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Abstract. Several metrics have been proposed and utilized to diagnose the performance of linear Bayesian and geostatistical1

atmospheric inverse problems. These metrics primarily assess reductions in prior uncertainties, compare modeled observations2

to true observations, and check distributional assumptions. Although important, these metrics should be augmented with sen-3

sitivity analysis to obtain a comprehensive understanding of atmospheric inversion performance and improve the quality and4

confidence in the inverse estimates. In this study, we derive closed-form expressions of local sensitivities for various inputs,5

including measurements, covariance parameters, covariates, and a forward operator. To further enhance our understanding, we6

complement local sensitivity analysis with a framework for global sensitivity analysis that can apportion the uncertainty in7

inputs to the uncertainty associated with inverse estimates. Additionally, we propose a mathematical framework to construct8

nonstationary correlation matrices from a pre-computed forward operator, which is closely tied to the overall quality of inverse9

estimates. We demonstrate the application of our methodology in the context of an atmospheric inverse problem for estimating10

methane fluxes in Los Angeles, California.11

1 Introduction12

In atmospheric applications, inverse models are frequently used to estimate global to regional scale fluxes of trace gases from13

atmospheric measurements (Enting, 2002). At a global scale, data assimilation remains the primary inverse modeling frame-14

work, which assimilates observations sequentially and updates the prior estimates of fluxes by utilizing an atmospheric model15

coupled with chemistry (for further details on data assimilation, see Wikle and Berliner, 2007). At a regional scale, inversions16

that assimilate all observations simultaneously by utilizing a pre-computed forward operator (Lin et al., 2003) that describes17

the relationship between observations and fluxes are commonly used (for details, see Enting, 2002). This work focuses on the18

use of pre-computed forward operators for atmospheric inverse modeling and addresses sensitivity analysis and correlation in19

the forward operator in the context of Bayesian (e.g., Lauvaux et al., 2016) and geostatistical inverse methods (e.g., Kitanidis,20

1996).21

22

The sensitivity analysis in this work is covered under local and global themes. Primarily, we focus on local sensitivity anal-23

ysis (LSA), which measures the effect of a given input on a given output and is obtained by computing partial derivatives of an24
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output quantity of interest for an input factor (see See Rabitz, 1989, and Turányi, 1990). Within the global theme (designated25

as Global Sensitivity Analysis), we focus on how uncertainty in the model output can be apportioned to different model inputs26

(Saltelli et al., 2008).27

28

Overall, in atmospheric trace gas inversions, mostly LSA is performed. Within this context, LSA assesses how sensitive the29

posterior estimates of fluxes are regarding the underlying choices or assumptions, like (1) observations included, (2) model-30

data error covariance, (3) the input prior information and its error, and (4) the forward operator (for discussion, see Michalak31

et al., 2017). This task is sometimes performed to arrive at a robust estimate of fluxes and their uncertainties, by running an32

inverse model multiple times while varying the inputs and assessing their impact on the estimated fluxes and uncertainties.33

Another complementary way to do LSA is by computing local partial derivatives of inputs that go into an inversion.34

35

LSA can be grouped with standard information content approaches such as an averaging kernel and degrees of freedom for36

signal (DOFS; for details, see Sec. 2.2.1 of this manuscript, Rodgers, 2000, and Brasseur and Jacob, 2017). However, LSA is37

more informative than these approaches alone, as it examines individual components (see Sec. 2.2) that determine DOFS and38

quantifies the impact and relative importance of various components of an inversion.39

40

In this study, we focus on the quality of the inverse estimates of the fluxes, which means providing diagnostic metrics to41

improve our understanding of the impact of input choices on the inverse estimates of fluxes and thus improve the quality of the42

inverse model. Specifically, in this technical note, we provide (1) closed-form expressions to conduct LSA by computing partial43

derivatives, (2) a scientifically interpretable framework for ranking thousands of spatiotemporally correlated input parameters44

with the same or different units of measurement, (3) a mathematical schema for conducting global sensitivity analysis (GSA),45

and (4) a technique to assess the spatiotemporal correlation between forward operators of two or multiple observations, which46

is tied to the overall diagnostics of the estimated fluxes and can lead to improved representation of errors in the forward operator.47

48

2 Methods and derivation49

In a generic form, a linear inverse problem can be written as:50

z = Hs + ε, (1)51

where H is a forward operator that maps model parameters (fluxes in the context of this work) to measurements z and en-52

capsulates our understanding of the physics of the measurements. The error ε in Eq. (1) describes the mismatch between53

measurements and the modeled measurements (see Sec. 3).54

55
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In a typical linear atmospheric inverse problem (see Fig. 1), the estimates of fluxes (box 8 of Fig. 1) are obtained in a56

classical one-stage batch Bayesian setup (for details, see Enting, 2002; Tarantola, 2005). In this setup, the a priori term (box 357

in Fig. 1) is based on a fixed flux pattern, and errors (box 6 in Fig. 1) are either assumed to be independent or are governed by58

a pre-defined covariance structure (for details, see Gurney et al., 2003; Rödenbeck et al., 2003, 2006).59

Figure 1. The schema for performing a linear atmospheric inversion to obtain estimates of the fluxes of greenhouse gases. The middle

column (the green background box) lists all the inputs that are required for performing an inversion whereas the right column (the orange

background box) lists the modeling process (box 7) and the output obtained after performing an inversion (box 8). Note this work focuses on

understanding and ranking the impact of the inputs (box 3, 4, and 6 in the middle column) on the estimates of fluxes (box 8) and developing

correlation structures from the forward operator (box 5).

Within the previously mentioned setup, the choice of the input parameters, including the forms of error structures, pro-60

foundly impacts the quality of the inverse estimates of fluxes. Understanding the impact of these inputs is critical for evaluating61

the quality of the estimated fluxes. Thus, first (Sec. 2.1), we utilize the understanding of the physics of the measurements,62

encapsulated in H, to generate scientifically interpretable correlation matrices (box 6 in Fig. 1). Second, we assess and rank63

the importance of the inputs (Sec. 2.2) shown in the middle column (the green background box) of Fig. 1 (box 8 of Fig. 1),64

which is finally followed, by methane (CH4) case study that demonstrates the applicability of our methods (see Sec. 2).65

66
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2.1 Analysis of the forward operator67

In inversions that assimilate all observations simultaneously, a forward operator for each observation included in an inversion68

is obtained from a transport model. These observations can be obtained from multiple platforms, including an in-situ network69

of fixed locations on the surface, intermittent aircraft flights, and satellites. In most situations, the spatiotemporal coverage70

of these forward operators is visually assessed by plotting an aggregated sum or mean of their values over a spatial domain.71

However, standard quantitative metrics to evaluate their coverage and intensity in space and time remain absent. In this study,72

we present two metrics for this assessment, which are defined below. These metrics conform to triangular inequality and are73

distances in their respective metric spaces.74

75

Note that sometimes in the published literature on trace gas inversions, the forward operator obtained from a transport model76

is referred to as a sensitivity matrix, Jacobian, or footprint. Henceforth, we always refer to the Jacobian/sensitivity matrix or77

footprint as a forward operator to avoid misinterpretation. We show our application through forward operators constructed by78

running a Lagrangian transport model. However, the proposed methods can also be applied in the Eulerian framework (see79

Brasseur and Jacob, 2017 for details).80

2.1.1 Integrated area overlap measurement index (IAOMI)81

The Integrated Area Overlap Measurement Index (IAOMI) summarizes the shared information content between two forward82

operators and hence indirectly between two observations. It is, therefore, a measure of the uniqueness of the flux signal asso-83

ciated with an observation compared to other observations.84

Intuitively, IAOMI can be better understood spatially. For a given time point, consider two forward operators F and G as two85

vector-valued functions over an area. Index IAOMI is the proportion of the common contribution of the two forward operators86

from the intersected area with respect to the overall contribution of the two forward operators. This is demonstrated through a87

Venn diagram in Fig. 2. Thus, IAOMI can be defined as:88

νF,G =
ΣAF∩AG

f1(F,G)

ΣAF∪AG
f2(F,G)

, (2)89

where for any forward operator S, the corresponding set AS on which forward operator is always positive, is defined as90

AS = {x : S(x)> 0} and the two vector-valued functionals f1 and f2 can be given as:91

f1(F,G) =

min(F,G) on AF ∩AG

0 otherwise
and f2(F,G) =


max(F,G) on AF ∩AG

F on AF ∩AcG
G on AcF ∩AG

(3)92

Note that the IAOMI defined in Eq. (2) can also be written as a ratio of the sum of minimums over sum of the maximums as:93
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Figure 2. Venn diagram that defines IAOMI in terms of two hypothetical forward operators F and G

νF,G =
ΣAF∪AG

min(F,G)

ΣAF∪AG
max(F,G)

(4)94

IAOMI ν can also be thought as a measure of similarity between two forward operators. It is evident from Eq. (4) that this is95

a weighted Jaccard similarity index or Ruzicka index (Cha, 2007) which describes similarity between two forward operators96

F and G. It follows that ν is closed and bounded in [0,1] and accounts for both the spatiotemporal spread and the intensity of97

the forward operator. A stronger ν implies larger overlap of intensity in space and time, is analogous to finding the common98

area within two curves, and is indicative of the magnitude of overlapping information, a knowledge beneficial in the context of99

satellite observations with a higher potential for sharing information content.100

101

A measure of dissimilarity can be obtained from ν and can be defined by 1−ν. The smaller the overlap or the larger the value102

of 1− ν, the more significant the disparity. Note the ν metric is only indicative of the overlap in the spatiotemporal intensity103

between two forward operators. To measure how much of the shared intensity has come from either forward operator, we use104

a metric υF|(F,G) defined as:105

υF|(F,G) =
ΣAF∩AG

f1(F,G)

ΣAF
f3(F)

, (5)106
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where f3(F) = F on AF and 0 everywhere else. Likewise, we can define υG|(F,G) which shows proportional contribution of107

the forward operator G on the shared intensity. Both ν and υ can be computed from observations taken from same or different108

platforms, at same or different time or for two different in-situ measurement sites over a specified time-interval.109

2.1.2 Spatio-temporal Area of Dominance (STAD)110

The spatiotemporal area of dominance (STAD) stems naturally from IAOMI. For any two forward operators F, and G, we can111

find out the left-over dominant contribution of F and G by computing quantities F−G and G−F that lead to the determina-112

tion of the areas where F or G is dominant.113

114

For two forward operators F and G, STAD of F with respect to G is defined as:115

STADF(F,G) =

F−min(F,G) on AF ∩AG

F otherwise
116

IAOMI and STAD of any forward operator F with respect to the forward operators F and G are linked by the following117

equation:118

νF,GΣAF∪AG
H2(F,G) + ΣAF∪AG

STADF(F,G) = ΣAF
F (6)119

Given a number of forward operators {F,G1,G2, · · ·}, STAD for any particular forward operator F with respect to all other120

forward operators can be generalized from Eq. (6) as FSTAD(F,Gmax) where Gmax = maxiGi on AG; AG = ∪kAGk
and121

AGk
is the set on which forward operator Gk is always positive (see Sec. 2.1.1 for its definition). STAD can be aggregated122

over any time-periods. Intuitively, STAD determines areas in space-time where one forward operator dominates over other123

forward operators, which is especially useful in locating the primary flux sources that influence an observation.124

125

One can use 1-IAOMI or distance metric like Jensen-Shannon distance (JSD; see Appendix B) matrix of all pairwise forward126

operators as a representative distance matrix for describing correlations in model-data errors (i.e., R in Eq. (7)). As JSD or127

1-IAOMI matrices are real, symmetric, and admit orthogonal decomposition, the entry-wise exponential of such symmetric128

diagonalizable matrices is positive-semidefinite and can be incorporated in model data mismatch matrix R (see Ghosh et al.,129

2021). Furthermore, the IAOMI matrix itself is a positive semidefinite (Bouchard et al., 2013) matrix and can also be directly130

incorporated in R as a measure of correlation. This is an example of how IAOMI or 1- IAOMI could be particularly useful for131

satellite data based inversions with higher degree of spatial overlap of the forward operators. However, we do not explore this132

area of research in this manuscript.133
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2.2 Local sensitivity analysis (LSA) in inversions134

For linear Bayesian and geostatistical inverse problem, the solutions (see, Tarantola, 2005 for the batch Bayesian and Kitanidis,135

1996 for the geostatistical case) can be obtained by minimizing their respective objective functions. These objective functions136

can be given as:137

L(s|y,sprior,H,Q,R) =
1

2
(z−Hs)tR−1(z−Hs) +

1

2
(s− sprior)

tQ−1(s− sprior) (7)138

L(s|y,H,Q,R,β) =
1

2
(z−Hs)tR−1(z−Hs) +

1

2
(s−Xβ)tQ−1(s−Xβ), (8)139

where lowercase symbols represent vectors and the uppercase symbols represent matrices, and this exact representation is140

adopted throughout the manuscript. In Eq. (7) and (8), z is an (n×1) vector of available measurements with unit of each entry141

being ppm. The forward operator H is an (n×m) matrix with unit of each entry being ppm µmoles−1m2sec. The matrix H142

is obtained from a transport model that describes the relationship between measurements and unknown fluxes. Unknown flux143

s is an (m× 1) vector with unit of entries being µmoles m−2sec−1. The covariance matrix R of the model-data errors is an144

(n×n) matrix with unit of the entries being ppm2. The covariate matrix X is an (m×p) matrix of known covariates related to145

s. The unit of each of the entries in every column of the covariate matrix X is the unit of its measurement or if it is standardized146

(e.g. subtract the mean from the covariate and divide by its standard deviation) then it is unitless. For further discussion on147

standardization and normalization see Gelman and Hill, 2006. The units of (p× 1) vector β are such that Xβ and s have the148

same units. The prior error covariance matrix Q is an (m×m) matrix that represents the errors between s and Xβ with unit149

of the entries being
(
µmoles m−2sec−1

)2
.150

151

The analytical solutions for the unknown fluxes s in the Bayesian case (denoted by the subscript B) and the geostatistical152

case (denoted by the subscript G) can be obtained from Eq. (9) and (10) as given below.153

ŝB = sprior + QHt
(
HQHt + R

)−1
(z−Hsprior) (9)154

ŝG = Xβ+ QHt
(
HQHt + R

)−1
(z−HXβ) (10)155

In linear Bayesian and geostatistical inverse problems described by equations 7 and 8, the estimated fluxes can be expressed156

as the sum of the prior information and the update obtained from the observations. In equations 9 and 10, the second term157

represents the observational constraint, while the first term describes the prior information (in Eq. 9) and the information about158

fluxes (through X in Eq. 10). When there is no additional information, the solution corresponds to the prior knowledge. Since159

the estimate of sG in Eq. (10) depends on the unknown β, it requires prior estimation of β before obtaining ŝG. The solution160

for the β̂ can be obtained from pre-determined quantities as described earlier in the context of Eq. (8) and can be given as:161

β̂ = Ω−1AtΨ−1z, (11)162
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plugging in β̂ in Eq. (10) leads to Eq. (12) where all symbols are defined previously or in Eq. (13).163

ŝG = XΩ−1AtΨ−1z + QHtΨ−1
(
z−AΩ−1AtΨ−1z

)
, where (12)164

A = HX,Ψ =
(
HQHt + R

)
, Ω = (HX)

t (
HQHt + R

)−1
HX (13)165

Note that, ŝB and ŝG in Eq. (9) and (10) are essentially functions that are represented by equations. It is a commonly adopted166

nomenclature that is used by researchers working in the field of atmospheric inversions. We differentiate Eq. (9) with respect167

to sprior, R, Q, z and Eq. (12) with respect to X, R, Q, z to obtain the local sensitivities. There are two ways to differentiate ŝ168

with respect to z, X, H, Q, and R. In the first case, every entry in z, X, H, Q, and R can be considered as a parameter that169

results in differentiation of ŝ with respect to these quantities. An “entry” refers to each element of the matrix denoted by ij,170

where i represents the row number and j represents the column number. On the other hand, if the structures of the covariance171

matrices Q and R are determined by parameters then ŝ can be differentiated just with respect to these parameters. In the former172

case, Eq. (9) and (12) are used to differentiate ŝ with respect to an entry at a time in z, X, H, Q, and R. Such an approach of173

entry-by-entry differentiation is useful if the computational cost in terms of memory constraint is important or if we would like174

to know the influence of a single entry on ŝ. We provide both sets of equations in this manuscript.175

2.2.1 LSA with respect to observations, priors, scaling factors, and forward operators176

Local sensitivity of ŝ with respect to observations (z) can be given as:177

∂ŝB
∂z

= QHtΨ−1 (14)178

∂ŝG
∂z

= XΩ−1AtΨ−1 + QHtΨ−1−QHtΨ−1AΩ−1AtΨ−1, (15)179

where all quantities are as defined earlier. The units of the entries in ∂ŝ
∂z are µmoles−1m2sec−1ppm−1 and the matrices are of180

dimension (m×n). These units are inverse of the units of H. Local sensitivities with respect to an observation zi for both the181

Bayesian and the geostatistical case can be written as a vector of sensitivities times an indicator for the ith entry i.e. ∂ŝ∂zei where182

ei = ∂z
∂zi

is a vector of zeros with the ith entry equal to 1.183

184

Note by utilizing ∂ŝ
∂z , we can also obtain an averaging kernel (or model resolution matrix) and DOFS (see Rodgers, 2000).185

The averaging kernel matrix for any linear inverse model can be written as:186

V =
∂ŝ

∂z
×H, (16)187

where V of dimension (m×m) is the local sensitivity of ŝ with respect to the true unknown fluxes. Then the DOFS can be188

computed by taking the trace of the averaging kernel matrix V. DOFS represents the amount of information resolved by an189
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inverse model when a set of observations have been assimilated (for a detailed discussion, see Rodgers, 2000 and Brasseur and190

Jacob, 2017). Theoretically, the value of DOFS cannot exceed the number of observations (n) in an underdetermined system191

and the number of fluxes (m) in an overdetermined system.192

193

We can directly compute local sensitivity of ŝ with respect to the prior mean flux sprior in the Bayesian case. In the geostatis-194

tical case, the prior mean is modeled by two quantities X and β. In this scenario, we need to find sensitivities with respect to195

X as well as β. These local sensitivities can be given as:196

∂ŝB
∂sprior

= I−CH (17)197

∂ŝG
∂X

= Kz ⊗
(
I +
(
MAt−XΩ−1At−QHt

)
Ψ−1H

)
+
(
XΩ−1−M

)
⊗
(
Fz −KzA

tΨ−1H
)

(18)198

∂ŝG

∂β̂
= X−CA, (19)199

where A = HX, B = QHt, C = BΨ−1, Ω = AtΨ−1A, Kz = ztΨ−1AΩ−1, M = CAΩ−1, and Fz = ztΨ−1H. The sym-200

bol ⊗ represents the Kronecker product. The quantity ∂ŝB
∂sprior

is of dimension (m×m) and its entries are unitless. The quantity201
∂ŝG
∂β̂

is of dimension (m×p) and units of the entries in each column of ∂ŝG
∂β̂

are of the form (µmoles−1m2sec−1)(unit of βi)−1.202

The sensitivity matrix ∂ŝG
∂X is of dimension (m×mp) where every ith block of m columns ((i− 1)m+A : im) of ∂ŝG

∂X has203

units of the form (µmoles−1m2sec−1)(unit of Xi)
−1 where Xi is the ith column of X. Note that the sensitivity matrix ∂ŝB

∂sprior
204

in Eq. (17) can also be considered as a proportion of posterior uncertainty to that of the prior uncertainty. In context of the205

Bayesian case, proportional uncertainty reduction becomes averaging kernel.206

207

Sometimes, it is essential to know the influence of the prior of any particular grid point or an area consisting of few grid-cells208

within ŝ. Local sensitivity of ŝ with respect to the ith entry in sprior and β̂i is a matrix of dimension (m× 1) and can be written209

as ∂ŝB
∂sprior

ei and ∂ŝG
∂β̂

ei respectively. However, the entry-wise ∂ŝG
∂Xij

is more complex and can be given by:210

∂ŝG
∂Xij

= (I−CH)

((
I−XΩ−1XtHtΨ−1H

) ∂X

∂Xij
Ω−1Xt + XΩ−1

∂Xt

∂Xij

(
I−HtΨ−1HXΩ−1Xt

))
Ftz, (20)211

where ∂Xt

∂Xij
= Eij is a single-entry matrix with a one for a Xij for which differentiation is being performed and zero ev-212

erywhere else. For z, entry-by-entry differentiation can be easily performed since both Eq. (9) and (12) result from linear213

models and are functions of the form Φz + n where Φ and n are independent of z. For example, Φ and n for Eq. (9) are214

QHt
(
HQHt + R

)−1
and sprior−QHt

(
HQHt + R

)−1
Hsprior respectively and are independent of z. In this case, ∂ŝB∂zi can215

be written as Φei where ei is a single-entry vector with a one for a zi for which differentiation is being performed and zero216

everywhere else. Local sensitivity ∂ŝG
∂zi

can similarly be defined for the respective Φ. Here both the quantities ∂ŝG
∂Xij

and ∂ŝB
∂zi

217

are matrices of dimension (m× 1).218

219
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Local sensitivity of ŝ with respect to an entry in the forward operator has units of the form
(
µmoles−1m2sec−1

)2
ppm−1. In220

the Bayesian case, this sensitivity can be written as:221

∂ŝB
∂H

= Q⊗Pz −BPz ⊗Ct−BCt⊗Pz −Q⊗D + BD⊗Ct + BCt⊗D− sprior⊗Ct, (21)222

where ∂ŝB
∂H is a sensitivity matrix of dimension (m×mn). In the geostatistical case, this sensitivity can be partitioned into two223

components i.e., ∂β̂
∂H and ∂ε̂

∂H as shown in Eq. (22) where ∂β̂
∂H and ∂ε̂

∂H are obtained in an orderly sequence from Eq. (23) and224

(24).225

∂ŝG
∂H

= X
∂β̂

∂H
+
∂ε̂

∂H
where (22)226

∂β̂

∂H
=−L⊗Gz −Pt

zAΩ−1Xt⊗KT + GzHQ⊗Kt + N⊗Gz + L⊗PT
z −PT

z HQ⊗Kt−N⊗Pt
z (23)227

∂ε̂

∂H
= Q⊗Pz −Cz⊗Ct−CHQ⊗Pz −XKtz⊗CT −CA

∂β̂

∂H
(24)228

The expanded form of some of the symbols in Eq. (21) through (24), which have not been expanded yet can be written229

as D = ΨHsprior, Gz = ztΨ−1AΩ−1AtΨ−1, L = Ω−1Xt, N = Ω−1AtΨ−1HQ, Pz = Ψ−1z, and K = Ψ−1AΩ−1. The230

quantities ∂ŝG
∂H , ∂β̂∂H , and ∂ε̂

∂H are sensitivity matrices of dimensions (m×mn), (p×mn), and (m×mn) respectively. The units231

of the entries of ∂ŝ
∂H are of the form (µmoles−1m2sec−1)2ppm−1.232

233

There might be times when we would like to know the sensitivity of the transport (H) with respect to certain source locations234

only. In this case, we can use ij form of Eq. (21) through (24) to obtain ∂ŝB
∂Hij

in parts. In this formulation, ∂ŝB
∂Hij

can be given235

as:236

∂ŝB
∂Hij

= C
∂H

∂Hij
(C(Hsprior− z)− sprior) + (Q−CHQ)

(
∂H

∂Hij

)t
Ψ−1(z−Hsprior) (25)237

∂ŝG
∂Hij

= X
∂β̂

∂Hij
+

∂ε̂

∂Hij
, where (26)238

∂β̂

∂Hij
=

(
−Kt ∂H

∂Hij

(
XN−CAS + QHt

)
+ KtHQ

∂Ht

∂Hij

(
Ψ−1ASt− I

)
+ Ω−1Xt ∂Ht

∂Hij

(
I−Ψ−1AS

))
Ψ−1z (27)239

∂ε̂

∂Hij
=

(
Q
∂Ht

∂Hij
−C

∂H

∂Hij
QHt−CHQ

∂Ht

∂Hij

)
Ψ−1

(
z−Aβ̂

)
−C

(
∂H

∂Hij
Xβ̂+ A

∂β̂

∂Hij

)
, (28)240

where S = AΩ−1 and the matrix ∂H
∂Hij

is a single-entry matrix with a one for a Hij entry for which the differentiation is being241

performed and zero everywhere else. The quantities ∂ŝB
∂Hij

, ∂ŝG
∂Hij

, ∂β̂
∂Hij

, and ∂ε̂
∂Hij

are sensitivity matrices of dimensions (m×1),242

(m× 1), (p× 1), and (m× 1) respectively. Units of ∂ŝB
∂Hij

and ∂ŝG
∂Hij

are the same as their kronecker product counterparts.243
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2.2.2 LSA with respect to error covariance matrices244

In order to compute the local sensitivities of ŝ with respect to Q and R, consider that they are parametrized as Q(θQ) and245

R(θR) where θQ and θR are the parameter vectors. The differentiation with respect to error covariance parameters in Q and246

R can be accomplished from Eq. (29) through (32) where the subscript i indicates the ith covariance parameter for which247

differentiation is being performed.248

∂ŝB
∂θQi

= (I−CH)
∂Q

∂θQi

HtΨ−1(z−Hsprior) (29)249

∂ŝG
∂θQi

=
(
−XΩ−1ATΨ−1H + I−QHTΨ−1H + QHTΨ−1AΩ−1ATΨ−1H

) ∂Q

∂θQi

HTΨ−1(z−AΩ−1ATΨ−1z)

(30)

250

∂ŝB
∂θRi

=−C
∂R

∂θRi

Ψ−1(z−Hsprior) (31)251

∂ŝG
∂θRi

= (−XΩ−1AT −B + CAΩ−1AT )Ψ−1
∂R

∂θRi

Ψ−1(z−AΩ−1ATΨ−1z) (32)252

All the quantities ∂ŝB
∂θQi

, ∂ŝG
∂θQi

, ∂ŝB
∂θRi

, and ∂ŝG
∂θRi

are sensitivity matrices of dimension (m× 1) and the units of the entries of253
∂ŝ
∂θQi

and ∂ŝ
∂θRi

are of the form (µmoles−1m2sec−1)(unit of θQi
or θRi

)−1. It is also possible to find ∂ŝ
∂Q and ∂ŝ

∂R directly as254

shown in Eq. (33) through (36).255

∂ŝB
∂Q

= HtΨ−1(z−Hsprior)⊗
(
I−HtΨ−1Bt

)
(33)256

∂ŝG
∂Q

=
(
Gz − zt

)
Ψ−1H⊗

((
B−MAt + LtAt

)
Ψ−1H− I

)
(34)257

∂ŝB
∂R

= Ψ−1(z−Hsprior)⊗Ψ−1HQ (35)258

∂ŝG
∂R

=
(
Gz − zt

)
Ψ−1⊗

(
B−MAt + LtAt

)
Ψ−1 (36)259

First two quantities ∂ŝB
∂Q and ∂ŝG

∂Q are sensitivity matrices of dimension (m×m2). The second set of quantities ∂ŝB
∂R and ∂ŝG

∂R260

are sensitivity matrices of dimension (m×n2). Equations (33) through (36) are useful when Q and R are fully or partially261

non-parametric. However, dimensions of these matrices can be quite large and users needs to be careful in realizing the full262

matrix.263

2.3 Global sensitivity analysis (GSA): a variance-based approach264

GSA is a process of apportioning the uncertainty in output to the uncertainty in the input parameters. The term “global”265

stems from accounting for the effect of all input parameters simultaneously. This is different from LSA, where the impact of266

a slight change in each parameter on the functional output is considered separately while keeping all other parameters con-267

stant. Although quite significant, detailed GSA is challenging as it requires knowledge of the probabilistic variations of all268
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possible combinations (also known as covariance) of the input parameters,which in most situations is unavailable. However,269

sometimes it might be possible to know the approximate joint variation of a small subset of the input parameters (e.g. the270

covariance between Q and R parameters). Besides the variance-based method, derivative-based global sensitivity measures271

or the active-subspace technique (see Appendix A for discussion) can also be used to conduct GSA. However, this work uses272

the variance-based method as it does not require sampling and can leverage previously computed partial derivatives. It uses273

a first-order Taylor’s approximation of parameter estimates to compute global sensitivities. This technique has been used in274

many research works, including environmental modeling (e.g., Hamby, 1994) and life cycle assessment (Groen et al., 2017;275

Heijungs, 1996), among others.276

277

Broadly, we can consider ŝ as a function of the covariates Q,R,H,X(or sprior), and z i.e. ŝ = f(Q,R,H,X(or sprior),z).278

We can then compute how uncertainties of the individual components of f are accounted for in the overall uncertainty of ŝ by279

applying multivariate Taylor series expansion of ŝ about its mean. Approximation up to first-order polynomial of the Taylor280

series expansion leads to the equation:281

Var(ŝ) =

(
∂ŝ

∂θ

t

Wθ
∂ŝ

∂θ

)
θ=θ̂

+ Error,282

where θ = (θQ,θR,θH ,θX(or sprior),θz) is the vector of parameters and W = Var(θ) is the covariance matrix of the param-283

eters.284

285

It is challenging to estimate covariance quantities such as the cross-covariance between θR and θH or between θH , and θQ286

to get the best possible estimate of the total uncertainty of ŝ. Assuming no cross-covariance between Q and R and ignoring287

other parameters not related to the variance parameters, the diagonal of the variance of the posterior fluxes can be approximated288

as:289

Var(ŝi) =

L∑
j=1

(
∂ŝ

∂θQj

)2

i

Var
(
θQj

)
+

M∑
k=1

(
∂ŝ

∂θRk

)2

i

Var(θRk
)

∣∣∣∣∣∣
θ=θ̂

, (37)290

where the subscript i on the right-hand side of Eq. (37) refers to the ith entry of the derivative vector, which is a scalar and291

parameters θQj and θRk
refer to the jth and kth parameters of the sets θQ and θR respectively. From Eq. (37), we can see292

how uncertainty in the flux estimate is apportioned between variance of θQ and θR. No normalization is necessary in such a293

framework as, variance components on the right hand side of Eq. (37) are naturally weighted, resulting in the same units of294

measurement. Once the two parts of Vŝi (i.e. Eq. (37)) are computed, they can also be summed over the solution space (e.g.295

number of gridcells × number of periods) of ŝ and ranked to find the relative importance of the parameters.296

297

Even after simplification, implementation of Eq. (37) is complex as it requires knowledge of the uncertainties associated298

with the parameters of Q and R that are generally not known. We do not further discuss GSA in the context of the case study299
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presented in this work, but we have shown its application with respect to Q and R in the MATLAB Livescript.300

301

Besides the variance-based method, there are many different approaches for performing GSA, as described in Appendix. A.302

However, they are either computationally expensive or assume independence of the input parameters, which is not the case303

in atmospheric inverse problems. We do not pursue other approaches for quantifying GSA associated with Q and R as they304

would lead to similar results and would not add anything substantial to the contributions of this study.305

2.4 Ranking importance of covariates, covariance parameters, and observations from LSA306

In atmospheric inverse modeling, we encounter two situations while ranking the importance of parameters. These are ranking307

of parameters when they have the same or different units. The situation of ranking parameters with the same units arises when308

we want to study the influence of a group of parameters, like observations with the same units. Comparatively, the ranking of309

parameters with different units occurs when we want to explore the impact of groups of parameters with dissimilar units of310

measurements, like observations in z in comparison to the variance of observations in R. Both these situations can be accounted311

for in GSA described in Sec. 2.3. However, GSA in most scenarios in atmospheric inverse modeling cannot be performed due312

to the reasons mentioned earlier. Therefore, in this work, we adopt a regression-based approach to rank the importance of313

parameters. The proposed approach utilizes output from LSA, accounts for multicollinearity, and results in importance scores314

that are bounded between 0 to 1. We define the regression model for ranking as:315

ŝ = Eγ+ ξ, (38)316

where ŝ are fluxes obtained from an inversion, and E is an (m× number of derivatives) matrix of the previously estimated317

sensitivities. The vector of unknown coefficients γ is of dimension (number of derivatives× 1), and ξ is an (m× 1) vector of318

unobserved errors associated with the regression model. To exemplify, E in Eq. (38) can be arranged as:319

E =

[
∂ŝ

∂z

∂ŝ

∂Q

∂ŝ

∂R
· ·
]

(39)320

In a regression-based approach, as described in Eq. (38), multicollinearity between independent variables in E can pose a321

problem for determining the importance of independent variables in influencing Γ. To avoid this problem, we compute relative322

importance weights by using the method outlined in Johnson, 2000. These weights are obtained by first deriving uncorrelated323

orthogonal counterparts of the covariates in E and then regressing ŝ, on E to get importance weights for each covariate. The324

coefficient of determination then standardizes the weights, i.e.,R2 such that they range between 0 to 1 with the aggregated sum325

of 1. Implementation of this method is included in the Livescript submitted with this manuscript.326

327

Note Least Absolute Shrinkage and Selection Operator (LASSO) or Principal Component Analysis (PCA) can also rank328

parameters under multicollinearity. However, both these methods result in unbounded weights. Furthermore, “inference after329
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selection” is ambiguous for LASSO coefficients (see Berk et al., 2013 or chapter 6 of Hastie et al., 2015 for details). Conse-330

quently, interpreting the LASSO coefficients as ranks may not be the best approach.331

332

The regression-based approach described above can rank parameters with the same and different units of measurement.333

However, an additional normalization step is required to get the overall rank of the parameters with varying units of measure,334

like in z, Q, and R. To perform this normalization, first, each column in every sensitivity matrix (e.g. ∂ŝ∂z ,
∂ŝ
∂Q , and so forth)335

that is to be ranked is normalized (min-max normalization; see Vafaei et al., 2020) between 0 to 1. After which, all columns336

for a sensitivity matrix are summed and renormalized to vary between 0 to 1, resulting in one column representing a sensitivity337

matrix for a particular group. We denote this by the subscript “grouped” (e.g. ∂ŝ∂z grouped) in latter sections.338

339

Once the normalized sensitivity vectors are obtained for each group, the regression methodology as described above can be340

used to rank the importance of each group. The ranking methodology proposed above does not account for the non-linear rela-341

tionship between estimates of the fluxes and the derivatives. If this is a concern, then the strength of the non-linear relationship342

among the derivative vectors can be first obtained by computing distance correlation between fluxes and the local derivatives343

of the parameters. If necessary, variable transformation techniques such as Box-Cox transformation (see Sakia, 1992) can be344

employed before adopting the regression methodology described above.345

346

Note that in most batch inversion methods, DOFS is used to assess the information content provided by observations.347

DOFS = 0 in these inversions implies that no informational gain happened. In this case, the estimated flux reverts to prior. In348

Eq. (38), this means that the γ coefficient that corresponds to Q would have the most significant impact. Likewise if DOFS is349

large, then the γ coefficients for z and R would be larger (and likely correlated). We show this correspondence in Sec. 3.350

351

Finally, all diagnostic methods applied in the context of any regression-based model can be used to understand the rela-352

tionship between dependent and independent variables; however, what covariates to include in E depends on the specific case353

study under consideration.354

3 Results355

To demonstrate the applicability of our methods, we utilize data from our published work on CH4 fluxes in the Los Angeles356

megacity (see Yadav et al., 2019). In this previous work, fluxes were estimated for South Coast Air Basin (SoCAB) region (see357

Fig. 3) at 0.03◦ spatial (1826 grid-cells) and 4-day temporal resolution from the Jan 27, 2015 through Dec 24, 2016. However,358

in the current work, we utilize input data from Oct 23, 2015, through Oct 31, 2015, which is a single inversion period, to359

contextualize the applicability of our methods. This period overlaps with the beginning of the well-studied Aliso Canyon gas360

leak (Conley et al., 2016). As in previous work, R and Q are assumed to be diagonal with separate parameter for each site in R361

and a single parameter that governs the scaling of errors in Q. Similarly, X is a column vector consisting of the prior estimates362
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of CH4 fluxes.363

364

For each observation included in the case study, a forward operator was obtained by using Weather Research Forecasting-365

Stochastic Time Inverted Lagrangian Model (see Yadav et al., 2019). These forward operators are used to demonstrate the366

application of the methodology for building IAOMI and JSD-based correlation matrices in the MATLAB Livescript. They are367

also used with measurements and prior information to estimate the fluxes and perform LSA.368

3.1 STAD from the forward operators369

In this work, we identify STAD for the 4-day period for which the inversion was performed. The spatial domain of the study370

over this period is uniquely disaggregated by STAD, as shown in Fig. 3. The STAD for different sites is mostly spatially371

contiguous. Still, for some monitoring sites, we found isolated grid cells that were not within the adjacent zones. We manually372

combined these with STAD for the nearest site to create a spatially continuous map, as shown in Fig. 3. The discontinuous373

version of the STAD shown in Fig. 3 is included in the Livescript. The discontinuities in the STAD result mainly from an374

unequal number of observations across sites and indicate that aggregation over a more extended period is required to identify375

a noise-free STAD. We do not investigate the period of this aggregation as this is beyond the scope of this work.376

Figure 3. Study area with county boundaries, measurement locations, and the spatiotemporal Area of Dominance of measurement locations.

The black dotted line shows the area constrained by observations, as shown in Yadav et al., 2019. Map data copyrighted by © OpenStreetMap

contributors, 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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Overall, STAD for each site indicates spatial regions of fluxes over a period that contribute most to the observational signal377

observed at a site allowing us to associate the change in fluxes to the specific area in the basin where reductions or increases378

in emissions are likely to have occurred. Some information in the observational signal is shared between observations from379

different sites. This shared information (though not shown) can be computed as part of STAD and forms part of overall basin-380

scale estimates of fluxes that combines measurements from all sites. Note that STAD does not represent the network’s coverage,381

i.e., regions of emissions constrained by observations. These regions are shorter than STAD (see the grey outline in Fig. 3).382

They are obtained before performing an inversion by identifying areas of continuous spatiotemporal coverage as provided by383

atmospheric transport (Fig. 4) or by assessing the model resolution after performing an inversion (for an explanation, see Yadav384

et al., 2019).385

Figure 4. Heatmap of the aggregated forward operators for the case study period.

3.2 Sensitivity analysis386

One of the main goals of the sensitivity analysis after performing an inversion is to identify the observations that had the most387

influence on the flux estimates. Other than observations, it is also essential to explore the importance of different inputs to an388

inversion, like variance parameters in R. We describe the process of performing this analysis within the context of the case389

study mentioned in Sec. 3, which discusses the relative importance of the input quantities in influencing ŝ, by utilizing local390

sensitivities.391
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Site Importance Score Rank

GRA 0.26 1

ONT 0.24 2

COM 0.13 3

IRV 0.11 4

BND 0.10 5

CIT 0.07 6

FUL 0.07 7

USC 0.06 8

Table 1. The importance scores and ranking of 8 sites based on the sensitivity of the estimated fluxes (ŝ) to observations (z).

3.2.1 Comparison and ranking of the observations392

Importance of individual measurements in influencing ŝ, can be easily computed through the relative importance methodology393

described in section 2.4. Although all entries of ∂ŝ
∂z are in same units of measurement, direct ranking of observations or sites394

without employing the relative importance technique can lead to misleading results, which happens due to the presence of large395

negative and positive values in ∂ŝ
∂z that are governed by the overall spatiotemporal spread, the intensity of forward operators,396

and high enhancements.397

For the case study in this work, we find that observations collected at the GRA site that is located nearest to the source of398

the Aliso Canyon gas leak are most influential in governing ŝ, as shown by site-based rankings in Table 1. These rankings399

primarily show the importance of observations from a site in influencing the estimated fluxes for the period in consideration400

and are obtained by summing the weights for each observation by employing the relative importance methodology.401

402

Outliers have a significant impact on these rankings. The high weight associated with even one observation from a site can403

make that site more important compared to other sites. For example, if we remove the observation with the highest weight404

from each site, ONT is the most important site, followed by GRA, CMP, IRV, CIT, FUL, BND, and USC. As part of sensitivity405

analysis, examining the influence of the observations associated with high weights is crucial because they are likely to have an406

enormous impact on the flux estimates. Site level importance should be judged not only by examining the aggregated ranking407

as presented in Table 1 but also by looking at the distribution of weights shown through the boxplot in the Livescript associated408

with section 3.2. A site with evenly distributed weights is more important than one whose importance is just due to the presence409

of a few observations with high weights.410

411

The ranking of each observation in influencing the estimates of fluxes can be obtained by examining the weights of the412

column vectors of ∂ŝ
∂z , and is provided in the Livescript. To exemplify, this ranking of weights showed that observation from413
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Figure 5. The sensitivities ( ∂ŝ
∂zi

) and forward operators of the most and least important observations are shown here. Subplots A and C depict

the sensitivity of ŝ with respect to the most (A) and least (C) important observation, respectively, during the case study period. The CH4

enhancement corresponding to these observations is shown in the bottom left corner of the subplots and denoted by the symbol zi. The right

subplots, B and D, display the forward operators associated with the sensitivities shown in subplots A and C, respectively.

the GRA site with the enhancement of 1.7 ppm was most important, whereas an observation from the BND site with an414

enhancement of 0.02 ppm was found to be least important in influencing ŝ. Note this is not an observation with the lowest415

enhancement but with the least influence (Fig. 5).416

3.2.2 Relative importance of Q,R,X,β, and z417

After the two-step normalization of ∂ŝ
∂z , ∂ŝ

∂X , ∂ŝ
∂H , ∂ŝ

∂β , ∂ŝ
∂Q , and ∂ŝ

∂R as described in section 2.4 the spatial plots of all these418

grouped quantities that we call as ∂ŝ
∂z grouped, ∂ŝ∂X grouped, ∂ŝ

∂H grouped, ∂ŝ
∂β grouped

, ∂ŝ∂Q grouped
, and ∂ŝ

∂R grouped can be created to explore419

the regions of the low and high weights (see Fig. 6) at the grid scale.420

421

Some of these quantities are correlated and should be seen in conjunction. For example, R describes errors in z, among422

other errors, and implies that ∂ŝ
∂R grouped and ∂ŝ

∂z grouped should be evaluated together to understand their importance in influencing423

flux estimates. Similarly Q describes errors in s−Xβ implying that ∂ŝ
∂Q grouped

and ∂ŝ
∂X grouped, should be assessed together to424

understand their importance in influencing flux estimates. A larger value of ∂ŝ
∂z grouped + ∂ŝ

∂R grouped is likely to be found around425
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in-situ sites due to increased model resolution. However, if around these locations ∂ŝ
∂R grouped is larger in comparison of ∂ŝ∂z grouped426

then it suggests that errors in R should be adjusted and therefore observations should be more important in governing the flux427

estimates around in-situ sites. In this case study, this is due to the large variability in the enhancement caused by the Aliso428

Canyon leak and the presence of large point sources near in-situ sites. Overall, for the exact location, a larger ∂ŝ∂z groupedi
should429

be accompanied by a lower ∂ŝ
∂R groupedi

, as confirmed by the correlation subplots A and B of Fig. 7.430

The increased model resolution also results in lower importance of ∂ŝ
∂X grouped and ∂ŝ

∂Q grouped
, around sites. However, areas431

unconstrained by observations are likely to have larger ∂ŝ
∂X grouped + ∂ŝ

∂Q grouped
as seen in Fig. 6 for ∂ŝ

∂X grouped and ∂ŝ
∂Q grouped

,432

quantities. If in locations constrained by observations, ∂ŝ
∂Q groupedi

is larger in comparison to ∂ŝ
∂X groupedi

then Xin these locations433

is incorrect and needs adjustment. Likewise, in the case of ∂ŝ
∂R grouped a larger ∂ŝ

∂X groupedi
is generally accompanied by lower434

∂ŝ
∂z groupedi

and vice versa, which is also visible in the correlation subplots C and D in Fig. 7. Quantity ∂ŝ
∂β grouped

provides435

information about the grid-cells that are determining the value of β̂ and in this case study as expected this is around Aliso436

Canyon leak whose Xi is being adjusted due to the larger flux from that region. This can also be seen in subplot E in Fig. 7437

where it is positively correlated with ŝ.438

4 Discussion439

This study lays out techniques to assess the quality of the inferred estimates of fluxes. Sensitivity analysis is an important440

diagnostic tool to understand the impact of the choices made with respect to inputs on the estimated fluxes. However, it is not441

a recipe for selecting the proper forms of X or the structure of Q or R before performing an inversion. Other tools or methods442

such as Bayesian Information Criterion, Variance Inflation Factor should be used to perform this task.443

444

The case study in this work is designed only to demonstrate the methodologies described in Sec. 2. We do not impose non-445

negativity constraints to obtain positive CH4 fluxes as was done in the original 2019 study (Yadav et al., 2019). This is done446

because posterior likelihood changes its functional form under non-negativity constraints that invalidate the analytical forms447

of sensitivity equations presented in this work. Thus, some CH4 fluxes obtained in this study have negative values as can be448

seen in the map of ŝ in the MATLAB Livescript. Even in these situations assessing sensitivity through an inversion without449

the imposition of non-negativity is helpful as it provides insights into the role of z, R, Q, and X in governing estimates of450

non-negative ŝ.451

452

Like z, the importance of Q and R parameters can be directly obtained when all parameters have the same units of measure-453

ment as in the case study presented in this study. However, this is not guaranteed as R can be a function of variance parameters454

and spatiotemporal correlation lengths expressed in the distance units in space and time. Furthermore, a nonstationary error455

covariance R can have parameters that have even more complicated units. This situation is not limited to R but also applies to456

the prior error covariance Q and X. Under these conditions, comparing the sensitivity matrices is only possible after normal-457

ization. Therefore, we recommend using a multiple linear regression-based relative importance method to rank these quantities458
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Figure 6. Grouped local sensitivities of the estimated fluxes (ŝ) with respect to z, R, X, Q, and β from top-left to bottom-right respectively.

Note, in the case of ∂ŝ
∂z grouped, ∂ŝ

∂R grouped, and ∂ŝ
∂X grouped two-step normalization is performed to generate subplots associated with these quan-

tities. Derivatives with respect to: (1) observations in z, (2) parameters in R, and (3) entries in X are normalized between 0 and 1 and then

after aggregating these for every grid-cell another Min-Max normalization is performed to limit their ranges between 0 and 1. Only single

normalization is performed in case of ∂ŝ
∂Q grouped

and ∂ŝ
∂β grouped

as they consist of only one parameter.
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Figure 7. Scatterplots of relationships between ŝ and ∂ŝ
∂z grouped, ∂ŝ

∂R grouped, ∂ŝ
∂X grouped, ∂ŝ

∂Q grouped
, ∂ŝ

∂β grouped
. Note as before in Fig. 6 all the

derivatives are normalized to limit their range between 0 and 1. The correlation coefficient of the relationships shown in each scatterplot is

reported on the top right corner of the subplots. The least square line of best fit is shown in red color in every subplot.

for comparative assessment.459

460

The overall importance of ∂ŝ
∂z is best explored by performing column-based normalization and then employing the relative461

importance method. Additionally, column based normalization can be augmented by row-based normalization to assess and462

rank the influence of observations in governing grid-scale estimates of ŝ. Qualitatively, column and row-based assessment463

increase our understanding about the spatiotemporal estimates of ŝˆ, which is especially important when point sources are the464

dominant sources of emissions. Moreover, it provides insight into the temporal aggregation error (e.g. Thompson et al., 2011)465

as the information encoded in an instantaneous measurement can get lost over the coarser inversion period. This aggregation466

error also manifests spatially and is determined by the resolution at which fluxes are obtained. In many situations, these ag-467

gregation errors are unavoidable as the choice of the spatiotemporal resolution of inversions is governed by the density of468

observations in space and time.469

470

Other than aggregation error, the aggregation of the estimated fluxes also has profound implications as it affects the robust-471

ness of the estimated fluxes. It can be proved (see Appendix C1) that aggregation of ŝ in space and time from an inversion472
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conducted at finer resolution leads to reduction in uncertainty. However, even though ratio of observations to the estimated473

fluxes increases, the number of fluxes uniquely resolved declines at coarser resolution (see Appendix C2).474

475

The computational cost to calculate analytical partial derivatives is minimal as it is a onetime operation and is bounded476

by the computational cost to perform matrix multiplications, which at max is O(n3). For the case study presented, we can477

compute analytical derivatives and rank for approximately 4000 parameters in few minutes on a laptop. Computing derivatives478

by using the Kronecker form of equations (Eq. (18), (21) through (24), and (33) though (36)) is faster for smaller problems.479

However, for large problems, the storage costs associated with these equations can become prohibitive. In these situations, we480

propose the use of ij form of the equations (Eq. (20), (25) through (28), and (29) though (32)) for assessment. Furthermore,481

computational problems can also arise in ranking the inputs if we have numerous derivatives (e.g. greater than 10,000), as the482

ranking method used in this work relies on eigenvalue decomposition that has O(n3) computational complexity. To overcome483

this problem, we advise grouping of derivatives to reduce the dimension of the problem.484

485

Finally, the estimation of STAD and the importance of sites can be influenced by data gaps; therefore, it is not advised in486

presence of vast differences in the number of observations between sites.487

5 Conclusions488

Our work makes a novel and significant contributions that can improve the understanding of linear atmospheric inverse prob-489

lems. It provides (1) a framework for post hoc analysis of the impact of inputs on the estimated fluxes and (2) a way to490

understand the correlations in the forward operators or atmospheric transport model. The authors are unaware of any work491

where local sensitivities with different units of measurement are compared to rank the importance of inputs in a linear atmo-492

spheric inverse model.493

494

Concerning forward operators, we provide mathematical foundations for IAOMI and JSD-based metrics. These two metrics495

can be used to construct a nonstationary error covariance for the atmospheric transport component of the model-data mismatch496

matrix R. Furthermore, IAOMI-based assessments can be extended to identify STAD from forward operators that can help497

in disaggregating regions of influence of the observations over a chosen temporal duration. This assists in understanding the498

connection between the sources of fluxes and observations from a particular measurement location.499

500

The IAOMI and JSD-based metrics provide an essential insight into the two critical and only required components for an501

inversion: observations and forward operators (e.g., the influence of observation to the sources of fluxes through STAD), which502

can be accomplished before conducting an inversion and should be complemented by post hoc LSA, which is necessary for503

understanding the behavior of an inverse model. Overall, LSA can answer questions like for which locations and in what order504

of precedence was an observation important in influencing the estimated fluxes. This kind of analysis is entirely different from505
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estimating uncertainty, which tells us the prior uncertainty reduction due to observations.506

507

LSA is not a replacement for statistical tests that check inverse models’ underlying assumptions and model specifications.508

Neither is it a recipe for selecting inputs to an inverse model. However, as explained above, it has an essential role that can lead509

to an improved understanding of an atmospheric inverse model.510

511

512
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Appendix A: Review of previously employed methods to conduct sensitivity analyses515

Earlier, many methods have been proposed and utilized to perform sensitivity analysis. These can be categorized as global516

and local sensitivity analyses. Global sensitivity analysis (GSA) includes Morris’s (e.g. Morris, 1991) one step at a time517

method (OAT), Polynomial Chaos Expansion (PCE) (e.g. Sudret, 2008), Fourier amplitude sensitivity test (FAST) (e.g. Xu518

and Gertner, 2011), Sobol’s method (e.g. Sobol, 2001) and Derivative based global sensitivity measures (DGSM) (e.g. Sobol519

and Kucherenko, 2010) among others. These existing GSA methods (1) assume independence of parameters (e.g., FAST and520

OAT), or (2) computationally expensive (e.g., Sobol’s method), or (3) require knowledge of the joint probability distribution of521

the parameter space (e.g., DGSM, PCE). Therefore, these traditional methods cannot be directly applied in linear atmospheric522

inverse problems, which consists of tens of thousands of non-normal, spatiotemporally correlated parameters (including ob-523

servations). Constantine and Diaz, 2017 proposed an active subspace-based GSA that uses a low-dimensional approximation524

of the parameter space. But it is still computationally expensive for problems with thousands of parameters (see case study in525

Constantine and Diaz, 2017).526

527

Compared to GSA, a local sensitivity method like Bayesian Hyper Differential Sensitivity Analysis (HDSA) (Sunseri et al.,528

2020) computes partial derivatives concerning maximum a posteriori probability (MAP) estimates of a quantity of interest.529

However, unlike Bayesian HDSA, we do not generate samples from the prior estimate to compute multiple MAP points since530

we have limited knowledge of the prior distribution of the spatiotemporally correlated parameters. We derive the functional531

form of the local sensitivity equations based on the closed-form MAP solution. Our method is simple and amenable to tens532

of thousands of parameters. Note that, like all linear atmospheric inverse problems, one of the critical goals of this work is533

to study the importance of thousands of spatiotemporally varying parameters by ranking them, and computation of the local534

sensitivities is a means to achieve that goal.535
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Appendix B: Jensen-Shannon distance (JSD) for forward operators536

The dissimilarity between forward operators can also be measured via entropy (for definition, see MacKay et al., 2003) based537

distances, which can capture differences between two probability distributions. One such metric is Jensen-Shanon distance538

(JSD) (Nielsen, 2019), which can be used to compute the distance between two forward operators after normalizing them by539

their total sum. For a forward operator F this can be given as:540

PFk
=

Fk∑
kFk

(B1)541

where Fk denotes kth entry of F resulting in normalized forward operator P . We can then use JSD to compute distance between542

two normalized forward operators from equation B2:543

JSD (PF||PG) =

√
1

2
D (PF||M) +

1

2
D (PG||M) (B2)544

where D stands for Kulback-Leibler (KL) divergence (see MacKay et al., 2003 for details). KL divergence D of any proba-545

bility distribution p with respect to another probability distribution q is defined as: D(p||q) =
∑
plog(p/q) and M stands for546

1
2 (PF +PG). The symbol || is used to indicate that D (PF||M) and D (PG||M) are not conditional entropies (see MacKay547

et al., 2003). JSD is closed and bounded in [0,1] when KL divergence is computed with base 2 logarithm. Intuitively, JSD and548

1− ν (i.e. 1-IAOMI) are comparable since both of them are measures of dissimilarity.549

Appendix C: Uncertainty and model resolution under aggregation550

Here we show the proofs of two mathematical statements on the robustness and quality of the estimated fluxes as mentioned in551

Sec. 4. First, we show why marginal variance of the estimated fluxes (which is the diagonal of covariance matrix of ŝ) decrease552

when estimated fluxes are post aggregated to a coarser scale or upscaled (A). Second, we show why in such case the model553

resolution (also termed as, total information resolved by the observations) also decreases (B). Note that, the nomenclature used554

in the appendix should not be confused with the nomenclature introduced in Sec. 2. The abbreviations and symbols used here555

are independent of what are used in the Sec. 2.556

C1 Proof of the reduction of marginal variance of ŝ when aggregation is performed557

Post inversion aggregation or upscaling of any flux field s is equivalent to pre-multiplication by a weight matrix (in fact, a row558

stochastic matrix). This can be written as:559

s̃ = Jŝ, (C1)560
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where J is a row stochastic (i.e. row-sums are all unity) k×m weight matrix (k <m). Variance of s̃ can be written as JΣJt561

where var(̃s) = Jvar(̂s)J t=JΣJt. The general structure of J is as follows:562

J =


0 j12 j13 0 0 0

j21 0 j2r+1 j2r+2 0 0
...

...
. . . . . .

...
...

0 0 0 jkm 0 0

=


jt1

jt2
...

jtk

 (C2)563

However, J is mostly sparse, with non-zero values in only a few places. The rest of the entries are zeros. Essentially, J can564

have any number of non-zero entries in a row that may or may not be consecutive. This is because, although adjacent grids565

are averaged on a map, they may not be adjacent upon vectorization. Moreover, the geometry of the map may not be exactly566

square or rectangular. Therefore, depending on the aggregation or upscaling factor and geometry, there may or may not be567

any neighboring grid for averaging around a particular grid. However, the rows are linearly independent, as nearby grids are568

considered only once for averaging. The properties of J are as follows:569

1. J1 = 1 or jti1 = 1 ∀i= 1,2, ·, ·,k570

2. jtijr = 0 for i 6= r571

We can rearrange the columns of J and the rows of Σ accordingly without loss of any structure such that non-zero entries572

are consecutive for each row of J. Matrix JΣJ′ under column permutation can be written as:573

JΣJt = JπΣπJtπ =


lt1 0 . . . 0

0 lt2 . . . 0
...

...
. . . .

0 0 . . . ltk



k×m
Ξ11 Ξ12 . . . Ξ1k

Ξ21 Ξ22 . . . .
...

...
. . . .

Ξk1 . . . . Ξkk



m×m
l1 0 . . . 0

0 l2 . . . 0
...

...
. . . .

0 0 . . . lk



p×k

(C3)574

=


lt1Ξ11l1 . . . . lt1Ξ1klk

. lt2Ξ22l2 . . . .

...
...

. . . .

ltkΞk1l1 . . . . ltkΞkklk



k×k

(C4)575

where Jπ and Σπ are the permuted J and Σ respectively. However, for notational clarity, we use l and Ξ as the sub-vector576

and sub-block-matrix of the Jπ and Σπ respectively. Note that, any lti is a row-vector of dimension (1,di), and Ξii is a square577

matrix of dimension (di,di) where
∑k
i=1 di =m. Thus, diagonal entry ltiΞiili is a scalar quantity. For any ith diagonal entry,578

the corresponding scalar quantity can be written as
∑
jrl lij lirΞjr. By symmetry of Ξ, this reduces to579

ltiΞiili =
∑
r

l2irΞ
2
lr + 2

∑
j>r

lij lirΞjr (C5)580
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By Cauchy Squartz inequality on Ξjr, this can be written as581

∑
r

l2irσ
2
lr − 2

∑
j>r

lij lirσjjσrr ≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjr ≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr (C6)582

lir√σir −∑
r≥2

lir
√
σir

2

≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr ≤

(∑
ir

lir
√
σrr

)2

(C7)583

minrσrr

lir −∑
r≥2

lir

2

≤
∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr ≤maxrσrr

(∑
ir

lir

)2

(C8)584

This implies (by property 1 of the weight matrix J) that the ith diagonal entry is bounded by:585

minrσrr

lir −∑
r≥2

lir

2

≤ J′iΣiiJi ≤maxrσrr ≤
di∑
r=1

σrr (C9)586

where
∑di
r=1σrr is the sum of the marginal variance of the ith block of unaveraged ŝ. Thus, sum of the marginal variance of s̃587

which is the sum of the ith diagonal JtiΣiiJi is also smaller or equal to the sum total of marginal variance of ŝ. This implies that588

the marginal variance of the posterior mean decreases as a result of the diagonal of the variance matrix shrinking in magnitude589

upon averaging.590

C2 Proof of the reduction in model resolution when aggregation is performed591

Aggregated forward operator H̃ can be written as:592

H̃ = HB, (C10)593

where B is the upscaling matrix. Dimension of B has the dimension of transpose of J. Structural form of B is similar to the594

form of J explained in C2. Non-zero entries of B are in the same place as J′ with magnitude replaced by unity. This is evident595

from the fact that forward operator is summed instead of being averaged for aggregation. Properties of B are as follows:596

1. B1 = 1597

2. JB = diag(N)k×k where N is the vector of number of neighboring grid-cells for any particular grid-cell i.e. N = (N1, . . . ,Nk)598
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3. BJ =


C1 0 . . . 0

0 C2 . . . 0
...

...
. . . .

0 . . . . Ck



m×m

is a block diagonal matrix. Any block Ci of JA can be expressed as a varying di-599

mension (depending on the number of neighboring grids of any particular grid-cell) matrix of form:600

Ci =


1
Ni

. . . 1
Ni

...
. . .

...
1
Ni

. . . 1
Ni


Ni×Ni

=
1

Ni
11t (C11)601

4. BJ is symmetric and positive semi-definite602

First three properties are simple observations from the construction. So, here we provide proof of the fourth property.603

Proof. By construction, Det(BJ−λI) =Det(C1−λI) . . . .Det(Ck−λI). So, eigenvalues of BJ are the list of eigenvalues604

of the block matrices. It can be proved that 1 and 0 are the only two distinct eigenvalues of Ci for any i. Below here is a brief605

argument on that:606

607 (
1
Ni

11t
)

1= 1
Ni

1Ni = 1 ·1 implies one eigenvalue of Ci is 1. Observe that, rank
(

1
Ni

11t
)

= rank(1) = 1. Hence, dimen-608

sion of null space dim
(
N
(

1
Ni

11t
))

= k− rank
(

1
Ni

11t
)

= k− 1. This implies that the other eigenvalue of Ci is 0 with609

multiplicity k− 1.610

611

So, not only Ci is symmetric but also the eigenvalues Ci are always non negative. Consequently, all eigenvalues of BJ are612

of similar form i.e. BJ is symmetric positive semidefinite.613

Finally, model resolution matrix for inversion can be written as ∂ŝ
∂z

H where H is the forward operator operator. Post inversion614

aggregated model-resolution can be written as:615

∂s̃

∂z
H̃ = A

∂ŝ

∂z
HB By Eq. (C1) and C10 (C12)616

The question is what happens to the trace of the model-resolution under the aggregated scenario? We provide a proof for the617

simple batch Bayesian case in lemma C2. Proof for the geostatistical case is similar and left for the enthusiastic readers.618

Lemma 1.

Mres = QH′ψ−1H619

Mresaggregated = JQH′ψ−1HB then620

trace(Mresaggregated)≤ trace(Mres) (C13)621
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Proof. Model resolution for the aggregated scenario can be written as:622

trace(Mresaggregated) = trace(JQH′ψ−1HB) = trace(BJQH′ψ−1H) = trace(WS) where W = BJ, S = QH′ψ−1H,

(C14)

623

where S and W are both of dimension (m×m). S is a positive semidefinite matrix since both Q and H′ψ−1H are positive624

semidefinite. For Wm×m and Sm×m positive semidefinite, trace of their product can be bounded by the following quantities625

(see Kleinman and Athans, 1968 and discussion in Fang et al., 1994):626

λmin(W)trace(S)≤ trace(WS)≤ λmin(W)trace(S) (C15)627

By Property 4 of the weight matrix B, we know that λmin(W) = 0 and λmax(W) = 1, hence the above reduces to 0≤628

trace(WS)≤ 1 · trace(S). Hence is the proof by C14.629
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