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Abstract. This paper proposes an improved algorithm for simulating the surface flow dynamics based on the flow-path 10 

network model. This algorithm utilizes the parallel-multi-point method to extract the critical points and the D8 algorithm to 

retrieve the drainage networks from the regular-grid digital elevation model (DEM) for constructing a drainage-constrained 

triangulated irregular network (TIN). Then, it combines the flow directions of triangular facets over TIN with resampled 

flow source points to track flow lines to generate the flow path network (FPN) based on the flow-path network model. On 

this basis, the proposed algorithm employs three terrain parameters (slope length factor, topographic wetness index and flow 15 

path curvature) to improve the classical Manning equation based on the analytic hierarchy process (AHP) to enhance the 

accuracy of the flow velocity calculation. The topographic wetness index and flow path curvature are derived by the flow-

path-network-triangular-facet-network (FPN_TFN) algorithm, a new flow-path-network-topographic-wetness-index 

(FPN_TWI) algorithm and the flow-path-network-flow-path-curvature (FPN_C) algorithm, respectively. Finally, the 

velocity estimation function and surface flow discharge simulation function are parallelized by the Compute Unified Device 20 

Architecture (CUDA) to enhance its computational efficiency. The outcomes are compared with the algorithm before 

improvement (TIN_based algorithm) and the SWAT model. The results demonstrate that the speedup ratio reaches 15.7 

compared to the TIN_based algorithm. The Nash coefficient increases by 6.49%, the correlation coefficient decreases 

slightly, and the balance coefficient increases by 19.08%. Compared with the SWAT model, the Nash coefficient and 

correlation coefficient increase by 97.56% and 4.60%, respectively. The balance coefficient is close to 1 and outperforms the 25 

compared algorithms. 
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1 Introduction 

Due to the evolution of the natural environment, the change in climate and human activities and the decrease in vegetation 30 

coverage, the rapid surface flow in the event of continuous heavy rainfall or storms is very likely to cause flood disasters,  

which will cause direct or potentially significant harm to people's lives, social production and the natural environment 

(Easterling et al., 2000). Therefore, accurately and immediately simulating the surface flow dynamics is an urgent task to be 

solved in disaster prevention and mitigation. It has an important value in the applications of national construction and lays a 

foundation for scientific land planning, environmental protection, water resource management and natural disaster response. 35 

The keys to simulating the surface flow dynamics are effectively modelling the terrain surface, accurately calculating 

the flow velocity and quickly simulating the dynamic process. In terms of terrain surface modelling, the regular-grid digital 

elevation model (DEM) is widely utilized to describe terrain surfaces during the simulation of surface flow dynamics (Chen 

et al., 2014; Maneta and Wallender, 2013; Zhang et al., 2018; Zhou and Liu, 2006), such as the classical TOPMODEL 

(Beven and Kirkby, 1979) and Soil and Water Assessment Tool (SWAT) models (Arnold et al., 1998; Hellmers and Frohle, 40 

2022). Although regular-grid DEMs can better describe continuous terrain surfaces, regular-grid DEMs have the same grid 

size, so it is difficult to fully and accurately express complex and changeable terrain surfaces, leading to the uncertainty of 

retrieving the critical points, lines and terrain parameters from regular-grid DEMs (David and Frank, 2013; Glenn and 

Ashton, 2012; Zhou and Liu, 2004). In the simulation of surface flow dynamics, it is still difficult to select the appropriate 

grid resolution of regular-grid DEMs (Thavhana et al., 2018). The coarser resolution easily leads to misjudgment of 45 

important critical points and lines and makes it difficult to obtain real terrain parameters, which has an important effect on 

the flow velocity. The finer resolution can easily lead to a large amount of computation, which is difficult to apply in large 

watersheds. 

The triangulated irregular network (TIN) can avoid the above-mentioned drawbacks of the regular-grid DEM and 

replace it for simulating the surface flow dynamics, using models such as the Geomorphic Information System (BGIS) 50 

model (Tachikawa et al., 1994), Channel-hillslope Integrated Landscape Development (CHILD) model (Tucker et al., 2001), 

and high-performance TIN-based model (Zhang et al., 2016) and so on. When TIN is used to describe the terrain surface, the 

method of simulating the surface flow dynamic has certain advantages, such as adaptive resampling of terrain surface, better 

expression of complex and changeable surface, determination of flow direction not restricted by grid data structure and so on. 

However, the simulation process is complex and greatly limited in large watershed applications (Chen et al., 2014; Ivanov et 55 

al., 2004; Staškovanová and Minár, 2016; Swarnkar et al., 2018; Tachikawa and Takasao, 1996). Therefore, the 

contradiction between the existing terrain surface representation model and the requirement of simulating the surface flow 

dynamics is quite prominent. 

Both regular-grid DEM and TIN only describe the terrain surface but cannot reflect the surface flow dynamics. In the 

early stage, simplified empirical formulas were utilized to simulate the dynamic process (Jia et al., 2005). With the 60 

development of digital terrain modelling and numerical analysis, it is possible to predict surface flow dynamics based on 

https://doi.org/10.5194/gmd-2022-92
Preprint. Discussion started: 24 May 2022
c© Author(s) 2022. CC BY 4.0 License.



3 

 

physical models under certain environmental conditions (Bourdin et al., 2012; Wilson and Gallant, 2000; Zhang et al., 2018). 

Critical to the simulation of surface flow dynamics is accurately calculating the velocity of surface flow (Djokic and 

Maidment, 1993). 

Beven et al. (1980) used the finite element method to simulate the movement of surface and ground flow. Tachikawa et 65 

al. (1994) utilized the cubic spline function to draw the slope of a three-dimensional model for simulating the one-

dimensional surface flow dynamics. Shen et al. (1995) explored the water balance equation and Muskingum method to 

simulate runoff and surface flow discharge at any position and time. Arnold et al. (1998) used the SCS curve method to 

simulate the runoff discharge within each HRU and accumulated the separate discharge to obtain the total runoff of the basin. 

Then, the variable storage coefficient method was applied to carry out surface flow discharge. Olivera and Maidment (2000) 70 

adopted the parameters of drainage networks and hydrological systems to simulate runoff and surface flow dynamics. Qu 

and Duffy (2007) applied the semidiscrete finite volume method (FVM) to couple hydrological processes, generated the 

optimal Delaunay triangulation network according to the given constraints and simulated the surface flow dynamics based on 

the approximate equation of a two-dimensional diffusion wave. López-Vicente et al. (2013) utilized eight different 

cumulative flow calculation methods to simulate the surface flow dynamics of different spatial modes. These methods can 75 

only simulate the surface flow dynamics of a limited number of points, such as the outlet of a basin or several points within a 

subbasin, based on empirical formulas or traditional hydrological analysis methods, so it is difficult to simulate the real-time 

changes in surface flow discharge at any location, and the accuracy still needs to be improved. 

Compared with the abovementioned methods, Chen et al. (2014) utilized a flow-path network model to simulate the 

surface flow dynamics based on the drainage-constrained TIN (referred to as the TIN_based algorithm) and verified its 80 

accuracy and feasibility. This method identified the flow direction of each triangular facet over the TIN based on its fixed 

slope and aspect. Then, it combined the flow direction with the resampled flow source points to track the flow path along the 

TIN surface and employed the Manning formula to ascertain the flow velocity for simulating the surface flow discharge at 

any location. However, the method only considers the impact of slope on the flow velocity and does not consider the 

influence of other terrain parameters (such as slope length factor, topographic wetness index, flow path curvature, upslope 85 

slope and upslope area) on the flow velocity. The existing methods of deriving these terrain parameters usually utilize an 

analysis window or local interpolation on a regular grid DEM, whose accuracy depends on the DEM resolution, analysis 

window and interpolation method. They may lead to the deviation of terrain parameter derivation, and the analysis window 

or local interpolation method may affect the accuracy of surface flow dynamics simulation. 

In addition, parallel computing has been employed to describe the terrain surface based on regular-grid DEM/TIN 90 

(Blaszczak-Bak et al., 2018; Puppo et al., 1994; Zhou et al., 2017) and simulate the surface flow dynamics (Chaney et al., 

2015; Zhang et al., 2016; Kuffour et al., 2020) Compared with multicore CPU parallel computing, GPU parallel computing 

can perform the parallel computing of extremely large data and make it possible to improve the performance of high-

performance processing and computing efficiency on a single computer (Wu et al., 2019). The compute unified device 

architecture (CUDA) performs on the GPU in a generic fashion and can efficiently solve more computations (NVIDIA 95 
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Corporation, 2015). 

Therefore, this paper aims to propose an improved algorithm for simulating the surface flow dynamics based on a flow-

path network model with a high accuracy and real-time response efficiency. This algorithm can quickly construct the 

drainage-constrained TIN by inserting the drainage into the critical points extracted from the regular-grid DEM, determine 

the sole flow direction of each triangular facet over the TIN and track the flow lines from the randomly sampled flow source 100 

points to the drainage outlet to simplify the three-dimensional surface into a one-dimensional flow path network (FPN). On 

this basis, more accurate terrain parameters (slope length factor, topographic wetness index and flow path curvature) are 

derived from the FPN by different methods, and the classical Manning formula is improved by using terrain parameters to 

estimate the velocity of each flow line. Combining flow velocity with the preset travel time can simulate the surface flow 

discharge at any location. Finally, CUDA is used to parallelize the velocity estimation function and the surface flow 105 

discharge simulation function to quickly realize the simulation of surface flow dynamics. It can provide decision support and 

a scientific theoretical basis for regional land planning, environmental protection, water resource management and natural 

disaster response countermeasures. 

2 Methodology 

The methodology has four major parts: (1) generating a flow path network (FPN); (2) improving Manning’s equation by 110 

combining the FPN and three terrain parameters (slope length factor, topographic wetness index and flow path curvature); 

(3) simulating the spatial–temporal dynamics of surface flow based on the improved Manning’s equation; and (4) evaluating 

the accuracy and computational efficiency of the improved algorithm. The detailed procedures of the improved algorithm are 

shown in Fig. 1. 
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 115 

Figure 1: Detailed procedures of the improved algorithm for simulating the surface flow dynamics based on the flow-path network 

model. 

2.1 Generating a flow path network (FPN) 

The flow-path network model (Chen et al., 2014) is employed to generate a flow path network (FPN). The model consists of 

four steps, as illustrated in Fig. 1. 120 

First, The high accuracy and computational efficiency of the parallel-multi-point algorithm (Wu et al., 2019), is utilized 

to extract the critical points from a no-depression DEM during the generation of the FPN. Zhou and Chen (2011) and Wu et 

al. (2021) had already proven that the drainage networks extracted by the D8 method (O’Callaghan and Mark, 1984) are 

inserted as the constrained edges into the critical points to build a high-accuracy TIN. Therefore, the D8 method is used to 

obtain the drainage networks in the improved method. 125 

Second, the compound method (Zhou and Chen, 2011) is used to generate the drainage-constrained TIN by combining 

the retrieved critical points and drainage networks. In addition, to avoid narrow triangular facets over the TIN, the distances 

between the critical points and between the critical points and drainage networks are expected to be greater than the DEM 

resolution (Wu et al., 2020, 2021) because the long-narrow triangular facet is averse to determine the flow direction 

depending on the aspect and slope and still increases the volume calculation during the generation of the FPN. 130 
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Third, the resampling method was used to obtain the flow source points from the no-depression DEM. A random point 

in each regular grid over the DEM is regarded as a flow source point, and each flow source point describes the start point of 

flow lines over the FPN. Then, the aspect and slope of each triangular facet are calculated by the coordinates of the three 

corners of the facet, and the flow direction of each triangular facet can be determined by its aspect and slope (Chen et al., 

2014). Finally, a flow line starting from a flow source point can be tracked by combining the flow source point and the flow 135 

directions of all the triangular facets over the TIN. The tracking algorithm is described in detail by Chen et al. (2014). We 

construct the topological relationship between the flow lines to generate a flow path network (FPN). 

2.2 Improving Manning’s equation by combining the FPN and three terrain parameters (slope length factor, 

topographic wetness index and flow path curvature) 

Considering the influence of the terrain parameters on the velocity of the surface flow, we use three parameters (slope length 140 

factor, topographic wetness index and flow path curvature) to improve Manning’s equation to enhance the velocity accuracy 

of the surface flow. 

2.2.1 Obtaining the terrain parameters (slope length factor, topographic wetness index and flow path curvature) from 

the FPN 

The Manning’s equation had been proposed by Manning (1891) to estimate flow velocity of an open channel based on the 145 

empirical research. The empirical equation is a widely used formula and it can be expressed as follows: 

𝑣 =
𝑅2/3∗𝑆1/2

𝑛
,            (1) 

During the simulation of the surface flow dynamics, Manning’s roughness coefficient changes with the vegetation 

cover type, and the hydraulic radius can approach the runoff depth (Chen et al., 2014). The runoff depth can be estimated by 

the cumulative discharge, flow velocity and DEM resolution and can be expressed as Eq. (2). Eq. (1) and Eq. (2) are carried 150 

out iteratively to simulate the flow velocity and surface flow discharge until the end of simulation. 

ℎ =
𝑄

𝑣∗g
,             (2) 

where ℎ denotes the runoff depth (m3/s), 𝑄 denotes the flow velocity (m/s), g denotes the grid cell (m). 

Manning’s equation only considers the influence of slope on flow velocity and does not consider the influence of other 

topographic parameters on flow velocity. For example, the slope length factor can quantify the degree of soil erosion caused 155 

by topography to accelerate the surface flow; the topographic wetness index can quantify the cumulative discharge trend and 

local slope to accelerate the surface flow; and the flow path curvature can quantify the degree of swing of the flow lines to 

hinder the surface flow. Therefore, we hope to take into account the influence of the slope length factor, topographic wetness 

index (TWI) and flow path curvature on flow velocity to improve the accuracy of surface flow dynamic simulation anywhere 
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on the terrain surface. Meanwhile, three parameters are used to improve Manning’s equation  160 

The high accuracy and beneficial spatial distribution of the flow-path-network-triangular-facet-network (FPN_TFN) 

algorithm presented by Wu et al. (2021), is employed to obtain the slope length factor from a no-depression DEM. The high 

accuracy of the flow-path-network-flow-path-curvature (FPN_C) algorithm proposed by (Wu et al., 2020), is utilized to 

obtain the flow path curvature from a no-depression DEM. 

In this study, a flow-path-network-topographic-wetness-index (FPN_TWI) algorithm is proposed to calculate the TWI 165 

from the no-depression DEM. The TWI calculation consists of slope computation, SCA estimation and TWI calculation. 

(1) Slope computation 

In this paper, the TFN_slope algorithm is utilized to compute the slope from a triangular facet network (TFN). The 

algorithm considered the constant slopes of the triangular facets over the TFN constructed from the no-depression DEM by 

the TFN algorithm (Zhou et al., 2011). The TFN_slope method is advanced to calculate the cell’s slope by averaging the 170 

slopes of all the triangular facets, which treats the grid cell as the vertex. 

(2) SCA estimation 

The SCA is obtained by combining the flow accumulation estimated from the TFN with the aspect evaluated by a new 

algorithm. The TFN is designed to simulate the flow accumulation at each cell. This estimation consists of three processes: a) 

calculating the aspect and slope of the triangular facets over the TFN to obtain flow directions; b) tracking the flow lines by 175 

combining the flow source points that are the centres of gravity for the triangle facets with flow directions; and c) counting 

the number of flow lines through the grid cell to acquire the flow accumulation. These steps have been described in detail by 

Zhou et al. (2011). 

To compute the aspect, a new algorithm is proposed, the principle of which is similar to that of the TFN_slope 

algorithm. Considering the constant aspect of the triangular facets over the TFN, the aspect of a grid cell is the average of the 180 

aspects of all the triangular facets that treats the cell as a vertex (as shown in Eq. (3)). 

𝐴 =
𝐴1+𝐴2+⋯+𝐴𝑛

𝑛
, 1 ≤ 𝑛 ≤ 8,          (3) 

where 𝐴 denotes the aspect of the grid cell, 𝐴𝑛 denotes the aspect of the triangular facet and 𝑛 denotes the nth triangular facet. 

Using the flow accumulation and aspect determined above, the SCA is calculated by Eq. (4) as reported by Costa-

Cabral and Burges (1994). 185 

𝑆𝐶𝐴 =
𝑆×𝐴

∆𝑥|𝑠𝑖𝑛𝛼|+∆𝑦|𝑐𝑜𝑠𝛼|
=

𝑆×𝐴

𝑑(|𝑠𝑖𝑛𝛼|+|𝑐𝑜𝑠𝛼|)
=

𝑑×𝐴

2(|𝑠𝑖𝑛𝛼|+|𝑐𝑜𝑠𝛼|)
,       (4) 

where 𝑆𝐶𝐴 denotes the specific catchment area at a grid cell; 𝑆 denotes the area of the triangular facet; 𝐴 denotes the flow 

accumulation; ∆𝑥 and ∆𝑦 denote the size of the grid cell in the 𝑥 and 𝑦 directions, respectively; 𝑑 denotes the size of the grid 

cell; 𝛼 denotes the aspect of the grid cell. In this paper, ∆𝑥 and ∆𝑦 are equal to 𝑑, and S is equal to 
𝑑2

2
. 

(3) TWI calculation 190 
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Using the slope and SCA determined above, the TWI is estimated by the definition reported by Beven and Kirkby 

(1979) as Eq. (5). 

𝑇𝑊𝐼 = 𝑙𝑛
𝑆𝐶𝐴

tan𝛽
,            (5) 

where 𝑇𝑊𝐼 denotes the topographic wetness index, 𝑆𝐶𝐴 denotes the specific catchment area (m2) and 𝛽 denotes the slope 

(m/m). 195 

2.2.2 Improving Manning’s equation based on the analytic hierarchy process (AHP) 

In the improved method, the slope length factor, topographic wetness index and flow path curvature are used to improve the 

Manning formula. The improved Manning formula is as follows: 

𝑣 =
𝑅2/3∗(𝑤1∗𝑇+𝑤2∗𝐿−𝑤3∗|𝐶|+𝑤4∗𝑆)1/2

𝑛
,         (6) 

where 𝑣  denotes the flow velocity (m/s), 𝑅  denotes the hydraulic radius (m), 𝑇  denotes the topographic wetness index 200 

(dimensionless), 𝐿 denotes the slope length factor (dimensionless), 𝐶 denotes the flow path curvature (𝑚−1), 𝑆 denotes the 

slope (m/m), 𝑤1, 𝑤2, 𝑤3, 𝑤4 are the weight coefficients of the slope length factor, topographic wetness index, flow path 

curvature, respectively and slope and 𝑛 denotes the Manning’s roughness coefficient (dimensionless). The slope length 

factor, topographic wetness index and flow path curvature are normalized to avoid large fluctuation of flow velocity before 

simulating the surface flow dynamics. 205 

In this paper, the slope length factor, topographic wetness index, flow path curvature and slope are weighted by the 

analytic hierarchy process (AHP). The weight determination process consists of judgment matrix construction, consistency 

testing and weight determination. 

(1) Judgment matrix construction 

The judgment matrix is constructed according to the proportional scale (Table 1) and the priority importance of the 210 

slope length factor, topographic wetness index, flow path curvature and slope to flow velocity, as shown in Matrix [1]. 

Table 1: The proportional scale between the different factors. 

The importance of one 

factor to another factor 

Equal 

importance 

Slight 

importance 

Stronger 

importance 

Intense 

importance 

Extreme 

importance 

Middle value of two 

adjacent judgments 

Quantized value 1 3 5 7 9 2, 4, 6, 8 

 

[
 
 
 
 
𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑇 𝐿 𝐶 𝑆

𝑇 1 1/5 1/6 1/7
𝐿 5 1 1/3 1/5
𝐶 6 3 1 1/3
𝑆 7 5 3 1 ]

 
 
 
 

,         [1] 
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(2) Consistency test 215 

Whether the judgment matrix can pass the consistency test is judged by the test coefficient of the matrix. If the test 

coefficient is less than 0.1, the matrix is deemed to pass the consistency test; otherwise, it is not satisfactorily consistent. The 

test coefficient of the matrix is calculated according to Eq. (7) and Eq. (8). The test coefficient of Matrix (1) is 0.0876, so the 

judgment matrix passes the consistency test. 

𝐶𝐼 = (𝜆 − 𝑛) (𝑛 − 1)⁄ ,           (7) 220 

𝐶𝑅 = 𝐶𝐼/𝑅𝐼,            (8) 

where 𝐶𝐼 denotes the coincidence indicator, 𝜆 denotes the maximum eigenroot of a matrix, 𝑛 denotes the matrix order, 𝑅𝐼 

denotes random consistency index and 𝐶𝑅 denotes the test coefficient. 𝑅𝐼 varies with the matrix order, as shown in Table 2. 

Table 2: The standard value of the random consistency index. 

Matrix order 1 2 3 4 5 6 7 8 9 10 

𝑅𝐼 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 225 

(3) Weight determination 

According to the judgment matrix, we calculate the eigenvalues and eigenvectors and choose the maximum eigenvalue. 

The different weights of the slope length factor, topographic wetness index, flow path curvature and slope are equal to the 

elements of the eigenvector corresponding to the maximum eigenvalue. Therefore, 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are 0.0563, 0.1310, 

0.2388 and 0.5738, respectively. 230 

2.3 Simulating the temporal–spatial dynamics of surface flow based on the improved Manning’s equation 

The improved method simulates the surface flow dynamics based on a one-dimensional flow path network (FPN), as shown 

in Fig. 2. It estimates the flow velocity along the flow line to the watershed outlet based on the improved Manning’s equation. 

The surface flow discharge anywhere is simulated by combining the flow velocity with the travel time. Among them, the 

flow velocity estimation function and surface flow discharge count function on the flow lines over the FPN are time-235 

consuming and parallel. 
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Figure 2: Simulating the surface flow dynamics based on a one-dimensional flow path network (FPN). 

Therefore, the two functions are converted into the velocity estimation kernel function and flow discharge count kernel 

function based on CUDA to enhance the computing efficiency. The whole parallelization process is similar to that of the 240 

parallel algorithm proposed by Wu and Chen (2020) and mainly includes data transmission, thread partition mode in CUDA 

and kernel function implementation. The concrete parallel processes were described in detail by Wu and Chen (2020). 

2.4 Evaluating the accuracy and computational efficiency of the improved method 

In this study, the Nash efficiency (𝑁), correlation coefficient (𝑅) and balance coefficient (𝐵) were utilized to assess the 

improved algorithm’s accuracy. The Nash efficiency is used to calculate the flow discharge by the impulse function instead 245 

of the net rainfall of the unit hydrograph. The correlation coefficient is a nondeterministic relationship that describes the 

degree of linear correlation between two variables. The balance coefficient estimates the potential deviation of the improved 

algorithm. For the three statistical indicators, a value close to 1 represents high accuracy. The 𝑁, 𝑅 and 𝐵 are expressed as 

follows: 

𝑁 = 1 −
∑ (𝑄𝑜

𝑡−𝑄𝑚
𝑡 )2𝑛

𝑡=1

∑ (𝑄𝑜
𝑡−𝑄𝑜)2𝑛

𝑡=1
,           (9) 250 

𝑅 =
∑ (𝑄𝑚

𝑡 −𝑄𝑚)∗(𝑄𝑜
𝑡−𝑄𝑜)𝑛

𝑡=1

√∑ (𝑄𝑚
𝑡 −𝑄𝑚)2𝑛

𝑡=1 ∗∑ (𝑄𝑜
𝑡−𝑄𝑜)2𝑛

𝑡=1

,          (10) 

𝐵 =
∑ 𝑄𝑜

𝑡𝑛
𝑡=1

∑ 𝑄𝑚
𝑡𝑛

𝑡=1
,            (11) 
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where 𝑡 denotes the time, 𝑄𝑜
𝑡  denotes the measured flow discharge of the observation station at the time, 𝑄𝑚

𝑡  denotes the 

simulated flow discharge at the time, 𝑄𝑜
̅̅̅̅  denotes average value of measured flow discharge and 𝑄𝑚  denotes the average 

value of the simulated flow discharge. 255 

In addition, the speedup ratio (𝑟) was utilized to measure the computing efficiency of the improved method, and a larger 

value indicates higher computing efficiency. It can be expressed as follows: 

𝑟 =
𝑡𝑐

𝑡𝑝
,             (12) 

where 𝑡𝑐 denotes the computing time of the compared algorithm, 𝑡𝑝 denotes the computing time of the improved algorithm. 

3. Experiments and Results 260 

To assess the accuracy and computing efficiency of the improved method, the Black Brook Watershed (BBW) was selected 

as the experimental region. It is located in north-western New Brunswick, Canada. A 5 m DEM of the BBW region obtained 

through Lidar is used in this study, as shown in Fig. 3. The DEM is composed of 1,284 × 942 grid cells with elevations 

between 151.59 m and 240.70 m. The region is located at 47°05'N-47°09'N and 67°43'W-67°48'W, covering an area of 

approximately 13 km2. The average monthly precipitation increased from 64.6 mm in February to 111.6 mm in July, with an 265 

average monthly rainfall of approximately 91 mm. The watershed is characterized by complex terrain, high-density erosion 

and the potential threat of heavy rainfall and snowfall to soil erosion. In the early 1990s, monitoring stations established 

long-term meteorological and surface flow monitoring points in the BBW, and land-use classification and management 

practice data of various fields in the BBW were also recorded. 

 270 

Figure 3: The test DEM of the BBW used in this study. 

The experiment uses the daily runoff discharge of BBW in 2001 to simulate the daily surface flow discharge. The daily 

runoff discharge is simulated by the SWAT model according to the daily rainfall, and the data have a high accuracy (Chen et 
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al., 2014). Daily rainfall data are measured data provided by the BBW Watershed Monitoring Station. Before the experiment, 

ArcGIS Desktop 10.2 was used to prefill the DEM image. 275 

The different critical points were extracted from the no-depression DEM using different thresholds of 0.5, 1.0, 1.5, 2.0 

and 2.5 m by the parallel-multipoint algorithm. The threshold of 2000 m2 was used to extract the drainage networks by the 

D8 algorithm in this paper. The root mean square error (RMSE) of drainage-constrained TIN slightly increases when the 

threshold of extracting the drainage networks is greater than 2000 m2. The threshold of 8 m was used to filter the critical 

point because the greater threshold value basically keeps the RMSE of drainage-constrained TIN unchanged. The drainage-280 

constrained TINs were built by inserting the extracted drainage networks into the retrieved critical points under the different 

thresholds. When the threshold of 0.5 m was used to retrieve the critical points from the 5 m DEM, the number of critical 

points was 10,859 (Fig. 4(a)), and the number of triangular facets over the drainage-constrained TIN was 23,348 (Fig. 4(b)). 

  

(a) critical points (b) drainage-constrained TIN 

Figure 4: The critical points and drainage-constrained TIN from the BBW (threshold of retrieving the critical points is 0.5 m). 

The 5 m DEM was resampled to DEMs of 10, 15, 20, 25 and 30 m. The random points in each regular grid over the 285 

different DEMs are regarded as the flow source points at different scales. Combining the same drainage-constrained TIN 

with the flow source points with different scales to generate the different FPNs (Fig. 5), the number of flow lines over the 

different FPNs was 134,380, 59,716, 33,634, 21,491 and 14,920. 

  

(a) the scale of flow source points = 10m (b) the scale of flow source points = 15m 
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(c) the scale of flow source points = 20m (d) the scale of flow source points = 30m 

Figure 5: FPNs under the flow source points with different scales (threshold of retrieving the critical points is 0.5 m). 

The different slope length factor values of 10, 15, 20, 25 and 30 m were obtained from the DEMs by the FPN_TFN 290 

algorithm. The different topographic wetness index values of 10, 15, 20, 25 and 30 m were obtained from the DEMs by the 

FPN_TWI algorithm. The different flow path curvature values of 10, 15, 20, 25 and 30 m were obtained from the DEMs by 

the FPN_C algorithm, and the required threshold of cutting the flow lines was 100 m. Figure 6 illustrates the slope length 

factor, topographic wetness index and flow path curvature obtained from the 10 m DEM. The Manning’s roughness 

coefficient in the improved Manning formula is determined to be 0.4 according to the land-use types of the BBW region 295 

(Chen et al., 2014), as shown in Table 3, and the values presented by Thompson (1999). 

   

(a) slope length factor (b) topographic wetness index (c) flow path curvature 

Figure 6: The slope length factor, topographic wetness index and flow path curvature obtained from the 10 m DEM. 
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Table 3: The data for the land-use types of the BBW region. 

Data Description 

Land use 

Potato 32% 

Barley 23% 

Forest 22% 

Residents 5.3% 

Other’s agriculture land 6.1% 

Others 11.6% 

Climate 

Wind speed 

Solar radiation 

Daily precipitation 

Relative humidity 

Maximum and minimum air temperature 

Soil AAFC detailed soil survey map 

 300 

The improved method was utilized to simulate the surface flow dynamics at different times with a threshold of 0.5 m 

for retrieving the critical points and a flow source point scale of 30 m to verify its real-time dynamic simulation ability. 

Figure 7 shows the change in surface flow discharges from the 80th day to the 85th day in one day intervals. As shown in Fig. 

7, during the observation period, the surface flow occurred in an uneven confluence to shape the outline of the stream. Later , 

the surface flow discharge in the upstream segment starts to disappear, and the surface flow discharge in the downstream 305 

segment decreases. On the 85th day, the surface flow discharge disappeared almost completely. 
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(a) t = 80th (b) t = 81th (c) t = 82th 

   

(d) t = 83th (e) t = 84th (f) t = 85th 

Figure 7: The change of surface flow discharges from 80th days to 85th days in an interval of one day (the threshold of retrieving 

the critical points was 0.5 m and the scale of flow source points was 30 m). 310 

Comparing the improved algorithm with the TIN-based algorithm, the three statistical indicators were calculated by the 

surface flow discharge simulation under different thresholds of retrieving the critical points and scales of flow source points 

at the outlet of the BBW. Table 4 shows the three statistical indicators from the improved algorithm and TIN-based 

algorithm. To evaluate the accuracy of the improved algorithm, it was compared with the SWAT model under a flow source 

point scale of 30 m at the outlet of the BBW. Table 5 shows three statistical indicators from the SWAT model. Figure 8 315 

illustrates the surface flow discharge simulated from the SWAT model and improved algorithm under the threshold of 0.5 m 

of retrieving the critical points and flow source points at a scale of 30 m at the outlet of the BBW. 
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Table 4: Three statistical indicators from the improved algorithm and TIN_based algorithm under different thresholds of 

retrieving the critical points and scales of flow source points at the outlet of the BBW. 320 

Threshold/m Algorithm Statistical indicators 
Scale of the flow source points/m 

10 15 20 25 30 

0.5 

TIN_based 

N 0.77 0.77 0.77 0.77 0.77 

R 0.91 0.91 0.91 0.91 0.91 

B 1.30 1.31 1.31 1.30 1.30 

Improved algorithm 

N 0.81 0.81 0.81 0.82 0.81 

R 0.90 0.90 0.90 0.91 0.90 

B 1.08 1.08 1.08 1.11 1.08 

1.0 

TIN_based 

N 0.77 0.77 0.77 0.77 0.77 

R 0.91 0.91 0.91 0.91 0.91 

B 1.31 1.31 1.31 1.31 1.31 

Improved algorithm 

N 0.81 0.81 0.81 0.82 0.80 

R 0.90 0.90 0.90 0.90 0.90 

B 1.08 1.10 1.10 1.11 1.07 

1.5 

TIN_based 

N 0.77 0.77 0.77 0.77 0.77 

R 0.91 0.91 0.91 0.91 0.91 

B 1.31 1.31 1.32 1.32 1.31 

Improved algorithm 

N 0.81 0.81 0.81 0.81 0.81 

R 0.90 0.90 0.90 0.90 0.90 

B 1.09 1.10 1.09 1.10 1.09 

2.0 

TIN_based 

N 0.77 0.77 0.77 0.77 0.77 

R 0.91 0.91 0.91 0.91 0.91 

B 1.31 1.32 1.31 1.32 1.31 

Improved algorithm 

N 0.81 0.80 0.81 0.81 0.80 

R 0.90 0.90 0.90 0.90 0.90 

B 1.08 1.06 1.10 1.09 1.07 

2.5 

TIN_based 

N 0.77 0.77 0.77 0.77 0.77 

R 0.91 0.91 0.91 0.91 0.91 

B 1.31 1.31 1.32 1.32 1.32 

Improved algorithm 

N 0.81 0.81 0.81 0.81 0.80 

R 0.90 0.90 0.90 0.90 0.90 

B 1.08 1.09 1.09 1.10 1.08 
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Table 5: Three statistical indicators from the SWAT model and improved algorithm under a flow source point scale of 30 m at the 

outlet of the BBW. 

Algorithm 
Statistical indicators 

N R B 

SWAT 0.41 0.87 0.96 

 

 

Figure 8: The surface flow discharge simulated from the SWAT model and improved algorithm at the outlet of BBW (threshold of 325 
retrieving the critical points was 0.5 m, and scale of the flow source points was 30 m). 

The experiments to evaluate the computational efficiency of the improved method were performed on a desktop 

computer with an i7-6800 CPU, 64 GB RAM, 500 GB SSD, 1080 NVIDIA GeForce GTX (computational ability of 2.1 and 

number of SMs of 20) and Microsoft Windows 10 using the 64-bit option. Table 6 summarizes the computing times by 

changing the threshold value of retrieving the critical points and the scale of flow source points for the TIN_based and 330 

improved algorithms. 
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Table 6: The calculation times obtained by varying the threshold value of retrieving the critical points and the scale of flow source 

points for the TIN_based and improved algorithms (Unit: second). 

Threshold/m Algorithm 
Scale of flow source points/m 

10 15 20 25 30 

0.5 
TIN_based 953.82 425.37 278.18 213.77 169.77 

Improved algorithm 60.93 30.47 22.26 17.36 16.29 

1.0 
TIN_based 912.16 407.40 278.21 203.25 159.87 

Improved algorithm 60.00 31.48 20.45 17.04 16.04 

1.5 
TIN_based 899.07 395.99 267.96 196.33 159.60 

Improved algorithm 57.91 30.57 20.02 17.50 16.12 

2.0 
TIN_based 893.92 396.22 270.80 198.07 159.21 

Improved algorithm 58.92 29.36 21.48 18.01 16.33 

2.5 
TIN_based 892.59 400.38 260.40 199.60 164.56 

Improved algorithm 56.86 29.52 19.64 16.80 15.50 

In addition, to verify the multiscale expression effect of this method, the improved method was utilized to simulate the 335 

surface flow discharges at different temporal and spatial scales. In terms of time scale, the proposed method estimates the 

flow velocity along the flow line through the improved Manning formula and combines it with the predetermined travel time 

to predict the surface flow movement distance and surface flow discharge at this time. Therefore, the improved algorithm is 

used to simulate the surface flow discharge under different times of 1, 2, 3..., 2250 s. Figure 9 shows the real-time changes of 

surface flow discharge simulated by the proposed algorithm (threshold of retrieving the critical points was 0.5 m and scale of 340 

flow source points was 30 m) at the three locations (upstream point, middle point and downstream point) represented by the 

blue, green and red points in Fig. 3. 

 

Figure 9: Real-time changes in surface flow discharge simulated by the proposed algorithm (threshold of retrieving the critical 

points was 0.5 m and scale of flow source points was 30 m) at three locations (upstream point, middle point and downstream point). 345 

In terms of spatial scale, the scale attributes of critical points under different threshold values were assigned according 
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to the correspondence between the maximum elevation error (Emax), RMSE and scale. Table 7 describes the national 

standard between scale, spatial resolution, Emax and RMSE. Emax is equal to the threshold of retrieving the critical points 

by the parallel-multipoint algorithm. Therefore, Emax can be used to obtain the critical points at a given scale (or resolution). 

For example, when Emax is 0.4 m, if RMSE is less than 0.2 m, then the scale of the retrieved critical points is 0.5 m (or 350 

1:1,000); when Emax is 6.0 m, if RMSE is less than 3.0 m, then the scale of the retrieved critical points is 7.5 m (or 

1:15,000). 

Table 7: The national standard between scale, spatial resolution, Emax and RMSE. 

Scale 1:1000 1:5000 1:10,000 1:15,000 1:20,000 1:25,000 1:50,000 

Resolution/m 0.5 2.5 5.0 7.5 10.0 12.5 25.0 

RMSE/m 0.2 1.0 2.0 3.0 4.0 5.0 10.0 

Emax/m 0.4 2.0 4.0 6.0 8.0 10.0 20.0  

Data source: State Bureau of Quality and Technical Supervision of China (2000, 2001). 

The drainage-constrained TINs constructed under the different threshold values (Emax values) of retrieving the critical 355 

points from the no-depression DEM were compared with the original DEM to obtain the RMSE of different TINs, as shown 

in Table 8. The optimal fitting formula was obtained by correlating Emax with RMSE. According to the fitting formula, the 

thresholds of retrieving the critical points corresponding to different RMSEs (0.2, 1.0 and 2.0 m) are shown in Table 9. From 

Table 9, we can see that when the threshold of retrieving the critical points is 0.59, 3.27 and 4.99 m, the RMSE of drainage-

constrained TINs is 0.2, 1.0 and 1.3 m, respectively. Combined with Table 8, the corresponding scale of the critical points 360 

was 1:1,000 (0.5 m), 1:5,000 (2.5 m) and 1:10,000 (5.0 m). Figure 10 shows the retrieved critical points and the drainage-

constrained TINs with different scales. 

Table 8: The number of critical points, the number of triangular facets over TIN and the corresponding RMSE. 

Emax/m 0.5 1.0 1.5 2.0 2.5 

points a 10,859 4,295 2,149 1,268 822 

triangulars b 23,348 11,079 6,854 5,139 4,285 

RMSE/m 0.17 0.31 0.45 0.58 0.73 

a Number of retrieved critical points; b Number of triangular facets over TIN. 

Table 9: The number of critical points, the number of triangular facets over TIN and the corresponding RMSE. 365 

fitting formula R2 
RMSE/m 

0.2 1.0 2.0 

𝑟 = 0.014𝑡3 − 0.0601𝑡2 + 0.3491𝑡

+ 0.0127 

0.9999 0.59 3.27 4.99 
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(a) the critical points with different scales (b) the drainage-constrained TIN of 1:1,000 

  

(c) the drainage-constrained TIN of 1:5,000 (d) the drainage-constrained TIN of 1:10,000 

Figure 10: The retrieved critical points and the drainage-constrained TINs with different scales. 

Combined with the flow source points at scales of 10, 15, 20, 25 and 30 m, the improved method was utilized to 

simulate the daily surface flow discharge at the outlet of the BBW under different scales of TIN and flow source points. The 

accuracy of the simulation results was evaluated as shown in Table 10. In addition, the simulation results from the improved 

method at different scales of TIN and a flow source point scale of 30 m were compared with those of the simulation results 370 

from the SWAT model, as shown in Fig. 11. 
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Table 10: The accuracy of the improved method under different scales of TIN and flow source points. 

Scale of 

TIN/m 
Statistical indicators 

Scale of the flow source points/m 

10 15 20 25 30 

0.5 

N 0.808 0.806 0.800 0.800 0.809 

R 0.899 0.899 0.896 0.896 0.900 

B 1.079 1.078 1.063 1.063 1.085 

2.5 

N 0.804 0.809 0.807 0.810 0.805 

R 0.898 0.900 0.899 0.901 0.898 

B 1.075 1.088 1.082 1.091 1.077 

5.0 

N 0.809 0.805 0.811 0.805 0.811 

R 0.900 0.898 0.901 0.898 0.902 

B 1.087 1.078 1.094 1.078 1.095 

 

Figure 11: The surface flow discharge from the SWAT model and the improved method at the outlet of BBW (scale of the flow 375 
source points was 30 m). 

4. Discussion 

The improved algorithm aimed to efficiently use the flow path network to simulate the surface flow discharge with high 

accuracy at any temporal and spatial scale. Therefore, we not only use the Nash efficiency (N), correlation coefficient (R) 

and balance coefficient (B) to evaluate the accuracy between the improved algorithm and two existing methods and the 380 

multiscale expression effect of the improved method but also employ time statistics to assess the computational efficiency of 

the improved method. 
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4.1 Accuracy and computing performance enhancement measures 

As seen from Table 4, with the increase of scale of the flow source points, when the thresholds of retrieving the critical 

points are 0.5, 1.0, 1.5, 2.0 and 2.5 m, the N, R and B value of the TIN_based method is 0.77, 0.91 and 1.30 to 1.32, 385 

respectively. The N, R and B values of the improved method are between 0.80 and 0.82, between 0.90 and 0.91 and between 

1.06 and 1.11, respectively. With the change of threshold of retrieving the critical points and scale of flow source points, the 

N value increases by 6.49%, the R value decreases by 1.10% and the B value increases by 19.08%. Therefore, the improved 

method has a higher simulation accuracy. 

Combining Fig. 8 and Table 5, the simulation results of the improved method are closer to the measured data from the 390 

observation station and better than the simulation results of the SWAT model. The Nash coefficient increases by 97.56%. 

The correlation coefficient increases by 4.60%. The balance coefficient is very close to 1. The SWAT model divides the 

watershed into hydrological response units (HRUs) and uses its unique combination of land cover, slope and soil type for the 

surface flow dynamics simulation. The model has many input parameters to an uncertain simulation result, and its accuracy 

depends on the DEM resolution. Therefore, the accuracy of the improved method is significantly enhanced and can avoid the 395 

influence of parameters and DEM resolution on the accuracy. 

Figure 12 shows the speedup ratio of the improved method at different thresholds of retrieving the critical points and 

different scales of flow source points. With the decrease in the scale of the flow source points, the speedup ratio under the 

thresholds of 0.5 m reaches 15.7. When the threshold of retrieving the critical points is 1.0 m, the speedup ratio reaches 15.2. 

When the threshold of retrieving the critical points is 1.5 m, the speedup ratio reaches 15.5. When the threshold of retrieving 400 

the critical points is 2.0 m, the speedup ratio reaches 15.2. When the threshold of retrieving the critical points is 2.5 m, the 

speedup ratio reaches 15.7. This demonstrates that the computing efficiency of the improved method is greatly enhanced, 

and the speedup ratio reaches 15.7. 

 

Figure 12: The speedup ratio of the improved method at different thresholds of retrieving the critical points and different scales of 405 
flow source points. 
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4.2 Multiscale expression effect 

As shown in Fig. 7, the flow discharges of the three locations are low because the flow has not begun at 0 seconds. Then, the 

flow discharge accumulated with the change in time. The flow at the upstream points shows a gentle-low curve and stops at 

600 seconds for the small catchment area and short flow line. At the middle point, the flow curve fluctuates from 410 

approximately 100 seconds to approximately 2000 seconds because the different travel times result in the upstream flow to 

different places. After approximately 250 seconds, all the flow discharge subsides and goes out to zero. In addition, the flow 

discharge at the middle point is generally higher than that at the upstream point because of its larger catchment area and 

longer flow line. 

At the downstream point, the flow curve is similar to that of the middle point, but the sections of low flow discharge 415 

and high flow discharge are opposite to that of the middle point. Because the time is small, more upstream discharge cannot 

flow into this position, while when the time is large, more upstream discharge can flow into this position. The curve of the 

downstream point reached the maximum value at approximately 2100 seconds for a large catchment area and long flow 

accumulation time. Based on the analysis of the mechanism of surface flow dynamic simulation, these results are consistent 

with the actual expected results. Thus, the improved method can simulate the surface flow dynamics in real time. 420 

As seen from Table 5 and Table 10, compared with the SWAT model, the N value of the improved method increases by 

95%, and the R value increases slightly by approximately 3%. In addition, the B value is very close to 1. Combined with Fig. 

11, both the improved method and SWAT model can simulate the surface flow discharge at the outlet of the BBW, but the 

simulation curve of the improved model is closer to the measured data than that of the SWAT model. Therefore, the 

multiscale simulation accuracy of the improved method is significantly enhanced. 425 

Drainage-constrained TINs with different scales can be conveniently constructed based on different scales of critical 

points. The flow source points, a collection of arbitrary surface points, are not related to the scale of the TIN, so the scale of 

the flow source points is separated from that of the TIN. This solves the problem that the simulation cell of the traditional 

surface flow discharge method is consistent with the grid cell of the DEM and the computing amount is large and complex. 

The traditional hydrological methods almost regard the DEM grid cells or HRUs in the SWAT model as the simulation cells. 430 

These simulation cells have a planar geometry, and it is difficult to express the simulation of any point on the surface. 

However, multiscale surface flow dynamics simulation by the improved method can express the simulation result of any 

point on the surface to improve the simulation accuracy from the planar level to the point level. Therefore, the simulation 

accuracy is better improved, and the surface flow dynamic simulation under different temporal and spatial scales can be 

realized. In addition, according to Table 4 and Table 10, while improving the simulation accuracy of the improved method, 435 

the N values fluctuate in a small range of approximately 0.80, the R values fluctuate in a small range of approximately 0.90 

and the B values fluctuate in a small range of approximately 1.08. Therefore, the multiscale simulation results of the 

improved algorithm do not vary greatly because the scale of the TIN and flow source points remain consistent. 
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4.3 Limitations and future enhancements 

As described in this paper, we only consider the influence of three terrain parameters on the surface flow velocity to improve 440 

Manning’s equation. Other terrain parameters (such as upslope area and upslope slope) also have an impact on the flow 

velocity, and we will further discuss the influence of other terrain parameters on the accuracy of simulating the surface flow 

dynamics. In addition, the improved method only implemented the parallelization of retrieving the critical points algorithm 

during the construction of drainage-constrained TINs. The parallelization of the TIN construction algorithm and D8 

algorithm are not considered in current research. We also hope to parallelize the two algorithms and form a complete set of 445 

parallel algorithms for constructing the drainage-constrained TIN based on CUDA. Research will also focus on the 

derivation of different terrain parameters and the surface flow dynamic simulation method with higher accuracy and 

computational efficiency to satisfy the needs of more users. 

5. Conclusions 

To solve the problems of the accuracy and real-time response efficiency of the existing surface flow dynamic simulation 450 

algorithms, an improved algorithm was proposed to simulate the surface flow dynamics quickly and accurately to meet the 

requirements of accurate and immediate response in practical applications. In the improved algorithm, the critical points 

retrieved from the high-resolution grid DEM by the parallel-multi-point algorithm and the drainage networks extracted by 

the D8 algorithm were combined to construct the drainage-constrained TIN first. Then, the flow direction of each triangular 

facet on the TIN was calculated by the aspect and slope of the triangular facet. The flow lines from the flow source points to 455 

the outlet were tracked by combining the randomly sampled flow source points with the flow direction to simplify the three-

dimensional surface into a one-dimensional flow path network (FPN). 

On this basis, the slope length factor and flow path curvature were obtained from the DEM by using the FPN_L and 

FPN_FPC methods. The topographic wetness index was acquired from the DEM by a new algorithm. Then, based on the 

analytic hierarchy process (AHP), the classical Manning formula was improved by using the slope length factor, topographic 460 

wetness index and flow path curvature to accurately estimate the velocity of each flow line over the FPN. Finally, CUDA 

was utilized to parallelize the flow velocity estimation function and surface flow discharge count function on the flow lines 

over the FPN. Combined with the preset travel time, the movement distance was predicted, and the surface flow discharge 

was simulated at any location to complete the dynamic simulation of surface water at any time. The proposed algorithm 

improved the Manning formula to enhance the accuracy and used CUDA to advance the real-time response efficiency. 465 

To verify the accuracy and computing efficiency of the improved algorithm, the simulation results and calculation time 

were compared with the TIN_based algorithm under different thresholds of retrieving the critical points and different scales 

of flow source points. In addition, the simulation results of the proposed algorithm were compared with those of the SWAT 

model at a flow source point scale of 30 m to further verify its accuracy. The experimental results show that, compared with 

the TIN_based algorithm, the Nash coefficient increases by 6.49%, the correlation coefficient decreases slightly and the 470 
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balance coefficient increases by 19.08%. Compared with the SWAT model, the Nash coefficient increased by 97.56% and 

the correlation coefficient increased by 4.60%. The balance coefficient of the proposed algorithm is close to 1 and 

outperforms other existing algorithms. 

Compared with the TIN_based method, the computing efficiency is greatly improved, and the speedup ratio reaches 

15.7. The Nash coefficient, correlation coefficient and balance coefficient of the improved algorithm fluctuate within a small 475 

range of 0.81, 0.90 and 1.09. Moreover, the improved algorithm can simulate surface flow dynamics in real time, and the 

multiscale simulation results do not vary greatly with the scale of the TIN and flow source points. Therefore, the improved 

algorithm can quickly and accurately complete the multiscale surface flow dynamic simulation and ensure the consistency of 

simulation results. 
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