefined range according to several published stud-40

ies (Cunha et al, 2013; Varejão et al., 2013; Bloom et al.,
2016; Chuter et al., 2015; Lu et al., 2017). Table 2 lists all
parameters, together with the prior ranges and their descrip-
tions. Some parameters are independent of vegetation types
by default (e.g., alpha3 and theta3), while those related to45

turnover time or allocation are generally regarded to vary by

type of vegetation (e.g., tauleaf, aleaf, and aroot). We ran-
domly chose 1/10 of the deciduous forest pixels (∼ 4200 pix-
els) and then adopted the Morris approach (Morris, 1991) to
roughly remove parameters with low influence on our target 50

variables (LAI and GPP) (Fig. 1). We finally determined 10
sensitive parameters, including seven LAI-sensitive parame-
ters (vmax, p5, p14, p15, p17, p18, and p20) and seven GPP-
sensitive parameters (alpha3, theta3, beta3, vmax, p5, p14,
and p20) for further calibration. 55

3.2.2 Model–data fusion on samples

We randomly selected another sample (∼ 4200 pixels) in the
deciduous forest ranges of the eastern United States. The
model was run for 20 years between 2000 and 2019, with
2000 used as the spin-up year and 2001–2009 as the cali- 60

bration period. The observed and simulated values of the re-
maining time (years after 2009) were used for independent
verification.

A pixel-by-pixel optimization was performed stepwise for
each sample using the MASM method with the GPP and LAI 65

from the GLASS products as the observed values. The daily
GPP simulated by the model was aggregated into 8 d, and
the MASM method was used for iterative optimization to
obtain the posterior probability distribution of sensitive pa-
rameters of GPP. Considering p5, p14, and p20 have more 70

obvious effects on LAI (Fig. 1), we only used mean values
of alpha3, theta3, beta3, and vmax as the fixed inputs for
the second step optimization with GLASS LAI as the ref-
erence. Adopting such a stepwise optimization required the
use of a “parameter block” approach so that each data stream 75

could optimize only the more strongly correlated parameters
(Wutzler and Carvalhais, 2014). We tested the effect of opti-
mization order on a small number of samples, and the results
showed no significant differences. A multivariable stepwise
optimization performed by Alton (2013) also showed that op- 80

timization order did not distinctly change the results.

3.2.3 Spatial expansion using the XGBoost approach

The optimal parameter scheme of each sample was obtained
after calibration. Considering the spatial differences in the
environmental characteristics, the machine learning (ML) 85

method was used to expand the optimal scheme of the sam-
ples. We used the eXtreme Gradient Boosting (XGBoost)
algorithm to describe the nonlinear relationship between
parameters and environment variables, which has achieved
great success in ML and has been widely used in remote 90

sensing classification, surface variable inversion, and infor-
mation extraction (Zhong et al., 2019; Pilaš et al., 2020; Liu
et al., 2021).

Similar to sample running, the regional simulation was
also forced with multisource driving datasets (Table 1) and 95

adopted the same spin-up scheme to reach equilibrium. We
ran the spatial-scale parameters predicted by XGBoost back
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Table 2. Description and prior ranges of IBIS–DALEC parameters.

No. Parameters Description Unit Default Min Max

Parameters for IBIS model

1 alpha3 intrinsic quantum efficiency for C3 plants – 0.06 0.05 0.09
2 theta3 coupling coefficient of C3 photosynthesis 0.97 0.6 0.996
3 beta3 coupling coefficient of C3 photosynthesis – 0.99 0.6 0.996
4 gammaub intrinsic quantum efficiency for C3 0.015 0.0075 0.0225
5 coefmub “m” coefficient for stomatal conductance relationship 10 8 15
6 coefbub “b” coefficient for stomatal conductance relationship 0.01 0.005 0.015
7 vmax the maximum carboxylase capacity of Rubisco molCO2 m−2 s−1 3.00× 10−5 2.00× 10−5 8.00× 10−5

8 specla specific leaf area m2 kg−1 12.5 10 20
9 tauleaf foliar biomass turnover time constant yr 2 0.05 5
10 tauroot fine root biomass turnover time constant yr 1 0.05 1.5
11 tauwood0 stem biomass turnover time constant yr 50 25 75
12 aleaf carbon allocation fraction to leaves 0.3 0.15 0.45
13 aroot carbon allocation fraction to fine roots 0.2 0.05 0.35
14 tempvm parameter thermal stress Vmax – 3500 3000 4000
15 rgrowth growth respiration coefficient – 0.3 0.1 0.5
16 rroot maintenance respiration coefficient for root s−1 1.25 0.625 2.5
17 rwood maintenance respiration coefficient for wood s−1 0.0125 0.00625 0.2
18 beta1 parameter related to the distribution of fine root lower – 0.95 0.75 0.99
19 beta2 parameter related to the distribution of fine root upper – 0.975 0.75 0.99
20 stressfac moisture stress factor – −5 −6.5 −3.5

Parameters for DALEC module

21 p2 fraction of GPP respired autotrophically 0.45 0.2 0.7
22 p3 fraction of NPP allocated to foliage 0.4 0.01 0.5
23 p5 turnover rate of foliage d−1 0.06 1.00× 10−4 0.1
24 p10 parameter in temperature sensitivity rate 0.073 0.05 0.2
25 p12 GDD value causing leaf out 240 200 400
26 p13 minimum daily temperature causing leaf fall 9 8 15
27 p14 fraction of C in leaf loss transferred to litter 0.48 0.1 0.7
28 p15 turnover rate of labile carbon d−1 0.09 1.00× 10−4 0.2
29 p16 fraction of labile transfers respired 0.15 0.01 0.5
30 p17 maximum CF value gC m−2 300 100 500
31 p18 leaf mass per area (lma) gC m−2 60 10 200
32 p19 threshold 100 80 120
33 p20 threshold 270 200 365

into the physical model and verified the final accuracy. After
obtaining a parameter distribution with a resolution of 0.05◦

on the spatial scale, we estimated the LAI, GPP, ER, and
NEE for the deciduous forests of the eastern United States.

3.3 Error evaluation5

The evaluation in this paper involves three aspects: (1) veri-
fication of the accuracy of MASM when calibrating parame-
ters; (2) verification of the feasibility of the XGBoost method
in terms of predicting parameters; and (3) verification of the
accuracy in spatial-scale and multi-product comparisons. We10

used Pearson’s correlation coefficient (R), root mean square
error (RMSE), average error (AE), and a comprehensive in-
dex called the distance between indices of simulation and ob-
servation (DISO) (Zhou et al., 2021; Hu et al., 2019) as sta-
tistical measures. AE can specify whether errors are overes-15

timated or underestimated. RMSE is more sensitive to large
errors. DISO used here is a combination of three widely used

statistical metrics (R, normalized RMSE, and AE), aiming
to identify the overall evaluation of each verification. When
the DISO value is close to zero, the distance between the ob- 20

served and simulated values is the closest, and the accuracy
is the highest.

R =

∑n
i=1(Si − S)(Oi − O)√∑n

i=1(Si − S)
2
√∑n

i=1(Oi − O)
2

(9)

AE=
1
n

n∑
i=1
(Si −Oi) (10)

RMSE=

√√√√1
n

n∑
i=1
(Si −Oi)

2 (11) 25

DISO=

√
(R− 1)2+

AE2

O
+

RMSE2

O
, (12)
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Figure 1. Sensitivity of (a) LAI and (b) GPP to all the parameters. The box chart shows the average and quartile of the Morris sensitivity
index for all the samples. The red dots represent the mean, the blue midline means the median, the black bottom and top lines of the rectangle
are the maximum and minimum values, and the blue dots denote the outliers.

where n represents the total number of pixels, Si and Oi de-
note the simulated and observed variables at the ith pixel,
and S and O are averaged values.

4 Results

4.1 Adaptive surrogate modeling performance of5

selected samples

4.1.1 Parameter behaviors

After parameter calibration of all samples, the posterior pa-
rameter distributions of the 10 sensitive parameters under the
joint constraint of GLASS LAI and GPP were obtained by10

considering the last 100 000 values. Here, we only showed
the posterior distributions of 10 representative pixels that
were randomly selected (Fig. 2). Parameter behaviors show-
ing an obvious unimodal pattern were considered as well-
constrained, the ranges of which were within the previous15

definition. Most sensitive parameters (except alpha3, theta3,
and beta3) exhibited a well-constrained distribution but with
different degrees of concentration. GPP had weak constraints
on alpha3, theta3, and beta3, mainly reflected in the scattered
distributions and wide fluctuation ranges. With the Morris in-20

dex shown in Fig. 1, we found that GPP seemed insensitive to
small perturbations of these parameters. Comparatively, one
significant limitation occurred with vmax, the maximum car-
boxylase capacity of Rubisco, which had a pronounced effect
on plant photosynthesis. 25

The model structure also affected the limiting effect of
observations on parameters. The relationship between LAI
and its sensitive parameters was more direct without repeated
transmission through complex processes. Thus, the posterior
distributions of most samples were well constrained. Edge- 30

hitting distribution appeared when the previous ranges of pa-
rameters were unsuitable for selected samples, showing that
retrieved values were clustered near the highest or lowest
bounds of the prior ranges (Fig. 2, 1-3, and 6-6). The ratio-
nality of the parameter prior range is not discussed in this 35

paper, but edge-hitting distribution emphasized the impor-
tance of prior knowledge for optimization. The differences
between samples were related to the spatial variation of pa-
rameter sensitivity, and the quality of the GLASS GPP and
LAI products. 40

The posterior mean was chosen as the best estimate of
each parameter. Thus, we obtained the histogram distribu-
tion of the optimal parameters for all samples (Fig. 3). The
optimal values of each parameter among samples had notice-
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Figure 2. Posterior probability distribution of 10 representative samples.

able spatial variations that were significantly different from
their default values. The Rubisco enzymes exhibited stronger
carboxylase capacity, shown as higher vmax after calibration
(Fig. 3d), and the leaf turnover rate (p5) also decreased by
more than 30 % for most samples. For p14, the optimized5

value was less than half the default value, which indicated
that the proportion of carbon in leaf loss transferred to litter
was notably reduced. The results proved that using site-scale
optimal parameters to define regional optimal schemes could
not fully capture the discrepancy of ecophysical characteris-10

tics within a PFT, especially when a PFT type covers a large
area.

4.1.2 Model improvement

With the constrained parameters resulting from the MASM
optimization, we took the mean of each posterior distribution15

as the optimal value and re-entered it into the model to obtain
the daily LAI and GPP simulations. Figure 4 shows the ac-
curacy verification of LAI and GPP simulations against the
GLASS products on the scale of every 8 d before and after
parameter optimization.20

We calculated the DISO value, a comprehensive indica-
tor used for accuracy verification, for each sample. The his-
togram of DISO for all samples is illustrated in Fig. 4. For
LAI, the DISO of more than 98 % pixels was less than 0.6,
and the overall mean value was 0.33. For GPP, the DISO of25

more than 96 % of the pixels was less than 0.4, and the over-
all mean was 0.27. The calibrated IBIS model simulated LAI

well on an 8 d basis (R2
= 0.85; RMSE= 0.664 gC m−2 per

8 d) in calibration years (2001–2009), while the accuracy of
the validation years (2010–2018) slightly decreased. In com- 30

parison with GLASS GPP, the overall R2 of the modeled
GPP was 0.90, and the RMSE was close to 1.0 gC m−2 per
8 d. There was no significant difference in accuracy between
the calibration and validation years, indicating that the cali-
brated parameters were stable over time. Our results demon- 35

strated that the MASM approach was effective and efficient
for providing approximately optimal parameters for a highly
complex terrestrial biosphere model. Most optimization re-
sults showed good consistency with GLASS products.

4.2 Parameter distribution obtained by the XGBoost 40

approach

4.2.1 Feature selection

The parameters calibrated in this study were divided into two
categories: (1) parameters related to the photosynthesis pro-
cess including alpha3, theta3, beta3, and vmax; and (2) pa- 45

rameters related to carbon conversion including p5, p14, p15,
p17, p18, and p20 (Table 2). Considering the environmental
heterogeneity of each pixel, we explored the relationship be-
tween these 10 parameters and local environmental charac-
teristics from the aspects of climate, soil, location, and im- 50

portant surface variables (like LAI, GPP, and photosynthet-
ically active radiation (PAR) that closely related to photo-
synthesis) (Table S2). The vapor pressure deficit (VPD), day
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Figure 3. Histogram distribution of optimal parameters from all samples using the MASM optimization.

Figure 4. Validation of samples with optimal parameter schemes: (a) histogram statistics of DISO index for LAI (a-1, a-2) and GPP (a-3,
a-4), and scatter density plot of LAI (b-1, b-2) and GPP (b-3, b-4) against GLASS products on 8 d basis. Some samples that do not converge
during the MASM process and show anomalous high errors are excluded. The calibration years are from 2001 to 2009, while the validation
is from 2010 to 2018. “CumPro” in (a) represents the cumulative probability.

length, and shortwave radiation data (SRAD) were also con-
sidered as influence factors. VPD affects the rate and inten-
sity of evapotranspiration. When plants close their stomata
to adapt to high VPD, photosynthesis slows down and the
growth rate slows down (Y. Li et al., 2018). Shortwave ra-5

diation provides the energy for photosynthesis; temperature
and sunshine length in the growing season also affect the gas
exchange characteristics of leaves (Rogers, 2014). We also
added elevation information as areas with high altitudes are
less affected by human activities and may have a higher car-10

bon sequestration capacity compared with low-altitude areas.

4.2.2 XGBoost setting

We used the annual mean values of the selected features and
the growth season statistics of temperature, VPD, SRAD, and
PAR as the inputs of XGBoost modeling. We set 10 optimal 15

parameters obtained by MASM as the target variables (i.e.,
the outputs of XGBoost). However, it was not guaranteed that
posterior values obtained through the MASM approach were
the best selection for each pixel due to observation (GLASS
products) quality and algorithm uncertainty. Large errors in- 20

dicated that calibrated parameters were not suitable for those
samples, which would affect spatial prediction if they were
included in training data for machine learning. In this paper,
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the screening indexes were defined according to the DISO
values of LAI and GPP. All the samples with DISO<0.35
(Fig. 4) were selected as the ML inputs, considering both the
accuracy and sizes of the training samples. Finally, a total of
1930 samples were selected for spatial parameter prediction.5

We used 70 % of the selected samples to train the XGBoost
model and the rest as an independent testing set.

4.2.3 XGBoost validation

Figure 5 shows the validation after running XGBoost meth-
ods. For parameters with strong effects (e.g., vmax, p18) on10

GPP and LAI, the fitting accuracy could reach more than 0.8,
while parameters with lower sensitivity (like alpha3, theta3,
beta3, p14, and p15) tended to have slightly lower accuracy.
This is because, in the MASM optimization process, the op-
timal parameters were mainly constrained by LAI and GPP15

data, which also led to a more prominent order of LAI and
GPP in feature importance ranking when the XGBoost model
was trained.

When the parameters from the XGBoost simulation and
MASM posterior distributions were used for the IBIS model,20

the estimated LAI and GPP showed high correlations with
those of the GLASS products (2001–2018). For LAI, the
correlation was above 0.6, while that of GPP was mostly
above 0.8. Parameters obtained by XGBoost and MASM
were highly consistent in capturing the degree of correlation25

with GLASS products. For the testing set, the estimated er-
rors (RMSE and DISO) using XGBoost were slightly less
correlated with the corresponding accuracy indexes of the
MASM approach, but the range was similar. DISO was dis-
tributed below 0.5 of LAI, while GPP was distributed be-30

low 0.3. For the RMSE and DISO indexes, samples above
the diagonal indicated results better estimated using MASM-
optimized parameters, and those below the diagonal were
better estimated by using parameters for the XGBoost sim-
ulation. The XGBoost performance was superior to that of35

MASM in terms of the final validation of parameters. For ex-
ample, for testing LAI (Fig. 6c-3), 52 % of the pixels showed
that the parameters obtained by XGBoost were more accu-
rate, while the ratio reached 60 % for testing GPP (Fig. 6d-
3). The possible explanation was that XGBoost used more40

environment variables related to the parameter; hence, the
results may be more appropriate for each pixel. Moreover,
the uncertainty of the MASM algorithm and the diversity of
the posterior probability distribution model also affected the
selection of the optimal parameters. In addition to better ac-45

curacy, another benefit of using the XGBoost method was
that the calculation cost of parameter calibration was greatly
reduced compared to surrogate modeling optimization.

4.2.4 Spatial parameter distribution

By combining the environmental characteristics, the optimal50

parameter distribution of each pixel was estimated for the en-

tire deciduous forest area (0.05◦) in the eastern United States
with the application of the trained XGBoost. Figure 7 shows
the spatial distribution of each parameter. Vmax was higher
in the central and northeastern parts of the deciduous forests, 55

indicating that the Rubisco enzyme had a higher maximum
carboxylase capacity in these regions. Parameters related to
vegetation carbon turnover and allocation include p5, p14,
and p15, which indicated a high turnover and allocation ratio
in the western and northwestern areas. Leaf mass per area, 60

shown as p18, was low in the northeast and about three times
higher in parts of the south and southwest of the study region.

Compared with the original parameter ranges, the poste-
rior distributions were significantly more concentrated (see
“Pars_Hist” in Fig. 7). The overall ranges were greatly re- 65

duced, especially for theta3, beta3, p15, p17, and p18. There
was a great difference in the distribution between optimal
parameters and default values in the whole study area. For
theta3 and beta3, the default values were outside the whole
statistical range, which would induce a large error when us- 70

ing defaults to estimate carbon fluxes. For vmax, the optimal
values were higher than the default values and had evident
spatial heterogeneity. Vmax is a key source of uncertainty
in current ecosystem models, and adopting a fixed value may
give rise to large systematic error (Croft et al., 2017; Bonan et 75

al., 2011; Liu et al., 2014; Walker et al., 2014). Rogers (2014)
surveyed the derivation of vmax in earth system models and
found a wide range of variation among vegetation types, and
Bonan et al. (2011) showed that model uncertainty result-
ing from this parameter was comparable with that from the 80

model structure.

4.3 Model improvement

4.3.1 Uncertainties in optimized LAI and GPP

Using the parameters estimated by XGBoost, we obtained
the spatiotemporal distribution of optimized LAI and GPP. 85

The estimated LAI and GPP before and after optimization
were compared with those of the GLASS products. Figure 8
shows the frequency distribution of the accuracy indexes (R2,
RMSE, Bias, and DISO) of pixel-by-pixel validation in the
deciduous forests from 2001 to 2018. The correlation coeffi- 90

cients of LAI and GPP before and after optimization showed
little change. For LAI, the correlation of most pixels was
above 0.6 (Fig. 8a-1), and for GPP, it was above 0.8 (Fig. 8b-
1). However, the RMSE of the optimized parameters was re-
duced by 0.56 and 0.45 for LAI and GPP, respectively. We 95

comprehensively evaluated the performance of both LAI and
GPP with the DISO index. We found that for LAI, the DISO
was less than 1 for 60 % of the pixels before optimization
and was less than 0.3 for nearly 90 % of the pixels after op-
timization. Similarly, for GPP, the DISO decreased by 0.16 100

on average and the overall distribution became more concen-
trated.



12 R. Ma et al.: Pixel-level parameter optimization of a terrestrial biosphere model

Figure 5. Scatter plots of the results of the XGBoost model. The x axis represents parameters after running MASM optimization and y axis
means values obtained from XGBoost model. The means before and after the slash represent the accuracy indexes of the training set and
testing sets, respectively. The blue dots represent the training set and red dots represent the testing set. The black cross indicates default
values.

Figure 6. Accuracy indexes (R2, RMSE, and DISO) validation between trained and predicted parameters in simulating LAI and GPP. The x
axis represents the accuracy index using MASM posterior parameters; the y axis represents the accuracy index using estimated parameters
from the trained XGBoost model.
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Figure 7. Spatial distribution of posterior parameter. The inset in the lower right corner of each plot represents the spatial distribution
histogram of each parameter.

Figure 8. Histogram error statistics of LAI and GPP by running prior and posterior parameter schemes.

Figure 9 manifests the spatial distribution of the absolute
error between estimated variables and GLASS products. The
error distributions of the default parameters indicated that
the error of LAI and GPP had similar spatial distributions.
A high discrepancy of the previous model compared with5

GLASS mainly occurred in the middle and northwest parts
of the study area. The absolute errors were dramatically im-
proved after optimization. For LAI, the overall error was be-
low 0.6 m2 m−2; for GPP, the errors in some central areas
were between 0.6 gC m−2 per 8 d and 0.9 gC m−2 per 8 d, and10

they were below 0.6 gC m−2 8d−1 for the rest. The reduction
of model errors was not consistent across pixels dominated
by deciduous forests.

4.3.2 Site-level validation in carbon fluxes

Compared with the default estimates, our optimized fluxes15

had improved with RMSE reduced by 12 % for GPP, 20.38 %

for ER and 1.57 % for NEE, while the correlation coefficients
decreased slightly for GPP and NEE (Fig. S2). Using DISO
as a comprehensive evaluation indicator, we verified the GPP
before and after optimization at 14 flux sites, and also sum- 20

marized the effect of parameter optimization on ER and NEE
for every 8 d. When the GLASS GPP product was regarded
as the “true value”, the optimized model successfully esti-
mated the magnitudes and temporal variations of GPP, and
the DISO values of several sites improved by more than half 25

throughout the whole year (e.g., US-Bar, US-LPH) (Fig. 10,
gray bars). This is because the GLASS GPP product was
used as the reference while calibrating the sensitive param-
eters. Considering the uncertainties of the GLASS product,
we evaluated GPP, ER, and NEE using data from flux ob- 30

servation sites as a “true value”. Collectively, the optimized
model improved the flux estimates at most flux towers com-
pared with those from the original model (DISO>0). We
also evaluated the model performances in the growing sea-
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Figure 9. Spatial distribution of annual absolute error between model results and GLASS products from 2001 to 2018. (a-1) and (a-2)
are the absolute difference of prior and posterior LAI, respectively; (b-1) and (b-2) are the absolute difference of prior and posterior GPP,
respectively.

son and non-growing season, and found that GPP and NEE
in the growing season were improved at most of the sites
such as US-Ha1, US-UMB, US-Umd and US-WCr. How-
ever, for the non-growing season (NGS), the GPP accuracy
decreased, and the corresponding NEE also showed greater5

inconsistency with the flux site NEE. Larger time-series dif-
ferences during NGS between optimized and observed fluxes
also existed at most sites compared to the default fluxes. The
decrease of GPP accuracy is the main contributor to the larger
errors of NEE estimates for most flux sites, while for US-10

Wi3, ER showed lower accuracy.
We calculated the DISO indicators between GLASS GPP

and flux observations (DGLA) for the three periods (an-
nual, growing season, and non-growing season) (see DGLA
values shown in Fig. 10). The values of DISO in the non-15

growing season were significantly higher than those in GS,
especially at the US-Bar, US-Wi1, and US-LPH sites, which
indicated that GLASS GPP had a lower performance in the
non-growing season for these 14 sites. This also explains
why the difference between the optimized carbon fluxes and20

the observation was larger in the non-growing season. For
US-Wi8, the GLASS GPP differed greatly from the observed
data (with DISO of 1.12), and therefore the optimized re-
sults showed lower accuracy than those based on the default
parameters. The timing of the peak GPP generally closely25

matched that of the flux tower GPP, although there was still
significant underestimation for several sites (e.g., US-LPH,
US-MMS, and US-Oho).

4.3.3 Impacts on simulated regional vegetation carbon
fluxes30

We used our optimized model to estimate GPP, ER, and NEE
for each 0.05◦× 0.05◦ pixel across the deciduous forests in
the eastern United States from 2000 to 2019. The spatial pat-
terns of the 20-year mean annual carbon fluxes are shown
in Fig. 11. For the simulation based on the default parame-35

ters, the overall distribution of GPP gradually increased from
high latitude to low latitude. A similar trend was also shown
in ER; a weak carbon sink was observed for the whole re-

gion. The patterns changed obviously after parameter op-
timization. After the optimization, the Southeast of the US 40

and in particular the areas along the Appalachian Mountains,
an ecoregion of temperate broadleaf and mixed forests, had
the highest GPP (∼ 1500–2000 gC m−2 yr−1); lower annual
GPP was found in the West of the study region; ER gener-
ally exhibited similar patterns and was systematically lower 45

than GPP estimates. For part of the western region, NEE was
less than 200 gC m−2 yr−1, also in correspondence with areas
characterized by low estimated GPP and ER. The spatial pat-
terns of carbon fluxes with optimized parameters exhibited
obvious spatial details and provided more reasonable spatial 50

information.
Figure 12 showed the interannual variability in carbon

fluxes (Fig. 12a) and percentages of variation after opti-
mization for the whole year, the growing season, and non-
growing season (Fig. 12b–c). The mean annual GPP, ER, 55

and NEE over the deciduous forests in the eastern United
States for the period from 2000 to 2019 were 5.79, 4.60,
and−1.19 Pg yr−1, respectively. The optimized GPP and ER
were significantly higher than the defaults, and the capacity
of carbon sequestration in deciduous forests also increased 60

by more than half. We compared the impacts of the optimized
model on different periods (annual, growing season, and non-
growing season) and found that our estimates of GPP and ER
were higher than previous estimates, of which the increase in
the non-growing season was the most significant. For NEE, 65

the capacity of deciduous forests to absorb carbon increased
slightly in the growing season, while the estimates of carbon
release decreased in the non-growing season, leading to an
increase in carbon sequestration throughout the year.

5 Discussion 70

5.1 Algorithmic uncertainty

Our pixel-level calibration was divided into two parts. The
first part used the MASM algorithm to calibrate each sample.
We recorded the simulated CF of GPR model constructed in



R. Ma et al.: Pixel-level parameter optimization of a terrestrial biosphere model 15

Figure 10. Optimized carbon fluxes performances for 14 flux sites throughout the whole year (All), growing season (GS, May to Septem-
ber), and non-growing season periods (NGS). The y axis means the changes between the DISO indexes before and after the optimization:
1DISO=− (DISOOpt−DISODef)/DISODef. Positive values represent improvement. The gray bars (GPP/GLA) represent the DISO index
between the modeled GPP and the GLASS GPP products, while the red (GPP/EC), green (ER/EC), and blue (NEE/EC) bars mean the DISO
index between the modeled fluxes (GPP, ER, and NEE) and the observed values at each flux site, respectively. EC represents the flux obser-
vations. The bottom left of each pattern shows the DISO index between the GLASS GPP product and the observations (DGLA) throughout
three periods (All, GS and NGS).

Figure 11. Regional patterns of mean annual carbon fluxes (GPP, NEE, and ER) for the years 2000–2019. Panels (a)–(c) show spatial
distribution of each flux from the model with default parameters and (d)–(f) show distributions with optimized scheme.
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Figure 12. Temporal variations of each carbon flux (GPP, NEE, and ER) over the deciduous forests in the eastern US (2000–2019). (a) shows
the interannual variation before and after parameter optimization. (b)–(c) represent the fraction changes after optimization, where positive
fraction indicates an increase from the default fluxes and negative value indicates a decreasing impact.

each adaptive resampling and the simulated value of the real
model, which was expressed by GPRRMSE to measure the
accuracy of the GPR model. We also calculated the average
of the last 100 000 CFs after finishing the second iteration
optimization, which was represented by CFmean.5

It was found that they were correlated and had unusually
high values (Fig. S3). When the error of the GPR model
was large (i.e., the GPR model cannot accurately represent
the IBIS model), it was difficult to produce a smaller CF
through iterative optimization. Therefore, the optimal param-10

eter scheme for such samples would cause large errors when
simulating LAI and GPP. From an algorithmic perspective,
the number of iterations may have been insufficient during
MCMC sampling. However, it should be noted that the in-
creased number of iterations definitely increased the calcu-15

lation cost. Two reasons could explain MASM uncertainty:
(1) different samples may have had different sensitivity to pa-
rameters, and therefore we could not guarantee that the sensi-
tive parameters of every sample were highly correlated with
the model error; and (2) the prior range of parameters may20

have been inappropriate, failing to obtain a suitable combi-
nation. To ensure the accuracy of the input training set during
the later training of the XGBoost model, sample pixels with
excessive GPRRMSE and CFmean values were eliminated. In
addition, most sample pixels converged to a stationary dis-25

tribution with GR<1.2 in the second iteration optimization,
while very few pixels that did not meet the convergence con-
dition after 10 cycles were eliminated. We also performed
quality control on samples when using XGBoost to simulate
spatial optimal parameters to ensure the accuracy of input30

parameters.

5.2 Uncertainty of optimal parameters

It was found that the posterior distribution of the optimized
parameters in each pixel had significant differences in dis-
tribution forms (single peak or multipeak), mean values,35

and fluctuations. The poorly constrained results meant that
the model predictions were slightly sensitive while chang-
ing those parameters; for a multipeak distribution, there were

multiple combination schemes for this sample that met the
requirement of minimum CF; and edge patterns represent- 40

ing posterior values were skewed to one side of the previ-
ous ranges, which reflected the defect of the model struc-
tures or the irrationality of the prior parameter ranges (Liu
et al., 2015; Mäkelä et al., 2019). The uncertainty bound-
aries of these parameters were likely to be unrealistic and 45

could lead to overconfidence in model predictions (Lu et al.,
2017). The limiting effect of observations was strongly re-
lated to the sensitivity of observed variables to parameters,
which indicated that the spatial variability of parameter sen-
sitivity should also be considered in parameter optimization. 50

The interaction between parameters should also be consid-
ered in parameter estimation (Fig. S4).

We provided an optimal parameter scheme for each pixel
of the eastern United States and a more concentrated range
of proposed parameters through the calibration that may be 55

helpful for others to further find optimal parameters with
high efficiency within this area. Although there had been
many studies on parameter calibration, significant inconsis-
tency still existed among the same parameters for different
ecosystem models. This was mainly because the model and 60

input data errors were compensated by parameter adjustment,
and therefore it was difficult to ensure that the estimated pa-
rameters could be explained theoretically. When expanding
the spatial domain of parameters, the limited understanding
of the influences on each parameter also prevented us from 65

estimating the actual values of these parameters. For exam-
ple, previous studies found that vmax is closely related to
leaf nitrogen content, and an increase of phosphorus con-
tent in leaves significantly improves the sensitivity of vmax
to leaf nitrogen (Walker et al., 2014). Leaf and labile car- 70

bon turnover rates (p5, p15) were key factors determining
the carbon sequestration capacity of terrestrial ecosystems.
Wang et al. (2017) studied the biological and abiotic factors
affecting forest carbon turnover time through quadrat obser-
vation and showed that multiple factors such as soil nutrients 75

(e.g., carbon, nitrogen, and phosphorus), pH, and forest ages
could not be ignored. It was also pointed out that the car-
bon turnover time could vary with time, which was not con-
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sidered in this study. In addition, the calculation of LAI in
DALEC was so simple that the sensitive parameters involved
were correlated with LAI values. However, the calculation of
GPP in IBIS involved many complex biochemical processes
and factors, and thus the effect of GPP on parameters was not5

apparent. We could not guarantee that the parameters of each
pixel were well-constrained in sample calibration. For sam-
ples with poor and edge-hitting constraints, if the simulated
LAI and GPP showed good accuracy, we also took the op-
timal values as training samples for XGBoost, which could10

negatively impact model prediction.

5.3 The quality of optimized carbon fluxes

Generally, the previously estimated carbon fluxes matched
the distribution of several key environmental variables (e.g.,
temperature, day length, radiation, specific humidity) more15

closely (Fig. S5), the trend of which was that the photo-
synthesis and respiration of deciduous forests gradually in-
creased with the decrease of latitude. The information pro-
vided by climate conditions was reflected in the carbon flux
simulation through the simulation of the model. As the phys-20

iological parameters used in each pixel were uniform values
in the original model and only a single vegetation type was
considered, the sources of spatial differences in carbon fluxes
were mainly from the differences in driving data sets. The
integration of GLASS products introduced the spatial dis-25

tribution pattern information of the LAI and GPP products
into the model by adjusting the distribution pattern of key
parameters, which made the optimized spatial pattern dis-
tribution more reasonable. The optimized model with cali-
brated parameters can provide more accurate LAI and GPP30

information and the temporal and spatial distribution of both
LAI and GPP were closer to those of the GLASS products.
Although a decrease in the RMSE of the optimized fluxes
performed a better validation, particularly around the period
of peak fluxes, the results also indicated that when there is35

quite a distinction between GLASS and ground observation,
it is difficult to successfully capture the variations of each
flux site. For example, our results of most sites (e.g., US-
Bar, US-WCr, and US-Wi3) showed that optimized NEE ex-
hibited overestimation of net carbon uptake during the non-40

growing season. Overall, the accuracy of ER and NEE was
not significantly improved based on the site-level validation
(Fig. S2; Fig. 10). The reason for this may be that respiration
is closely related to the size of carbon pools, while factors
related to forest age and carbon pools are not considered in45

our current research. We will try to integrate forest age and
biomass products to improve the key parameters of terrestrial
carbon pools (such as allocation, turnover rate, and respira-
tion rate) in the next exploration so that we can improve the
simulation of respiration and vegetation carbon storage.50

It is already known that the accuracy of spatial reference
products (GLASS products in this paper) is the key factor af-
fecting the accuracy of carbon fluxes during the model–data

fusion. The GLASS LAI and GPP products have been val-
idated against globally available ground measurements and 55

compared with several different simulations from other prod-
ucts. The results showed that GLASS products performed
well in accuracy validation and spatial–temporal variations
(Zheng et al., 2020; Ma and Liang, 2022). We also com-
pared the accuracy differences between GLASS GPP product 60

and several other GPP products (GPP derived from Breath-
ing Earth System Simulator – BESS, GPP derived from the
Vegetation Photosynthesis Model – VPM, GPP derived from
the upscaling approaches based on machine learning meth-
ods – FLUXCOM, and MODIS) in our research region be- 65

fore regarding as a reference while optimizing parameters,
and found that GLASS estimated GPP fairly well. The R2

of GLASS is almost identical with that of other products;
the RMSE of GLASS is slightly lower than that of BESS
and comparable to that of VPM, FLUXCOM, and MODIS 70

(Fig. S6). In fact, no matter which set of products is used,
there will be certain errors in the product itself. The focus
of this paper is to emphasize that the two-step optimization
algorithm that we have developed can obtain the optimal pa-
rameter scheme pixel by pixel in space, and effectively re- 75

duce the time cost of parameter optimization. Compared with
the default parameter scheme, the pixel-level optimization
has significantly improved the LAI and GPP estimates. In the
next experiment, we will try to use multiple sets of remote
sensing products (e.g., BESS, VPM, FLUXCOM, MODIS 80

for GPP), and use the triple-collocation method to give the
spatial distribution of the error variance of the products, and
take this error into account in the parameter optimization.

Multiple data streams and more relevant state variables
should be applied as a way to mitigate the deviations from 85

a single product or variable. We considered both LAI and
GPP in the optimization but their contributions to the model
improvement were not evaluated separately, which should
be taken into account in future work. ML provides a con-
venient approach for integrating more spatial products with 90

physical models, and we expect more explorations on de-
veloping a hybrid modeling framework to couple ML with
physical models or explain and even compensate model er-
rors due to lack of prior knowledge. Such a combination can
increase the credibility of future carbon budget estimation 95

and strengthen the rationality and interpretability of ML. In
addition, we also put forward a demand for higher resolution
and high-precision satellite products, which are necessary for
model improvement and for carrying out benchmarking tests
to comprehensively evaluate the performances of different 100

models.

6 Conclusions

It was generally accepted that the model parameters had spa-
tial heterogeneity, but calibrating a complex process-based
model at the pixel level was not realistic, especially with an 105
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increase in spatial resolution. This paper proposed a two-step
framework for estimating optimal parameters at the pixel
level. We randomly sampled the study area and used the GPR
model as the surrogate model and then applied the MASM
algorithm for iterative optimization to obtain the posterior5

distributions of samples. Next, we used XGBoost to describe
the nonlinear relationship between optimal parameters and
local climate, soil, and surface variables, and extend to the
entire deciduous forests in the eastern United States. Our
method provided an optimal parameter scheme for each pixel10

and confirmed that the discrepancy between GLASS prod-
ucts and predicted values was significantly reduced with the
optimized parameters. The results showed that there was sig-
nificant spatial variability of parameters within a vegetation
type, and that using high-quality satellite products could effi-15

ciently calibrate the parameters of terrestrial biosphere mod-
els at the pixel level. Although we tested our approach only
for deciduous forests of the eastern United States, it provided
a feasible scheme for spatial calibration of other vegetation
types, at higher resolutions and in larger areas.20
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